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Abstract

Many marine mammal species are highly social and are frequently encountered in groups or

aggregations. When conducting passive acoustic monitoring in such circumstances, recordings

commonly contain vocalizations of multiple individuals which overlap in time and frequency. This

paper considers the use of blind source separation as a method for processing these recordings to

separate the calls of individuals. The example problem considered here is that of the songs of

humpback whales. The high levels of noise and long impulse responses can make source separation

in underwater contexts a challenging proposition. The approach is based on time-frequency mask-

ing, allied to a noise reduction process. The technique is assessed using simulated and measured

data sets.
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I. INTRODUCTION

Acoustics is one of the most effective methods for monitoring underwater environments.

In particular, marine mammals rely primarily on acoustics for interacting with the environ-

ment and their conspecifics. This is because sound represents the most effective method

to transmit information underwater [1]. The highly social nature of many marine mammal

species mean that they are frequently encountered in groups [2]. Consequently acoustic

recordings of marine mammals frequently contain vocalizations from more than one indi-

vidual, these vocalizations typically occur simultaneously and in the same frequency band.

This overlap means that trivial processing operations like filtering or time-gating will not,

in general, separate these calls. The approach considered in this work is based on the con-

cept of Blind Source Separation [3] which provides a method for separating vocalizations

based on recordings from more than one sensor, without knowledge of the sensor geometry

or models of propagation conditions. However, the long reverberation times, relatively high

noise level, and large number of sources that may be observed at a particular time, means

that separating individual source remains a challenge. In this paper, we aim to separate

humpback whale songs recorded in the St Marie channel, Madagascar. This is a breeding

ground in which a high density of male singers is encountered [4]. The objective is to take

a recording containing the songs from multiple singers, and decompose it into songs from

individual singers.

The humpback whale (Megaptera novaeangliae) is a species of baleen whale. They un-

dertake annual migration from warm waters where they reproduce to their feeding grounds

in colder waters [5]. The complex and mysterious songs that they produce have attracted

marine biologists for decades [6–8]. Humpback whale songs are long cyclical sequences pro-

duced by males especially in the breeding season [9]; while the social sounds are produced

by both males and females in social interactions such as feeding [2]. The purpose of their

complicated songs is still not clear, though it is assumed to relate to reproduction [10].

The structure of humpback whale songs has been defined as a hierarchical series of units,

phrases and themes [9]. The building block of a song is a unit which is defined as a continuous

sound between two silences. The duration of units varies considerably, with some units

lasting less than 1 s and other units extending to 5 s. Units have one of several acoustic

structures; some are based on frequency modulated narrow band components, whilst, other
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units are a series of pulsed sounds [7]. In some cases, one unit can consist of two or more

sounds, each discrete sound being called a subunit [13]. Two or more units can be repeated

in a specific pattern to form a phrase, and phrases are combined and repeated several times

to form a theme, finally a song is composed of several distinct themes [6, 9]. A series of

songs within which there is no pause longer than one minute is termed a song session [9].

The classification of songs into different units has been conducted by scientists in the

attempt to understand the function of humpback whale songs and their evolution [11–13].

Humpback whale songs are recorded through hydrophones and the quality of the recording is

crucial for the subsequent research [11]. There are at least two commonly employed ways to

obtain recordings of humpback songs. One way is taking hydrophone in a boat and when the

whale position is identified, the hydrophone is lowered into the water to record the song [13].

The other way is using a moored hydrophone array [14]. Moored arrays have the advantage

of being less affected by inclement weather and have the ability of to monitor for extended

periods, but their cost and problems associated with siting and maintaining them hampers

their use. In many analyses, such as for automatic classification of songs [11–13], a recording

containing a single singer is required. In some locations, it is challenging to find an isolated

singer and make a recording without interference from vocalisations from other whales. In

such conditions, recordings commonly contain a mixture of multiple songs, which can cause

great difficulty for subsequent analyses [11]. Therefore, the ability to separate humpback

songs potentially provides a powerful tool for the analysis of the song characteristics.

In this study, the data analysed is collected from a fixed hydrophone array located off

the island of St Marie, in Madagascar. The high density of singers in this location means

that, for the vast majority of the time, multiple singers can be heard simultaneously. Our

goal is to automatically separate the mixtures and obtain a recording of individual songs.

