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In order to improve the physical understanding of the development of turbulent struc-
tures, the compressible evolution equations for the first three invariants P,QQ and R of
the velocity gradient tensor have been derived. The mean evolution of characteristic
turbulent structure types were studied and compared at different wall-normal locations
of a compressible turbulent boundary layer. The evolution of these structure types are
fundamental to the physics that need to be captured by turbulence models. Significant
variations of the mean evolution are found. The key features of the changes of the mean
trajectories in the invariant phase space are highlighted and the consequences of the
changes are discussed. Further, the individual elements of the overall evolution are studied
separately to identify the causes that lead to the evolution varying with the distance to
the wall. Significant impact of the wall-normal location on the coupling between the
pressure-Hessian tensor and the velocity gradient tensor was found.

1. Introduction

Turbulence has been subject of research for more than a century. In that time signifi-
cant advances had been made in the understanding of turbulent flows. Nevertheless, many
developed and applied turbulence models still need to be tuned for specific problems to
work accurately. There is a lack of universal turbulence models that do not need such
tuning for different flow geometries. To fill this gap advanced models can be applied at
a different and lower level and model only the physical aspects that we have understood
rather than an entire flow or sweepingly all scales of motion fulfilling an empirical
threshold. To further progress model development, it is useful to know about the character
of turbulent structures, their evolution, and how they are distributed in a turbulent
flow. Lagrangian dynamics offer a possibility to investigate that. Lagrangian dynamics in
contrast to Eulerian dynamics describe a flow in a reference frame that is fixed to a fluid
particle instead of an inertial system fixed to the flow domain. This allows a different
perspective on the flow and permits other ways of describing turbulence. Regarding
turbulence as an ensemble of structures of different sizes there is need to describe the
character of these structures as well as their dynamics.

The velocity gradient tensor contains a great amount of information about a flow and
its dynamics. In their review about ‘critical-point’ concepts, Perry & Chong (1987)
summarized how local flow patterns can be characterized by just regarding the velocity
gradient tensor at the location of interest. For incompressible flows the method extracts
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information about the flow pattern in the vicinity of a fluid particle by determining the
state of the fluid particle in the @ R-phase-space. The () R-space is spanned by the second
and third invariants, @ and R, of the velocity gradient tensor. From the point of view
of a fluid particle located on a structure, it allows the distinction between four different
states of the structure at the location of the particle. For this distinction the discriminant
of the velocity gradient tensor A takes an important role. For positive values of A the
velocity gradient tensor has one purely real eigenvalue and a complex conjugate pair of
complex eigenvalues and therefore the fluid particle sits on a part of a structure that
has a rotational character. If A < 0, all eigenvalues of the velocity gradient tensor are
purely real and the supporting structure is purely straining at the location of the fluid
particle. Further, for negative values of the third invariant R < 0 we find two contracting
directions and one stretching direction, whereas if R is positive we find two stretching
directions and one contraction direction of the structure at the location of the fluid
particle. So four characteristic structure types can be described by vortical structures
with stretching character A > 0; R < 0 (I); vortical structures with contracting character
A > 0; R > 0 (II); pure straining structures with flattening character A < 0; R > 0 (III);
and pure straining structures with elongating character A < 0; R < 0 (IV). Sketches of
these topologies that can be determined from the values of Q and R can be found in Ooi
et al. (1999). More detailed explanations of the structure types can be found in Perry &
Chong (1987); Meneveau (2011); Bechlars (2015). The interpretation of these structures
has to be conducted with care though. The analysis description of the character of a
structure is purely local, therefore it does not necessarily describe the actual shape of
the structure in the flow field. In other words, the characteristic analysis describes the
tendency of the development of a structure at a given point in space and time. However,
in the current study we show that the local approach using advanced analysis provides
sufficient information about the character of the development of a given structure.

