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Abstract

The search for parking space in busy urban districts is one of those routine human activities that

are expected to benefit from the widespread adoption of pervasive sensing and radio communica-

tion technologies. Proposed parking assistance solutions combine sensors, either as part of fixed

infrastructure or onboard vehicles, wireless networking technologies and mobile social applications

running on smartphones to collect, share and present to drivers real-time information about parking

demand and availability.

One question that arises is how does (and should) the driver actually use such information to take

parking decisions, e.g., whether to search for on-street parking space or drive to a parking lot and, in

the latter case, which one. The paper is, hence, a performance analysis study that seeks to capture

the highly behavioral and heuristic dimension of drivers’ decisions and its impact on the efficiency

of the parking search process. To this end, and in sharp contrast with the existing literature,

we model drivers as agents of bounded rationality and assume that their choices are directed by

lexicographic heuristics, an instance of the fast and frugal heuristics developed in behavioral sciences

such as psychology and biology. We analyze the performance of the search process under these

heuristics and compare it against the predictions of normative game-theoretic models that assume
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fully rational strategically acting agents. We derive conditions under which the game-theoretic

norms turn out to be more pessimistic than the simpler heuristic choice rules and show that these

are fulfilled for a broad range of scenarios concerning the fees charged for the parking resources and

their distance from the destinations of the drivers’ trips. The practical implications of these results

for parking assistance solutions are identified and thoroughly discussed.

Keywords: parking search, cognitive decision-making heuristics, congestion games, bounded

rationality

1. Introduction

The increasing integration of advanced sensing and wireless technologies with urban infras-

tructures transforms dramatically the way citizens access and interact with them. At the same

time, smartphones and other smart mobile devices turn their owners to potential mobile sensing

platforms and engage them actively in the generation and distribution of various kinds of informa-5

tion. The two trends combined fuel the smart city concept, whereby fundamental daily activities

and operations are carried out more efficiently in favor of individual citizens and the society as a

whole Zanella et al. (2014)Greenberg (2015).

Parking space forms an instance of urban resource that is daily accessed and shared by multiple

drivers. Often scarce in places such as shopping areas and business districts, it has to be properly10

managed to avoid congestion effects and the unfavorable consequences of cruising for parking such

as the waste of time and fuel and the environmental burden (see, for instance, Shoup (2006)).

Parking assistance systems seek to address the parking problem by expanding the reach of pervasive

computing within the city roads and turning them to smart spaces. Combining sensors at the

parking spots or onboard vehicles with radio communication technologies, and often involving the15

vehicular network as in Caliskan et al. (2006), they collect and distribute information about parking

demand and supply to the vehicular nodes. More recent approaches to the assisted parking search1

add a social media layer over the vehicular network. The drivers can use a mobile social application

running on their smartphones to share their knowledge about parking space with other application

users and even handover parking spots to save the overheads of parking search.20

1Examples systems in this context include ParkingCarma (http://www.parkingcarma.com) and Park-

Shark(http://www.parkshark.mobi/www/)
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Despite the amount of work on the proposal and design of parking assistance systems, surpris-

ingly little attention has been paid to their actual performance. Directly relevant to the performance

issue is the amount of information that can or should be used when selecting parking resource, e.g.,

on-street or parking lot(s), or searching for an on-street parking spot. The major assumption in

our work is that these decisions involve, in one way or another, humans. The drivers are those25

who actually make choices when the parking assistance system only provides information about

parking resources without making recommendations (although we discuss the implications for sys-

tems issuing recommendations in section 7). But even when they are assisted by on-board mounted

software agents, the human factor is present either indirectly, through offline configuring the agents

with a profile of preferences, or, through its direct participation in the online search and selection30

processes.

The paper, thus, focuses on the decision-making task and the management of supplied infor-

mation by the drivers. It seeks to answer how efficient is the parking search process when drivers

employ psychologically plausible heuristics to choose between different parking resources. The effi-

ciency of parking search is assessed by how much drivers end up paying in the aggregate to acquire35

parking spots, including the overhead costs due to needless cruising. The dominant modeling ap-

proach in literature is to view drivers as fully rational entities that process all information at hand

and act strategically so as to minimize the cost of their search. In behavioral sciences such as

economics and psychology, this kind of rationality is called unbounded rationality. In contrast, an-

other kind of rationality is required for problems where there is not adequate time or computational40

resources in order to obtain all information and find an optimal solution, but nevertheless a good

solution must be identified. This is referred to as bounded rationality and Herbert Simon is credited

as its father (Simon (1955)).

However, Simon refrained from giving bounded rationality a precise definition and, as a re-

sult, multiple viewpoints to it have emerged over time (Rubinstein (1998)Gigerenzer & Selten45

(2001)Katsikopoulos (2014)). In the present work, we employ a view drawing on a family of simple

mathematical models called fast and frugal heuristics, which are inspired by the actual behavior

of people and other animals (Gigerenzer & Selten (2001)) and instantiate what Simon describes as

procedural rationality in Simon (1986). Fast and frugal heuristics include the few pieces of infor-

mation that people use and also specify the simple ways in which people process this information.50

Lexicographic heuristics are a specific type of fast and frugal heuristics, where pieces of information
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are inspected sequentially, and decisions are based on the first piece of information which satisfies

a pre-determined criterion (such as exceeding a threshold value).

In our paper, which draws on and expands earlier work in Karaliopoulos et al. (2014), we study

lexicographic heuristics for multi-attribute choice problems in the context of two representative55

instances of the parking resource selection problem. In the first one, drivers have to choose between

the scarce but cheap on-street parking spots and the more expensive yet abundant space in parking

lots. The second instance features two distinct (types of) parking lots that introduce a tradeoff

between distance from the drivers’ destinations and charged fee.

Methodologically, we follow the same steps in both problem instances: first, we formulate and60

analyze the games that emerge under strategic fully rational decision-making, then we analyze

the performance of the parking search under activation of the cognitive heuristics and finally we

compare the two cases. For the problem of risky choice, we derive analytically the conditions

that let heuristics result in higher efficiency. Our results for most realistic scenarios suggest that

should the drivers’ behavior be more accurately characterized by these heuristics, then the parking65

search process would become more efficient than when drivers are modeled as fully rational strategic

agents.

To the best of our knowledge, this is the first study that imports tools and modeling approaches

from the field of cognitive psychology to the problem of parking search that has been extensively

treated by transportation engineers, operational researchers, and computer scientists in the past.70

We strongly believe that putting the emphasis on the end-user decision-making process already

is and will become all the more important for this problem in the future, as the combination of

pervasive computing and social applications endows drivers with unprecedented amounts of infor-

mation that could be exploited to engineer their choices. Section 3 summarizes the problem setting

and existing results and provides background knowledge about the cognitive heuristics. Sections75

4-6 contain the paper’s main contributions. Section 4 devises and analyzes the priority heuristic

for choosing between the cheap but scarce on-street parking and the spacious yet more expensive

parking lot(s). It also compares it with those of the game-theoretic model in Kokolaki et al. (2013).

Sections 5 and 6 consider the problem instance with two types of parking lots differentiating in the

fees they charge and their distance from the destination of the drivers’ trips. Section 5 formulates80

and analyzes the game that emerges under the assumption of strategic decision-makers, whereas

section 6 devises the decision heuristic model drawing on data from field measurements and com-
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pares the two modeling assumptions under different parameter sets. We discuss the implications of

our work for actual parking assistance systems in section 7 and argue about its novelty in section

2, while iterating on the existing literature. We conclude our paper in Section 8.85

2. Related work

The broader parking space search problem has seen contributions from different scientific dis-

ciplines such as economics, transportation, operations research, and computer science. Their ma-

jority, however, focus on the performance analysis of given parking systems and relevant strategic

planning issues such as where to locate parking resources and how to price them, making assump-90

tions about the way drivers choose parking resources. Fewer address explicitly the drivers’ behavior

and the decision-making involved in the search process, both descriptively (how do drivers choose

parking resources) and normatively (how should they do so to optimize some aspect of the process

performance). We summarize them in what follows.

Parking choices as solutions to instances of the optimal stopping problem. The first95

studies addressing normatively the drivers’ choices when searching for parking date back to sixty

years ago. Those problem formulations come under the broader family of stopping problems and

almost always consider special cases of driving patterns and parking spots’ spatial distribution.

Indicatively, in MacQueen & Miller (1960) parking spots are spread randomly with density λ over

equal-size blocks that are adjacent to the driver’s travel destination. Drivers circle through them,100

crossing the destination every time such a circle is over, and upon encountering a vacancy they decide

whether to take it or skip it and seek for a better spot. Whereas Ferguson (Optimal Stopping

and Applications, http://www.math.ucla.edu/t̃om/Stopping/) considers a simpler variant of the

problem, whereby the drivers’ destinations lie in the middle of an infinite-length straight line with

parking spots that are occupied with probability p. In both cases, the optimal prescribed policy is105

shown to be of the threshold type: drivers should occupy the first vacant spot they hit whenever

this lies within some distance r = f(λ), resp. f(p), from their destination and continue their search

otherwise. Much more recently in Chen et al. (2016), a stopping problem formulation is derived for

the same setting (infinite-length straight line with parking spots) when drivers are given information

about the occupation probability of each spot along the line.110

Parking choices as individual decision-making instances. More formal probabilistic logit

and probit models (and variants thereof) for the parking choices drivers make are assumed and cali-
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brated in Van Der Goot (1982), Lambe (1996), and Hunt & Teply (1993). In Van Der Goot (1982),

a logit chance model is trained out of a survey in the central area of the city of Haarlem, in Nether-

lands. The utilities assigned to the parking alternatives are weighted sums of mixed linear and115

non-linear functions of the walking time, charges, occupation rates, possible parking-time restric-

tions, and accessibility factorsrelated to different parking alternatives. Yet, the reported accuracy

of the model (over the same data that were used for training it) is quite low: in most cases, the

percentage of instances that the alternative indicated by the model as the most probable alternative

and the actual choice coincide varies from 21.4% to 64.5%. A similar modeling approach within a120

more elaborate setting with 55 parking lots and 13 different trip destinations in the Central Busi-

ness District(CBD) of Vancouver, Canada, is followed in Lambe (1996). Both a multinomial probit

and a logit model are tried to predict the parking choices of drivers. Contrary to Van Der Goot

(1982), the utilities assigned to the parking alternatives weigh additively their driving (from the

trips’ origins) and walking (from the trips’ destinations) distances, and the fee they charge. On a125

similar note, a nested logit model with two levels is proposed in Hunt & Teply (1993). The first

modeling level concerns the type of parking resource (on-street parking vs. parking lot and, cases

that parking is arranged by the employer) and the second one captures the choice of spot within the

particular type, e.g., a curbside spot or a specific lot. As a result, three different utility functions

are formulated, one at the first level and two at the second level. All of them are weighted additive130

functions of typical attributes such as the charged fee, their walking distance from the trip destina-

tion), but also atypical ones such as the type and condition of parking surface in each alternative.

