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Acoustic wave propagation in gassy porous marine 

sediments: the rheological and the elastic effects 

Hakan Dogan, Paul R. White and Timothy G. Leighton1 

Institute of Sound and Vibration Research, University of Southampton, Highfield, Southampton SO17 

1BJ, United Kingdom 

 

Abstract 

 

The preceding paper in this series [Mantouka et al., J. Acoust. Soc. Am. 140, 274 (2016)] 

presented a nonlinear model for acoustic propagation in gassy marine sediments, the baseline 

for which was established by Leighton [Geo. Res. Let., 34, L17607 (2007)]. The current paper 

aims further advancement on those two studies by demonstrating the particular effects of the 

sediment rheology, the dispersion and dissipation of the first compressional wave, and the 

higher order re-scattering from other bubbles. Sediment rheology is included through the 

sediment porosity and the definition of the contact interfaces of bubbles with the solid grains 

and the pore water. The intrinsic attenuation and the dispersion of the compressional wave are 

incorporated using the effective fluid density model [Williams, J. Acoust. Soc. Am. 110, 2276 

(2001)] for the far field (fully water-saturated sediment). The multiple scattering from other 

bubbles is included using the method of Kargl [J. Acoust. Soc. Am. 11, 168 (2002)]. The 

overall nonlinear formulation is then reduced to the linear limit in order to compare with the 

linear theory of Anderson and Hampton [J. Acoust. Soc. Am. 67, 1890 (1980)], and the results 

for the damping coefficients, the sound speed and the attenuation are presented.  
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I. INTRODUCTION 

In 1980, Anderson and Hampton [1, 2] published what is still the dominant theory for 

acoustic propagation in gassy marine sediments. In 2007 Leighton [3] described acoustic 

propagation in gassy marine sediments where the bubbles could in addition behave in a 

nonlinear non-stationary manner - unlike the linear steady-state motions considered by 

Anderson and Hampton (the latter is abbreviated as A&H hereafter). Leighton further noted 

how the next stage would be to include radiation losses in this model, which was done by 

Mantouka et al. [4]. The current paper aims further advancement on those two studies by 

demonstrating the particular effects of the sediment rheology (i.e. the shear viscosity and the 

rigidity), the dispersion and dissipation of the first compressional wave, and the higher order re-

scattering from other bubbles.   

Understanding the effect of gas on acoustic propagation is important, because extensive 

distributions of seafloor methane gas and hydrates have been detected at many locations around 

the world by geophysical surveys [5]. The importance of two-way gas transfer (both natural [6] 

and man-made [7]) between atmosphere, ocean and seabed is becoming increasingly clear. The 

presence of gas affects the physical properties of the marine sediment, which is of interest for 

several applications including drilling operations, construction of seafloor structures, climate 

change and the slope stability of sediments [8]. Furthermore, as part of future Carbon Capture 

and Storage (CCS) projects, the long term acoustic monitoring for possible greenhouse gas 

seepage in sub-seafloor reservoirs will be crucial [9, 10]. 

Biot [11, 12] presented a model for the acoustic propagation in a porous two-phase 

medium. It has been validated for laboratory samples using ultrasonic frequencies [13, 14], and 

has been applied to sediment acoustics [15-17]. Many studies [18-23] attempted to establish 

modified versions of Biot theory to model the presence of gas bubbles in sediment pore spaces. 

These works have limited applicability to practical gas-bearing sediments because they assume 

the gas bubbles do not affect the sediment structure. The current paper joins the small canon of 

works [1-4, 24, 25] that model ‘sediment-replacing’ bubbles [26], to predict how the presence 

of such bubbles affects the mechanical strength and the structure of gassy marine sediments. 

The complexity of the problem means that all such theories will have limitations. The A&H 

theory contains inconsistencies in the frequency dependence of the expressions for the damping 

coefficients and scattering cross-sections [27, 28]. It also involves a sign ambiguity in the 

sound speed formula [4]. Kargl et al. [24] investigated the double monopole resonance 

behavior of sediment-replacing gas bubbles, though they do not formulate the viscoelastic, 
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acoustic and thermal dissipation relevant to bubble pulsations. Leighton’s theory for marine 

sediment bubble pulsations [3] lacked acoustic radiation losses, and he outlined the route for 

including them which Mantouka et al. [4] executed with, moreover, the formulation of 

nonlinear scattering. However, the rheological model for the sediment viscosity in Refs. [2] and 

[4] has some drawbacks, as will be explained in Sec. II. 

At low driving frequencies, the bubble’s response in a medium is stiffness-controlled [29] 

and the presence of bubbles decreases the sound speed in that medium. In moving the driving 

frequency through resonance, a Pi phase change occurs in the bubble response. Consequently, 

at frequencies greater than resonance, the bubbles increase the sound speed [30]. At very high 

frequencies, far from resonance, the amplitude of bubble pulsation is small, and the sound 

speed values converge to those in the host medium (in this context, host medium refers to the 

fully water saturated sediment) [3, 31]. Clearly, the overall sound speed and attenuation in the 

medium depends on how the elastic moduli of the host medium are calculated. To do this, 

Gassmann’s relations were employed in Refs. [1, 2], and Berryman’s self-consistent 

approximations [32, 33] were used in Ref. [4]. Both of these methods are unable to predict the 

sound speed dispersion and the attenuation in the host medium, unless complex coefficients are 

introduced for the elastic moduli. In the present work, the effective density fluid model 

(EDFM), established by Williams [34] as an alternative to the Biot theory, is employed to 

describe wave propagation in the host medium. Its use allows incorporation of the dispersion 

and the dissipation of the first compressional wave in water-saturated sediment. The classical 

derivations for the dynamics of a pulsating bubble consider a single bubble fixed in space in an 

infinite body of liquid-like material [3, 31, 35-37]. However, Kargl [37] included the effect on 

the bubble in question of the multiple scattering from surrounding bubbles, when deriving the 

linear acoustics expressions. This paper includes multiple scattering in the same way.  

Another objective of the present work is to demonstrate a general way of modelling the 

rheological effects near the bubble wall. When gas bubbles pulsate in marine sediment, shear 

(elastic) losses are induced outside of the gas-solid boundary, and viscous losses occur near the 

gas-liquid interface. In Ref. [2], an effective host medium (viscoelastic liquid) was assumed, 

and the elastic and viscous damping were combined into one by introducing a complex 

viscosity term. In Mantouka et al. [4], the effective medium model was maintained. Although 

these two damping terms (elastic and viscous) were expressed separately, the sediment 

viscosity was deduced from the shear modulus, as in Ref. [2]. The latter approach has been 

used in several studies [38-40] to model the shear wave attenuation of water-saturated 

sediments. However, it leads to some discrepancies regarding the bubble resonance 
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phenomenon when applied to gassy sediments (as will be shown in Sec. III). The current paper 

therefore keeps the general form of the constitutive equation in viscoelastic media as in Refs. 