The joint probability density function (joint-p.d.f.) of @ and R (known as QR-plot)
describes the characteristic composition of turbulence in the flow. Due to the similar
shape that the iso-lines of this joint-p.d.f. develops for many flows, the @ R-plot is often
called teardrop (Soria et al. 1994; Chong et al. 1998; Ooi et al. 1999; Ganapathisubramani
et al. 2008; Elsinga & Marusic 2010). For the direct numerical simulation (DNS) data
of a turbulent channel flow (Blackburn et al. 1996) and DNS data of a turbulent
boundary layer (TBL) (Bechlars 2015), however, it was shown that in wall bounded flows
this distribution varies with the distance to the wall. Consequently, the characteristic
composition of turbulence in these flows varies. The shapes of the QR-plot at the outer
layer locations of the boundary layer match the teardrop shape. However, in the buffer
layer (Blackburn et al. 1996; Chong et al. 1998; Bechlars 2015) found that the tail towards
high values of R and low values of @ shrinks compared to the location further away from
the wall. Furthermore, the teardrop shape formed by the isolines of the p.d.f. appears to
be more tilted counter-clockwise. Between the buffer layer and the viscous sublayer (VLS)
the teardrop transforms to a nearly oval shape and becomes even more tilted counter-
clockwise. Bechlars (2015) reduced the complexity of the QR-plots by integrating the
joint-p.d.f. over the area of the respective characteristic types in the QQ R-space and has
shown the wall-normal distribution of the four structure types. The generally smooth
changes in the outer layers are contrasted by the strong changes in the near-wall region.
Especially the contracting vortical structures (II) have a relatively strong near-wall peak.
From a modelling perspective it is important to understand the evolution of turbulent
structures that results in these compositions of turbulence. The Lagrangian dynamics
of @ and R describe this evolution from a fluid particle’s point of view. By neglecting
viscosity and by considering only part of the pressure effect the restricted Euler system
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for the two invariant describes the effect of the non-linear terms of the Navier-Stokes
equations (Vieillefosse 1982, 1984). The solution for this system is invariant in the QR-
space for incompressible flows. The influence of the pressure-Hessian tensor on the overall
evolution has been investigated by Chevillard et al. (2008); Luethi et al. (2009); Suman &
Girimaji (2013). Further, Jeong & Girimaji (2003) analysed the effect of viscous diffusion
on the dynamics of @ and R. The mean overall Lagrangian dynamics of the invariants
have been studied using DNS data of homogeneous isotropic turbulence (HIT) (Martin
et al. 1998; Luethi et al. 2009) and particle image velocimetry (PIV) data of the outer
layer of an experimental turbulent boundary layer (Elsinga & Marusic 2010). Luethi
et al. (2009) further quantified the variance of the mean evolution and the coupling of the
evolution with strain and rotation production. In a review Meneveau (2011) summarized
most of the research done in the field of Lagrangian dynamics of the velocity gradient
tensor. Many approaches to model the @ R-dynamics have been proposed, but non of
the models represents the physics satisfactorily. The general consensus is that non of the
current models is able to correctly represent the effect of the pressure-Hessian.

All the analysis of the dynamics has been conducted analytically or in flow regions where
a distinct teardrop shape of the QQR-plot has developed. The evolution that causes a
different composition of turbulence as found for TBLs has so far not been investigated.
In this work we want to understand the mean evolution of turbulent structures as
represented in the Q) R-space and its variations for different wall-normal locations in a
TBL and determine with the cause for the changed joint-p.d.f. of @ and R. The DNS that
was carried out to provide the compressible dataset is outlined in section 2. In section 3 a
novel compressible evolution system for the first three invariants of the velocity gradient
tensor is derived. The results of this work are shown in section 4. The resulting mean
evolution at different locations in the TBL is shown in section 4.1 and the contribution
of its separate terms is shown in section 4.2. In section 5 these results are discussed, put
in context to other turbulent flows. Conclusions are made in section 6.

2. Flow data

A DNS of a compressible zero pressure gradient turbulent boundary layer (TBL)
was carried out to investigate the features that will be outlined in the following. The
coordinates z,y and z denote the streamwise, wall-normal and spanwise coordinates,
respectively. Accordingly u,v and w denote the streamwise, wall-normal and spanwise
velocity components. p is the density, p the static pressure, T' the temperature and p the
dynamic viscosity. We consider a single phase compressible fluid being a continuum,
fulfilling the Newtonian conditions and the properties of a perfect caloric gas. We
introduce the notation e for Reynolds averaged quantities/terms, & for density averaged
Favre averaged quantities/terms and e” denotes the fluctuations around Favre averaged
quantities. Further, we introduce a wall-scaling (which is marked by a superscript +)

based on the friction velocity u, = , /ptwai 9

Re 5, at the particular streamwise location.
oo Pwall

Thus [T = [ w, and v* = 2. Energies and velocity products g are scaled as

gt = gu% and the terms b of the energy budget are scaled with a density weighted scaling