The model is trained through data from 344 interviews in the CBD of Edmonton, Canada. Finally,

a similar model for parking choice is formulated in Florian & Los (1980). The aim is to predict the

occupation of a number of park ’n ride lots co-located with stations of a commuters’ rail transit135

line in Philadelphia, US. They use two different datasets, obtained in different but time-adjacent

periods, for training their model and testing its prediction accuracy, respectively, which lies in the

order of 5% for all but a couple of parking lots.

Two remarks are worth making regarding the aforementioned thread of logit (and multinomial

probit) models. First, they are calibrated/trained against aggregate data averaged over all drivers.140

Namely, the utility functions of all users (or partitions of them grouped according to the type or

timing of their trips) weigh the different decision attributes with the same weights–only in Lambe

(1996) some differentiation is allowed through the introduction of a random error term giving rise to
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the proposed multinomial logit choice model. Secondly, they are all instances of individual decision-

making models; that is, each driver makes choices independently, without strategically accounting145

for the possible choices of the other drivers who also opt for the use of on-street parking space.

Parking choices as collective decision-making instances. More recent threads of work

explicitly account for the collective decision-making setting of parking search, typically assuming

strategic user behaviors and resorting to game-theoretic tools for their analysis. In Arnott (2006),

the games are played among parking facility providers and concern the location and capacity of their150

parking facilities as well as which pricing structure to adopt. On the contrary, in Ayala et al. (2011),

the strategic players are the drivers. The game is played over the seizing of on-street parking spots

by drivers who are assumed to possess complete information about the locations of other drivers

and the parking spots, which stand in one-to-one relationship. The authors identify the game as

an instance of the stable matching problem (Gale & Shapley (1962)), where drivers rank spots155

according to the overall time (driving and walking) they induce towards their trips’ destinations

and spots “rank” drivers along their driving distance. Hence, they rely on the celebrated deferred

acceptance algorithm of Gale and Shapley to derive the game equilibria. This game model is

further elaborated by He et al. in He et al. (2015). Under the same strong assumptions about

the information drivers have about the system, they describe the multiple equilibria solutions that160

emerge and proceed to derive optimal and robust pricing vectors that maximize (resp. minimize) the

social welfare (resp. Price of anarchy of the game). In Du & Gong (2016) drivers are split into classes

and play a stochastic Poisson game over multiple parking lots, choosing each one probabilistically

with a class-specific multinomial logit model. The game is proven to have a unique equilibrium and

the authors prescribe a distributed algorithm that lets drivers reach it if they coordinate. Games,165

this time over reservations in parking lots, are also considered in Lei & Ouyang (2017). The prices

of the parking lots are determined at discrete time epochs according to an (approximate) dynamic

programming approach in response to the parking demand. Then drivers respond to these prices

by strategically reserving spots for finite periods of time. Strategic drivers-players are considered

also in Kokolaki et al. (2013) albeit in a different setting, where drivers choose among parking170

resource types, i.e., scarce but cheap on-street parking spots vs. high-capacity but more expensive

parking lots. The authors find the equilibria of the resulting congestion game and the resulting

inefficiency (a.k.a Price of Anarchy) that results from their individual decisions. They also carry

out a sensitivity analysis on how these are affected by the adopted pricing policies.
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A conceptually similar model, with two clusters/lots of parking spots (a nearby one of finite-175

capacity and higher fee vs. a remote but cheap and larger one) is treated by Qian & Rajagopal

(2014). They focus on the morning commuters’ setting, where the parking demand is distributed

over a specific time interval and take a dynamic programming approach to control the price of

the near lot so that the total time spent on the parking search (including the walking and driving

components plus the time-equivalent of the parking fee) is minimized. The utilities assigned to the180

two lots by each user vary along the weight each assigns to the fee charged by the lot (the reciprocal

of what they call Value of Time). Inputs to the price determination process are the distribution of

parking demand over the different time periods, collected sensor data about the current occupancies

of the lot, and the utilities assigned to the two lots by individual users. The price of the lot is then

monotonically increased over time to ensure that the portion of users accumulating to the lot does185

not completely saturate its capacity. The work in Qian & Rajagopal (2014) is part of a larger thread

focusing on the interaction of road traffic congestion and parking demand during commuting hours.

In Qian et al. (2012), the standard morning commute model of Vickrey is enriched with two clusters

of parking lots and drivers choose one strategically iterating on the overall cost of each choice, which

includes both the parking fees and the inconvenience due to driving, walking and early/late arrival190

times to their office. This model is then used to derive guidelines as to how the location, fees and

capacities of the two parking resources affect the aggregate cost the users incur. On the downside,

all users are assumed homogeneous, i.e., they assess all incurred delays and costs the same way. On

the contrary, classes of users, differentiating with respect to their trip purpose and parking duration

are considered in Lam et al. (2006). The authors apply the theory of variational inequalities over195

the transportation network that involves the road network and the parking facilities. For given

origin-destination demands, the model can compute the variation of traffic flows over time across

the network; yet its complexity grows fast with the networks size limiting its practical applications.

Finally, more macroscopic models of the same theme (i.e., interaction of road traffic with parking

demand) are proposed in Cao & Menendez (2015) and Boyles et al. (2015). These models can be200

used to derive measures of road traffic and average walking/driving times with Boyles et al. (2015)

and without Cao & Menendez (2015) modeling the underlying road network.

In our work, we emphasize on the decision-making aspects underlying the choice of parking

resource. As in Du & Gong (2016)Kokolaki et al. (2013), Qian & Rajagopal (2014) and Qian et al.

(2012), drivers choose among different types of parking resources, namely on-street parking spots205
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and parking lots, and their decisions jointly determine how many parking spots are occupied and

how many end up paying the undesirable cruising cost. However, we radically depart from existing

literature in the way we model the drivers’ decision-making process. Contrary to all aforementioned

studies, we view drivers as boundedly rational agents, whose decisions are driven by cognitive heuris-

tics, i.e., heuristics pointing to intuitive cognitive processes, rather than probabilistic or strategic210

models driven by some notion of utility function maximization. Whereas bounded rationality has

been explored as a modeling framework for drivers’ behavior in the route choice problem (see

Katsikopoulos et al. (2002) and Di & Liu (2016) for an exhaustive survey of relevant models), to

the best of our knowledge and understanding, there are only two pieces of marginally relevant

experimental work on the parking search problem from Hester et al. (2002) and Hutchinson et al.215

(2012), respectively. Hester et al. (2002) found that when parking lots are arranged in a straight

line, parking behavior in a driving simulator is described well by the following lexicographic heuris-

tic: consider parking lots one at a time–starting from the one closest to the destination –and choose

to park in the first lot where the number of available spots exceeds a threshold. Hutchinson et al.

(2012) run simulations to study the parking search outcome in a straight line parking network, when220

all drivers activate a simple parking search heuristic called “the fixed distance heuristic”: park in

the first vacant spot as soon as you lie within some threshold range from your trip’s destination,

which is reminiscent of the policy prescribed in MacQueen & Miller (1960)).

3. Background

A typical dilemma faced by drivers when approaching their destinations in busy urban areas is225

whether to invest time and effort in searching for cheaper on-street parking space or drive directly

towards one of the more expensive parking lots. The first option involves the risk of failing to find

a vacant spot and eventually paying, in addition to the parking fees, an excess cost due to cruising

in terms of fuel consumption and wasted time.

3.1. The parking spot selection game230

In Kokolaki et al. (2013), this dilemma is formulated as a resource selection problem. On-street

parking space and parking lot(s) are two discrete types of parking resources with per time unit

costs c1 and c2, respectively, with c1 < c2. An additional excess cost cexc becomes relevant when

vehicles end up in a parking lot after failing to seize an on-street parking spot. The vehicular
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nodes are viewed as fully rational agents that determine their strategies taking full advantage of235

the available information to them. The outcome of their actions and the respective payoffs depend

on the decisions of all nodes so that their interaction is formulated as a game, the parking spot

selection game:

Definition 1. The Parking Spot Selection Game is a tuple Γ1(N) = (N ,R, (Ai)i∈N , (wj), j ∈ {1, 2}),

where:240

• N = {1, ..., N}, N > 1 is the set of drivers searching for parking space,

• R = R1 ∪R2 is the set of parking spots; R1 is the set of on-street spots, with R = |R1| ≥ 1;

R2 is the set of spots in the parking lot(s), with |R2| ≥ N ,

• Ai = {1, 2} is the action set for each driver i ∈ N , action “1” denoting search for on-street

parking space and “2” driving directly to a parking lot,245

• w1(·) and w2(·) are the cost functions of the two actions, respectively.

where

w1(n) = min(1, R/n)c1 +max(0, 1−R/n)(c2 + cexc) (1)

and w2(n) = c2, n ∈ [1, N ].