[36, 41-44], whilst it formulates the viscous and the elastic losses separately by means of the 

porosity and the contact interfaces of the gas with the surroundings. Furthermore, the current 

paper proposes the use of sediment viscosity values obtained from rheological experiments [45-

49].  

We should also note that the model presented here (and those in Refs. [3, 4]) for acoustic 

propagation (the forward problem) can be used for the estimation of bubble void fraction and 

bubble size distribution in marine sediments (the inverse problem). The high attenuations 

exhibited by gassy marine sediments mean that, whilst most propagation theories are for 

steady-state low-amplitude pulsations, most experiments use high amplitude signals at short 

ranges (meaning that signals are often short pulses). The formulations in Sec. II (and Refs. [3, 4, 

50, 51] on which they are based) allow simulation of the nonlinear, transient and/or ring-down 

period of bubble oscillations when short high-amplitude acoustic pulses are used. This has not 

been possible with the steady-state theories. Similarly, the large bubble wall displacement and 

velocities during the high amplitude, high frequency insonification can be calculated using the 

methods described here (and [3, 4, 50, 51]), as well as the dynamics of bubbles driven with 

multiple frequency acoustic signals. Neither would have been possible using A&H theory [1, 2]. 

These predictions could then be used to determine the time-dependent cloud response of 

bubbles, the sound speed and the scattering cross sections as outlined in Refs. [50, 51], which 

provides a general route for inverting such signals to characterize the bubble populations in 

marine sediments.  

 

II. FORMULATIONS 

Consider the radial motion of a spherical gas bubble of radius 𝑅(𝑡) which is fixed in 

space and oscillates about some equilibrium radius 𝑅0  with bubble wall velocity 𝑅̇(𝑡) . 

Assuming the flow is irrotational, the radial component of the equation for the conservation of 

momentum [36, 52] can be written as: 

𝜌s (
𝜕𝑣𝑟

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝑟

𝜕𝑟
) = −

𝜕𝑝

𝜕𝑟
+

𝜕𝜏𝑟𝑟

𝜕𝑟
+

2

𝑟
[𝜏𝑟𝑟 − 𝜏𝜃𝜃], 

(1) 

where 𝜌s  is the density of the water-saturated sediment, 𝑣𝑟  is the particle velocity in the 

sediment outside the bubble wall, 𝑟 denotes the distance from the centre of the bubble to an 

arbitrary location, and 𝜏𝑟𝑟 and 𝜏𝜃𝜃 are the stress components in 𝑟 and 𝜃 directions, respectively. 
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Assuming for the moment that the solid and liquid phases are both incompressible, the velocity 

field in the vicinity of the bubble wall [31] can be found from: 

𝑣𝑟 = −
𝑅̇(𝑡)𝑅2(𝑡)

𝑟2
. 

 (2) 

In Ref. [36], the medium surrounding the bubble was taken to be an effective homogeneous 

medium such that the pressure p and the stresses have some equivalent average values. In the 

case of a porous medium (such as sediment), the bubble’s surface has contact with the pore 

water and with the solid mineral grains, for which we establish symbols denoting the gas–liquid 

interface 𝛺L and the gas–solid interface 𝛺S. Deresiewicz and Skalak [53] have shown that, for 

such an interface between a single phase (here, gas) and its poro-elastic surroundings (here, 

water and solid grains), the total area of 𝛺L is proportional to the porosity 𝛽, and the area 𝛺S is 

proportional to 1- 𝛽 . The following boundary conditions on the bubble surface are then 

formulated:   

         𝑝L(𝑅, 𝑡)|𝜕𝛺L
− 𝜏𝑟𝑟

L (𝑅, 𝑡)|𝜕𝛺L
= 𝑝g −

2𝜎

𝑅
                      at  𝑟 = 𝑅,   

 (3) 

                                              − 𝜏𝑟𝑟
S (𝑅, 𝑡)|

𝜕𝛺S
= 𝑝g                                 at  𝑟 = 𝑅,    (4) 

where  𝑝g is the gas pressure inside the bubble, 𝑝L is the fluid pressure, σ indicates the surface 

tension, and 𝜏𝑟𝑟
L  and 𝜏𝑟𝑟

S  represent the shear stresses in the liquid and in the solid, respectively. 

 

At an intermediate distance, i.e. in the pore space and away from the bubble wall, the stress 

balance between the liquid and the solid is given by: 

𝑝L(𝑟, 𝑡) −  𝜏𝑟𝑟
L (𝑟, 𝑡) = 𝜏𝑟𝑟

S (𝑟, 𝑡)                      at  𝑟.  (5) 

 

The pressure in the far field is defined as: 

                                                       𝑝 = 𝑝0                              at  𝑟 = ∞,    (6) 

 

and we assume that the bubble wall is initially stationary and at the equilibrium position:  

                                                       𝑅 = 𝑅0,   𝑅̇ = 0              at  𝑡 = 0.    (7) 

 

The integration of (1) through the whole volume of the sediment from the bubble wall at 

distance R to a location r in the near field gives: 
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∫ 𝜌s (
𝜕𝑣𝑟

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝑟

𝜕𝑟
) d𝑟

𝑟

𝑅

= − ∫ ∫
𝜕𝑝

𝜕𝑟
 d𝛺 d𝑟

𝛺L

𝑟

𝑅

+ ∫ ∫
𝜕𝜏𝑟𝑟

L

𝜕𝑟
 d𝛺 d𝑟

𝛺L

𝑟

𝑅

+ ∫ ∫ 3
𝜏𝑟𝑟

L

𝑟
 d𝛺 d𝑟

𝛺L

𝑟

𝑅

+ ∫ ∫
𝜕𝜏𝑟𝑟

S

𝜕𝑟
 d𝛺 d𝑟

𝛺S

𝑟

𝑅

+ ∫ ∫ 3
𝜏𝑟𝑟

S

𝑟
 d𝛺 d𝑟.