+_p T
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The Reynolds number range of the TBL is Rey =~ 670 — 2330 (Re, ~ 220 — 830) and
therefore in the fully developed turbulent regime. The Mach number in the free stream
is My = 0.5 and the freestream Prandtl number Pr., = 0.72. The wall is set to be
isothermal at the adiabatic temperature of the freestream Ty ~ 1.05. In order to
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Figure 1: Profile of the streamwise mean velocity component in over the distance to the
wall in wall-scaling at Rey =~ 1230. The continuous and dashed yellow lines indicate the
linear behaviour in the VSL and a logarithmic law for the development of the velocity,
respectively. The vertical, grey lines indicate locations at which data is plotted in the
results section.

obtain a turbulent boundary layer an artificial turbulent inflow condition (Touber &
Sandham 2009) was applied. The outflow is a characteristic outflow condition (Poinsot
& Lele 1992) to minimize artificial reflections. The freestream is an ordinary non-reflective
characteristic boundary condition (Thompson 1990). A more detailed description of the
methods used for the DNS can be found in Bechlars (2015).

The data are obtained from fully resolved direct numerical simulations with an in-
house compressible Navier-Stokes solver (Sandberg 2015). The spatial discretisation
is performed using fourth-order accurate standard differences in the streamwise and
wall normal directions, whereas the spanwise direction is discretised using the Fourier
decomposition. For the discretisation of time a 4*'-order accurate 5-step Runge-Kutta
method was chosen. Further details of the numerical methods are outlined in Bechlars
(2015); Sandberg (2015). The grid for the decomposition is a structured Cartesian mesh
and counts 7200 x 260 points in the streamwise and wall-normal directions, respectively.
193 spanwise Fourier modes were used to discretise the spanwise direction. This leads to
a total of about 723 million collocation points in the domain. The grid is stretched in the
streamwise direction to keep the wall-scaled spacing relatively constant. The streamwise
spacing has an upper bound of Az™ < 5.12 throughout the entire domain. The wall-
normal location of the first point off the wall (y = 0) is located at y™|; ~ 0.600 — 0.712
and the 10" grid point is located at y*|;o &~ 5.43 — 6.40. The collocation points in the
spanwise direction have a spacing of Az ~ 3.72 — 4.38.

The data for the following investigations were obtained in a volume that reaches from
Reg =~ 1224 — 1248 (Re, ~ 481 — 491) in the streamwise direction, covers approximately
120% of the local boundary layer thickness dg9(Reg = 1230) and spans over the full
spanwise extent of the domain. The sample volume is short enough that statistical
homogeneity can be assumed over its streamwise extent, in addition to the spanwise
direction. The statistics in the result chapters are sampled over a non-dimensional time

period of AT & 90.42(€0=1230)

In figures 1 and 2 the vertical lines mark the wall-normal locations that are chosen for
more detailed analysis in the result chapters. Overall it can be stated that the wall-normal
gradient of the mean streamwise velocity component and other quantities vary strongly
over the wall-normal distance. These gradients are the driving force of turbulence in this
particular flow and the effect of their wall-normal variation are investigated in the next
section.
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Figure 2: Profile of the turbulent kinetic energy budget over the distance to the wall in
wall-scaling at Reg ~ 1230. The vertical, grey lines indicate locations at which data is
plotted in the results section.

3. Compressible velocity gradient tensor invariant dynamics

The dynamics of the velocity gradient tensor invariants are derived from the velocity
gradient tensor dynamics. The dynamics for the velocity gradient tensor A := Vu are
obtained by subtracting the continuity equation multiplied by the velocity vector from
the momentum equation. The result is divided by the density and finally the gradient is
taken of the entire equation. This leads to

dA 0A
—_— = -V)A=-AA+H. 3.1
7 =g TV + (3.1)
The source term H
H=I-X% (3.2)

combines the viscous effects I' acting on the velocity gradient
1
r=v(-v-r), (3.3)
P
where 7 denotes the viscous stress tensor, with the pressure-density term X
1
X =V(-Vp). (3.4)
p
For the derivation of the velocity gradient invariants we need to introduce the dynamics

of the second and third power of the velocity gradient tensor. The dynamics of the second
power of the velocity gradient tensor is

A2
ddT = -2 A’ + AH + HA. (3.5)
The dynamics of the third power of the velocity gradient tensor is
dA’® 4 2 2
Ez—SA + A“H + AHA + HA". (3.6)

Before deriving the compressible velocity gradient tensor invariant dynamics we need to
introduce the invariants that we want to investigate. The first three invariants P, @) and
R of the 3 x 3 matrix A are defined via the characteristic polynomial of the matrix A