In previous research, visual inspection of song spectrograms and empirically listening to

the vocalizations were utilized in order to find sections of recordings containing only one

singer [2, 12, 14]. These manual analyses can be extremely time consuming and raise serious

concerns regarding subjectivity [2].

Source separation methods are techniques in which one can take a set of recordings of

mixtures of multiple sources and from them construct estimates of the original source sig-

nal [3]. Blind source separation (BSS) methods are a subset of source separation methods

in which the propagation paths are unknown and they rely only broad assumptions about
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the source characteristics to achieve separation. BSS problems which are characterised by

a non-trivial impulse response functions are referred to as convolutive. In particular, in

shallow water environments the long reverberation times, which characterise the complex

underwater acoustic, impede the performance of BSS methods. The problem is made even

more challenging in many circumstances since it is under-determined, i.e. the number of

sources exceeds the number of channels of data. Previously, the BSS approach has been uti-

lized to enhance marine mammal vocalizations, where a two channel second order statistics

(SOS) based BSS is developed for enhancing manatee vocalizations [15].

Various BSS methods which solve convolutive and under-determined problems have been

proposed. The performance of these methods has been compared as part of the signal sep-

aration evaluation campaign SiSEC [16]. Such methods include, model-based EM source

separation and localization (MESSL), which uses a probability model of interaural param-

eters to allocate each spectrogram point into a cluster, with each cluster corresponding to

a different source [17]. The restriction of this algorithm is that it is built on a model of

the human auditory binaural responses and relies on prior information of human auditory

system. An alternative approach is based on a set of full-rank spatial covariance model [18].

In this method the contribution of each source to all mixture channels in the time-frequency

domain is modelled as a zero-mean Gaussian random variable, whose covariance encodes the

spatial characteristics of the source. The drawback of this method is the sensitivity of esti-

mation of spatial covariance and source variance. A further, popular approach, is based on

Nonnegative matrix factorization (NMF), which models each source with a complex valued

tensor and eight nonnegative matrices [19]. It has been demonstrated that the NMF model

is more suitable to music than speech [19], whilst the vocalisations we are interested in are

referred to as song, their structure rather more closely corresponds to that of speech than

music.

The BSS algorithm selected for this study is based on separation in the time-frequency

domain [20], which we refer to as the Sawada algorithm. In this method, the separation

process is based on the short-time Fourier transform (STFT) and is divided into two stages.

In the first stage, referred to as bin-wise clustering. For every frequency bin the samples

representing the measurements of the mixture, are clustered, using a form of Expectation

Maximization (EM) algorithm [21]. Each cluster represents the samples from one of the

sources. The second stage is to solve the, so-called, permutation problem, to ensure that
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source components in different frequency bins are associated with each other correctly [22].

This paper is organized as follows. Section II provides an overview of the Sawada algo-

rithm for convolutive under-dermined BSS. The effectiveness and robustness of the Sawada

method for humpback songs separation are verified through separation of artificial mixtures

of humpback song generated by the underwater impulse response model discussed in section

III. The separation of real world signals is addressed in section IV, where a novel approach

to noise reduction based on a weighted median threshold scheme applied to the Sawada

method. Finally, conclusions are presented in section V.

II. THE SAWADA ALGORITHM

A. Signal Notation

Let s1(t), · · · , sN(t) represent the set of N source signals and x1(t), · · · , xM (t) be the M

hydrophone observations. The observations xj(t) at the j
th hydrophone can be described as

a sum of source images,

xj(t) =

N∑

k=1

simg
jk (t), (1)

where the source images simg
jk (t) represent the signal received from the kth source on the jth

hydrophone. The image sources are represented as the convolution of the kth source with

the corresponding impulse response, hjk(t), from the source to the jth hydrophone. Thus

the source images can be expressed as,

simg
jk (t) =

∑

l

hjk(l)sk(t− l). (2)

The goal of blind separation is to obtain sets of separated signals {y11, · · · , y1M},· · · ,{yN1, · · · , yNM},

such that yjk(t) is an estimate of the source image simg
jk (t), only using the information from

the set of observed mixtures x1(t), · · · , xM (t).