𝛺S

𝑟

𝑅

 

(8) 

 

Using the aforementioned relationships from Deresiewicz and Skalak [53], integration over 𝛺L 

results in terms proportional to 𝛽, and the integration over 𝛺S results in terms proportional to 

(1 − 𝛽). Therefore, one can obtain: 

 

𝜌s (𝑅𝑅̈ +
3

2
𝑅̇2) −

𝜌s

𝑟
𝑓̇ +

𝜌s

2

𝑓2

𝑟4

= −𝛽 [𝑝L(𝑅) − 𝑝L(𝑟)]  + 𝛽 𝜏𝑟𝑟
L |𝑅

𝑟 + 𝛽 ∫ 3
𝜏𝑟𝑟

L

𝑟
d𝑟

𝑟

𝑅

+ (1 − 𝛽) 𝜏𝑟𝑟
S |

𝑅

𝑟

+ (1 − 𝛽) ∫ 3
𝜏𝑟𝑟

S

𝑟
d𝑟 .

𝑟

𝑅

 

(9) 

 

Here the short-hand 𝑓 = 𝑅2𝑅̇ , and −𝜌s𝑓̇/𝑟  has been introduced to describe the radiated 

pressure by a pulsating bubble at a distance r. Using the identity  𝑝in =  𝑝L(𝑟) − 𝜏𝑟𝑟
L  (𝑟), it 

follows that: 

 

𝜌s (𝑅𝑅̈ +
3

2
𝑅̇2) −

𝜌s

𝑟
𝑓̇ +

𝜌s

2

𝑓2

𝑟4

= 𝑝in −  𝛽 𝑝L(𝑅) +  𝛽 𝜏𝑟𝑟
L  (𝑅) + (1 − 𝛽) 𝜏𝑟𝑟

S  (𝑅) + 𝛽 ∫ 3
𝜏𝑟𝑟

L

𝑟
d𝑟

∞

𝑅

+ (1 − 𝛽) ∫ 3
𝜏𝑟𝑟

S

𝑟
d𝑟.

∞

𝑅

 

(10) 

 

The far field acoustic propagation is modelled using the effective density fluid model [34] 

which is derived from Biot theory. The linear acoustic equation of the EDFM can be written as: 
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∇2𝜑 −
1

𝑐s
2

𝜕2𝜑

𝜕𝑡2
= 0, 

(11) 

 

where 𝜑  is the velocity potential, i.e. 𝑣⃗ = ∇𝜑 , and 𝑐s
2 = 𝐻/𝜌s  (the explicit expressions are 

given in the Appendix). The solution to (11) has the form: 

 

𝜑ex =
𝜓1

𝑟
𝑒

𝑖𝜔(𝑡−
𝑟
𝑐s

)
, 

(12) 

which characterizes an outgoing spherical wave. The expression for the far field pressure [54] 

is then given by: 

𝑝ex = 𝑝0 − 𝜌s

𝜕𝜑ex

𝜕𝑡
. 

(13) 

 

A. Matching asymptotic solutions 

In order to match the near field and far field solutions in the intermediate zone, the volumetric 

flow and the pressure matching conditions should be applied: 

 

                 4𝜋𝑟2𝑣𝑟(in)|
𝑟→∞

= 4𝜋𝑟2𝑣𝑟(ex)|
𝑟→0

                     𝑝in|𝑟→∞ = 𝑝ex|𝑟→0.       (14) 

 

As 𝑟 → ∞, the bubble mediated acoustic pressure 𝜌s𝑓̇(𝑡)/𝑟 and the quadratic term 𝜌s𝑓2/2𝑟4  

in (10) vanish [36]. Furthermore, the 𝑟 → 0 limit of the spherical wave in (12) induces a time-

dependent acoustic driving pulse at the location of the bubble, i.e. 𝜕𝜑ex/𝜕𝑡|𝑟→0 = 𝑃𝐴𝑔(𝑡), with 

PA being a positive real number that scales the driving pressure. Hence, the matching solutions 

for the pressure field give:  

 

(1 −
𝑅̇

𝑐s
) 𝑅𝑅̈ +

3

2
(1 −

𝑅̇

3𝑐s
) 𝑅̇2 = (1 +

𝑅̇

𝑐s
)

𝑝L − 𝑝∞

𝜌s
+  

𝑅

𝜌s𝑐s

d

d𝑡
(𝑝L − 𝑝∞), 

(15) 

 

where 

𝑝L − 𝑝∞ =  𝑝g − 𝛽 
2𝜎

𝑅
− 𝑝0 + 𝑃A𝑔(𝑡) + 𝛽 ∫ 3 𝜏𝑟𝑟

L /𝑟 d𝑟
∞

𝑅

+ (1 − 𝛽) ∫ 3 𝜏𝑟𝑟
S /𝑟 d𝑟

∞

𝑅

. 
(16) 
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B. Rheological constitutive relation 

The Voigt model is appropriate for most marine sediments [3, 38, 39, 45]. For a 

spherically symmetric flow, it is given by: 

 

             𝜏𝑟𝑟 = 𝜏𝑟𝑟
S +  𝜏𝑟𝑟

L = 2 𝐺 𝛾𝑟𝑟 + 2 µ  𝛾̇𝑟𝑟 ,     (17)  

 

where 𝛾𝑟𝑟  and  𝛾̇𝑟𝑟  are the strain and the strain rate in the radial direction, 𝐺  is the shear 

modulus and µ denotes the shear viscosity. In (17), a linear rheological model is imposed, i.e. 

the shear modulus and the viscosity are independent of 𝛾𝑟𝑟 and  𝛾̇𝑟𝑟. The latter can be obtained 

using (2) as 𝛾𝑟𝑟 = −(2/3𝑟3)(𝑅3 − 𝑅0
3) and 𝛾̇𝑟𝑟 = −(2𝑅2/𝑟3) 𝑅̇. The integrals in (16) then can 

be calculated as: 

 

      𝛽 ∫ 3 𝜏𝑟𝑟
L /𝑟 d𝑟

∞

𝑅

+ (1 − 𝛽) ∫ 3 𝜏𝑟𝑟
S /𝑟 d𝑟

∞

𝑅

= −𝛽
4𝜇𝑅̇

𝑅
− (1 − 𝛽)

4𝐺

3𝑅3
(𝑅3 − 𝑅0

3). 
(18) 

 

Therefore, the Keller-Miksis type equation [55], which describes the radial motion of a 

spherical bubble in an unbounded viscoelastic medium, can be written as:  

 

    𝜌s (1 −
𝑅̇

𝑐s
) 𝑅𝑅̈ +

3

2
𝜌s (1 −

𝑅̇

3𝑐s
) 𝑅̇2

= (1 +
𝑅̇

𝑐s
+

𝑅

𝑐s

d

dt
)

×  (𝑝g − 𝛽
2𝜎

𝑅
− 𝑝0 + 𝑃A𝑔(𝑡) − 𝛽

4𝜇𝑅̇

𝑅
− (1 − 𝛽)

4𝐺

3𝑅3
(𝑅3 − 𝑅0

3)). 