Penar (@) := det (A —al) = a® + Pa® + Qo+ R (3.7)

and can be calculated as
P = —trace(A) = -V -u (3.8)
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Q= % (trace(A)? — trace(AA)) = % (P? — trace(A?)) (3.9)
R = —det(A) = —é (P? — 3PQ + trace(A?)) . (3.10)

Another invariant of the velocity gradient tensor that is used in this work is the discrim-
inant of the characteristic polynomial (denoted as discriminant of the velocity gradient
tensor in the following)

1 . . 2 1
A= jzﬂQ? +Q*+ P*R+ {RQ - ZSPQR. (3.11)

3.1. Velocity gradient tensor invariant dynamics

With the definition of the first invariant of the velocity gradient tensor (3.8) we obtain
its dynamics by taking the trace of the velocity gradient tensor dynamics (3.1) and
multiplying it by —1

dP

— p2 _ _
e P? —2 Q — trace(H). (3.12)

We can simplify the following expressions if we split the pressure and viscous stress matrix
H into a traceless part H* and a diagonal matrix containing the trace information

H=H"+ %traee(H)l. (3.13)

This decomposition will be used for all terms that involve H. The following identity will
also be used to simplify the dynamics for the second invariant

1
trace(AH) = trace(AH") + gtrace(H)trace(A). (3.14)

With the definition of the second invariant of the velocity gradient tensor (3.9) we obtain
its dynamics by subtracting the trace of the second velocity gradient tensor dynamics
(3.5) from the dynamics of P (3.12) squared

d 2
(T? =QP — §P trace(H) — 3 R — trace(AH™). (3.15)

For a simplified expression of the dynamics of the third invariant the decomposition (eq.
3.13) is applied to trace(A?H). This results in

1
trace(A*H) = trace(A*H*) + gtrace(H)trace(AQ). (3.16)

Further, we will make use of the Cayley-Hamilton Theorem which states that ‘Every
square matriz satisfies its own characteristic equation’. It directly leads to the equation

A’ + PA* + QA+ RI = 0. (3.17)
Multiplying this equation with A and taking the trace of the product leads to the identity
trace(A') = P* — 4P?Q 4 2Q* + 4PR. (3.18)
With the definition of the third invariant of the velocity gradient tensor (3.10) we obtain
its dynamics as
dR

1
e —gQ trace(H) + PR — P trace(AH*) — trace(A*H™). (3.19)

A detailed step-by-step description of this brief summary of the novel derivation of the
compressible dynamics for the first three invariants of the velocity gradient tensor can
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be found in Bechlars (2015). The system formed by these dynamics can be summarized
as

% = P? —2Q — trace(H) (3.20q)
% = QP — %P trace(H) — 3 R — trace(AH™) (3.200)
% = —%Q trace(H) + PR — P trace(AH*) — trace(A’H*). (3.20¢)

This in an unclosed system of equations as A and H are not solely, directly depending
on P,Q and R. If one were to evolve these transport equations over time, additional
closure terms derived from the Navier-Stokes equations would be required. However, in
this work we use this system only to post-process and analyse datasets obtained by DNS.
This means we have all separate terms available and exploit this novel system for the
interpretation of our compressible results.

4. Results

The results are structured such that first the overall Lagrangian dynamics together
with their consequences on strain and rotation production at different locations in the
TBL are outlined. This is then followed by the contributions of the separate terms of the
overall dynamics.

4.1. QR-phase flow as function of wall-normal location

The characteristic decomposition based on the critical point concept (Perry & Chong
1987) is purely local and describes the character of a structure at the location of the
current fluid particle only. It does not describe the character of a structure as a whole. The
method distinguishes between different characteristic local flow topologies depending on
the first three velocity gradient invariants P, (Q and R. These invariants span a state space,
the PQ R-space, in which we find certain regions defining certain properties of the local
flow topology at the fluid particle. P, which is the additive inverse of the dilatation —V-u,
is zero for incompressible flows. For compressible cases P is not necessarily zero. However,
for our results at a Mach number of M., = 0.5 we find no significant dependency of the
results on P. Therefore we map the results obtained from the compressible analysis onto
the subset of the PQR-space defined by P = 0, this we call QR-space. The distinction
of characteristic topologies is made in analogy to the incompressible case as explained in
Perry & Chong (1987) and Bechlars (2015) and summarized in the introduction.

For the following we introduce a scaling based on the local variance of the velocity
gradient tensor magnitude

var(A) = (A— A A— A)p. (4.1)

. . oy A A . .
The velocity gradient tensor quantities are scaled as A = VTR According to this nor-

malisation the second and third invariants of the velocity gradient tensor are normalised

using the variance of the velocity gradient tensor @) = va?(A) , R=—L _ Time can be

var(A)3

normalized as t = t/var(A).