B. Transform into frequency domain

Assuming the observations (1) are sampled at a frequency fs, the algorithm begins by

converting these signals into frequency domain time series signals xj(τ, f) by an STFT,
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defined as follows,

xj(τ, f) =
∑

t′=0,ts,··· ,(L−1)ts

w(t′)xj(t
′ + τ)e−i2πft′ , (3)

where ts = 1/fs is the sampling interval, L is the number of samples in the spectral window,

w(t). S is the window shift in samples, τ = 0, Sts, 2Sts, · · · is the starting time of each

frame, T is the total number of samples, f = 0, (1/L)fs, . . . , ((L− 1)/L)fs is the frequency

index. w(t) can be any suitable windowing function (here the Hanning window is used).

Suppose that the frame size L is long enough to cover the majority of the impulse re-

sponses hjk, then the convolutive mixture model (2) can be approximated as an instanta-

neous mixture model and expressed in matrix form for each frequency as [17, 18, 20]

x(τ, f) =

N∑

k=1

hk(f)sk(τ, f) + n(τ, f), (4)

where hk(f) is an M × 1 column vector of the Fourier transform of hjk(t), j = 1, · · · ,M

and n(τ, f) is an M × 1 column vector of noise components that includes both additive

background noise and unresolved reverberant components.

The Sawada algorithm, like several other BSS methods, relies on the W-disjoint property

of the signals [23]. This requires that signals are sparse such that their STFTs do not have

significant overlap, specifically every time-frequency cell is dominated by a single source.

This allows one to simplify the mixture model (4), so that, for some k, one can express (4)

as [20]:

x(τ, f) = hk(f)sk(τ, f) + ñ(τ, f). (5)

Note that the notation for the noise term has be modified to reflect that it now also contains

residual components of other sources in time-frequency slots. These additional residual

components are a consequence of the fact that, in practice, the W-disjoint property only

holds in an approximate fashion. To construct an estimate of the kth signal on the jth

hydrophone, a binary mask, Mk(τ, f) is applied to the STFT of xj(t) as follows

ykj(τ, f) = Mk(τ, f)xj(τ, f). (6)
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At the end of the processing, the time-domain separated signals ykj(t), k = 1, · · · , N, j =

1, · · · ,M are calculated using an inverse STFT applied to the separated components defined

in (6).

C. Frequency bin-wise clustering

Separation is achieved through clustering of the data in each frequency bin in the STFT

[20]. Separate clusters are formed for each source. The clustering can be performed according

to the information in the vector x(τ, f). Based on (5), assuming the noise term ñ(τ, f) is

negligible. It is possible to eliminate the effect of source amplitude sk(τ, f) from x(τ, f), by

normalizing it to have a unit norm [20]

x̆(τ, f) =
x(τ, f)

‖x(τ, f)‖
=

sk(τ, f)

|sk(τ, f)|

hk(f)

‖hk(f)‖
. (7)

The next step is to perform pre-whitening on the normalized observation vectors x̆, since

that makes the clustering more robust. The whitening can be expressed as

x̄(τ, f) = Vx̆(τ, f). (8)

where x̄(τ, f) are the whitened observations. The whitening matrix V is calculated as

V = D−1/2EH where D and E are obtained from the eigenvalue decomposition E
{
x̆x̆H

}
=

EDEH of the correlation matrix. Super-script H denotes Hermitian transpose. The normal-

isation procedure (7) is reapplied after the pre-whitening process, to produce the conditioned

data vector x̂.

The clustering is performed on each frequency bin individually, assuming that the number

of sources, i.e. the number of clusters, N is known. The vectors x̂(τ, f) for all time-frequency

cells (τ, f) are clustered into N classes C1, · · · , CN , each of cluster corresponds to a source

signal sk. The posterior probability P (Ck|x), a measure of how likely the vector x(τ, f)

is to belong to the kth class, is calculated. The clustering algorithm is based on the line

orientation idea utilized within the LOST algorithm [24] and employs a complex probability
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density function of the form

p(x|ai, σi) =
1

(πσ2
i )

M−1
exp

(
−

∥∥x̂− (aH
i x̂)ai

∥∥2

σ2
i

)
, (9)

where ai is the unit-norm centroid and σ2
i is the variance, which depicts the extent by which

the data deviates from the centroid. (aH
i x̂)ai represents the orthogonal projection of x̂ onto

ai. The density function models the distances between the data points and the subspace

spanned by ai. The term
∥∥x̂− (aH

i x̂)ai

∥∥2 is zero if x̂ = ai. In this case, the observation

vector and centroid overlap with each other, so p(x|ai, σi) achieves its maximum value. The

joint density function, p(x) is given by the mixture model,

p(x|θ) =

N∑

i=1

αip(x|ai, σi), (10)

with parameters θ = a1, σ1, α1, · · · , aN , σN , αN . The mixture ratios αi satisfy α1+· · ·+αN =

1 and 0 6 αi 6 1. The prior distribution for these mixture ratios is modelled by the Dirichlet

distribution

p(α1, · · · , αN) =
Γ(Nφ)

Γ(φ)N

N∏

i=1

α
(φ−1)
i , (11)

where φ is a hyper-parameter controlling the width of the Dirichlet prior.

