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Abstract

In this paper, we consider the problem of estimating a single changepoint
in a parameter-driven model. The model - an extension of the Poisson
regression model - accounts for serial correlation through a latent process
incorporated in its mean function. Emphasis is placed on the change-
point characterization with changes in the parameters of the model. The
model is fully implemented within the Bayesian framework. We develop a
RJMCMC algorithm for parameter estimation and model determination.
The algorithm embeds well-devised Metropolis-Hastings procedures for
estimating the missing values of the latent process through data augmen-
tation and the changepoint. The methodology is illustrated using data on
monthly counts of claimants collecting wage loss benefit for injuries in the
workplace and an analysis of presidential uses of force in the US.

Keywords: count data; data augmentation; latent process; Poisson distribu-

tion; reversible jump MCMC.

Running Headline: Bayesian single changepoint estimation

1 Introduction

Changepoint detection and estimation is a subject of prime importance in the

analysis of temporal processes. Changepoints happen when there is an extraor-

dinary event or external influence on the process(es) of interest, causing abrupt

or possibly slow changes in the properties of the process(es). Both integer- and
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real-valued temporal processes often exhibit changes in behaviour owing to their

dynamic structure. Changepoint analysis for temporal processes has a huge sta-

tistical literature; see Jandhyala et al. (2013) for an excellent review. Several

approaches ranging from the use of CUSUM tests (Kang & Lee, 2014) to max-

imum likelihood methods (Fu & Curnow, 1990) and Bayesian methods (Carlin

et al., 1992; Green, 1995; Barbieri & Conigliani, 1998; Fearnhead, 2006), have

been developed for detecting and estimating single and multiple changepoints in

both sequential and retrospective formulations.

In the time series regression context, whilst changepoint analysis in linear

models with Gaussian errors has received a great deal of attention, incorpo-

ration of changepoints into more general parameter-driven time series models

is less well-developed and analyzed. In particular, we are not aware of any

work that addresses the problem of changepoint detection and estimation in the

parameter-driven model proposed by Zeger (1988) and used in Campbell (1994),

Chan & Ledolter (1995) and Frühwirth-Schnatter & Wagner (2006). The work

of Frühwirth-Schnatter & Wagner (2006) is particularly relevant to this work

as their analysis is based upon a data augmentation MCMC which we extend

upon to develop a reversible jump MCMC algorithm to detect the presence of

a changepoint in the data. The parameter-driven model accounts for autocor-

relation and overdispersion through a latent process incorporated in its mean

function. This is in contrast to an observation-driven model which explains

serial correlation by including lagged values of the variable in its mean function.

The parameter-driven model of Zeger (1988) is a Poisson regression model

and this will be the model we focus on in this paper. The approach is read-

ily generalizable to other discrete regression models. Specifically, the Poisson

regression model can be written as:

Yt|Xt, zt ∼ Po(exp(zTt β +Xt)), (1)

Xt = αXt−1 + εt, (2)

where Yt denotes the observed counts, zt, a covariate vector, β, the regression

parameters and {Xt} is an AR(1) process with independent and identically dis-
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tributed εt. Note that when Xt = 0, (1) reduces to a standard Poisson regression

model. In Zeger (1988) it is assumed that E[exp(Xt)] = 1 to ensure that the

model parameters are identifiable and to aid interpretation of the model. That

is, this assumption ensures that E(Yt) = E(E(Yt|Xt)) = exp(zTt β)E(exp(Xt)) =

exp(zTt β). Thus, as is required in the regression context, the unconditional mean

of the counts depends only on the linear combination of covariates and not on the

moments of the latent process. However, with a stationary {Xt}, this restriction

may be relaxed since the regression coefficients apart from the intercept remain

unchanged with varying assumptions about E(exp(Xt)). Also, simple algebraic

manipulations can be carried out to make estimates of the intercept consistent

across such assumptions (see, for example, Chan & Ledolter, 1995).

The unobserved nature of the latent process {Xt} leads to a highly compli-

cated likelihood of the model. In Zeger (1988) an estimating equation approach

was used to fit the model. The estimating equation method (Cameron & Trivedi,

2013, p. 279) solves a set of simultaneous equations analogous to the score

equations in maximum likelihood theory, and which depend on the first- and

second-order moments of the model. However, the form of the parameter-driven

model given by (1) means that data-augmentation of {Xt} leads to a tractable

likelihood. Consequently, various authors have utilised data augmentation for

parameter estimation. Chan & Ledolter (1995) developed a Monte Carlo EM

algorithm for estimating parameter-driven models. The algorithm is an exten-

sion of the EM algorithm as it facilitates the computation of the expectation

step using MCMC methods. Oh & Lim (2001) considered a fully Bayesian anal-

ysis of the model in which the computational difficulty introduced by the latent

process was overcome through a reparameterization of the model in terms of

additional Gaussian latent variables. In Frühwirth-Schnatter & Wagner (2006)

a general approach based upon Gibbsian transition kernels is introduced which

is applicable to a wide range of state space models.