(19) 

 

In order to complete the set of equations given above, the thermal physics related to the gas 

inside the bubble needs to be identified. This can be done comprehensively by solving the 

continuity and the energy conservation equations for a gas, as was one in Refs. [51] and [56]. A 

less complicated, but often passably accurate alternative way of including the thermal dynamics 

of nonlinear gas bubbles, is to modify the polytropic law with an artificial thermal viscosity 

term 𝜇th [56], i.e.:  

𝑝g = 𝑝g0
(

𝑅0

𝑅
)

3𝜅(𝜔)

− 4𝜇th

𝑅̇

𝑅
   , 

  (20) 
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where 𝑝g0
 is the bubble gas pressure at the undisturbed state, 𝜅(𝜔) = 𝑅𝑒(𝛷) is the polytropic 

exponent, µth = (3𝑝g0
/4𝜔)𝐼𝑚(𝛷) is the thermal viscosity, and ω is the angular frequency. 

The variable 𝛷 is given by: 

 

𝛷 =
𝛾

1 − 3(𝛾 − 1)𝑖𝜒[(
𝑖
𝜒)

1
2

𝑐𝑜𝑡ℎ (
𝑖
𝜒)

1
2

− 1]

,   (21) 

 

where 𝜒 = 𝐷/𝜔𝑅0
2 represents the thermal diffusion length, with D being the thermal diffusivity 

of the gas, and where γ indicates the adiabatic polytropic exponent.  

 

C. Analytical solutions 

An analytical solution to (19) may be obtained by assuming small perturbations of the bubble 

radius; i.e. 𝑅 =  𝑅0(1 + 𝑥) where x <<1. The first order terms in x are retained such that:  

𝑅̇ = 𝑅0𝑥,̇  (22a) 

𝑅̈  = 𝑅0𝑥̈, (22b) 

𝑅−1 = 𝑅0
−1(1 − 𝑥), (22c) 

𝑅−3𝜅 = 𝑅0
−3𝜅(1 − 3𝜅𝑥). (22d) 

Note that the incident pressure term is, to first order [32, 51], equivalent to the linear expression 

for the radiated pressure wave, as in:  

𝑃A𝑔(𝑡) =
𝜌s𝑅̈𝑅0

(1 −
𝑖𝜔𝑅0

𝑐s
)

 . 
(23) 

With this in mind, substitution of (22) into (19) allows the linearization of (19) in the radius-

pressure frame of motion [31] to give: 

𝑥̈ + 2𝛽tot𝑥̇ + 𝜔0
2𝑥 = −

𝑃𝐴𝑒𝑖𝜔𝑡

𝑚
, 

(24) 

 

where 𝛽tot is the total damping, and the effective mass is:  

𝑚 = 𝜌s𝑅0
2 +

4𝜇𝑅0

𝑐s
 . 

(25) 

Eliminating 𝑒𝑖𝜔𝑡  dependencies, Eq. (24) can be recast into a Helmholtz equation with the 

complex wavenumber: 
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𝑘m
2 =

𝜔2

𝑐s
2

+ 4𝜋𝜔2 ∫
𝑅0𝑛(𝑅0)

𝜔0
2 − 𝜔2 + 2𝑖𝛽tot𝜔

d𝑅0 ,

∞

0

 

(26) 

 

where 𝑛(𝑅0) d𝑅0 is the number of bubbles per unit volume with radii between 𝑅0  and 𝑅0 +

d𝑅0 . The (viscous, thermal, acoustic, interfacial and elastic) damping coefficients and the 

resonance frequency expression are obtained and take the following form:  

 

𝛽vis = 2𝛽µ/𝑚 , (27a) 

𝛽th = (
3𝑝g0

𝐼𝑚(𝜙)

2𝜔
) /𝑚, 

(27b) 

𝛽ac =
𝑘m𝑅0

1 + (𝑘m𝑅0)2
 
𝜔

2
, 

(27c) 

𝛽int = −
𝛽𝜎

𝑚𝑐s
 , 

(27d) 

𝛽el =
2𝐺(1 − 𝛽)𝑅0

𝑚𝑐s
 , 

(27e) 

𝜔0
2 =  

[3𝑝g0
𝑅𝑒(𝜙) −

2𝜎𝛽
𝑅0

+ 4𝐺(1 − 𝛽) +
𝜔2𝜌𝑅0

2

1 + (𝜔𝑅0/𝑐s)2] 

𝑚.
⁄

 

(27f) 

 

The last term in (26) represents the effects of bubbles on the acoustic propagation, whereas the 

complex quantity 𝜔2/𝑐s
2  is the contribution from the dispersion and the dissipation in the host 

medium. Note that Eq. (26) should be calculated iteratively as in Ref. [37], because 𝛽ac is a 

function of 𝑘m, in order to account for the higher order re-scattering from other bubbles [37, 

57]. The phase velocity V and the attenuation A (dB/m) are then related to the real and 

imaginary parts of the wavenumber, respectively, via:  

𝑉 = 𝜔/𝑅𝑒{𝑘m}     (28) 

and 

𝐴 = 8.6859 |𝐼𝑚 {𝑘m} |.           (29) 

 

D. Linear expressions of Anderson and Hampton (1980) 

When modelling (gas-free) water-saturated sediments, some studies [58, 59] have treated the 

medium as a lossy elastic solid using a complex shear modulus: 

 

𝜏 = 𝐺∗𝛾 = (𝐺 − 𝑖 𝐺′)𝛾  . (30) 
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Other approaches [2, 40], which are based on a viscoelastic liquid model, instead define a 

complex shear viscosity: 

𝜏 = 𝜇∗𝛾̇ = (𝜇 + 𝑖 µ′) 𝛾̇. (31) 

 

The use of the algebraic relation 𝛾̇ = 𝑖𝜔𝛾, and the comparison of (30) and (31), led historically 

to wide use [40, 60, 61] of:  

 𝐺∗ = −𝑖𝜔𝜇∗,       (32) 

 

and to the use of µ′ = 𝐺/𝜔 and 𝐺′ = 𝜔µ. Therefore, the complex viscosity in the equivalent 

liquid model is defined as 𝜇∗ = 𝐺′/𝜔 + 𝑖 µ′ . In [2], such a model was applied to gassy 

sediments.   