It is shown in Kokolaki et al. (2013) that at the Nash Equilibrium (NE) states of the game,

whether pure or mixed, the vehicular nodes tend to over-compete for the scarce on-street parking

space. Namely, the vehicles, NNE
cmp, that choose to compete for on-street parking space outnumber250

its supply, R, so that some of them end up in a parking lot only after incurring the excess cruising

cost, cexc. More formally, the game Γ1(N) has:

• a single pure strategy NE, NNE
cmp = N , or equivalently a single symmetric mixed NE with

pNE
cmp = 1, if N ≤ N0

•
(

N
⌊N0⌋

)

pure NE with NNE
cmp = ⌊N0⌋, if N > N0 and N0 is not an integer,255

•
(

N
N0

)

pure NE with NNE
cmp = N0 and

(

N
N0−1

)

pure NE with NNE
cmp = N0 − 1, if N > N0 and N0

is an integer,

• one symmetric mixed NE with pNE
cmp = N0/N , if N > N0
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where

N0 =
c2 + cexc − c1

cexc
R (2)

In either case, and given that NNE
cmp = N · pNE

cmp, the aggregate cost (fees+excess cost) paid by

the drivers equals

CNE
agg = min(R,NNE

cmp)c1 +max(0, NNE
cmp −R)(c2 + cexc) + (N −NNE

cmp)c2 (3)

The aggregate cost paid by the drivers is the measure of the parking search process efficiency

throughout the paper under all devised models. For the game Γ1(N), the ratio of this cost, CNE
agg ,260

over the one achieved by an optimal centralized assignment of parking space, Copt = Rc1+(N−R)c2,

is a typical measure of the inefficiency that the lack of central coordination induces. The worst-

case value of this ratio over all possible game instances determines the Price of Anarchy (PoA)

(see Koutsoupias & Papadimitriou (2009)) of the game Γ1(N). Its sensitivity to the different game

parameters is exhaustively studied in Kokolaki et al. (2013).265

3.2. Fast and frugal decision heuristics

The NE is a solution concept with strong implications for the capabilities of decision-makers:

they are agents with adequate processing capacity to analyze the available information and assess

the alternatives presented to them. Most importantly, they can also analyze the possible strategies

of other agents and identify the equilibrium choice, from which they have no reason to unilaterally270

deviate.

In this paper we place emphasis instead on a breed of heuristics developed in behavioral sci-

ences such as psychology and biology, called fast and frugal heuristics (Gigerenzer et al. (2011)).

According to the definition given in Katsikopoulos (2011), fast and frugal heuristics are models for

making decisions, that: (i) rely heavily on core human capacities (such as memory recognition and275

recall); (ii) do not necessarily use all available information, and process the information they use

by simple computations (such as using only one piece of information); (iii) are easy to understand,

apply, and explain. Hence, it is no surprise that they have been proposed as relevant to a broad

range of human decision-making tasks such as medical diagnosis in Marewski & Gigerenzer (2012)

and consumer decisions in Kurz-Milcke & Gigerenzer (2007).280

Lexicographic heuristics represent probably the most important and recognized category of these

heuristics, not least because specific properties they possess contrast them strongly with the full ra-

tionality prescriptions. Hence, lexicographic heuristics do not induce tradeoffs between the decision
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Symbol Context

n1 number of drivers choosing the on-street parking space

n2 number of drivers choosing the remote parking lot

R(R1) number of on-street parking spots

R2 capacity of remote parking lot

c1 per unit time cost of on-street parking spots

c2 cost of parking lot(s) in the 1st parking search problem

cost of the remote parking lot in the 2nd parking search problem

cexc excess cruising cost

c3 cost of the expensive parking lot in the 2nd parking search problem

Γ1(N) strategic game corresponding to the 1st parking search problem

Γ2(N) strategic game corresponding to the 2nd parking search problem

fr(r) function relating distance to monetary cost

NNE
cmp number of drivers choosing on-street parking spots at the equilibrium of Γ1(N)

NPH
cmp, N

PH
PL number of drivers choosing on-street parking spots (resp. parking lot)

under the prioriy heuristic in the 1st parking search problem

NNE
i number of drivers choosing on-street parking spots (i=1), the remote parking lot (i=2)

and the expensive parking lot (i=3) in Γ2(N)

NPH
i number of drivers choosing on-street parking spots (i=1), the remote parking lot (i=2)

and the expensive parking lot (i=3) under the lexicographic heuristic

thrc threshold value for the ratio of the minimum costs’ difference over the worst-case cost

(c2 − c1)/(c2 + cexc), under the two alternatives in the 1st parking search problem

Fthrc() cumulative distribution function of thrc

thrp threshold value for the difference of the probabilities of incurring minimum costs

under the two alternatives in the the 1st parking search problem

Fthrp() cumulative distribution of thrp

rdc decision certainty ratio, equal to c2−c1
cexc

Fthrf () cumulative distribution function of the acceptability threshold value for the parking fee

in the 2nd parking problem instance

Fthrd() cumulative distribution function of the acceptability threshold value for the distance of the parking resource

from the trip’s destination in the 2nd parking problem instance

Table 1: Table of symbols.
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attributes, i.e., they are non-compensatory; they do not necessarily process the full information at

hand or the full set of attributes in the decision process; and do not assign to each alternative an285

overall score (a.k.a utility) that serves as basis for comparison.

For example, consider the priority heuristic for choices among risky alternatives (interchangeably

called gambles in the relevant literature), as introduced in Brandstatter et al. (2006). Let us say

we want to choose one of X = (xmin, p;xmax, 1 − p) and Y = (ymin, q; ymax, 1 − q), where for X

the numerical outcome xmin is obtained with probability p and xmax is obtained with 1 - p and290

0 < xmin < xmax (and analogously for Y).

If |xmin − ymin| > thr1 ·max{xmax, ymax}, no other attributes are inspected and the gamble with

the higher value on its minimum outcome is chosen. Otherwise, if |p − q| > thr2
2, a decision is

made in favor of the gamble with the lower probability of minimum outcome without considering

attributes beyond the second. In the opposite case, the gamble with the higher maximum outcome295

is chosen (and if the maximum outcomes are equal, a choice is made randomly).

Another instance of lexicographic heuristics, which models human choice between multiplemulti-

attribute choices under certainty, is the LEX heuristic (Payne et al. (1993)). In LEX, the decision

makers first rank the attributes in order of decreasing importance (x1, x2, ...), which is highly sub-

jective and depends on their individual preferences. They then inspect the value of all alternatives300

on the first attribute x1. If all alternatives tie on x1, this attribute is eliminated. If a single al-

ternative outperforms the rest on x1, this alternative is chosen. Otherwise, all alternatives with a

value on x1 worse than the best one are eliminated and the process is repeated by using the second

attribute x2. The process continues in this way until an alternative is chosen. If more than one

alternatives are left after all attributes are inspected, then a choice is made randomly.305

Closely related to LEX is the deterministic elimination by aspects (DEBA) heuristic in Hogarth & Karelaia

(2005). DEBA introduces acceptability threshold values for each attribute, which determine whether

the specific attribute value for an alternative is acceptable or not. As a result, each alternative can

described by a series of ones (attribute value is acceptable) and zeros (attribute value is non-

acceptable). Otherwise, the selection process under DEBA proceeds as under LEX. Namely, the310

attributes are ordered in decreasing order of importance (x1, x2, ...) by the decision makers, in line

2The value 0.1 is used for both thresholds thr1 and thr2 in Brandstatter et al. (2006) as a global constant across

all humans.
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with their individual preferences. Alternatives are inspected on the first attribute x1 and those

featuring non-acceptable values (a zero) are eliminated. If a single alternative remains, it is chosen.

If none remains, an alternative is chosen at random. If there are more than one alternatives with

an ace in this attribute, the process is repeated by parsing the second attribute x2. The process315

continues in this way until an alternative is chosen. If more than one alternatives are left after all

attributes are inspected, then a choice is made randomly.

The research on the performance of lexicographic heuristics has been progressing along two main,

rather independent, threads drawing on both computer simulations and mathematical analysis.

The first one focuses on the heuristics’ accuracy to explain and, more importantly, predict human320

decisions as these are logged in a variety of datasets from the fields of business, medicine and

psychology. Two major stylized facts have emerged in this respect (Katsikopoulos (2011)). First,

they lead to choices which, in terms of quality, perform comparably to, and sometimes even better

than, more complex choice models such as linear regression, classification and regression trees,

neural and Bayesian networks; in particular, simple heuristics are less prone to overfitting and325

often have higher performance in out-of-sample prediction. Secondly, each one of the heuristics or

benchmarks outperforms the other under certain conditions. The priority heuristic, for instance,

predicts very well which economic risks people prefer, sometimes outperforming standard behavioral

economics models such as prospect theory Katsikopoulos & Gigerenzer (2008).

The second research thread on these heuristics explores their capacity to explain major em-330

pirical phenomena that violate the normative decision-making prescriptions and have repeatedly

reported in various experimental or real-life settings. For example, it has been analytically shown in

Katsikopoulos & Gigerenzer (2008) that the priority heuristic predicts a host of such phenomena

in risky choice such as violations of the common consequence and common ratio axioms as well as

the four-fold pattern of risk attitudes, as described in Kahneman (2011).335

In what follows, we consider an implementation of the priority heuristic when drivers choose

between the two parking space resources considering the fees charged for the parking resources in

combination with the risk of not finding a vacant spot. Later in section 6, we let decisions also take

account of the distances of the parking spots from the drivers’ destinations.
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4. The priority heuristic for selecting parking resource340

Intuitively, when making their decisions, the drivers weigh the higher fee of the parking lot

option against the risk of failing to seize an on-street parking spot and having to pay this fee plus

the excess cruising cost. The increased cost of the parking lot is essentially a premium the drivers

are called to pay for overcoming the risk of searching for on-street parking. Generally, the premium

each driver is willing to pay varies and depends on her financial status, the type/purpose of her345

trip (e.g., leisure vs. business) and her assessment of the magnitude of the risk. Hence, for some

drivers even a small premium in the fee the parking lot operator charges serves as a deterrent. On

the contrary, other drivers may find the higher parking lot fees an acceptable price to pay for the

increased convenience and time savings lots offer.

4.1. Formulation of the heuristic350

We devise an implementation of the priority heuristic for the parking choice problem drawing

on its generic description in Section 3. Since the problem setting involves losses (costs) rather than

gains, the heuristic prescribes that drivers consider first the minimum cost related to each parking

alternative; then the probabilities that these costs emerge out of their choices; and, finally, if no

decision is made by that time, the maximum costs they may incur when choosing the one or the355

other alternative. More specifically, invoking the notation in Section 3.2, the on-street parking space

can be viewed as the risky gamble X = (−c1, min(1, R/N);−(c2 + cexc), 1 − min(1, R/N)) , whereas

the option of the parking lot as the fixed-outcome gamble Y=−c2 with probability 1. Then

• (step 1) drivers decide to search for on-street parking space if the minimum possible costs

of the two alternatives, c1 and c2 respectively, differ by more than a percentage thrc of the360

worst-case cost they may incur as a result of their selection (i.e., c2 + cexc).

• (step 2) In the opposite case, i.e., u = c2−c1
c2+cexc

≤ thrc, they postpone their decision until after

considering the probabilities of minimum costs: if their difference exceeds a threshold thrp,

they head for a parking lot.