In this paper, we address the problem of detecting and estimating a change-

point in a parameter-driven model. We consider a retrospective formulation -

assuming a finite set of data has been collected. We focus on the changepoint

parameterization in which a single change is assumed to have occurred in all the
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parameters of the model although other parameterizations are possible as men-

tioned in Section 2. We also use data augmentation (see Section 2.1) to facilitate

inference in a Bayesian framework. The key novelty is the introduction of an

effective reversible jump Markov Chain Monte Carlo (RJMCMC) (Green, 1995)

to jointly estimate the parameters and whether or not a changepoint should be

included in the model. While Green (1995) fitted continuous-time changepoint

models, we work in discrete time in a modelling framework that is complicated

by the presence of missing data.

The rest of the paper is organized as follows. The proposed changepoint

model is presented in Section 2. Its Bayesian estimation procedure and the

accompanying RJMCMC algorithm are discussed in Sections 2.1 and 2.2, re-

spectively. A simulation study investigating the performance of the model and

our algorithm is presented in Section 3. In Section 4, we illustrate the methodol-

ogy using two data sets: monthly counts of claimants collecting wage loss benefit

for injuries in the workplace (see Freeland & McCabe, 2004) and annual counts

of instances in which US presidents used force abroad between 1930 and 1995.

Finally in Section 5 we make our concluding remarks, in particular, commenting

on the extension to multiple changepoint detection.

2 Model specification

In this Section we specify the model and detail an MCMC algorithm to efficiently

sample from the posterior distribution of the parameters. We then extend the

MCMC algorithm to include a reversible jump step to move between the models

with and without a changepoint.

Let {Yt : t = 1, . . . , n} denote the observed counts, {Xt : t = 1, . . . , n}, a

stationary unobserved latent process, and zt, a p-dimensional covariate vector.

For ease of exposition we focus on a latent Gaussian AR(1) process but the

extension to other latent processes is possible. Let m ∈ {1, . . . , n − 1} denote

the location of a changepoint in the data. Note that taking m = n in the sequel

produces a model without a changepoint. For t = 1, 2 . . . ,m, let ct = 1 and

for t = m + 1,m + 2, . . . , n, let ct = 2. Thus ct = 1 (ct = 2) if observation t
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is before (after) the changepoint. Conditional on the underlying latent process,

the deterministic covariate process and the unknown changepoint, the observed

counts are assumed to be independently Poisson distributed with mean µt =

exp(zTt βct +Xt), denoted by

Yt|Xt, zt ∼ Po(exp(zTt βct +Xt)),

Xt = αctXt−1 + εct , (3)

where for i = 1, 2, εi ∼ N(0, 1/τi) and βi = (βi,0, βi,1, . . . , βi,p−1) are regression

parameters. We assume that |αi| < 1 to ensure stationarity in the AR(1) latent

process.

Observe that the model partitions the observed counts and the latent pro-

cess into two homogenous blocks - one occurring before and the other after some

unknown time point, m. Given the parameters the properties of the count pro-

cess such as E[Yt], V ar(Yt) and Cov(Yt, Yt+h) can easily be obtained, see Zeger

(1988) and Davis et al. (2000). Thus allowing study of the behaviour of the count

process both before and after the changepoint. The assumption throughout this

paper is that all the parameters in the model change at the changepoint. It is

straightforward to adapt the following approach to a case where either only the

latent process or the regression parameters change.

2.1 Prior specification and posterior distribution

For i = 1, 2, let θi = (βi, αi, τi) and let θ = (θ1,θ2,m). Our interest is in

the posterior distribution π(θ|y), where y = (y1, . . . , yn) denotes n observations

from the count process {Yt}. However, the likelihood π(y|θ) is not tractable due

to the need to integrate out the unobserved latent process, {Xt}. In order to

make progress it is necessary to use data augmentation, (see Tanner & Wong,

1987), x = (x1, . . . , xn) of the latent process within our MCMC framework. The
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augmented data likelihood function of the model is given by

π(x,y, z|θ) ∝

{
n∏
t=1

[
exp

(
zTt βctyt + xtyt − exp(zTt βct + xt)

)]
×

n∏
t=2

[
τ

1
2
ct exp

(
−τct

2
(xt − αctxt−1)2

)]}

×
√
τ1(1− α2

1) exp

(
−τ1(1− α

2
1)

2
x21

)
. (4)

Note that the final term in (4) follows from X1 ∼ N(0, 1/{τ1(1− α1)
2}).