To understand and interpret the changes of the @ R-plots in TBLs we study the evolution
of turbulent structures in the @ R-phase-space. The mean trajectories of the evolution
derived in section 3 are shown in figure 3 for three different wall-normal locations. For
the outer most region at y ~ 180 we find similar trajectories to those reported for an
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Figure 3: (a~c): The mean QQR-phase development of fluid particles at three different
locations ((a): y* = 180, (b): y* = 24, (c): y* = 6.7) is shown by trajectories (black)
and by the magnitude of the mean phase velocity (contours). The blue line indicates
the trajectory used for the following analysis. The bright area covers 95% of all events
and the dashed green lines divide the QR-phase-space into the four characteristic local
flow topology sectors. (d): Schematic explanation for the angle « used in the following
analysis.

HIT flow (Martin et al. 1998) and the outer layer of an experimental TBL (Elsinga &
Marusic 2010). However, the trajectories that we find for the outer layer of the present
TBL are spiralling inwards faster than the ones for the TBL investigated experimentally.
This is believed to have two reasons. One is that the present data were sampled at a lower
Reynolds number than the data for the experimental results. The other reason is that due
to the size of the interrogation windows used in the particle image velocimetry (PIV)
the data of Elsinga & Marusic (2010) is missing part of the energy in the dissipation
range of the spectrum, as also stated in their work. Both result in a weaker diffusion
term whose role it is to drive the evolution towards the origin as we have highlighted in
the introduction and as we will see later also holds for the present results. The weaker
diffusion therefore leads to trajectories that are spiralling inwards less strongly.

The bright area in the plots (figure 3) cover 95% of all events observed in the flow at the
respective locations. Consequently, the darker areas represent 5% of the events. These
areas are darkened as we want to turn the attention to the main events in the flow.

To obtain more insight into the processes taking place along the trajectories we pick one
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angle a defined in figure 3. The colour scheme is taken from (a-c).

mean trajectory at each location (highlighted in blue in figure 3) and plot mean profiles
conditioned with the respective QQR-state along these trajectories. Figures 4(a-c) show
the data over time for the trajectories at the respective wall-normal locations. For the
development of the discriminant A and the third invariant R of the velocity gradient
tensor we found the cycling periods in time normalised by the variance of the velocity
gradient tensor to be approximately between 33t — 42f for y+ ~ 180, approximately
between 34¢ — 52t for yt ~ 24 and approximately between 35¢ — 47¢ for y= ~ 6.7. Time

scaled with the eddy turnover time is defined as ¢ = tivtlslggl”. Scaled with the eddy

turnover time the cycling periods are 5.1f — 6.4¢, 2.5¢ — 3.9¢ and 1.8¢ — 2.5¢, respectively.
Except for the outermost cycle of the trajectory for the location closest to the wall,
all cycling periods become larger the closer the @QR-state is to the origin of the QR-
phase-space. Therefore the characteristic evolution process of turbulent structures in the
@ R-phase-space is slowed down the closer the structures come to the origin.

The processes occurring along the mean trajectories is explained in more detail by
studying the production of rotation rate magnitude squared P o)z = 4 trace(£2628S)



10 P. Bechlars and R. D. Sandberg

~ 12 A 12
dR aQ
dt 1+ dt nl
[ T
0 0.2 0.4

Figure 5: The mean QR-phase development is shown by trajectories (black) and by the
magnitude of the mean phase velocity (contours) restricted to the non-linear terms of
the Navier-Stokes equations. The dashed green lines divide the QR-phase-space into the
four sectors, covering a characteristic local flow topology each.

and strain rate magnitude squared Pygj2 = —2trace(SSS) — 2trace(§262S). The full
governing equations for rotation rate tensor magnitude squared and the strain rate
magnitude squared can be found in Bechlars (2015). Besides the development of the
mean productions conditioned for the respective (QR-states along the trajectory over
time (figures 4,a-c), the development of the angle « (figure 4,d) is shown. The angle
« is defined as angle between the @-axis and the line between the origin of the QR-
space and the current point on the respective trajectory. Figure 3(d) shows a schematic
image of this definition. When plotted over a the productions are scaled with the mean
velocity gradient magnitude conditioned for the respective QR-state to obtain relative
productions.