 

The nondimensional viscous damping in a homogeneous liquid in the radius-force frame 

equation of motion [31] is given by: 

𝛿vis =
4𝜇

𝜌s𝜔𝑅0
2. 

(33) 

 

By inserting into (33) the real part of the complex viscosity term given in (31), Anderson and 

Hampton followed Andreeva [62] to propose that the viscoelastic damping takes the following 

form: 

𝛿el
AH =

4𝐺′

𝜌𝜔2𝑅0
2. 

(34) 

 

The imaginary part of the shear modulus in (34) is deduced from the shear wave attenuation in 

fully water-saturated sediment (e.g. some quasi-static values can be found as 𝐺/𝐺′ ≈ 5 or 

𝐺/𝐺′ ≈ 10 [25]). The acoustic radiation damping 𝛿ac
AH given in [2] has been used by Lyons et 

al. [25] with the correction 𝜔0
2/𝜔2  to the frequency; however, following a personal 

communication with Anderson, Best et al. [8] omitted this correction factor – this confusion 

was resolved by Ainslie and Leighton [27, 28]. Anderson and Hampton also neglect any 

correction for the higher order scattering in the medium, which is formulated in this work via 

Eq. (27c).   

 

The thermal damping constant, 𝛿th
AH, of A&H is based on the analysis of Eller [63]. It will not 

be written explicitly here for brevity, but can be found in Refs. [2, 8, 25]. Eller’s derivation is 
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based on solving the heat conduction equation and is less comprehensive than formulae (20) - 

(21) based on energy conservation, as used here.  

 

Anderson and Hampton follow Andreeva [62] in their expression for the resonance frequency, 

here multiplied by 2𝜋 and written in the polytropic limit:  

 

𝜔0,AH = √(3𝜅𝑝g0
+ 4𝐺)/𝜌𝑅0

2. 
(35) 

 

The equations used by Anderson and Hampton, listed above, have some drawbacks mainly 

owing to the characteristics of their rheological model (31). First, the damping expression (34) 

assumes a 1/𝜔 dependence between the elastic and viscous responses of the sediment, and 

combines both dissipation mechanisms into one single term. In contrast, experimental studies 

[39, 45-49] that have reported both the shear and the viscous properties (flow curves) of 

sediments do not suggest a straightforward 1/𝜔 dependence between the two. The elastic and 

the viscous responses may vary individually, depending on the strain amplitude and/or 

frequency ranges (in for example, shear viscosity [58, 59] and elastic modulus [61]). These 

may furthermore depend on the salinity, the mineralogical composition and the concentration 

[46, 48]. Second, there exists a discrepancy because of the use of Re(𝐺∗) in the resonance 

frequency expression (35) and Im(𝐺∗) in the damping coefficient (34). This, in turn, results in a 

mismatch between the resonance frequency and the frequency at which minimum damping 

occurs, creating an inconsistency in terms of the resonance phenomenon. 

 

III. RESULTS 

The results obtained by applying the current theory to the marine sediments are presented and 

compared to those obtained by the A&H model, and with the predictions of Mantouka et al. [4]. 

Two different sediments types, ocean silt and harbor mud, are examined (to assist comparisons, 

the parameter values are the same as those used by Anderson and Hampton [2], as listed in 

Table 1). The value of bubble gas volume fraction (𝛤) in Figs. 3 and 4 is taken as 0.075% for 

harbor mud and as 0.068% for ocean silt, which were the void fractions used by Anderson and 

Hampton, so that the two acoustical models can be compared. The A&H model did not include 

viscosity, but values are required for our model, and chosen here in order to resemble an 

increasingly viscous behavior as the porosity increases. A value of 2.52 MPa was reported for 

the shear modulus for the sediment sample in Ref. [8] and 26 MPa for the sediment sample in 
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Ref. [34]. Based on this range of values, we choose 1 MPa and 26 MPa shear modulus values 

for mud and silt, respectively. Also note that  𝐺′, 𝜌 and 𝑐s are the values required by A&H, 

whereas the Appendix to this paper shows how 𝜌s and 𝑐s are calculated for the current theory.  

 

A. Damping coefficients 

Five different physical mechanisms contribute to the damping (Sec. II.C). The values of 

damping coefficients given in Eq. (27) versus bubble radius for a fixed driving frequency are 

shown in Fig. 1a for ocean silt.  The predictions of the Anderson and Hampton theory given by 

Eq. (34) - (35) are also plotted in Fig. 1b. Note that the damping coefficient in (34) is in non-

dimensional form and β in the current formulation is the dimensional damping coefficient, 

therefore for conversion 𝛿 values are multiplied by 𝜔/2. 

 

Three significant ranges appear in Fig. 1a, where different types of damping become the 

dominant loss mechanism according to the current formulation. As in the case of bubbles in 

water, viscous damping is the dominant loss mechanism for small bubble sizes. The values 

obtained for the viscous damping are a few orders of magnitude higher than viscous dissipation 

in water (not shown in the figure), as a consequence of the higher viscosities of mud- and clay-

like sediments. Both formulations demonstrate that acoustic damping is the most effective loss 

mechanism for bubbles over 1 mm in radius. For intermediate bubble radii (~100 µm), the 

thermal damping based on Prosperetti’s formulation (Fig. 1a) is about two orders of magnitude 

higher than the one predicted by Eller’s formulation (Fig 1b). One can show that thermal losses 

may be the most pronounced dissipation for medium sized bubbles in more fluid-like sediments 

such as mud.   

 

At the largest bubble sizes shown, the radiation damping coefficient increases with increasing 

bubble size in Fig. 1(b), but not in Fig. 1(a) (which affects the behavior of the total damping 

coefficient at large bubble sizes). This arises because of the (𝑘𝑅0)2  in Eq. (27c) that was 

originally derived by Yang and Church [36].  At the other end of the radius range, for the 

smallest bubble sizes shown, the thermal damping coefficient increases with decreasing bubble 

size in Fig. 1(a), but not in Fig. 1(b). This is because of Eller’s simplifications in describing 

thermal dissipation via the heat conduction equation route [63] (used in Fig. 1b) rather than 

basing it on energy conservation [56] (used in Fig. 1a).   
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The elastic damping given in Eq. (27e) decays linearly with the equilibrium bubble radius 𝑅0. 