The parameters θ are estimated using the EM algorithm [21]. The EM algorithm provides

a general iterative approach for computing maximum likelihood estimates. The main advan-

tage of the EM algorithm is that it often allows treatment of difficult maximum likelihood

problems containing a large number of parameters and characterised by a highly non-linear

likelihood functions in terms of a sequence of simpler maximization problems [3].

In the E-step, the posterior probabilities are calculated using

P (Ci|x, θ
′) =

α′p(x|a′

i, σ
′

i)

p(x|θ′)
=

α′p(x|a′

i, σ
′

i)∑N
i=1 α

′p(x|a′

i, σ
′

i)
(12)

with the current parameter set

θ′ = {a′

1, σ
′

1, α
′

1, · · · , a
′

N , σ
′

N , α
′

N} . (13)
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In the M-step, the log-likelihood function is maximised by maximising Q(θ, θ′) + logp(θ),

where,

Q(θ, θ′) =

T∑

τ

N∑

i=1

P (Ci|x(τ), θ
′)logαip(x(τ)|ai, σi). (14)

The posterior probabilities, (12), are used to compute the masks in (6) via:

M k =





1, if P (Ck|x) ≥ P (Ck′|x), ∀k
′ 6= k

0, otherwise
(15)

D. Permutation Alignment

Once clustering has been completed in each frequency bin then one has an estimate of

which data points belong to each of the sources. However, the ordering of sources in each

frequency bin is arbitrary. So that in two frequency bins there is no reason to assume

that, say, the first source in one bin corresponds to the same physical source as the first

source in another frequency bin. In the permutation alignment stage, the algorithm aims to

ensure that source identities are preserved between frequency bins. This method uses the

sequence of posterior probabilities to resolve this ambiguity and align the sources between

adjacent frequency bins. This is based on the fact that the time sequences of the posterior

probabilities for one source in different frequency bins tend to be highly correlated, implying

that the source tends to be active at the same time across a range of frequency bins [20].

This is consistent with the structure of humpback whale songs. Since a vocalising whale will

emit a sequence of unit, and each unit will typically contain multiple frequencies, producing

a pattern of activation which is well correlated across frequency.

As a consequences of the clustering step, one has estimation of the posterior probabilities

P (Ci|x(τ, f)) for i = 1, · · · , N , see (12) at all time-frequency slots (τ, f). However, the class

order C1, · · · , CN may be different from one frequency to another. So there is a need to

reorder the indices so that the same index corresponds to the same source over all frequencies.

In other words, we need to identify the correct permutation for all frequencies f ,

Πf := {1, · · · , N} → {1, · · · , N} . (16)

Due to the fact that posterior probability sequences that belong to the same source
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generally have similar temporal patterns at different frequencies. The permutation Πf can

be deduced by examining the correlation coefficients between two posterior probabilities

sequences at different frequencies [20],

ρ(νi, νj) =
E {(νi − µi)(νj − µj)}

σiσj
, (17)

where νi and νj are two different posterior probabilities sequences corresponding to different

frequency bins, µi = E {νi} is the mean and σi is the standard deviation of νi. The corre-

lation coefficient of any two sequences is bounded by −1 6 ρ(υi, υj) 6 1, and becomes 1 if

two sequences are identical up to a positive scaling and an additive offset.

In order to reduce the computational load that aligning a large number of frequency

bins can impose, a strategy based on a rough global optimization followed by a fine local

optimization is utilized [25]. In the rough optimization stage, the correlation is calculated

with respect to the average posterior probabilities. In the fine optimization procedure,

under the assumption that the signals should have a harmonic structure, the correlation is

calculated between adjacent frequencies and harmonic frequencies.