For the outer region of the TBL (figure 4,a) the development of the two productions over
one period is seemingly uncorrelated. We find, e.g., a high production of strain while only
a low production of rotation is noticed (f ~ 5). We also find a high rotation production
region coinciding with strain being destroyed (f ~ 15). For y ~ 24 the two productions
are more closely coupled than in the outer region, but there are still some differences
visible. In the near-wall region the two productions are almost fully coupled. If rotation
energy is produced, then a similar amount of strain energy is produced and vice versa.
Besides all the differences, figure 4(d) shows that when plotted over the angle « the
productions for all cases behave in a similar way.

4.2. Component analysis of the QR-phase flow

In the previous section we have seen how the evolution of structures in the QR-
phase space varies in the TBL and what the consequences are for the characteristic
distribution of turbulence. In this section we analyse the separate components of this
evolution to understand the causes of the change presented above. To that end three
groups of evolution terms are identified. The first group covers all the non-linear terms,
but the traceless part of the source term H is set to zero, H* = 0. For incompressible
flows we obtain trace(H) = —2@Q and the system reduces to the restricted Euler system
presented in the introduction. As mentioned in the previous section the compressibility
effects in the present flow are small. For the evolution equations restricted to the non-
linear terms (as shown in figure 5) this means that there are no significant differences to
the restricted Euler system, as also found by Martin et al. (1998), figure 1. In figure 5, it
can be seen that the trajectories show a development from negative R towards positive R
forming a bump as the value of @ is increasing for R < 0 and decreasing for R > 0. The
evolution velocity magnitude of the restricted Euler system is small around the origin
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of the QR-space and increases with the distance to the origin. The advantage of the
@ R-decomposition becomes obvious at this stage. The conditioning with () R-states of
the non-linear dynamics results in the invariant evolution that is presented here. This
evolution caused by the non-linear terms is present in that way at any location in this
flow.

The second part of the evolution is formed by neglecting all terms except the terms that
link the pressure with the velocity gradient tensor (trace(H) = I' = @ = R = 0). The
part of the evolution caused by the coupling of pressure with the velocity gradient is
shown in figures 6(a,c,e) for the three different locations and called restricted pressure
evolution in the following. For the outer region the results taken from the present TBL
qualitatively match the results taken from the HIT flow of Martin et al. (1998). The
restricted pressure evolution is widely evolving against the restricted Euler flow (figure
1 in Martin et al. (1998)). In the regime of the contracting vortical structures a swirl is
formed by the evolution trajectories. The evolution velocity magnitude for this swirling,
however, is relatively low. The largest evolution velocity is found in the tail of the teardrop
for positive R and low values of @) as well as in the vortex stretching region, especially for
larger values of @). Following the development of the restricted pressure evolution when
moving closer to the wall it can be seen that the swirl within the unstable vortex region
is ‘unrolling’. The trajectories in this region for y™ ~ 24 point towards positive R and the
evolution velocity magnitude is increasing. For the location at y* =~ 6.7 this ‘unrolling’
feature becomes even stronger. The more important effect is that the evolution velocity
magnitude is decreasing for the lower left border of the teardrop and for the entire region
of the stretching vortical structures. This is already noticeable for y = 24, but becomes
significant at y™ ~ 6.7.

The remaining part of the evolution is formed by neglecting all terms except the terms
that link the diffusion with the velocity gradient tensor (trace(H) = ¥ = Q = R = 0).
The part of the evolution caused by the coupling of diffusion with the velocity gradient
tensor is shown in figures 6(b,d,f) for the three different locations and called restricted
diffusion evolution in the following. The restricted diffusion evolution in the outer region
of the TBL is evolving towards the origin of the Q) R-space. The trajectories are relatively
straight, pointing towards the origin and only show a slight counter-clockwise spin. The
evolution velocity magnitudes are decreasing with decreasing distance to the origin. For
the restricted diffusion evolution no significant changes can be seen when moving closer
to the wall. The trajectories develop a slightly stronger spin and the evolution velocity
magnitude is decreasing. But overall the restricted diffusion evolution has an invariant
character in this TBL flow.

5. Discussion

The evolution of characteristic turbulent structure types is discussed for a compressible
turbulent boundary layer with the focus on the change of the evolution for different wall-
normal locations.