The viscoelastic dissipation predicted in Fig. 1b is about two orders of magnitude higher at the 

10-100 µm range where elastic damping is the most effective. This may be attributed to the 

combined viscoelastic damping term 𝛿el
AH . The interfacial damping (27d) has negligible 

contribution to the total damping [4], and hence it is omitted from the plots for clarity. 

 

The formulations of Mantouka et al. [4] would give thermal coefficient identical to those in Fig. 

1(a), and the viscoelastic coefficient identical to that in Fig. 1(b). 

 

The results for the damping coefficients as a function of insonifying frequency are shown in 

Fig. 2 for a bubble of 1 mm radius in mud. The major causes of the losses are thermal and 

acoustic damping, the former being the most important at frequencies below resonance, and the 

latter being more effective above the resonance frequency of the bubble. The viscous and the 

elastic damping terms are independent of frequency in the size range plotted for the present 

formulation [Eqs. (27a) and (27e)]. The 𝛿el
AH values are high in the 0.1-10 kHz range, and are 

inversely proportional (1/𝜔) to the drive frequency. Consequently, the A&H model predicts 

very high attenuation in the low seismic frequency range (~1-100 Hz) (which will be shown in 

Fig. 4), but this is not observed in practical applications [15, 16, 64]. The arrow shown in Fig. 

2b identifies the bubble resonance frequency expressed in Eq. (35). The indication is that the 

resonance frequency does not coincide with the frequency at which the minimum damping 

occurs.  

 

In Fig. 2c, the damping coefficients are also compared with the ones derived in Mantouka et al. 

[4] (Eqs. 20a-20f of that paper). The viscoelastic damping in [4] and in [2] are identical (after 

the multiplication of the latter by 𝜔/2), because the complex shear modulus approach was also 

employed in [4], citing the viscoelastic model in [2]. The thermal damping (Eq. 20b) in [4] is 

identical with the one presented in the current paper [Eq. (27b)]. The elastic damping equation 

(20e) in [4] is multiplied by a factor of 1 − 𝛽 in Eq. (27e) to account for poroelastic boundary 

conditions between the gas, the solid and the liquid. Similarly, the interfacial damping in the 

present text [Eq. (27d)] has a correction factor 𝛽 compared to the one derived in [4], owing to 

the poroelastic boundary conditions used instead of the homogeneous medium approach. 

Furthermore, the acoustic radiation damping in the present work is re-expressed to account for 

the multiple scattering, the effects of which will now be demonstrated in Figs. 3 and 4.  
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B. Speed of sound 

The speed of sound in gassy sediments is plotted in Fig. 3(a) for bubbles in harbor mud. Note 

that the gas void fraction 𝛤 is not formulated in terms of an implicit percentage in Ref. [2], i.e. 

a value of  𝛤 = 0.01 in [2] refers to 1% bubble void fraction. Typical values of 𝛤 observed in 

practice are in the range ~1-2% [25, 65] (see Leighton and Robb [66] for a detailed list). The 

dash-dot line in Fig. 3 reproduces the result obtained by the current formulation for harbor mud 

with the gas void fraction value 𝛤 = 0.075%. The solid line gives the results of A&H theory 

and the dotted line presents the result from the formulation in Mantouka et al. [4]. At the high 

frequency limit, the predictions of A&H and Mantouka et al. [4] converge to the sound speed 

value in saturated sediment (1480 m/s), whereas the current model predicts 1540 m/s owing to 

the phase velocity dispersion observed in the fast wave. Similarly, at low frequencies the 

previous theories [2, 4] converge to a value such that, as the decreasing frequency takes the 

pulsation further from the bubble resonance, the sound speed becomes primarily a function of 

the bulk modulus of the host medium and bulk modulus of the gas [66]. These effects, and 

those associated with the transition from below-resonance to above-resonance, are markedly 

different between the current formulation and its predecessors. The reasons for this are the 

corrections to the damping coefficients and the resonance frequency (the multiplication of G 

with 1 − 𝛽), and the velocity dispersion caused by the incorporation of the EDFM. The effects 

of the multiple scattering are also evident through the increased phase velocity values, as were 

also seen in water [37]. The dimensionless wavenumber 𝑘𝑅0 is shown along the top axis in Fig. 

3 in order to assess the long wavelength assumption (𝑘𝑅0 ≪ 1) used in Sec. II, and in the 

previous studies [2, 4]. The value of 𝑘𝑅0  is 0.1 at 23.8 kHz and here the high frequency 

asymptotic behavior is reached at about 30 kHz. However, in the following it will be shown 

that this criterion is not always met, especially in sediments with higher shear modulus. The 

implications of that will be discussed below.  

 

Wave propagation through a monodisperse bubble cloud in ocean silt is also examined for a gas 

void fraction of 0.068% [Fig. 3(b)]. Although previous formulations [1,2,4] show a small effect 

due to this bubble population, Eq. (28) shows additional dispersion in the low frequency limit 

and through-resonance regime, because of the movement of the pore fluid [15-17, 34]. Even so, 

the effects on sound speed caused by gas bubble pulsations are relatively small in a sediment 

with such a high rigidity (see Fig. 3a in Ref. [4]), compared to the effects observed in a more 
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fluid-like sediment such as mud in Fig. 3(a). The reason may be attributed to the relatively 

small bulk modulus of the gas in this case, so that the bubbles are acoustically less effective in 

altering the sound speed. The low frequency limit of the sound speed (𝑐s
LF) in Fig. 3a and 3b 

can indeed be closely predicted by Mallock-Wood equation [67] for the sound speed in 

suspensions: 

 

𝑐s
LF = (𝜌g 𝛤 + 𝜌s [1 − 𝛤])

−1/2
(

𝛤

𝐵g
+

1 − 𝛤

𝜌s𝑐s
2

)

−1/2

, 
(36) 

 

where 𝜌g is the density of the gas. The bulk modulus of the gas 𝐵g can be calculated for low 

frequency – low amplitude pulsations as [68]: 

  

𝐵g  ≈ − 𝜌s 𝑅0
2 𝜔0

2/3, (37) 

 

with 𝜔0
2 being given in Eq. (27f) of this paper. For instance, the sound speed value at 100 Hz 

for muddy sediment is calculated in this way as 597 m/s compared to the value of 635 m/s in 

Fig. 3a, and the sound speed value at 100 Hz for silt example is calculated as 1325 m/s 

compared to the value 1344 m/s in Fig. 3b. These calculations and the low and high frequency 

limits of the sound speed can be observed in more detail in the Electronic Supplementary file 

which is submitted together with this paper (see Fig. E1 and E2 therein).   