We assume that the parameters are a priori independent and for i = 1, 2,

choose N(uβ, 1/vβ) priors for βi,j (j = 0, . . . , p− 1), a truncated N(uα, 1/vα) for

αi with αi ∈ (−1, 1) and Gamma(uτ , vτ ) for τi. For the changepoint m, we use

a discrete Uniform prior on {1, . . . , n − 1}, denoted DU [1, n − 1]. To complete

the prior specification, let π(M0) = π(M00) = 1/2, where M0 and M00 are

the model indicators for the no-changepoint and the changepoint models with

parameters θ1 and θ, respectively.

Letting θ−φ denote the vector of parameters excluding a parameter φ and

ni =
∑n

t=1 I{ct=i} (i = 1, 2), the conditional distributions of the parameters are:

βi|θ−βi ,x,y, z ∝ exp
(∑n

t=1 I{ct=i}(z
T
t βiyt − ez

T
t βi+xt)− vβ

2

∑p−1
j=0(βi,j − uβ)2

)
;

(5)

αi|θ−αi ,x,y ∝ (
√

1− α2
i )
I{i=1} exp

(
−Ai

2

{
αi −

Bi

Ai

}2
)
I(|αi| < 1); (6)

τi|θ−τi ,x,y ∼ Gamma

(
uτ +

ni
2
,
Ci
2

+ vτ

)
; (7)

m|θ−m,x,y, z =
p(θ−m,m; x,y, z)∑n−1
j=1 p(θ−j, j; x,y, z)

; (8)
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where

p(θ−m,m; x,y, z) ∝
2∏
i=1

{
exp

(
n∑
t=1

I{ct=i}(z
T
t βiyt + xtyt − exp(zTt βi + xt))

)

×τ
ni
2
i exp

(
−τi

2

n∑
t=2

I{ct=i}(xt − αixt−1)2
)}

,

Ai = τi
∑n

t=2 I{ct=i}x
2
t−1 + vα, Bi = τi

∑n
t=2 I{ct=i}xtxt−1 + uαvα and Ci =

∑n
t=2

I{ct=i}(xt − αixt−1)2 + I{i=1}(1− α2
1)x

2
1. The above equations hold for the model

without a changepoint with θ2 being vacuous. Note that the conditional pos-

terior distribution of α2 is Normal. By the Markov property due to the AR(1)

assumption, p(xt|x−t,θ) ∝ p(xt|xt−1) ×p(xt+1|xt), the conditional posterior dis-

tribution of xt for t = 2, . . . , n− 1 can easily be derived from equation (4) as

π(xt|x−t,y, z,θ) ∝exp
(
−τct

2
(xt − αctxt−1)2

)
× exp

(
−
τct+1

2
(xt+1 − αct+1xt)

2
)

× exp
(
xtyt − ez

′
tβct+xt

)
. (9)

We give details of how the above conditional distributions are used in the MCMC

algorithm in Section 2.2 below.

2.2 The reversible jump MCMC algorithm

In proposing the single changepoint model, our goal is not limited to making

inference about the parameters of the model. We are also interested in incorpo-

rating within our Bayesian framework, a procedure for testing for the presence

or otherwise of a changepoint in the data. In this Section, we provide the details

of a RJMCMC algorithm for testing the presence of a single changepoint and

highlight how this can be extended to multiple changepoints in Section 5 and the

supplementary material. The algorithm alternates between two updating steps:

the within-model updates and the model-switching step.

Within-model updates. This updating scheme involves sampling the pa-

rameters of the current model using standard Metropolis-Hastings updates. For

α2, τ1 and τ2 full conditional distributions are in a standard form and there-
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fore a Gibbs step can be used to update these parameters. For α1, we use an

independence sampler proposing from a N(B1/A1, 1/A1), where A1 and B1 are

defined after (8). This is a good approximation for the conditional distribution

of α1 and we only need to correct for
√

1− α2
1 in the acceptance probability.

For i = 1, 2, the conditional distribution of βi does not have a nice form and

therefore we update this parameter block using a random walk Metropolis step.

For updating m, we found that a hybrid proposal scheme worked well where with

probability p we propose a local move and otherwise made a global move. For

the local move we propose to move the changepoint to m+ V Q, where V takes

the values ±1 with probability 0.5 and Q ∼ Geometric(q) with support on N.

For the global move, the proposed changepoint is drawn uniformly at random

from {1, 2, . . . , n − 1}. Over a range of examples, we found that p = 0.9 and

q = 0.5 worked well.