• (step 3) Otherwise, when 1 − min(1, R/N) < thrp so that neither the second criterion helps365

them reach a clear decision, they compare the maximum possible costs, c2 + cexc and c2, and

decide in favor of the parking lot option.
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Figure 1: Probability distributions for the sensitivity of drivers to the minimum parking cost (left) and the respective

probabilities (right)

.

As mentioned in Section 3.2, the original generic description of the priority heuristic in Brandstatter et al.

(2006) recommends a single driver-agnostic constant (i.e., 0.1) for both threshold parameters, thrc

and thrp. We have argued instead that these values typically vary across drivers reflecting differ-370

ences in their financial status, the reason of their trip (business or leisure) and their individual

preferences. This heterogeneity of drivers is modeled statistically through two probability distribu-

tion functions, fthrc and fthrp respectively.

Letting Fthrc and Fthrp be the respective cumulative distribution functions, the number of

drivers who compete for on-street parking spots equals (ref. Fig. 1)

NPH
cmp = N · Fthrc(

c2 − c1
c2 + cexc

) (4)

whereas the drivers that opt for the parking lot alternative are

NPH
PL = N ·

(

1− Fthrc(
c2 − c1
c2 + cexc

)
)

(5)

Note that the partitioning of drivers to the two groups is independent of the distribution fthrp .

Drivers who do not decide to compete for on-street parking space in step 1 will end up in a parking375

lot, either in step 2 or in the last step. The distribution fthrp only determines the split between the

drivers deciding in favor of a parking lot in step 2 and those doing so in the last step.

In analogy with (3), the aggregate cost (fees+excess cost) paid by the drivers equals

CPH
agg = min(R,NPH

cmp)c1 +max(0, NPH
cmp − R)(c2 + cexc) + (N −NPH

cmp)c2
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Table 2: Conditions for more efficient parking resource selection under the priority heuristic.

Relation of A, B Corresponding rdc range

A > B rdc < B (C1)

rdc ≥ A (C2)

max(B,
N ·Fthrc (

c2−c1
c2+cexc

)−R

R ) ≤ rdc < A (C3)

A < B rdc ≥ B (C4)

rdc < A (C5)

A ≤ rdc < min(B, N−R

N ·Fthrc (
c2−c1

c2+cexc
)−R

) (C6)

A = N−R
R , B = (1 + c2

cexc
) · F−1

thrc
(R/N)

4.2. Analytical comparison with the game model Γ1(N)

It is then convenient to analyze the efficiency of the parking search process under the game

and the priority heuristic models as a function of the decision certainty ratio rdc = (c2 − c1)/cexc.380

This ratio reflects the overall attractiveness of the on-street parking alternative: it grows as the

parking fee difference increases or the expected cruising cost due to the risk related to competing

for on-street parking, declines. Theorem 1 summarizes the comparison of the two decision-making

models.

Theorem 1. The parking search process when drivers’ choices are driven by the priority heuristic385

is more efficient than when they act as fully rational strategic agents under the conditions listed in

Table 2.

The proof is provided in Appendix A.

Corollary 1. The parking search process when drivers’ choices are driven by the priority heuristic

is coherently more efficient than when they act as fully rational strategic agents as long as either:

N · Fthrc(
c2−c1

c2+cexc
)−R

R
< (1 +

c2
cexc

) · F−1
thrc

(R/N) <
N −R

R

or
N −R

R
< (1 +

c2
cexc

) · F−1
thrc

(R/N) <
N −R

N · Fthrc(
c2−c1

c2+cexc
)−R
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a. c1 = 2, c2 = 5.5, cexc = 2, cmax = 0.8 b. c1 = 2, c2 = 5.5, cexc = 2, cmax = 0.6 c. c1 = 1, c2 = 8, cexc = 1, cmax = 0.8

Figure 2: Number of drivers competing for on-street parking and aggregate cost as a function of the parking demand:

R=25.

Essentially, Table 2 sketches the conditions under which the activation of the priority heuristic

induces less over-competition for the on-street parking spots than when drivers are treated as fully390

rational agents who decide strategically during their parking search.

What are plausible choices for the distribution fthrc? One such choice would be a parabolic

function of the type fthrc(x) = αx2 + βx + γ over [0, cmax] implying that more drivers take the

risk to compete for medium values of the u ratio rather than at very low or high fee differences.

Imposing
∫ cmax

0
fthrc(x) = 1 and fthrc(0) = fthrc(cmax) = 0, we get

fthrc(x) =







6x
c2max

(

1− x
cmax

)

if x ∈ [0, cmax]

0 otherwise

4.3. Numerical results

We draw on the analysis of Section 4.2 to demonstrate the operational dynamics of the parking

search process under the two decision-making models as a function of the charged fees c1, c2, the
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drivers’ sensitivity to their difference (cmax), and the cruising cost cexc. As a side comparison395

reference, we consider the achievable assignment of parking space by a centralized system with

perfect information about parking space demand and availability.

The first recurring, as well as intuitive, trend in all plots of Fig. 2 is the dominance of the

centralized assignment scheme (noted as OPT in subsequent plots). The scheme sets a benchmark

by achieving optimal aggregate parking cost. The game-theoretic equilibria of Γ1(N), on the other400

hand, result in a cost that exceeds the optimal by a ratio that varies depending on the scenario.

Far more interesting is to track how the cost induced by bounded-rational decisions compares

with that corresponding to the game equilibria and when is the related inefficiency due to over-

competition for the on-street parking space amplified/attenuated. In Fig. 2a (rdc = 1.75) the game

model prescribes thatmin(N0 = 68.75, N) vehicles should be competing for on-street parking space.405

The priority heuristic, on the other hand, requires that a fixed 62% of the population would do so,

resulting in under-utilization of on-street parking space for N < 40. The aggregate cost remains

consistently lower under the priority heuristic even when demand exceeds supply by a fraction of

four (N/R > 4). The heuristic model generates higher aggregate cost only for N > 110, where the

condition (C3) of Table 2 is violated (for N=110, A=3.6, B=0.95, N · Fthrc(
c2−c1

c2+cexc
)−R)/R = 1.74).410

As drivers become more sensitive to the charged fee difference (Fig. 2b, cmax=0.6), the use of

the priority heuristic directs more of them to compete for on-street parking space. The aggregate

paid cost exceeds that at the NE of the strategic game faster but not before the demand/supply

ratio N/R exceeds 3 (for N=80, A=2.4, B=0.837, N · Fthrc(
c2−c1

c2+cexc
)−R)/R = 1.796 ).

The two decision models give identical predictions when the fee difference c2 − c1: a) renders415

the parking lot option prohibitively expensive for all drivers deciding heuristically; b) does not let

the expected cost of competition for on-street parking space in (1), exceed the parking lot fee for

any value of (realistic) parking demand. This is the case plotted in Fig. 2c.

A final remark worth making is that this analysis is not very informative as to how individual

drivers fare under the two decision-making assumptions. Depending on which specific Γ1(N) game420

equilibrium is realized out of the N over NNE
cmp possible ones, there are drivers who are better off

when activating the priority heuristic and others who are worse off. The former set includes: a)

drivers who seize an on-street parking spot under the heuristic but do not do so under strategic

decision-making; b) drivers who directly drive to the parking lot under the heuristic, whereas they

decide to compete for on-street parking space without success, under strategic decision-making.425
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The analysis informs us how many drivers end up in each of the two parking alternatives and how

many pay the excess cruising cost but not how individual drivers fare in the two cases.

5. Two parking lots - fully rational decision makers

The assumption in the decision problem of Section 3.1 is that the parking lots do not differ-

entiate with respect to their location and fees. Equivalently, all parking lots are located within430

approximately the same area (e.g., business district) and they charge the same fee for their parking

space so that drivers do not have strong preference for the one or the other.

In what follows, we relax these two assumptions, introducing differentiation regarding both the

fees charged by the different parking resources and their distances from the trip destination. We

consider two parking lots (could be lot classes) as alternatives to on-street parking. The first one435

is co-located with the drivers’ common travel destination (distance r3 = 0) and charges a fee c3

per time unit. The second one is further away at distance r2 > 0 and charges a fee c2, with

c1 < c2 < c3. On a more technical note, these assumptions yield a multi-attribute choice problem

with three alternatives. As before, we first formulate a game model for it, which becomes relevant

under the highly normative assumption that that the vehicular nodes decide and act strategically440

and fully rationally; this is covered in the current section. We then tailor the simpler LEX and

DEBA heuristics (ref. Section 3) to the problem and compare the solutions they induce against the

NE of the game model in Section 6.

The game model that captures the strategic interactions of drivers under full rationality stands

in direct analogy with Γ1(N), as defined in Section 3.1.445

Definition 2. The Extended Parking Spot Selection Game is a tuple Γ2(N) = (N ,R, (Ai)i∈N , (wj), j ∈

{1, 2, 3}), where:

• N = {1, ..., N}, N > 1 is the set of drivers searching for parking space,

• R = R1 ∪ R2 ∪ R3 is the set of parking spots; R1 is the set of on-street spots, with |R1| :=

R1 ≥ 1; R2 is the set of spots in the more distant yet cheaper parking lot, with |R2| := R2 ≥ 1450

and R1 + R2 < N ; and R3 is the set of parking spots in the spacious but expensive lot that

lies next to the travel destination, with |R3| := R3 > N .