Comparing the trajectories at all three locations (figure 3,a-c) we find that the inward
spiralling rate decreases with decreasing distance to the wall. More interestingly, we find
a change of the trajectories’ shape that is consistent with the change of shape that we
have found for the joint-p.d.f.s of @ and R (Blackburn et al. 1996; Chong et al. 1998;
Bechlars 2015). For the outer layer of the TBL they agree qualitatively with experimental
results of the outer layer of a TBL (Elsinga & Marusic 2010) and DNS results of an HIT
flow (Martin et al. 1998). Differences in the inward cycling strength of the spiralling
motions are believed to be Reynolds number dependent effects. The regions of high and
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Figure 6: The mean @ R-phase development is shown by trajectories (black) and by the
magnitude of the mean phase velocity (contours) restricted to the pressure term (a,c,e)
and the viscous term (b,d,f) of the Navier-Stokes equations, respectively. Three wall-
normal locations are shown: (a): y* ~ 180, (b): y™ ~ 24, (¢): y* ~ 6.7. The bright area
covers 95% of all events and the dashed green lines divide the QR-phase-space into the
four sectors, covering a characteristic local flow topology each.
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low evolution speed remain at similar locations but vary in magnitude for different wall-
normal locations. However, the cycling radii for different wall-normal locations seem to
balance the evolution speeds, so that the cycling periods scaled with the local velocity
gradient tensor variance do not show significant variations. However the cycling times
for the respective locations increase with a decreasing distance to the origin of the QR-
phase-space.

For all locations trajectories forming relatively long straight lines can be found on the
lower left side (figure 3,a-c). This indicates that the observed structures first develop
within the pure straining structures (IIT and IV) and then develop a stretching rotational
character (I). After developing within the rotational regime the trajectories turn clockwise
for all locations. But here first differences for the different locations can be observed. At
the outermost location, just like in the case of HIT, the turn is smooth and the trajectories
take a long way forming a bump within the unstable vortical structures region (II). In
this regime the trajectories turn further until the structures evolve towards the lower left
of the Q R-phase-space. Once in the regime of purely straining structures the trajectories
develop a sharp clockwise turn towards the evolution direction described at the start,
but now much closer to the origin of the phase space. For the locations closer to the
wall the initial clockwise turn becomes sharper with the effect that the bump within the
unstable vortical structures region decreases. At ¥ ~ 24 the bump is still visible, but
at yT =~ 6.7 it has disappeared. At the location closest to the wall we find long, nearly
straight trajectories that go from the stretching rotational regime (I) into the contracting
rotational regime (II). There is a second sharp turn towards the initial development,
but the QR-state is now closer to the origin. The sequence of the stages within the
evolution period such as vortex creation, stretching and destruction are invariant in
polar coordinates in the @ R-phase-space for the different wall-normal locations (figure
4,d). They take the same angular space at any location but the strengths and ration of
the involved terms vary.

It has been established that the strain rate tensor governs the dissipation of kinetic energy,
the coupling of both, strain rate tensor and rotation rate tensor, governs the process
of vortex stretching and vortex compression (Tsinober 2000; Hamlington et al. 2008).
For a better understanding of the vortex stretching and vortex compression mechanism,
the coupling of the productions of strain and rotation are discussed with respect to
the characteristic evolution of turbulence at different wall-normal locations in the TBL
(figure 4). Here only the extreme cases at y™ a2 180 and y™ =~ 6.7 will be discussed as
the intermediate location y™ =~ 24 can be seen as intermediate case between the two
extremes. Beginning at the start of the blue trajectories in figure 3(a-c) we find that
we are in the pure straining regime (A < 0) and observe decaying but strong strain
production for the outer layer and near-wall region (figure 4,a,c). For the latter this is
coinciding with a strong rotation production (figure 4,c). However, as we are in the pure
straining regime we know that no vortices are associated with these structures (figure
3,a,c). Following the evolution of the structures in the outer region from this state, we
find a strong increase of rotation production and a low production of strain (figure 4,a)
which leads to a development of vortical structures which is reflected by changing far
into the regime with A > 0 (figure 3,a). In the near-wall region the relative production
of rotation is not much larger than the relative production of strain as it is in the outer
region (figure 4,d). Therefore the development into the vortical regime for the near-wall
region is not as pronounced as for the outer region (figure 3,a,c). At both wall-normal
locations the structures are evolving into rotation destroying structures. Here the relative
rotation destruction in the near-wall region is much stronger than in the outer region
of the TBL (figure 4,d). Further, it was noticed that the time that the structures spend
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destroying rotations is higher in the near wall-region (Af =~ 8) than in the outer region
(At ~ 5) (figure 4,a,c). As these rotation destroying structures are in the contracting
vortical structure regime (A > 0,R > 0) the increased times explain the increased
frequency of occurrence of those structures that Bechlars (2015) has identified in the
near-wall region (see introduction).