The augmented data (latent process) are updated using a proposal scheme

relative to independence sampling procedure. We exploit the AR(1) structure of

the latent process to construct a suitable proposal distribution. For x2 . . . , xm,

and xm+2 . . . , xn−1 the proposal distribution is

q(xt|x−t,θ) ∝ exp
(
−τct

2
(xt − αctxt−1)2

)
× exp

(
−τct

2
(xt+1 − αctxt)2

)
∼ N

(
αct(xt−1 + xt+1)

1 + α2
ct

,
1

τct(1 + α2
ct)

)
, t = 2, . . . , n− 1, (10)

where x−t denotes the vector of observations of the latent process excluding the

tth value, and the corresponding acceptance probability is

α(xt, x
′
t) = min

{
1,

exp(x′tyt − ex
′
t+zTt βct )

exp(xtyt − ext+zTt βct )

}
, (11)

where x′t denotes the proposed value of xt. Clearly, the proposal distribution of

x′t is motivated by the Markovian configuration of the latent process which is

then corrected to take into account yt. The proposal distributions for x1, xm+1

and xn can be similarly defined taking into account the special nature of these

three quantities.
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Model-switching step. This updating step of the RJMCMC sampler

involves proposing transitions between the competing models. Parameter es-

timation for model M0 can be done using the above procedures excluding

the steps for updating θ2 and m. Since model M00 has more parameters

than model M0 it is necessary to introduce auxiliary parameters to move from

model M0 to model M00, see Green (1995). The auxiliary parameters are:

ãi(i = 0, . . . , p − 1), b̃ and c̃, which are drawn from N(0, σ2
a), N(0, σ2

b ) and

N(0, σ2
c ), respectively; σ2

a, σ
2
b and σ2

c are typically pilot-tuned to achieve efficient

moves. With k, we choose a position for the proposed changepoint uniformly

at random from the interval, that is, k ∼ DU [1, n − 1]. The ãi’s are needed

to compensate for the absence of the second set of regression coefficients in

M0 while b̃ and c̃ compensate for the absence of a second α and τ term, re-

spectively. We then propose to move to model M00 with model parameters θ

with a changepoint at m = k, (β′1, α
′
1, τ
′
1) = (β1, α1, τ1) + (1− k/n)(ã, b̃, c̃) and

(β′2, α
′
2, τ
′
2) = (β1, α1, τ1)−k/n(ã, b̃, c̃). Note that if we propose a negative value

for τi (i = 1, 2) then the proposed move is rejected. For the reverse move, no

auxiliary parameters are needed. Consequently, we propose the parameters of

model M0 as the weighted means of the corresponding parameters of model

M00 with α′1 = (m/n)α1 + (1− (m/n))α2, β
′
1 = (m/n)β1 + (1− (m/n))β2 and

τ ′1 = (m/n)τ1 + (1− (m/n))τ2. The above proposal scheme is based on the idea

of moment-matching, see Green (1995) and Brooks et al. (2003) and is found to

work effectively here.

Observe that the move from M0 to M00 increases the dimension of the

parameter vector by a factor of p + 3. Consequently, we found on the basis of

a simulation study that the algorithm exhibited an undue preference for M00,

especially as n increases. Similar problems were observed for reversible jump

MCMC algorithms for INARMA models in Enciso-Mora et al. (2009a) and

Enciso-Mora et al. (2009b). The solution proposed in Enciso-Mora et al. (2009a)

and Enciso-Mora et al. (2009b) was to use a ‘BIC-like’ penalization with the

prior on models M0 and M00 satisfying π(M0) ∝ n−
1
2
dim(θ1) and π(M00) ∝

n−
1
2
dim(θ). We employed the ‘BIC-like’ penalization for the model and found

that it gave consistent estimation of the posterior probability of the models
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as n was varied. Given that at each iteration of the algorithm we propose to

switch model, the acceptance probability for moving from M0 to M00 is given

by α0,00 = min{1, A0,00(θ1,θ)}. The acceptance ratio A0,00(θ1,θ) is given by

A0,00(θ1,θ) =
π(x,y, z|θ,M00)

π(x,y, z|θ1,M0)
× π(M00,θ)

π(M0,θ1)
× q(θ,θ1)

q(θ1,θ)
× |J0→00|, (12)

where π(x,y,z|θ,M00)

π(x,y,z|θ1,M0)
denotes the ratio of the likelihoods forM00 andM0,

π(M00,θ)
π(M0,θ)

is the corresponding ratio of the prior distributions and q(θ,θ1)

q(θ1,θ)
is the ratio of

the proposal distributions for the move from M00 to M0 and the reverse move

from M0 to M00. Note that q(θ1,θ) = 1 since the move from M00 to M0

is deterministic. Finally, J0→00 is the Jacobian for the transformation between

the parameters of the two models. Due to the block diagonal nature of J0→00

it is straightforward to show that |J0→00| = 1. Explicit derivations of the terms

in (12) are given in the supplemental material for this paper. Note that the

acceptance ratio for the reverse move (i.e. M00 →M0) is simply obtained using

the inverse of all the terms in equation (12).

3 Simulation study

In order to assess the performance of the changepoint model and the RJMCMC

algorithm we conducted a simulation study. The simulation study was designed

to check whether or not we could correctly identify the location of a changepoint

in the model.