• Ai = {1, 2, 3} is the action set for each driver i ∈ N , action “1” denoting search for on-street

parking space, “2” driving directly to the cheaper and “3” to the more expensive parking lot.
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• wj(·, ·), j = 1, 2, 3 are the cost functions of the three actions, respectively.455

With respect to the original game Γ1(N), cost functions have now to account for the non-monetary

cost related to the distance of the three alternatives and the effort related to driving and walking

from/to them. If fr(·) is a function that monetizes this cost, it holds that fr(r2) > fr(r1) > fr(r3) =

0.Then, assuming that drivers who fail to seize an on-street parking spot will first seek for parking

space in the distant cheaper lot and only if this does not work out for them, they will resort to the460

expensive lot with guaranteed parking space, w1(n1, n2) is given by3

w1(n1, n2) = min(1,
R1

n1
)
(

c1 + fr(r1)
)

+ ⌈1 −
R1

n1
⌉+

(

min(1,
⌈R2 − n2⌉+

⌈n1 −R1⌉+ + ⌈n2 − R2⌉+
)
(

c2 + cexc + fr(r2)
)

+ max(0, 1−
⌈R2 − n2⌉+

⌈n1 − R1⌉+ + ⌈n2 − R2⌉+
)(c3 + cexc)

)

(6)

Likewise, for the cost of deciding to opt for the cheaper parking lot, we have

w2(n1, n2) = min(1,
R2

n2
)(c2 + fr(r2)) + ⌈1−R2/n2⌉

+(c3 + cexc)

and, finally, w3(n1, n2) = c3, where ⌈x⌉+ = max(x,0) and (n1, n2) describes the state of the system,

i.e., the numbers of vehicular nodes that decide to compete for on-street parking capacity and drive

towards the cheaper distant parking lot, respectively (so that N−n1−n2 is the number of vehicular

nodes that select the more expensive parking lot).465

In principle, fr(·) is driver-specific; extra driving and walking effort is not equally annoying to

all drivers. Yet for computational tractability purposes, we restrict ourselves to symmetric users,

assuming that fr(·) has similar semantics for all users and adopting the functional form in Shoup

(1999) for it. In all cases considered in the paper, it holds that fr(r2) + c2 < c3, i.e., the distance

3It could be argued that users who choose to compete for on-street parking and end up in the remote parking lot

should see smaller cruising cost than those who end up in the expensive parking lot, after getting all the way to the

remote lot and back. Likewise, the argument could continue, the cruising cost of drivers who originally choose the

remote parking lot but end up in the expensive parking lot should lie in-between the two earlier costs. This way,

we would have three different “versions” of this cost. We have chosen instead to use the variable cexc to invariably

denote the cruising cost, which incurs whenever a driver fails parking in his/her original parking resource choice.

This way we avoid getting into discussions of the kind “Is this cost proportional to the distance or subject to another

rule?” and save added complexity that does not add any worthwhile insights to the problem.
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of the remote parking lot does not alone compensate for its reduced fee. Defining:470

N12 =
(

1 +
c2 + fr(r2)− (c1 + fr(r1))

cexc

)

R1

N13 =
(

1 +
c3 − (c1 + fr(r1))

cexc

)

R1

N23 =
(

1 +
c3 − (c2 + fr(r2))

cexc
)R2 and

N123 = N13 +N23 (7)

we can show that

Theorem 2. The pure NE of the Γ2(N) game are listed in Table 3, when N12 ≤ R1 + R2 and in

Table 4, when N12 > R1 +R2.

The proof is provided in Appendix B.

Proposition 1. For any value of N > R1, the NE of the game Γ2(N) induce over-competition for475

the on-street parking capacity.

The proof is given in Appendix C.

6. Two parking lots - bounded-rational decision makers

The game-theoretic model for the drivers’ decisions among the three alternatives has normative

rather than descriptive value. It implies that, besides acquiring and sharing information about the480

demand and supply of parking resources and exhaustively processing it, vehicular nodes also need

to “monetize” the cost related to the distance of parking resources from the drivers’ destination.

In what follows, we fundamentally shift our hypothesis for the way drivers make their decisions.

We assume that behind these decisions lie heuristics reflecting specific cognitive processes. As in

Section 4, our focus in on lexicographic heuristics, in particular the LEX and DEBA heuristics485

described in Section 3.2.

Intuitively, drivers are highly heterogeneous regarding both the actual heuristics they activate

and the way they configure them (e.g., the order in which the decision criteria are parsed). Ideally,

we would need real data that could serve as training datasets for the assumed heuristic models. For

a given user, such datasets could be historical data about his/her past choices in similar selection490

setups. We could then apply standard machine learning techniques to infer which heuristic each
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Table 3: Pure NE of Γ2(N) for different values of N , case: N12 ≤ R1 + R2

range of N NE states (NNE
1 , NNE

2 ) (NNE
3 = N −

2
∑

j=1
NNE

j ) num of realizations condition

[1, N12) (N, 0) 1 -

[N12, R1 + R2] (⌊N12⌋, N − ⌊N12⌋)
( N
⌊N12⌋

)

N12 6∈ N
∗

(N12, N −N12)
( N
N12

)

N12 ∈ N∗

(N12 − 1, N −N12 + 1)
( N
N12−1

)

N12 ∈ N∗

(R1 +R2,
N123

N23
R2]

(R2−N23

R2
N +N123 − R2,

N23

R2
N −N123 + R2

) ( N
NNE

1

)

N123 − N23

R2
N ∈ N∗

(R2−N23

R2
N +N123 − R2 − 1, N23

R2
N −N123 + R2 + 1

) ( N
NNE

1

)

N123 − N23

R2
N ∈ N

∗

(

⌊R2−N23

R2
N +N123 −R2⌋, ⌈

N23

R2
N −N123 + R2⌉

) ( N
⌊NNE

1
⌋

)

N123 − N23

R2
N 6∈ N∗

(N123

N23
R2, N123] ( N13

N123
N, N23

N123
N)

( N
N13
N23

N

) N13

N123
N ∈ N

∗

(⌊ N13

N123
N⌋, ⌈ N23

N123
N⌉)

( N

⌊
N13
N123

N⌋

) N13

N123
N 6∈ N∗ AND

w2(⌈NNE
2 ⌉) < w1(⌈NNE

1 ⌉)

(⌈ N13

N123
N⌉, ⌊ N23

N123
N⌋)

( N

⌈
N13
N123

N⌉

) N13

N123
N 6∈ N∗ AND

w2(⌈NNE
2 ⌉) > w1(⌈NNE

1 ⌉)

(see B.2)

(N123,∞) (⌊N13⌋, ⌊N23⌋)
N!

⌊N13⌋!⌊N23⌋!(N−
2∑

j=1

⌊Nj3⌋)!

N13, N23 6∈ N∗

(N13, N23)
N!

N13!N23!(N−N123)!
N13, N23 ∈ N

∗

(N13 − 1, N23 − 1) N!

(N13−1)!(N23−1)!(N−
2∑

j=1

Nj3−2)!

N13, N23 ∈ N∗

(N13 − 1, N23)
N!

(N13−1)!N23!(N−
2∑

j=1

Nj3−1)!

N13, N23 ∈ N∗

(N13, N23 − 1) N!

N13!(N23−1)!(N−
2∑

j=1

Nj3−1)!

N13, N23 ∈ N∗

23



Table 4: Pure NE of Γ2(N) for different values of N , case: N12 ≥ R1 + R2

range of N NE states (NNE
1 , NNE

2 ) (NNE
3 = N −

2
∑

j=1
NNE

j ) num of realizations condition

[1, N123−R2

N23
R2) (N, 0) 1 -

[N123−R2

N23
R2,

N123

N23
R2)

(R2−N23

R2
N +N123 − R2,

N23

R2
N −N123 + R2

) ( N
NNE

1

) N23

R2
N −N123 ∈ N∗

(R2−N23

R2
N +N123 −R2 − 1, N23

R2
N −N123 + R2 + 1

) ( N
NNE

1

) N23

R2
N −N123 ∈ N∗

(

⌊R2−N23

R2
N +N123 − R2⌋, ⌈

N23

R2
N −N123 +R2⌉

) ( N
⌊NNE

1
⌋

) N23

R2
N −N123 6∈ N

∗

(N123

N23
R2, N123] ( N13

N123
N, N23

N123
N)

( N
N13
N23

N

) N13

N123
N ∈ N

∗

(⌊ N13

N123
N⌋, ⌈ N23

N123
N⌉)

( N

⌊
N13
N123

N⌋

) N13

N123
N 6∈ N∗ AND

w2(⌈NNE
2 ⌉) < w1(⌈NNE

1 ⌉)

(⌈ N13

N123
N⌉, ⌊ N23

N123
N⌋)

( N

⌈
N13
N123

N⌉

) N13

N123
6∈ N∗ AND

w2(⌈NNE
2 ⌉) > w1(⌈NNE

1 ⌉)

(see B.2)

(N123,∞) (⌊N13⌋, ⌊N23⌋)
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driver most probably activates and estimate its parameters, such as how does s(he) prioritize the

decision criteria (e.g., distance, parking fee), and which are the relevant acceptability thresholds. We

are not aware of such datasets that could serve the model training purpose (we comment further

on this in section 7). Rather than synthesizing arbitrary random scenarios about the drivers’495

heterogeneity, we preferred to make the most out of survey data about drivers’ parking habits. In

what follows, we describe these survey data and explain how we use them to deduce a more realistic

scenario about the way drivers could activate the LEX and DEBA heuristics (rank of decision

criteria, thresholds) and their resulting choices.

6.1. Survey data and the inference of drivers’ heuristics500

The survey was conducted in June 2012 and involved approximately 1120 drivers. The majority

(around 800) of the drivers were asked to complete the paper-based questionnaire on-the-spot just

after they had parked at a 300-space parking lot in the center of Nicosia, Cyprus, whereas the

remaining answers were gathered from an online questionnaire (posing exactly the same questions

as the paper version). The survey took place on different days and times of the week in order505

to acquire data from drivers who came to the city center for business purposes as well as leisure

(e.g., shopping, eating out etc.) but also cover peak and off-peak periods of demand for parking.

The full questionnaire consisted of 42 questions seeking to fully capture the subjects’ driving and

parking experience and habits. The core of the questionnaire aimed at identifying the drivers’

requirements from public parking infrastructures, the problems they currently face in their use, and510

how technological solutions can offer service enhancements.

The replies of drivers about their parking resource preferences are summarized in Figure 3

and reflect high heterogeneity in their decision criteria. First, as shown in Figure 3a, the drivers

differentiate with respect to their preferred parking resource type, with approximately 14% of

them parking only in lots, 5% parking always on-street, and the rest using both types of parking515

resources. Secondly, they prioritize different criteria for choosing among alternatives of a given

parking resource type. Notably, Fig. 3b suggests that the relative weight of the parking fee and

distance in the selection of resource varies with the parking resource type preferences. For instance,

out of the drivers who stated that they park exclusively in parking lots, around 15% choose among

parking lots based on the fees charged by them, almost 37% consider only their distances from their520

trip’s destination, whereas the remaining drivers take into account both criteria. On the contrary,
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Figure 3: Survey outcomes regarding the parking preferences of 1120 drivers in Nicosia, Cyprus.

the respective percentages for those who park exclusively on-street, are 32.7%, 38.45%, and 28.85%,

respectively.