 

C. Attenuation 

The values of attenuation in gassy sediments are plotted in Figs. 4 and 5 for bubbles in harbor 

mud and ocean silt, respectively. The gas void fraction is taken as 0.075% for harbor mud. The 

dashed line in Fig. 4 gives the result obtained by Eq. (29) for harbor mud. The current 

formulation predicts lower attenuation in harbor mud for pulse frequencies less than 3 kHz, 

though the attenuation peak is higher than those of A&H and Mantouka et al. [4] in the near-

resonance regime for the current mono-disperse bubble population. The current formulation 

suggests that a significant correction is required (compared to the theories of Refs. [2] and [4]) 

when predicting the resonance frequency, primarily because of the multiplication factor 1 − 𝛽 

in Eq. 27f. Moreover, the broader nature of the curve obtained with Eq. (29) is due to the 

multiple scattering from other bubbles. A similar effect has been observed in gassy water [37]. 

Although, at the highest frequencies in Fig. 4, the present and previous [2, 4] formulations 
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appear to disagree qualitatively, in this range 𝑘𝑅0 is no longer ≪ 1 and so inferences drawn in 

this regime are of limited value. However, the trend is for Eq. (29) to follow the attenuation for 

water-saturated sediment above resonance (a liquid viscosity effect that is not captured by the 

existing formulations [2, 4]). This can be attributed to the incorporation of the EDFM.  

  

Fig. 5 shows the computed values of attenuation for different bubble radii in ocean silt 

assuming a gas void fraction value of Γ = 0.1%. This is higher than that used in Figs. 3 and 4 

and Ref [2], in order to emphasize the bubble-induced effects in ocean silt. The solid black line 

indicates the results from the EDFM, which corresponds to the attenuation in saturated 

sediment (without gas bubbles). The dotted line shows the attenuation in gassy sediment with 

monodisperse bubble population with R = 2 mm, and the dashed line with R = 500 µm. The 

peaks coincide with the corresponding resonance frequencies for these bubble radii. As with 

Fig. 4, above resonance the EDFM ensures that the gassy sediment attenuation curve follows 

that for water-saturated sediment, and Refs. [2, 4] lack this feature. 

 

The formulation presented here can readily be extended to polydisperse bubble populations. 

Such characteristic curves will aid the planning of experiments to measure the bubble size 

distribution and the total bubble void fraction using acoustic inversion methods.  

 

 

The kR0 values are shown along the top axis in Fig. 5 for the given bubbles sizes. The long 

wavelength assumption inherent in the linear theory begins to break down at around the 

resonance frequency for each bubble size in Fig. 5. This shows that, whilst the theories can be 

used to make predictions outside of the long wavelength limit, they must be treated with care. 

This is particularly germane for ocean sediments if, say, one attempts to invert acoustic 

information to estimate the bubble population present. Prior to a measurement, the 

experimenter does not know the maximum size of bubble in his acoustic field that the sediment 

has stabilized. It is unrealistic to select some large R0 a priori and restrict the acoustic 

frequencies to the kR0 <<1 range. That policy would restrict the available acoustic frequency 

range so much that it would severely compromise the information that can be taken. This 

illustrates the conflict inherent in gassy ocean sediment acoustics, in that the possible presence 

of large stabilized bubbles means that the experimental frequency range and long-wavelength 

theoretical limitations must be critically assessed.       
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IV. CONCLUSIONS 

A method for acoustic propagation in gassy marine sediments is presented. The formulation 

incorporates the effective density fluid model for the host medium. Not surprisingly, it predicts 

that such a medium exhibits high attenuation near the bubble resonance frequencies. However, 

in the high frequency limit, the attenuation also increases to values that resemble those 

observed in gas-free sediments, owing to the viscous dissipation in the pore fluid. The latter 

phenomenon has not been captured by previous formulations written for this class of work, i.e. 

sediment-replacing gas bubbles. The phase velocity shows significant dispersion caused by the 

presence of both the pore fluid and the gas bubbles. It has been shown that the high frequency 

sound speed limit of the formulation in the present paper approaches to that of EDFM. 

Furthermore, the low frequency sound speed limit of the present paper can be closely predicted 

by Mallock-Wood equation for suspensions, provided that the low frequency sound speed value 

of the EDFM and the expressions in the current paper for the bulk modulus of the gas are used 

in the calculations. An Electronic Supplement with two additional figures (see Fig. E1 and E2 

therein) which validate these calculations is submitted together with this paper.  

 

The paper further focused on the constitutive effects observed near the bubble interface. The 

rheological model used here accounts for the contact surfaces between the phases individually, 

rather than assuming an effective homogeneous host medium. Consequently, new expressions 

are derived for the viscous (Eq. 27a), interfacial (Eq. 27d) and elastic damping (Eq. 27e) and 

for the resonance frequency (Eq. 27f). These differ from those of Mantouka et al. [4] (the 

expressions of Yang and Church (Eqs. 23-24 in [36]) were for soft tissue and lacked porosity 

terms). Moreover, the effects of the multiple scattering are included through Eq. 27c. The 

general conclusions are that the viscous and elastic losses dominate at small bubble radii, and 

the effect of the surface tension at the gas-liquid interface is negligible. A thermal damping 

formulation, based on energy conservation, is provided. This may be an important loss 

mechanism at intermediate bubble sizes in mud- and clay-like sediments. The acoustic 

radiation damping clearly becomes very effective with increasing driving frequencies and 

larger bubble radii. Multiple scattering from other bubbles broadens the attenuation peaks and 

elevates the phase velocity near the bubble resonance, resembling the effects they cause in 

gassy water [37]. 
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The current work assumed that the stress was linearly related to the strain, in keeping with the 

assumption of a Voigt relationship. Whilst this is an adequate assumption for sediments with 

low gas void fractions driven by low amplitude acoustic pulses, real sediments may exhibit a 

frequency-dependent viscous and/or elastic behavior [58, 59, 61]. This effect could be readily 

included in the current formulation, because the incorporation of a frequency-dependent shear 

modulus and viscosity is straightforward through Eq. (17). It should also be noted that in the 

case of high amplitude pulses, alternative constitutive equations (e.g. as in Refs. [58, 69, 70]) 

may be required. These would allow the stress-strain variables to scale with 𝛾𝑛 and 𝛾̇𝑛 (the 

exponent 𝑛  being not necessarily equal to 1). These rheological models can be formulated 

within the framework presented here with modifications to the integrals in (18). 