III. SEPARATION OF ARTIFICIALLY GENERATED HUMPBACK SONG

A. Underwater impulse response generation

To test the effectiveness of this method for the separation of humpback songs, we first

conducted tests based on simulated data, employing recorded humpback whale songs and

modeled acoustic impulse responses. The humpback songs were recorded by a hydrophone

deployed from a small boat in the St Marie channel, Madagascar during 2012. The hy-

drophone was deployed and when an isolated humpback singer was located, the song was

then recorded for as long as the vessel remained in the vicinity of the singer. The recording

used here is of high quality with a good Signal to Noise Ratio (SNR) as the hydrophone

was close to the singer. The sampling frequency of the original recordings was 48 kHz, but

for the simulations the data was down-sampled to 8 kHz since there is little acoustic energy

above 4 kHz.

The simulated configuration is illustrated in Fig 1, where x1, x2 denote two receivers,

s1, s2, s3 denote three sources. This configuration is designed to capture the essence of the
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FIG. 1. The simulation experimental configuration for sources and receivers in the underwater

environment. x1, x2 represent two receivers, and s1, s2, s3 denote three sources.

FIG. 2. The impulse responses for both the source and the receiver located depth 50 m and their

distance apart is 510 m in the left panel and 3131 m in the right panel. The origin of the time axis

is defined so that the majority of the propagation delay has been removed.

physical environment in which real signals are recorded. The two receivers are configured

so they are the same distance, d, from central junction point, o. rk, denotes the distance

between the source, sk, and the centre of the array, and θk denotes the angle relating the

source, sk, to the array as shown in the figure. d = 150 m, r1 = 300 m, r2 = 500 m, r3 = 400

m, θ1 = 30◦, θ2 = 120◦, θ3 = 90◦, the depth of both sources and receivers is 50 m, while the

water depth is 100 m.

The impulse response from the sources to the receivers is generated using a model of

the underwater environment. The Underwater Acoustic Propagation Modelling software-

AcTUP V2.2L [26] was adopted to generate the impulse response. The fully range dependent

parabolic equation code for fluid seabeds (RAMGeo) model was employed. The marine

sediment is assumed to be sand. The compressional velocity and the shear wave velocity of

sand are set as 1798 m/s and 160 m/s respectively[27]. The compressional wave absorption

is set as 0.77 dB/wavelength, while the shear wave absorption is 3.6 dB/wavelength [28, 29].

For a fixed position of source, the frequency response in different receiver position was

obtained through RAMGeo model. The impulse response is calculated via inverse Fourier

transform of the frequency response. Two examples of impulse responses are shown in Fig

2, in which the source and the receiver are 510 m apart in the left panel, and 3131 m apart

in the right panel. Their reverberation times (T60s) are 0.4 s and 1.5 s respectively.

B. Source separation evaluation

The separation performance is evaluated using the Signal to Distortion Ratio (SDR) [30].

The estimates ŝimg
jk (t) of the spatial signals of all sources k are compared with the true source

11

Inserted Text
s

Comment on Text
Axes on Figure 2 say "/s". Should they be seconds?

Comment on Text
What about propagation in water? What kind of sound speed profile are you using?



image signals. An estimated source image can be decomposed as

ŝimg
jk (t) = simg

jk (t) + espatjk (t) + einterfjk (t) + eartifjk (t), (18)

where simg
jk (t) is the true source image and espatjk (t), einterfjk (t), eartifjk (t) are distinct error com-

ponents representing spatial (or filtering) distortion, interference and artifacts respectively.

They are computed by least-squares projection of the estimated source image onto the cor-

responding signal subspace. The total error is defined by the power ratio between wanted

and unwanted components

SDRk = 10log10

∑M
j=i

∑
t s

img
jk (t)2

∑M
j=i

∑
t(ŝ

img
jk (t)− simg

jk (t))2
. (19)

Greater values for the SDR represent better separation performance.

For the purposes of comparison, we introduce the concept of ideal time-frequency binary

masks [23], which are designed using the source information by

M ideal
k =





1, if
∑

j

∣∣simg
jk

∣∣2 >∑j

∣∣simg
jk′

∣∣2 , ∀k′ 6= k.

0, otherwise
(20)

The ideal binary masks can only be constructed in a simulation environment where the

true source signals and the impulse responses from sources to receivers are known. The

separation performance obtained through use of the ideal binary masks provides a useful

upper bound on the performance one can expect from a practical BSS method based on

binary time-frequency masking.