We carried out a correlation analysis for the drivers’ parking preferences. More formally, the

preferred parking resource type and the weight of parking fee and distance in the selection of parking525

resource can be viewed as two categorical variables p and q. The first one categorizes the drivers into

five groups, pi, i ∈ [1, 5] being the percentage volume of drivers in each one so that
∑

i pi = 1. The

second variable further partitions each group i ∈ [1, 5] into three subgroups qij , j ∈ [1, 3], namely

(“exclusively cost”, “exclusively distance”, “both”), with
∑

j qij = 1. For instance, q41 denotes the

portion of drivers out of those “mostly parking their cars in lots”, who consider only the charged530

fees for choosing a lot. Carrying out the chi-square independence test for the categorical variables

p and q, the null hypothesis that p and q are not inter-related (hence, independent) is emphatically

rejected even at 1% level of significance (p− value = 8.3 · 10−9).

Relating lexicographic heuristics to each of the possible fifteen groups of drivers determined by

the two categorical variables p and q is rather intuitive and shown in Table 5. Therefore, drivers535

using consistently one type of parking resource, either on-street spots or parking lots, and relying

their decision exclusively on the parking fee or distance, seem to decide in line with the LEX

heuristic. These drivers order the parking resource type as the first (binary) decision attribute,

and the parking fee or distance as second, respectively. Likewise, drivers who use both parking

resource types and depend their decision exclusively on the parking fee (distance), could be view as540

LEX decision makers that consider a single decision attribute, i.e., fee (resp. distance), resembling
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Table 5: Mapping of lexicographic heuristics to the drivers’ choices. In parentheses is shown the order of inspected

attributes for each category: t → parking type, f → fee, d → distance.

only on-street mostly on-street equally both mostly lots only lots

fee LEX(t,f,d) LEX(f,d) LEX(f,d) LEX(f,d)) LEX(t,f,d)

distance LEX(t,d,f) LEX(d,f) LEX(d,f) LEX(d,f) LEX(t,d,f)

both fee and distance DEBA(t,f,d) DEBA(f,d) DEBA(f,d) DEBA(d,f) DEBA(t,d,f)

the Take The Best (TTB) heuristic used for inference tasks in Gigerenzer & Goldstein (1996). On

the other hand, drivers considering both the fee and distance factors in their choices, can be better

modeled as DEBA decision-makers. Inherent to DEBA are satisfiability thresholds for each decision

attribute turning the continuous values of the fee and distance attributes to zeros and ones. These545

driver-specific thresholds together with the actual decision setting (fees and distances of lots and

on-street spots) determine which is the decisive attribute in each case.

6.2. Analysis of the system performance under the heuristic decision model

Given a population N of drivers seeking for parking space, the expected number of drivers who

search for on-street parking can be written as

NH
1 = N · (p1 +

4
∑

j=2

pj(qj1 + xj · qj3)) (8)

and includes three groups: (a) those parking exclusively on-street (p1); (b) drivers who decide

according to the charged fee only out of those generally using both roadside spots and lots, (qj1,550

j ∈ {2, 3, 4}); and, finally, (c) part (xj) of the drivers in the same three groups who consider both

the charged fee and distance when making their decisions (qj3).

Likewise, the expected number of drivers who will end up in the distant but cheap parking lot

can be written as

NH
2 = N ·

[

p5(q51 + y5 · q53) +
4

∑

j=2

pj · qj3 · yj
]

(9)

to include (a) drivers who use parking lots exclusively and decide on the basis of the charged fee only (q51);

(b) part (y5) of the drivers who use parking lots exclusively and state that they take into account for their
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decisions both the charged fee and the cost (q53); and (c) part (yj , j ∈ {2, 3, 4}) of those drivers who use555

both types of parking resources (qj3) and inspect both distance and fees when deciding for parking space.

Finally, the drivers who end up in the expensive but destination-adjacent lot are

NH
3 = N ·

[

p5(q52 + q53 · z5) +
4

∑

j=2

pj(qj2 + qj3 · zj)
]

(10)

This group includes (a) drivers using exclusively parking lots and selecting among them according

to their distances from the trip destination (p5 · q52); (b) a portion z5 of drivers using exclusively

parking lots and considering both distance and fees for selecting one out of more alternatives; and,

(c) part of the drivers who tend to park in both parking resource types and base their choices on560

both the distance and fee charged by the alternatives.

Intuitively, it holds that

xj + yj + zj = 1 j ∈ {2, 3, 4} and y5 + z5 = 1

6.2.1. Determining the x, y, and z vectors

The drivers who do not express a strict preference for one of the two types of parking resources,

accounting for 81% of the total population according to Fig. 3a, will decide on a case-by-case

basis considering multiple criteria: the fee charged by each alternative, the availability of spots565

and possible competition for them, and the distance of each resource from their trip destination.

The importance of the criteria varies across drivers, each one exhibiting different sensitivity to the

values assumed by them. We capture this heterogeneity through specifying statistical distributions

for the value of each criterion that is considered acceptable by them, i.e., the threshold values of

fee and distance, beyond which a particular alternative is rendered prohibitive.570

Let Fthrf (x), x ∈ [cmin, cmax] be the cumulative distribution function of the maximum accept-

able parking fee threshold across drivers; and Fthrd(x), x ∈ [0, dmax] the respective function for the

maximum acceptable distance of spots from the trip’s destination. For instance, Fthrd(0) would

correspond to the portion of the driver population who would be reluctant to park to any place that

is not destination-adjacent. Ideally, these distributions could emerge after monitoring the drivers’575

behavior over some interval of time and learning their preferences.

With these distributions at hand, the portion of drivers who choose to compete for the on-street
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Figure 4: Cumulative probability distributions for the fees drivers are willing to pay (left) and distance they are

willing to traverse (right) for parking

.

parking spots can be expressed as:

x2 = x3 = Fthrc(c2) + (Fthrf (c3)− Fthrf (c2)) ·
(

(Fthrd(r2) + (1− Fthrd(r2))/2)
)

+ (1− Fthrf (c3)) ·
(

(Fthrd(r2)− Fthrd(r1))/2 + (1− Fthrd(r2))/3)
)

(11)

In words, this subset of drivers includes: (a) those who are not willing to pay even the fee of

the cheaper parking lot; (b) part of those who fee-wise also consider the cheap parking lot option580

but eventually head for on-street parking because they deem the distance of the lot prohibitive or

randomly select between two otherwise equivalent options; and (c) those willing to pay even the

price of the expensive parking lot (see Fig. 4a) and distance-wise view either one or both parking

lots as acceptable options, as Fig. 4b suggests4.

On the other hand, x4 relates to drivers first inspecting the distance of the parking resource585

alternative. Hence,

x4 = (Fthrd(r2)− Fthrd(r1)) · (Fthrf (c3) + (1 − Fthrf (c3))/2)

+ (1 − Fthrd(r2)) ·
(

Fthrf (c2) + (Fthrf (c3)− Fthrf (c2))/2 + (1− Fthrf (c3))/3
)

(12)

4Recall that the DEBA model prescribes that whenever two or more alternatives pass the thresholds of all

attributes, the user draws randomly one of those. This is how the factors 1/2 and 1/3 emerge in the second and

third summands.
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Figure 5: From survey data to drivers’ choices. On the left is shown the two-level grouping of drivers out of their

survey responses, as shown in Fig. 3. The numbers of drivers that choose each one of the three parking resources

on the right, are composed by different groups. The factors xi, i ∈ {2, 3, 4}, yj , j ∈ {2, 3, 4, 5}, zk, k ∈ {2, 3, 4, 5}

represent the percentages of drivers considering both the fees and distances of the parking resource that end up

choosing the on-street parking, the cheap distant lot, and the destination-colocated expensive one, respectively.
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Likewise, we can express the portion of drivers who choose the cheaper but distant parking lot

as:

y2 = y3 = (Fthrf (c3)− Fthrf (c2)) · (1− Fthrd(r2))/2 + (1− Fthrf (c3)) · (1− Fthrd(r2))/3 (13)

namely, y2 and y3 include those who can afford the cheap parking lot, or even the more expensive

one, and are not deterred from its distance. On the other hand,

y4 = (1 − Fthrd(r2)) ·
(

(Fthrf (c3)− Fthrf (c2))/2 + (1− Fthrf (c3))/3
)

(14)

hence, to end up in the cheap parking lot when considering first the distance attribute, one would

need to view its distance as acceptable and not rendering it at disadvantage with respect to the590

other two alternatives.

Similarly,

y5 = (1− Fthrd(r2)) ·
(

Fthrf (c3) + (1− Fthrf (c3))/2
)

(15)

since y5 partitions a group of drivers always opting for parking lots (i.e., on-street parking is not

an option).

Finally, the portions of drivers who choose to drive to the more expensive destination-adjacent

lot among those considering all three options and inspect the charged fee first, are given by

z2 = z3 = (1− Fthrf (c3)) ·
(

Fthrd(r1) + (Fthrd(r2)− Fthrd(r1))/2 + (1 − Fthrd(r2))/3) (16)

and basically comprise those who are willing to pay its fee and appreciate, though to different

extents, its advantage over the other two alternatives in terms of distance from the trip destination.

On the other hand, when the distance attribute is inspected first, the portion of drivers who end

up in the expensive lot is given by

z4 = Fthrd(r1)+ (Fthrd(r2)−Fthrd(r1)) · (1−Fthrf (c3))/2+ (1−Fthrd(r2)) · (1−Fthrf (c3))/3 (17)

when drivers are a priori open to all three options, and

z5 = Fthrd(r2) + (1− Fthrd(r2)) · (1− Fthrf (c3))/2 (18)

for drivers exclusively considering parking lots.
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Table 6: Distributions of threshold values for acceptable charged fees and parking resource distance (in minutes

walking) across the drivers’ population.

Choice parameter Distribution range

max acceptable fee

Fthrf (x)
−6·( x3

3
−(cmax+cmin)·

x2

2
+cmin·cmax·x−

c3
min
3

+(cmin+cmax)·
c2
min
2

−c2min·cmax)

(cmax−cmin)3
[cmin,cmax]

max distance

Fthrd(x)
6·(x2/2−x3/3/rmax)

r2max
[0, rmax]

However the decision is made, strategically or in line with the lexicographic heuristics, the595

aggregate cost that drivers will have to pay is a function of their partitioning to the three groups

{Na
1 , N

a
2 , N

a
3 }

Cagg (Na
1 , N

a
2 , N

a
3 ) = min(R1, N

a
1 )(c1 + fr(r1)) +min(max(Na

1 −R1, 0),max(Na
2 −R2, 0))(c2 + cexc + fr(r2)) (19)

+ max(Na
1 −R1 −max(R2 −Na

2 , 0), 0)(c3 + cexc) +min(R2, N
a
2 )(c2 + fr(r2)) +max(Na

2 −R2, 0)(c3 + cexc) +Na
3 c3

with a ∈ {′NE′,′ H ′}, respectively.