 

Acknowledgements 

This work was principally funded by the UK National Environment Research Council 

(NE/J022403/1; Principal Investigator: T. G. Leighton), though the authors also acknowledge 

support for specific components from the Engineering and Physical Sciences Research Council 

(EP/D000580/1; Principal Investigator: T. G. Leighton) and STEMM-CCS (funded from the 

European Union’s Horizon 2020 research and innovation program under grant agreement No. 

654462). The authors wish to thank Michael Ainslie and Angus Best for useful discussions.   

The data supporting this study are openly available as DOI:10.5258/SOTON/402203 from the 

University of Southampton repository at is http://dx.doi.org/10.5258/SOTON/402203. 

 

Appendix 

The wave equation of the EDFM [34] is given by:  

 

𝑘eff
2  𝐻 𝜑 = 𝜔2𝜌s 𝜑, (A1) 

 

where H is related to the bulk modulus of sand grains 𝐾𝑟 and the bulk modulus of the pore fluid 

𝐾𝑓 with: 

 𝐻 = (
1 − 𝛽

𝐾𝑟
+

𝛽

𝐾𝑓
)

−1

. 
(A2) 

The complex sound speed in the sediment is then: 

𝑐s = √𝐻/𝜌s (A3) 

 

http://dx.doi.org/10.5258/SOTON/402203
http://dx.doi.org/10.5258/SOTON/402203
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where  

𝜌s = (

𝛼(1 − 𝛽)𝜌m + 𝛽(1 − 𝛼)𝜌f + 𝑖
𝛽𝜌𝐹𝜇f

𝜌𝑓𝜅𝜔

𝛽(1 − 𝛽)𝜌m + (𝛼 − 2𝛽 + 𝛽2)𝜌f + 𝑖
𝛽𝐹𝜇f

𝜔𝜅

). 

(A4) 

 

In (A4), α is the tortuosity, 𝜇f denotes the viscosity of the pore fluid, 𝜌m is the density of the 

mineral grains, 𝜌f is the density of the pore fluid and the total mass density is given by: 

𝜌 = (1 − 𝛽)𝜌m + 𝛽𝜌f . (A5) 

 

The pore size parameter a is defined as: 

𝑎 = √
8𝛼𝜅

𝛽
 

(A6) 

with κ being the permeability. The parameter F represents the viscous shear dissipation in the 

pore fluid during the high frequency oscillations and can be found from:    

𝐹(𝜖) =
𝜖

𝑇(𝜖)
4

1 − 2𝑖
𝑇(𝜖)

𝜖

 , 

(A7) 

with   

𝑇(𝜖) =
− √𝑖  𝐽1(𝜖√𝑖)

 𝐽0(𝜖√𝑖)
 , 

(A8) 

where  𝐽1 and  𝐽0 are cylindrical Bessel functions and:  

𝜖 = √
𝜔 𝜌f

𝜇f
. 

(A9) 

The following values were used when calculating the EDFM equations: 𝐾𝑟 = 5 x 1010 Pa,    𝐾𝑓 

= 2.3 x 109 Pa, 𝜌m = 2650 kg/m3,  𝜌f = 1000 kg/m3, 𝜇f = 0.001 Pa∙s,  𝜅 = 1.0 x 10-10 m2, and 𝛼 

= 1.25. 
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Table 1: Model input parameters for harbor mud and ocean silt. To allow direct comparison, 

the values to be used in Figs. 1-4 were chosen to be the same as in Ref. [2]. Note that Anderson 

and Hampton did not include sediment viscosities, which for our model are selected from the 

range stated in Refs. [47] and [49], choosing values that allow the mud under consideration to 

be more fluid-like than the silt. 

 

  Harbor Mud Ocean Silt 

Porosity 0.75 0.68 

Shear Modulus (G) 1 MPa 26 MPa [34] 

𝐺′ (Imaginary part of 𝐺∗) 0.2 MPa 5.2 MPa 

Bubble void fraction (𝛤) 0.00075 (0.075%) for 

Figs. 3(a) and 4 

0.00068 (0.068%) for Fig. 3(b); 

0.001 (0.1%) for Fig. 5 

Total mass density (𝜌) 1410 kg/m3 1530 kg/m3 

Speed of sound (𝑐s) 1480 m/s 1552 m/s 

Viscosity (µ) [47, 49] 1 Pa.s 0.1 Pa.s 
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Figure captions 

 

Fig. 1: Damping coefficients vs equilibrium bubble radius in ocean silt at a pulse frequency of 

50 kHz by using (a) the current formulation and (b) A&H formulation. In (a): the dimensional 

damping coefficients are given in Eq. (27). In (b): the non-dimensional coefficients are 

multiplied by 𝜔/2 for conversion. 𝛿el is given in Eq. (34). The expressions for 𝛿th and 𝛿ac can 

be found in [2]. 

 

Fig. 2: Damping coefficients vs driving frequency for a 1 mm equilibrium radius bubble in 

mud by using (a) the current formulation, (b) A&H formulation and c) Ref. [4]. In (b), the 

arrow indicates the resonance frequency calculated using (35). 

 

Fig. 3: Speed of sound through a mono-disperse bubble population R = 1 mm in (a) harbor mud 

for 𝛤=0.075%, and (b) ocean silt for 𝛤=0.068%. They are plotted using the current formulation, 

Ref. [4] and the A&H theory. The dimensionless wavenumber 𝑘𝑅0 is plotted on the top axis in 

order to place the data in the context of the long wavelength assumption used in linear theories. 

 

Fig. 4: Attenuation of an acoustic wave through a mono-disperse bubble population with R = 1 

mm in harbor mud plotted by using the current formulation, Ref. [4] and the A&H theory for 

bubble gas fraction of 0.075%. The dimensionless wavenumber 𝑘𝑅0  is 0.1 at 23.8 kHz, 

however the x axis is extended to 300 kHz in order to display the evolution of the curves. 

 

Fig. 5: Attenuation of acoustic wave through a mono-disperse bubble population in ocean silt 

plotted by using the current formulation for bubble gas fraction 0.1%. The solid black line 

shows the results from the effective density fluid model for gas free sediment. The 

dimensionless wavenumber 𝑘𝑅0 is shown along the top axis for 500 µm and 2 mm bubbles. 
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