C. Separation results using the Sawada method

The Sawada method was employed to blindly separate multiple sources in the simulated

underwater environment. In this example, three sources and two receivers are utilized, so

the problem is under-determined, as shown in figure 1. The geometry selected was to use

r1 = 300 m, r2 = 500 m, and r3 = 400 m, with bearing θ1 = 30◦, θ2 = 120◦, θ3 = 90◦.

The sources are 30 s humpback songs resampled to a rate of 8 kHz. The FFT size and the

window shift sample size in the STFT are chosen to be 4096 and 1024 respectively, which
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correspond to 2 Hz frequency resolution in the STFT and 125 ms temporal increment. These

values were selected as they yielded the best SDRs.

The choice of the FFT size is an important parameter controlling the performance of the

separation algorithm. There are several factors that need to be considered when selecting

it. Firstly this algorithm, like many of this kind, relies on approximating convolution in the

time domain as multiplication in the frequency domain see (4). For this to hold in a digital

context with finite duration windows, then the FFT size needs to be large compared to the

duration of the impulse response. The second factor that needs to be considered is that

long FFTs result in fewer time samples in any one frequency bin (assuming a fixed duration

of a recording and fixed hop size). This provides fewer data samples in the clustering

stage, so degrading its performance. A third factor that needs to be considered is the

fact that the sparseness of the humpback whale songs in the STFT domain reduces if the

FFT size becomes too large. Typically, in a song, the units are separated by pauses of

roughly 1 s duration, if the FFT size exceeds this then the intervals between the units are

no longer observed in the STFT, since then the STFT lacks the temporal resolution needed

to distinguish the pauses. Finally as the FFT size increases the number of frequency bins

grows, leading to a greater overall computational burden.

The spectrograms of the three simulated images sources at receiver 1 are shown in Fig 3

and the mixtures at each receiver are shown in Fig 4. All the spectrograms shown in this

paper were computed using Hanning window, with window size of 1024 and 75% overlap.

The results are represented in Fig 5 by the spectrograms of the separated signals as measured

at receiver 1. It can be clearly seen that the song units from individual sources are recovered

when compared the original images sources with the separated sources. The SDR obtained

by the Sawada method in this example is 8.3 dB compared to that achieved by the ideal

binary mask which is 12.2 dB.

We also consider the scenario in which the whales are rather more distant from the

hydrophone array, specifically r1 = 3000 m, r2 = 5000 m, r3 = 4000 m. In this case the

bearings are the same as those used in the section IIIA. The spectrograms of separated

signal are presented in Fig 6 in this case and the SDR which can be achieved is reduced to

4.1 dB, and the lack of separation is evident in the spectrograms. The severe degradation of

separation performance is mainly caused by extremely long reverberation time (more than

1.5 s). Specifically, these long reverberation times require a large FFT size in STFT, which
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FIG. 3. Spectrograms of the three simulated images sources at receiver x1, displayed on a nor-

malised dB color scale.

FIG. 4. Spectrograms of the mixtures in two receivers x1 and x2, displayed on a normalised dB

color scale.

results in the sparseness property being severely degraded.

IV. SOURCE SEPARATION USING REAL RECORDINGS

A. The configuration of hydrophone arrays and the recording system

Our field site is based in the St Marie channel, Madagascar (S16◦54′,E49◦48′). Hump-

back whales migrate to the breeding grounds, which include this channel, from Antarctic,

and they are present there from July to September. Three hydrophone arrays were em-

ployed to record the humpback songs along the coast in 2013. Each array consists of three

hydrophones. At each of the three sites there is a central sealed unit which provides ampli-

fication and communicates data on-shore. The distance between the centre of the array and

each hydrophone is 150 m. The data were transferred through a 1 km cable to the shore. The

main power supply for the whole system was located near the coast. The sampling frequency

of hydrophone data is 48 kHz, and it is recorded with 16 bit resolution. The hydrophones

were placed close to the seabed in a water depth of around 30 m. The hydrophone arrays

were recording throughout the breeding period.

For this analysis the recordings were down-sampled to 8 kHz, and the sections containing

high source energy and potential multiple sources were identified. In each trial, 60 s song

mixtures were separated. Since humpback whales generally do not swim during singing [6],

the only source movement is a result of the animals drifting with current, so the whales

FIG. 5. Spectrograms of the separated image sources at receiver x1, displayed on a normalised dB

color scale.
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FIG. 6. Spectrograms of the separated image sources at receiver x1 when the whales are more

distant from the hydrophone array.

remain at approximately the same location during this 60 s period.