6.3. Analytical comparison with the game model Γ2(N)

The analytical comparison of the two decision-making models, as realized for the priority heuris-600

tic through Theorem 1, is not straightforward. Hence, we present numerical results for the distribu-

tion of the drivers and the resulting aggregate cost at the NE of the Γ2(N) game (equation (20) and

Tables 3 and 4 in Appendix) and when their decisions are driven by the lexicographic (LEX and

DEBA) heuristics (equations (8)-(18) and (20)). We also plot the cost (label OPT in the respec-

tive legends) induced by a benchmark centralized reservation scheme with complete information605

about the parking capacity, which seeks to minimize the aggregate cost without looking into the

preferences of individual drivers. Such a scheme would direct exactly R1 drivers to on-street spots,

exactly R2 to the distant parking lot, and the remaining ones to the expensive parking lot. Our

assumptions for the distributions Fthrf (), and Fthrd() are summarized in Table 6 (the reasoning is

similar to that for Fthrc , see section 4.2).610

32



Figure 6 plots four scenarios that are representative of the results’ patterns over a much broader

scenario space. Roughly speaking, scenario (a) “favors” the on-street parking choice assigning

relatively high fees to the two parking lots, whereas scenario (d) serves the opposite purpose by

increasing the on-street parking fee and the cruising cost, thus shrinking its fee-related advantage

over parking lots. Scenarios (b) and (c) promote the cheaper parking lot (it lies closer to the615

trip destination and asks for a smaller fee) and the more expensive one (small fee, the cheap lot

alternative is quite distant), respectively. Four main remarks are worth making when looking at

these plots.

Firstly, drivers who select the on-street parking option as a result of fully rational strategic

decision-making, always exceed in number the available parking spots (ref. Proposition 1). During620

(very) high parking demand, the excess demand ratio equals N13/R1. Likewise, excess parking

demand is also induced at the Γ2(N) equilibria states for the distant parking lot; the respective

ratio stabilizes to N23/R2 for high demand.

Secondly, under the same full rationality assumption, the expensive parking lot starts attracting

drivers (if at all) only at high parking demand values, far exceeding the aggregate parking capacity625

of the other two parking resources, R1+R2. The exact value at which this happens does not only

depend on how the fee of the expensive lot compares with the other two but also the capacities of

the parking resources (Fig. 6b vs. 6c).

Thirdly, when drivers make choices activating the lexicographic heuristics, the distribution of

drivers across the three options exhibits less variety across the four scenarios. The expensive parking630

lot is consistently a more competitive option, sometimes emerging as the most popular option (Fig.

6d). Over-competition is still evidenced for on-street parking capacity but not for the distant

parking lot. The latter is preferred by few users in all scenarios, who do not exhaust its capacity

but only at high parking demand. The exception is the second “favorable” scenario, where the

cheap lot is the choice of preference for a higher portion of drivers.635

Finally, and as a result of the three aforementioned trends, the aggregate cost paid by drivers

for seizing a parking spot is almost always smaller when drivers activate lexicographic heuristics

than when their choices are assumed to be fully rational and strategic. Namely, the Γ2(N) game

equilibria predictions turn out to be consistently more pessimistic except for a few instances of low

demand (scenaria (b) and (d), for N <50). In many cases, the aggregate cost under lexicographic640

heuristics lies very close to the minimum one that would result from the benchmark centralized
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Figure 6: Distribution of vehicles to the three parking resources at the NE of the Γ2(N) game (left) and according to

the lexicographic heuristics (middle); aggregate cost under the two decision-making modes and the optimal centralized

scheme (right): r1 = 2, rmax = 12, cmax = 8.
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reservation scheme.

7. Implications and open questions

We discuss in this section the practical implications of our work as well as open questions that

call for further investigation.645

The analysis and results in sections 4-6 most clearly demonstrate that our predictions about

the choices drivers make and the resulting system efficacy may vary significantly depending on

the adopted modeling assumptions about the way drivers decide and act; namely, whether they

strategically and fully rationally analyze the decision setting looking for optimal decisions or rely

on simple heuristics to reach decisions that satisfice them. However, the results as such are less650

instructive as to which modeling assumption is the right one in this case.

One way to respond to this question is axiomatically. For more than half a century now (e.g.,

Simon (1955)), it is being considered far more plausible that humans activate (lexicographic) heuris-

tics to make choices instead of imitating players in strategic games. There is compelling evidence,

for example in Ford et al. (1989) and in Katsikopoulos & Gigerenzer (2008), that lexicographic655

heuristics are invoked by humans in a wide range of very different selection tasks and can justify

several well-reported empirical phenomena that result from their choices. Nevertheless, the ultimate

validation of the heuristics’ relevance to the parking search setting demands large-scale experimen-

tation campaigns in real or semi-real (i.e., emulator) conditions. Such experimentation is currently

an open challenge for various research communities including psychologists, computer scientists,660

and transportation engineers. Probably the most promising path to respond to this challenge is

presented by the recent generation of mobile parking applications5 that seek to change the way

parking search is carried out all over the world. Running on smartphones and having the potential

to collect data of unprecedented size and detail about the parking preferences and habits of their

users-drivers, these applications attract strong interest as live research testbeds as well.665

In particular, data from such applications would allow tackle the issue of individual preferences,

which has been rather overlooked in the research agenda of cognitive decision-making heuristics. The

data could be used to directly learn which heuristics users activate and how are they parameterized

5Examples include Parkmobile (http://us.parkmobile.com/), ParkMe (https://www.parkme.com), ParkAround

(https://www.parkaround.com/, ParkTag (http://parktag.mobi/)
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for each one of them. Hence, in the case of the priority heuristic, those data would let us infer

the value of the thresholds thrc and thrp for each user; for the LEX heuristic, how each user670

orders the {parking resource type, fee, distance} decision attributes; and, for DEBA, the order

of attributes plus the relevant satisfying thresholds for each attribute. The statistical modeling of

drivers’ heterogeneity through Fthrf (x) and Fthrp(x), for the priority heuristic in Section 4, and the

matching of drivers’ profiles to the questionnaire data for the LEX and DEBA heuristic in Section

6, are simple ad-hoc ways to cater for driver heterogeneity in the absence of real “model training”675

data from a parking search application.

The second way to argue about the appropriateness of the two modeling assumptions is a

posteriori, looking at the results and assessing their plausibility. The two models differentiate in

the way they prescribe the impact of the fees charged by the parking resources, but also that of

their location and capacity. Figures 7 and 8, imply that the cognitive heuristic decision-making680

models may be much more realistic with respect to the sensitivity of the drivers’ decisions to

parameters such as, in this case, the difference in fees charged by the parking resources. In Fig. 7,

for example, the (higher) variations of N1 (the expected number of drivers who decide to compete

for on-street parking) with the difference c2-c1 under the priority heuristic model (dashed lines) are

more in line with intuition than the Γ1(N) game predictions (solid lines); the latter are more often685

than not invariable to the fee difference. Likewise, in the case of two parking lots, the heuristic

decision-making model in Fig. 8 generates more realistic distributions of drivers to the three parking

resources. Even under a unit cost difference in the fees charged by the two lots (Fig. 8-top row),

the NE of the Γ2(N) game suggest that none of the drivers will choose the more expensive but

destination-adjacent one. At the same time, as the fee c3 increases, more and more drivers change690

their decision to compete for on-street parking spots in favor of driving toward the distant parking

lot. On the contrary, the lexicographic heuristic model more plausibly predicts that the number of

drivers choosing the expensive parking lot gracefully decreases and shifts to the other two options.

Our work has clear hints for the design of the software agents that assist drivers with the parking

search task. Such agents will most probably form integral parts of broader-scope applications that695

will be running on devices mounted onboard the vehicles and also assist drivers with road navigation

and parking manoeuvring. It will be their task to collect information about the available parking

resources, the fees they charge and estimates of the parking demand from the parking assistance

system infrastructure. They will then process this information to make a recommendation to the
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Figure 7: Sensitivity of competing vehicles to the difference of parking resource fees: priority heuristic vs. game

Γ(N), R = 25.

driver as to whether to search for on-street parking space or drive to a parking lot.700

One possibility to derive such recommendations is by imitating the fully rational strategic agent

model: approach the drivers’ collective decision setting as a game, compute the NE of this game,

and make the respective recommendation to the driver. A simpler alternative would be to have

the driver pass information about her preferences to the agent, possibly upon its first use by her,

and then let the agent apply cognitive decision-making heuristics such as those in Sections 4 and 5.705

Such profile information would include, for example, whether she prefers parking lots over on-street

spots, what is the acceptable fee difference between the two and how far from her destination she

is willing to park. The application’s mission would then become to make recommendations that

respect its owner’s preferences. Notably, according to the results of the paper, in the majority of

the scenarios, this second option will result in a socially more efficient parking selection process.710

It is less clear, and an interesting point for further investigation, how could a centralized parking

management system that would positively know the drivers’ profiles (which heuristics they use, how

they rank the decision criteria) actively adapt and coordinate its recommendations to nudge drivers

towards socially favorable choices. Such a task would involve manipulating the information that

is announced towards drivers in personalized ways such as presenting them with an appropriately715

chosen subset of their actual alternatives.
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Figure 8: Sensitivity of competing vehicles to the difference of the fees charged by the two parking lots: lexicographic

heuristics (dashed lines) against game Γ2(N) (solid lines), cexc=1, r1=2, rmax=12, cmax=8. Top: c2=4, bottom:

c3=8.

8. Conclusions

We have carried out a performance analysis study that acknowledges the possible role of cognitive

heuristics in drivers’ decision-making and assesses their impact on the efficiency of the parking

search process. These heuristics trace their origins in the area of cognitive psychology and have720

seen enormous research over the last twenty years. Besides addressing the cognitive mechanics

underlying human decisions, they cater naturally for humans’ bounded rationality and present a

radical departure from the normative model of the strategic fully rational decision-maker, who

systematically seeks to maximize (minimize) its gains (losses).