The simulation study was as follows. We constructed a covariate vector zT =

(1, sin(2πt/6), cos(2πt/6),N(0, 1)) and generated 9 data sets each with n = 800

andm = 400. For all 9 data sets θ1 = (βT1(1×4), α1, τ1) = (0.1, 0.2, 0.1, 0.3, 0.1, 4.0),

whilst θ2 = θ1 +c, where c = 0, 0.1, . . . , 0.8, in successive data sets. Therefore in

data set 1 there is effectively no changepoint, whereas for data set 9 there is a very

emphatic changepoint in the parameters, especially α. The prior distributions

used are: βi,j ∼ N(0, 1), αi ∼ N(0.5, 1/0.5) I(|αi| < 1), τi ∼ Gamma(3, 1),

m ∼ DU [1, n − 1], for i = 1, 2 and j = 0, . . . , p − 1. For each data set,
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the algorithm was applied successively to x(l+1):(l+400) = (xl+1, . . . , xl+400) for

l = 0, 10, . . . , 400 to estimate the changepoint and the model parameters. Thus

the algorithm was applied to 41 subsets of length 400 of each of the 9 datasets

in which, l = 0 and l = 400 correspond to no changepoint, whilst l = 200 corre-

sponds to a changepoint in the middle of the series. Each time, our RJMCMC

sampler was initialized in modelM0 (except for l = 0 and l = 400 where we ini-

tialized in modelM00) and run for 45,000 iterations following a burn-in period of

5,000 iterations. Visual examination of the trace plots of the parameters showed

that convergence had been attained before the end of the burn-in period, with

in most cases all the parameters being well estimated. Some trace plots of the

changepoint m and other parameters are included in the supplemental material.

[Figure 1 about here]

Figure 1 shows the posterior probabilities of the changepoint model for c =

0.0, 0.1, . . . , 0.5. The posterior probability of a changepoint increases with c up

to c = 0.5 and for c > 0.5, the posterior probability of a changepoint is close to

one for all segments except the first segment (no changepoint with parameters

θ1). We note that until segment 5 or 6 where there are 40 or 50 observations with

θ2 parameters the posterior probability of a changepoint is low whereas for the

latter segments where most of the observations are with the θ2 parameters the

posterior probability of a changepoint drops off more slowly. For segments 6 to

36 where there are at least 50 observations from each set of parameters consistent

estimation of the changepoint is observed for c ≥ 0.3 with the posterior mode

of the changepoint close to the true changepoint and the 95% credible interval

for the changepoint typically having a small range of between 25 and 50. For

segments 37 to 41 where almost all observations come from the θ2 parameters

we observe poor estimation of the location of the changepoint, especially when

c is large with significant correlation in the latent process (α1 ≥ 0.5). In such

cases the 95% credible interval for the changepoint covers most of the range with

the mode for the changepoint close to the end rather than the beginning of the

segment analysed.
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4 Data analysis

4.1 Benefit claims data

This data comprises of monthly counts of claimants collecting wage loss bene-

fit for injuries in the workplace from January 1985 to December 1994. It has

been previously analyzed in Freeland & McCabe (2004) and Enciso-Mora et al.

(2009a). Figure 2 shows the plot of the data. Its mean and variance are 6.13

and 11.80 respectively; which indicate overdispersion.

[Figure 2 about here]

A visual examination of the plot and an exploratory analysis indicate a change

in mean and variance occurring around the beginning of 1990. The data also

shows evidence of seasonality. This seeming change in the behaviour of the series

was represented/interpreted in previous analyses as a decrease in trend (see, for

example, Enciso-Mora et al., 2009a, and β1 in Table 2). However, it can be

seen from Figure 2 that the data do not exhibit any trend if we presuppose

that a change has occurred around 1990. Further exploratory analysis using

an ordinary Poisson regression model (with independent outcomes) fitted in a

non-Bayesian framework also confirms this. We, thus, excluded trend from the

changepoint analysis. (The inclusion of trend resulted in poor estimation of the

changepoint parameter. We compare the Bayesian changepoint analysis without

trend and a Bayesian analysis with trend but no changepoint in the discussion

below.) We use the covariate vector: zTt = (1, sin(2πt/6), cos(2πt/6)), with the

sine and cosine terms at the semi-annual frequency characterizing seasonality in

the model. The prior distributions used are: N(0.2, 1/0.2) for α1, α2 ∈ (−1, 1),

Gamma(5, 1) for τ1, τ2 and N(0, 1) for the regression coefficients.

The RJMCMC algorithm was run for 1,000,000 iterations, with the first 10%

of the iterations discarded as burn-in. Some of the results of the analysis are

plotted in Figure 3. The model indicator in part (a) of the figure shows that the

RJMCMC algorithm mixed well, spending more time in the changepoint model

which has a posterior probability of 0.9658. The changepoint m has a posterior

mode of 55 which corresponds to July, 1989. Its 95% credible interval is [44,
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66] = [August 1988, June 1990]. Hence, even though a changepoint seems to

have occurred around the beginning of 1990 by visual examination, our analysis

shows that this is not exactly the case. The unimodal posterior distribution of

m in part (b) of the figure provides evidence of a single changepoint. (The trace

plot of m is included in the supplementary material.) Also, when the algorithm

was applied to the data before and after the changepoint, no other changepoints

were detected.