In such real-world situations the original source signals are unavailable, so one cannot

evaluate the separation performance: the SDR metric requires knowledge of the original

sources, so is only applicable in simulation, or controlled environments. The separation

performance is assessed subjectively by manually listening to the separated songs and visual

inspection of the separated song structures observed in the spectrogram. One measure of

success of the separation process in real recordings is to look at the structure of the song: if

the units are well defined, with clear intervals (pauses) between them then this is suggestive

of good separation.

B. Noise reduction based on median threshold scheme

The real recordings are severely contaminated by background noise, including, the noise

from the snapping shrimp on the nearby reefs. In conditions when there is significant noise

contamination, it is difficult to cluster the observed samples into the original sources in

the bin-wise clustering stage. The line orientations cannot be clearly identified because the

noise samples are widely distributed over the data space. Assuming a reasonable SNR, the

magnitude of the vector x(τ, f) is small in periods when the signal is dominated by the noise

and large at times when the whale is vocalising. This distinction is lost when the vectors

are normalised to have unit norm, as expressed in (7) and as implemented in the standard

formulation of the Sawada algorithm. The consequence is that the clustering step is applied

to a data for which the signal and noise are not readily distinguished, with the result that

the performance of this step can be severely degraded. One primitive approach to reduce

the influence of the noise samples in the clustering stage is to remove them, since the noise

disturbs the identification of the line orientations.

We propose to discard the observation samples which mainly contain noise in each fre-

quency, and the remaining samples are employed for source separation. The noise reduction

is based on the energy of each sample. Specifically, the samples with energy less than the
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weighted median of all observations in each frequency bin are considered as noise. The me-

dian operation is used here, because it is more robust (less sensitive to outliers) compared

to mean operation [31]. Let us define a quantity xMed(f) which is the median of observation

energy
∑

j |xj(τ, f)|
2 ,

xMed(f) = Medianτ (
∑

j

|xj(τ, f)|
2), (21)

where Medianτ denotes Median operation taken over time. The noise reduction mask based

on weighted median MMed(τ, f) can be constructed as

MMed(τ, f) =





1, if
∑

j |xj(τ, f)|
2
> βxMed(f)

0, otherwise
(22)

The threshold for the noise samples in this implementation is determined by a weighting

factor β and the median of the time series xMed(f) at frequency f . The parameter β is shared

with all frequency bins. The optimum value of β is the one which achieves the largest SDR

which can only be determined in simulation scenarios.

The noise reduction is realised by applying the masks MMed(τ, f) to the original obser-

vations,

xs
j(τ, f) = MMed(τ, f)xj(τ, f). (23)

The non-zero samples xs
j(τ, f) are utilized in the Sawada method. In order to demonstrate

the effectiveness of the noise reduction scheme based on the weighted median threshold, the

short range mixtures of artificial humpback song described in Section IIIA are utilized.

Three sources s1, s2, s3 and two receives x1, x2 were used in this test. r1 = 300 m, r2 = 500

m, r3 = 400 m. The FFT size is 4096 and the window hop size is 1024. The mixture at

each receiver is corrupted by additive Gaussian noise which is filtered so that its spectrum

is typical of that ocean ambient noise, with sea state 3 and moderate shipping [32].

Fig 7 compares the performance, in terms of the SDR, for the Sawada algorithm, with and

without noise reduction, for various SNR on the input mixture signals. The noise reduction

is based on the weighted median threshold and the weighting, β = 1.5 is used throughout.

The separation performance improves significantly through adopting the noise reduction

scheme when the SNR is low, which clearly demonstrates the effectiveness of the proposed

noise reduction combined with the source separation method. The separation performance
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FIG. 7. Comparison of the separation performance for the noisy source separation using the

Sawada method with and without noise reduction. The dash line denotes source separation using

the Sawada method without noise reduction, whereas, the solid line shows the results when noise

reduction is included.

FIG. 8. The spectrograms of the mixtures in three receivers of real recording. Each mixture

contains various song units overlapped in the time domain.

drops a little when using the noise reduction in the high SNR regime. This is because some

of the source information is misclassified as noise.