The vortex creation and the vortex stretching processes are strongly dependent on the
coupling terms of pressure and the velocity gradient tensor counteracting the non-linear
dynamics as shown by splitting the evolution of turbulence into its separate parts (figure
5 and figure 6). This counteraction leads to a development from pure straining structures
to vortical structures and allows vortical structures to stretch stably. This mechanism
is well developed for the outer layer, but due to changes of the balance of the non-
linear dynamics and the coupling terms of pressure and the velocity gradient tensor in
the near-wall region this mechanism becomes more unstable. The stable vortices do not
reach as high values of @) as they do in the outer region before they become unstable.
Further, the wall strongly couples strain and rotation production. While in the outer
layer rotation and strain production are well separated, they show the same behaviour at
the wall. This means on average every vortex that is created is associated with a strongly
strain growing in a similar, just slightly weaker, way as its rotation field in the near-
wall region. Similarly to the vortex creation and vortex stretching, strain and rotation
production is more closely coupled in the near-wall region for the unstable vortical regime
where rotation is destroyed (II). Whereas this process is widely uncoupled to the strain
production in the outer region (figure 4,a), the decreased distance to the wall associates
the strain destruction to rotation being destroyed (figure 4,c). But here we find slightly
less strain than rotation being destroyed. In parts of the regime for unstable vortices the
coupling terms of pressure and the velocity gradient tensor change the character strongly
with varied distance to the wall (figure 6,a,c,e). The consequence of this is the evolution
of turbulent structures in this regime is changed strongly in the near-wall region which
causes a different characteristic composition of turbulence, reflected by the changed joint-
p.d.f. of @ and R. In the regime of unstable vortical structures the ‘unrolled’ swirl of the
restricted pressure evolution (figure 6,e) has the effect that the trajectories of the overall
evolution extend much further towards the lower right for the near-wall region than for
the outer region of the TBL. This causes the much lower inwards spiralling rate that we
found for the evolution in the near-wall region (figure 3,c). A second effect of this is that
the tail of the teardrop shaped joint-p.d.f. of @ and R vanishes in the near-wall region
(see Bechlars 2015, for the varied @ R-plot shape).

6. Conclusions

In order to obtain insight into the development of turbulence in compressible flows the
compressible Lagrangian dynamics of the first three invariants of the velocity gradient
tensor P, (Q and R have been derived. With this novel set of equations the evolution of
characteristic turbulent structure types have been studied in a compressible turbulent
boundary layer. The focus in this study was on the change of the evolution for different
wall-normal locations.

The mean evolution for the velocity gradient tensor invariants was found to vary strongly
with the distance to the wall. Based on the changes of this evolution the previously
stated variations of the QR-plots in a TBL (see Blackburn et al. 1996; Chong et al. 1998;
Bechlars 2015) have been explained with the change of turbulence evolution in a TBL.

The role of the diffusion in the overall evolution in the ) R-phase-space is relatively
simple. It drives all structures towards the origin and its strength in doing this is
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increasing with the distance to the origin. This is plausible as the gradient magnitudes in
the flow increase with increasing distance to the origin. Further, the features of diffusion
are relatively invariant in this flow and are therefore not the main cause for the observed
variations in the overall evolution (figure 3). Therefore diffusion does not appear to be
very important for the changes of the turbulence evolution of turbulence in this flow.
The coupling of the pressure-Hessian with the velocity-gradient that is affected by the
wall drives nearly all the changes of the invariant dynamics that we have discussed
in this work. Most significantly, it changes the inward spiralling rate as well as the
shapes of the trajectories and therefore the changes of the @ R-plots. The importance
of the pressure-velocity-gradient relation that we have discovered for the changes of the
turbulence dynamics in the present flow is believed to be of significant relevance for all
turbulent flow. From a @ R-analysis perspective it appears to be the most significant
feature that affects the turbulence development. This needs to be shown also for other
flows, but the methodology to investigate other flows is provided within this work.
Despite all the observed changes, the general mean life-cycle of turbulent structures stays
unchanged in the QR-space. The sequence “straining structures develop to stretching
vortical structures and further to contracting vortical structures before the life-cycle
continues again in the straining structures” is invariant within the present turbulent
boundary layer flow.

The slowed down evolution velocity of vortical structures in the near wall-region is the
cause for the strongly increased frequency of occurrence of this structure type observed
for a TBL in previous work.

Lastly, the wall has a coupling effect on the strain rate magnitude production and the
rotation rate magnitude production. In the near-wall region an increase of rotation
energy is in a mean sense always associated with an increase of strain energy and vice
versa.
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