[Table 1 about here]

The estimates in Table 1 show a slight decrease in the lag-1 autocorrelation of

the latent process and its variance as well as the regression coefficients after

the changepoint. Thus accounting for the general decrease in the number of

claims after this time. This decrease in the number of claims may be due to

some unreported changes in working conditions or insurance policies. Figure 3

(c) shows that the fitted values (longdashed line) provide good estimates of the

observed values. The partial autocorrelation function (pacf) plot of the residuals

in part (d) of the figure shows that the residuals are an approximate white noise

process. It can thus be inferred that the model fits the data reasonably well.

By identifying significant autocorrelation in the latent process (as evidenced by

the estimates of α1 and α2) both pre-and post-change, our analysis agrees with

those of Freeland & McCabe (2004) and Enciso-Mora et al. (2009a).

[Figure 3 about here]

As we noted above, previous analyses of this data using no-changepoint mod-

els included trend in the covariate vector. We now compare this approach

with our changepoint analysis. We refer to the no-changepoint model with

trend in the covariate vector as model M1 (see equation (1)) and the change-

point model without trend as model M2. Thus, for M1, the covariate vector is

zTt = (1, t/n, sin(2πt/6), cos(2πt/6)). Using the same conditions as before, the

parameter estimates of M1 are shown in Table 2.

[Table 2 about here]

These parameter estimates are reasonably similar to those reported in Table 1.

The fitted values of M1 also plotted in Figure 3 (c) (dotted line) show that

both models produce very close estimates of the data. As additional crite-
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ria to compare both models, we employed the root mean square error
(
RMSE

=
√

1
n

∑n
t=1(yt − ŷt)2, where ŷt is the predicted value of yt

)
and the predictive

model choice criterion
(
PMCC=

∑n
t=1(yt−E(yrept ))2+

∑n
t=1 V ar(y

rep
t ), where yrept

denotes the predictive replicate of yt
)

proposed by Gelfand & Ghosh (1998). The

first term of the PMCC provides a measure of goodness-of-fit while the second

term is a penalty term which increases with model complexity. For both criteria,

the smaller the value, the better the fit. Note that other suitable model choice

criteria could also be used. From our analyses, the changepoint model gave

an RMSE value of 1.55 while that of the no-changepoint model with trend was

1.64. Using the PMCC, we obtained a value of 286.53+1055.42 = 1341.95 for the

changepoint model without trend, whereas with the no-changepoint model with

trend, we obtained 324.62 + 1023.26 = 1347.88. This shows that even though

the changepoint model uses more parameters to model the data, it provides a

better fit according to these criteria. Our changepoint analysis thus offers a new

perspective to understanding the dynamics of the data.

4.2 Presidential uses of force in the US

As a second example, we applied the model to the annual counts of instances

in which US presidents used force abroad. The data were downloaded from

http://bingweb.binghamton.edu/∼bfordham. The details of these events and

other information about the data can also be found at the website. Although

the original data spans between 1870 and 1995, the sample period for this anal-

ysis is restricted to cover from 1930 to 1995 since covariate data are readily

available for this period. Previous political studies (Fordham, 1998; Gowa, 1998;

Park, 2006) have shown that the condition of the domestic economy plays a

significant role in presidential decisions to use force abroad. Inidicators of the

domestic economy available for this analysis were the Gross Domestic Product

(GDP) and the Unemployment rates (UNEMP, given in percentages) for the

time period studied. However, exploratory analysis showed that GDP did not

have a significant relationship with use of force. Hence, we included only UN-

EMP as a covariate in our analysis.
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[Figure 4 about here]

Figure 4 shows that there is evidence of an increasing trend in use of force;

thus, we also included trend in our covariate vector. This increasing trend is

also confirmed by an exploratory non-Bayesian analysis using an ordinary Pois-

son regression model. The mean and variance of the data are 6.15 and 24.04

respectively; both of which suggest overdispersion. A closer examination of the

plot also reveals that there appears to be a change in this increasing trend around

1965. We use the following prior distributions for our analysis: N(0.5, 1/0.5),

Gamma (5, 1) and N(0, 1) for αi ∈ (−1, 1), τi and βi,j(i = 1, 2; j = 0, . . . , p−1).

The covariate UNEMP was standardized to aid the convergence of our algorithm.

[Table 3 about here]

The reversible jump MCMC algorithm was run for 1,000,000 iterations. We

used the last 900,000 iterations for our analysis, discarding the first 100,000 as

burn-in. The trace plot of the model indicator is shown in part (a) of Figure 5.