The proposed algorithm based on the thresholding scheme within Sawada’s method is

applied to a field recording of humpback whale song. When employing the algorithm without

noise reduction, the separation performance is unreliable and many of the mixtures cannot be

separated. However, when including the proposed noise reduction with the Sawada method,

most of the mixtures can be successfully separated.

One successful separation example of real recording is detailed in the following. When

performing the noise reduction, the parameter β was set as 1.5. The spectrograms of three

hydrophone signals collected from the array in St Marie are shown in Fig 8 and the separation

results are shown in Fig 9. The bandwidth of spectrograms shown in this example is up to

2 kHz, since the recordings were dominated by noise above 2 kHz. The sampling frequency

of the signal is still 8 kHz. The FFT and window hop sizes are 4096 and 1024, respectively,

corresponding to a frequency resolution of 2 Hz and time increment of 125 ms. When

listening to the mixtures, it is difficult to reliably identify the number of sources. However,

we assumed that the number of sources was 3.

The separated sources, shown in Fig 9, are regarded as well separated based on the struc-

ture pattern of separated songs. Specifically, the separated source 1 contains mainly loud

descending sweeps. The separated source 2 contains mainly sustained tones with harmonic

structure. The separated source 3 contains some faint grunts at very low frequency (below

200 Hz), which are quite hard to identify. The regular structures observed in these separated

recordings are typical of clean recording on the spectrograms of humpback whale song and

so are indicative of successful separation.
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FIG. 9. The spectrograms of the separated sources using the noise reduction Sawada method. The

separated source 1 contains mainly downward sweeps, while the separated source 2 mainly contains

harmonic sustained tones, and the separated source 3 contains faint grunts at very low frequency

(below 200 Hz).

V. CONCLUSION

The effectiveness and robustness of the Sawada method for humpback songs separation

are verified through separation of artificial mixtures of humpback whale song generated

by modelling the underwater impulse responses. For practical implementation on recorded

data on an array of 3 hydrophones, the separation performance of the conventional algorithm

was largely unacceptable. The primary cause of the poor performance was the high level

of noise encountered. This proposed noise reduction method offers significant qualitative

improvement in the outputs. The separated signals generated by this approach lack the

pristine quality of recordings made near a single singing whale. But do allow one to identify

which components in a set of recordings are common to one source.

This paper has demonstrated there is some potential for applying blind source separation

method in bioacoustics applications. The potential for success is based on the observations

that these vocalisations are usually sparse in the STFT domain, one does, with current

methods, need to assume that sources are stationary during the measurement interval. The

problems faced in applying the approach include the long reverberation times common in

underwater acoustic environment, coupled to high levels of noise. This paper has demon-

strated the effectiveness of including noise reduction within the Sawada method and shown

that real acoustic environments need not prevent successful separation.

There do remain outstanding problems. Foremost of these is determining the number of

sources in practical problems. Further the methods could find more utility if they could be

redesigned to operate in an iterative, rather than block-based fashion, which would make

them more compatible with real-time implementation.
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Fig. 1. The simulation experimental configuration for sources and receivers in the

underwater environment. x1, x2 represent two receivers, and s1, s2, s3 denote three

sources.

Fig. 2. The impulse responses for both the source and the receiver located depth 50

m and their distance apart is 510 m in the left panel and 3131 m in the right panel.

The origin of the time axis is defined so that the majority of the propagation delay

has been removed.

Fig. 3. Spectrograms of the three simulated images sources at receiver x1, displayed

on a normalised dB color scale.

Fig. 4. Spectrograms of the mixtures in two receivers x1 and x2, displayed on a

normalised dB color scale.

Fig. 5. Spectrograms of the separated image sources at receiver x1, displayed on a

normalised dB color scale.

Fig. 6. Spectrograms of the separated image sources at receiver x1 when the whales

are more distant from the hydrophone array.

Fig. 7. Comparison of the separation performance for the noisy source separation using

the Sawada method with and without noise reduction. The dash line denotes source

separation using the Sawada method without noise reduction, whereas, the solid line

shows the results when noise reduction is included.

Fig. 8. The spectrograms of the mixtures in three receivers of real recording. Each

mixture contains various song units overlapped in the time domain.

Fig. 9. The spectrograms of the separated sources using the noise reduction Sawada

method. The separated source 1 contains mainly downward sweeps, while the sepa-

rated source 2 mainly contains harmonic sustained tones, and the separated source 3

contains faint grunts at very low frequency (below 200 Hz).
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