In the paper, we have studied three members of the broader family of lexicographic heuristics,725
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i.e., the priority, LEX, and DEBA heuristics. To this end, we have approached two typical scenarios

of parking search as instances of multi-attribute choice problems with two and three alternatives,

respectively. Through analysis and experimentation, we have shown that, over a broad range of

scenarios’ parameterizations, the parking demand is distributed more efficiently to the parking

resources if we assume that drivers decide in line with these heuristics rather than strategically as730

fully rational agents. Finally, we have discussed the practical implications of our results for the

design of parking assistance applications and outlined possible research directions.

Appendix A. Proof of Theorem 1

As already mentioned in Section 3.1, whenever N > R, the number of competing drivers induced

by the strategic game exceeds the on-street parking capacity, i.e., NNE
cmp > R. On the contrary,735

under the priority heuristic, this number may generally be greater or smaller than R. We consider

these two cases separately.

NPH
cmp < R: This implies that

rdc < (1 +
c2
cexc

) · F−1
thrc

(R/N) (A.1)

and the difference in the aggregate cost induced by the two decision-making models is

∆Cagg = CPH
agg − CNE

agg

= (R−NPH
cmp)(c2 − c1)− (NNE

cmp −R)cexc (A.2)

If NNE
cmp = N0 < N , i.e., rdc < N/R − 1, then

∆Cagg = −NPH
cmp(c2 − c1) < 0 (A.3)

without additional conditions.

On the other hand, if NNE
cmp = N , i.e.,

rdc ≥ N/R − 1 (A.4)

∆Cagg = R(c2 − c1 + cexc)−N(Fthrc (
c2 − c1
c2 + cexc

)(c2 − c1) + cexc)

is negative when rdc < (N − R)/(N · Fthrc(
c2−c1
c2+cexc

) − R) so that, in combination with (A.4), rdc

must satisfy
N −R

R
≤ rdc <

N −R

N · Fthrc(
c2−c1

c2+cexc
)−R

(A.5)
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This interval of values is non-empty only when

rdc < F−1
thrc

(
2R

N
)(1 +

c2
cexc

) (A.6)

Constraint A.6 is inactive since, for NPH
cmp < R, it is dominated by constraint (A.1).740

NPH
cmp ≥ R: Now rdc ≥ (1+ c2

cexc
)·F−1

thrc
(R/N) and the aggregate cost under both decision-making

models can be written as function of Ncmp as

Cagg = R · (c1 − c2 − cexc) +N · c2 +Ncmp · cexc (A.7)

so that

∆Cagg = (NPH
cmp −NNE

cmp)cexc (A.8)

and it suffices to compare the numbers of drivers that end up competing for on-street parking space

under the two models.

When NNE
cmp = N , i.e., rdc > N/R− 1

∆Cagg = N · (Fthrc(
rdc

1 + c2/cexc
)− 1) < 0 (A.9)

without additional conditions. Otherwise, when rdc ≤ N/R − 1, it must also hold

rdc >
N · Fthrc(

rdc
1+c2/cexc

)

R
− 1 (A.10)

Combining (A.1)-(A.10) we get Table 2.745

Appendix B. Proof of Theorem 2

We provide a sketch of the proof avoiding notation formalities that burden its comprehensibility.

case: N12 ≤ R1 +R2

As long as the drivers are fewer than the on-street parking spots R1, the NE prescribes that all

of them should direct thereto. The same holds for all N values up to N12, where the expected cost

of choosing to search for curbside parking reaches that of the second choice (head directly for the

distant parking lot).

R1

N12
(c1 + fr(r1)) + (1−

R1

N12
)(c2 + fr(r2) + cexc) = c2 + fr(r2)

The individual cost drivers pay at the equilibrium remains unchanged, i.e., c2 + fr(r2), as the

number of drivers increases beyond N12 and up to R1 +R2, the equilibrium choice being “head for750

the distant parking lot” for any driver beyond the first N12 ones.
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As soon as the drivers exceed the number of spots in the two resources, R1 + R2, those who

choose to compete for on-street parking should also account for the probability that they may end

up in the expensive lot if neither the curbside nor the distant parking lot can serve them. On the

contrary, those choosing the direct parking lot keep on paying c2 + fr(r2) as long as they are fewer

than R2. The cost individual drivers pay at the equilibrium remains the same, but with the number

of drivers NNE
1 dropping as a function of N . The condition for cost indifference between the two

options at the equilibrium (n1, n2) now becomes:

R1

n1
(c1 + fr(r1)) + (1−

R1

n1
)
[R2 − n2

n1 −R1
(c2 + fr(r2) + cexc) + (1−

R2 − n2

n1 −R1
) · (c3 + cexc)

]

= c2 + fr(r2) (B.1)

When n2 = R2, n1 = N13/N23R2. Hence, the system of equations consisting of (B.5) and equality

n1 + n2 = N , describe the NE equilibria as N ranges in [R1 +R2,
N123

N23
R2].

When N exceeds N123

N23
R2, the drivers are faced with a non-zero probability to end up in the

expensive lot, even if they originally select the distant parking lot. The NE states (n1, n2) should

now satisfy

w1(n1)
.
=

R1

n1
(c1 + fr(r1)) + (1−

R1

n1
)(c3 + cexc) =

R2

n2
(c2 + fr(r2)) + (1−

R2

n2
)(c3 + cexc)

.
= w2(n2) (B.2)

Since n1 + n2 = N , it comes out that n1 = N13

N13+N23
N and n2 = N23

N13+N23
N . NE states with n3 > 0

emerge only when the expected costs of the first and the second choice equal the cost (fees) of the

expensive parking lot. This occurs for n1 = N13 and n2 = N23 values satisfying

R1

N13
(c1 + fr(r1)) + (1−

R1

N13
)(c3 + cexc) = c3, and (B.3)

R2

N23
(c2 + fr(r2)) + (1−

R2

N23
)(c3 + cexc) = c3 (B.4)

respectively. At the NE, any number of drivers beyond N13 +N23 select the expensive parking lot

so that the individual driver’s cost is steady at c3. Table 3 provides the full set of NE that emerge755

considering explicitly whether the aforementioned equilibria values are integers or not. Note that,

depending on the latter and the range of N , multiple types of equilibrium states (each one with

multiple realizations) exist. Their validity check is straightforward.

case: N12 > R1 +R2

In this case, the equilibrium action for all drivers in [0, R1 + R2] is to compete for on-street

parking; namely, the expected cost of this choice remains lower than c2 + fr(r2) despite the risk

of failing to seize a spot and having to cruise before heading for the distant lot. This holds also

for N > R1 + R2, where there is a non-zero probability that some of them will eventually have to
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park at the expensive parking lot, and up to a value n′
1 that equalizes the expected costs of the two

alternatives, i.e., on-street parking and distant parking lot:

R1

n′
1

(c1 + fr(r1)) + (1−
R1

n′
1

)
[ R2

n′
1 −R1

(c2 + fr(r2) + cexc) + (1−
R2

n′
1 −R1

) · (c3 + cexc)
]

= c2 + fr(r2) (B.5)

which yields n′
1 = N123−R2

N23
R2. For N > n′

1, the choice of the distant parking lot becomes compet-

itive and the equilibrium demands a reduction of the drivers who compete for on-street parking.

The choice indifference condition for (n1, n2) at the equilibria is now:

R1

n1
(c1 + fr(r1)) + (1−

R1

n1
)
[R2 − n2

n1 −R1
(c2 + fr(r2) + cexc) + (1−

R2 − n2

n1 −R1
) · (c3 + cexc)

]

= c2 + fr(r2) (B.6)

which is reminiscent of (B.2) for the case N12 < R1+R2. Equation (B.6) holds till n2 = R2, whereby760

n1 = N13

N23
R2. For N > R2(1 + N13

N23
) the equilibrium demands that drivers who select the distant

parking lot outnumber its capacity and may end up in the expensive parking lot. The equilibria

states for this range of values coincide with those for the case N12 < R1 +R2. Until N = N123, the

drivers are split between the on-street parking choice and the distance parking lot proportionately

to N13 and N23, respectively, i.e., the values that render indifferent a choice between the expensive765

parking lot and the curbside parking (resp. distant parking lot). Any additional driver, on top of

the N123 had better head directly for the expensive parking lot since the other two choices incur

higher expected costs.

Table 4 provides the full set of NE that emerge considering explicitly whether the aforementioned

equilibria values are integers or not. Their validity check is straightforward.770

Appendix C. Proof of Proposition 1

case: N12 ≤ R1 +R2

The number of vehicles competing for on-street parking space, NNE
1 , is given by five different

expressions as the number of drivers N ranges in [0,∞]:

a) When R1 < N < N12, N
NE
1 = N > R1.775

b) For N in (N12, R1 +R2], the respective number is

NNE
1 = N12 =

(

1 +
(c2 − c1) + (fr(r2)− fr(r1))

cexc

)

R1 > R1

c) As N varies in (R1 + R2,
N123

N23
R2], it is decreasing and gets its lowest value NNE

1 = R2
N13

N23

when N = N123

N23
R2. It is straightforward to show that

R2
N13

N23
=

c3 + cexc − c1 − fr(r1)

c3 + cexc − c2 − fr(r2)
R1 >

c3 + cexc − c2 − fr(r2)

c3 + cexc − c2 − fr(r2)
R1 = R1 (C.1)
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d) As N increases from N123

N23
R2 towards N123, the value of NNE

1 grows from its lowest value in

(C.1) towards higher values. Therefore,

NNE
1 ≥ R2

N13

N23
> R1 ∀N ∈ (

N123

N23
R2, N123] (C.2)

e) Finally, for N > N13 +N23 the equilibrium value is

NNE
1 = N13 =

(

1 +
c3 − c1 − fr(r1)

cexc

)

R1 > R1

Note that over-competition is also induced for the distant parking lot, albeit at demand values

N > N123

N23
R2.

case: N12 > R1 +R2

The proof for the case N12 > R1 + R2 does not need any additional effort with respect to its

counterpart for N12 ≤ R1 + R2. Comparing Table 4 with Table 3 shows that the minimum values780

obtained by the number of drivers selecting the on-street parking option at equilibrium, NNE
1 ,

are the same (in Table 3 there is an additional interval for N , throughout which NNE
1 = N12).

Therefore, the over-competition effect is consistently evidenced for all values of N > R, also when

N12 > R1 + R2.
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