[Figure 5 about here]

This clearly shows that the algorithm mixed well. The posterior probability

of the changepoint model is 0.9529 which provides a very strong indication of

the presence of a changepoint. The posterior mode of the changepoint is m̂ =

37 which corresponds to the year 1966 while its 95% credible interval is [23,

54]=[1952, 1983]. The posterior distribution of the changepoint m in part (b) of

Figure 5 evidences the presence of a single changepoint in the data. (The trace

plot of m is included in the supplementary material.) Also, an application of the

algorithm to the subsets of the data before and after 1966 revealed that there

was no other changepoint. Figure 5 (c) shows a sharp increase in Presidential

use of force before 1966 which mostly occurred during the Kennedy-Johnson

era (1958-1966). This period is followed by a slight decrease in the number of

instances of use of force abroad which has been partly attributed to the United

States’ increased commitment to South Vietnam during the Vietnam war (see

Park (2006)).
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Table 3 reports the differences in the estimates of the parameters before

and after the changepoint. It can be seen that there are significant changes in

the values of the parameters. In particular, we see a dramatic increase in the

(positive) effect of UNEMP on use of force after the changepoint. This effect can

be explained by the fact that high UNEMP reduces labour cost thereby making

use of force less costly and more attractive (see Fordham, 1998). Figure 5(c)

plots the observed data and the posterior means of the fitted values. This shows

that the model yields reasonable estimates of the data. The pacf plot in part

(d) of the figure shows that the residuals mimic a white noise process. Hence,

the model fits the data reasonably well.

We note that previous analyses of this data such as Fordham (1998) and Park

(2006) used log-linear models which did not account for serial autocorrelation.

In contrast, our analysis shows that there exists significant autocorrelation in

the data as can be seen in the values of α1 and α2 in Table 3.

5 Discussion

We have developed a methodology for detecting and estimating a single change-

point in a parameter-driven model. In our model formulation, a changepoint is

characterized by a change in the parameters of the latent process as well as the

regression coefficients. Although this changepoint parameterization presents a

general picture of the problem, other changepoint parameterizations could be

explored as we have noted in Section 2. The proposed RJMCMC algorithm has

been shown to perform well with both simulated and real life data sets. It should

be noted that the performance of the algorithm has been tested in the presence

of covariates as these are important and help to explain the observed data in the

regression context. In addition, the covariates included in the model also help to

characterise the changepoint as can be seen in equation (3). In the examples in

Section 4, different results may be obtained in the absence of covariates or with

different sets of covariates (see, for example, Park, 2006).

There are limitations to assuming a single changepoint. The aim of this pa-

per was to present a framework for detecting a changepoint in count data time
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series models. In the applications in Section 4, we have affirmed the presence

of a single changepoint by applying the algorithm to the segments created by

the changepoint. For datasets with multiple changepoints, the application of

the single changepoint algorithm will most likely lead to a multimodal distribu-

tion for the changepoint parameter, m. And upon segmenting the data using the

highest mode and applying the algorithm successively to the segments, the other

changepoints could be detected. This procedure is, however, ad hoc and will not

be practical in many scenarios. Hence, a natural extension of the methodology is

to construct a RJMCMC algorithm which detects the location(s) of an unknown

number of multiple changepoints. This can be done relatively straightforwardly

by treating subsets of the time series as time series with either 0 or 1 changepoint

and seeking to add or remove a changepoint from the subset. Thus the single

changepoint methodology developed here forms the building block for a more ex-

tensive changepoint analysis and this approach will be based on the changepoint

RJMCMC introduced in Green (1995), Section 3.

An interesting alternative to the changepoint modelling is to assume that

there is a multi-state hidden Markov model for the latent process, see Chib

(1998). This is appropriate when the model parameters move between a finite set

of parameters rather than a change leading to a completely new set of parameter

values.

Lastly, although the single Metropolis-Hastings update proposed in this paper

for updating the latent process has been shown to perform well, there could be

further gains in terms of mixing and speed of convergence of the algorithm when

a block updating procedure such as particle filtering MCMC is used (see, e.g.,

Whiteley et al., 2009).

Supporting Information

The Supporting Information for this paper contains explicit derivations of the

terms in equation (12) and some trace plots from Sections 3 and 4. We also

discuss the extension to multiple changepoints in detail.

17



Acknowledgements

This research was supported by a Commonwealth Scholarship, funded by the

UK government. The author is grateful to Prof. Peter Neal for his contributions

to this paper and an Associate Editor and two anonymous Referees for their

detailed and helpful comments which greatly improved the manuscript.

References

Barbieri, M. M. & Conigliani, C. (1998). Bayesian analysis of autoregressive

time series with change points. Journal of the Italian Statistical Society, 3,

243–255.

Brooks, S. P., Guidici, P., & Roberts, G. O. (2003). Efficient construction of

reversible jump Markov Chain Monte Carlo proposal distributions. J. R. Stat.

Soc. Ser. B Stat. Methodol., 65(1), 3–55.

Cameron, A. C. & Trivedi, P. K. (2013). Regression analysis of count data. New

York: Cambridge University Press, second edition edition.

Campbell, M. J. (1994). Time series regression for counts: An investiagtion into

the relationship between sudden infant death syndrome and environmental

temperature. Journal of the Royal Statistical Society A, 157, 191–208.

Carlin, B. P., Gelfand, A. E., & Smith, A. F. M. (1992). Hierarchical bayesian

analysis of changepoint problems. Applied Statistics, 41, 389–405.

Chan, K. S. & Ledolter, J. (1995). Monte carlo EM estimation for time series

model involving counts. J. Amer. Statist. Assoc., 90(429), 242–252.

Chib, S. (1998). Estimation and comparison of multiple changepoint models. J.

Econometrics, 86, 221–241.

Davis, R. A., Dunsmuir, W. T., & Wang, Y. (2000). On autocorrelation in a

Poisson regression model. Biometrika, 87(3), 491–505.

18



Enciso-Mora, V., Neal, P., & Subba-Rao, T. (2009a). Efficient order selection

algorithms for integer-valued ARMA processes. J. Time Series Anal., 30(1),

1–18.

Enciso-Mora, V., Neal, P., & Subba Rao, T. (2009b). Integer-valued ar processes

with explanatory variables. Indian Journal of Statistics, 71(B), 248–263.

Fearnhead, P. (2006). Exact and efficient Bayesian inference for multiple change-

point problems. Statist. Comput., 16(2), 203–213.

Fordham, B. (1998). The politics of threat perception and the use of force: A

political economy model os us uses of force, 1949-1994. International Studies

Quarterly, 42(3), 567–590.

Freeland, R. K. & McCabe, B. P. M. (2004). Analysis of low count time series

data by Poisson autoregression. J. Time Series Anal., 25(5), 701–722.
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Figure 1: Plots of the posterior probabilities of the changepoint model; c = 0.0
- solid, c = 0.1 - dashed, c = 0.2 - dotted, c = 0.3 - dotdash, c = 0.4 - longdash,
c = 0.5 - twodash.

21



Year

Nu
mb

er 
of 

cla
im

s

1986 1988 1990 1992 1994

5
10

15
20

Figure 2: Time series plot of the benefit claims data from January 1985 to
December 1994.
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Table 1: Posterior means and standard errors (s.e.) of the parameters for the
benefit claims data

Parameter Mean (s.e.) Parameter Mean (s.e.)

α1 0.6343 (0.1770) α2 0.5010 (0.2552)
τ1 7.3217 (1.6689) τ2 8.0307 (1.9937)
β0,1 1.7433 (0.2570) β0,2 1.4786 (0.2373)
β1,1 0.0285 (0.0947) β1,2 0.0114 (0.1567)
β2,1 0.0515 (0.0925) β2,2 0.0065 (0.1860)
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Figure 3: Benefit claims data. (a) Trace plot of the model indicator for the last
50,000 iterations: 1 = no-changepoint model and 2 = changepoint model. (b)
Histogram of the posterior distribution of m. (c) Observed data (solid line) vs
posterior means of the fitted values (longdashed line). The vertical line indicates
the mode of the changepoint. The dotted line shows the fitted values of the no-
changepoint model with trend (d) Partial autocorrelation plot of the residuals.
The dotted lines indicate the ±2 standard error confidence limits.
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Table 2: Posterior means and standard errors (s.e.) of the parameters of the
no-changepoint model with trend

Parameter α τ β0 β1 β2 β3

Mean 0.7167 13.8353 1.9475 -0.4722 0.0276 0.0356
(s.e.) (0.1029) (4.7623) (0.2506) (0.2956) (0.0576) (0.0568)
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Figure 4: Presidential uses of force in the US between 1930 and 1995
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Table 3: Posterior means and standard errors (s.e.) of the parameters for the
presidential uses of force data

Parameter Mean (s.e.) Parameter Mean (s.e.)

α1 0.8238 (0.2154) α2 0.5995 (0.2931)
τ1 4.4472 (1.7884) τ2 7.3936 (2.4154)

Intercept (β0,1) 0.6995 (0.2198) Intercept (β0,2) 1.1466 (0.2762)
t/n (β1,1) 0.5805 (0.3472) t/n (β1,2) 0.7985 (0.2596)

UNEMP (β3,1) 0.0627 (0.1153) UNEMP (β3,2) 0.7529 (0.1449)
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Figure 5: Presidential uses of force data. (a) Trace plot of the model indicator
for the last 50,000 iterations: 1 = no-changepoint model and 2 = changepoint
model. (b) Histogram of the posterior distribution of m. (c) Observed data
(solid line) vs posterior means of the fitted values (dashed line). The vertical
line indicates the mode of the changepoint. (d) Partial autocorrelation plot of
the residuals. The dotted lines indicate the ±2 standard error confidence limits.
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