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In this paper, the issue of designing non-fragileH∞ multivariable PID controllers with derivative filters is investigated.
In order to obtain the controller gains, the original systemis associated with an extended system such that the PID
controller design can be formulated as a static output-feedback (SOF) control problem. By taking the system aug-
mentation approach, the conditions with slack matrices forsolving the non-fragileH∞ multivariable PID controller
gains are established. Based on the results, linear matrix inequality (LMI) based iterative algorithms are provided to
compute the controller gains. Simulations are conducted toverify the effectiveness of the proposed approaches.
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1. Introduction

Proportional-integral-derivative (PID) controllers arefound in almost all areas of control application.
It is estimated that more than 90% control loops are of PID type and actually most of them are with
the derivative gain set to zero (PI control)(Knospe 2006). Due to its popularity in industrial applications,
many formulations of PID controller gain tuning have been proposed since the past decades (Åström and
Hägglund 2006), and even in recent years. For instance, a methodology for tuning the gains of fuzzy PID
controllers is proposed by taking explicitly into account the closed-loop system performance(Gil et al.
2015). In Jung et al. (2015), an adaptive PID speed control scheme for permanent magnet synchronous
motor drives is developed. For open-flow canal control systems, a gain-scheduled Smith Predictor PID-
based LPV controller is proposed in Bolea et al. (2014). A neural PID control approach is proposed for
robot manipulators with application to an upper limb exoskeleton (Yu and Rosen 2013). Some novel tuning
approaches of fractional order PID controllers for controlsystems are proposed recently(Fergani and Charef
2016; Bettou and Charef 2009).

For industrial processes of multivariable nature, sometimes multivariable control approaches must be
used to achieve satisfactory performances. This motivatesto derive effective approaches to designing PID
controllers for multi-inputs multi-outputs (MIMO) systems (Gündeş et al. 2009; Zhang et al. 2012; Wu et
al. 2011; Vu and Lee 2010; Bianchi et al. 2008; Zhang et al. 2004). Decentralised PID controllers which
are also referred to as multi-loop PID controllers prevail in multivariable processes because they have the
advantage of a simpler structure and, accordingly, requirefewer parameters to tune (Palmor et al. 1995).
However, in some situations a decentralised PID controllermay fail to achieve a satisfactory performance
when loop interaction is significant. Though introducing some decoupling techniques (Wang et al. 1997;
Halevi et al. 1997; Wu et al. 2009; Jin and Liu 2014) may improve these situations, it may still fail espe-
cially for high-dimensional systems of which loop interactions are severe. In such cases, a centralised PID
controller is desirable. As compared with a PID controller of decentralised type, the difficulty for tuning a
centralised PID controller lies in much more gain parameters should be tuned because the whole loop inter-
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action of a system has been considered. In the past decades, alot of effort has been devoted to this area, and
some research works have been proposed to tune a centralisedPID controller via LMI approaches (Zheng et
al. 2002; Lin et al. 2004; He and Wang 2006). For these approaches it is often assumed that PID controllers
are always implemented exactly. It is worth pointing out that in the implementation of controllers, many
factors should be considered, for example, finite word length in digital microprocessors, the imprecision
inherent in analog systems and the expectation of allowabletuning for the implemented controller gains
(Keel and Bhattacharyya 1997). This fact leads to the so-called non-fragile or resilient control problem.
Actually, a lot of research works related to such a problem have been investigated in the past decades (Yang
and Wang 2001; Yang and Che 2008; Zhang et al. 2014; Che et al. 2014; Shen et al. 2014; Yue and Lam
2005; Tandon and Dhawan 2016; Huang and Yang 2015). Norm-bounded gain perturbations are considered
in the control for active vehicle suspensions (Du et al. 2003) and uncertain linear neutral delay systems (Xu
et al. 2004). In Shu et al. (2009), a special expression is used to model the multiplicative controller gain
variations in the stabilization for a class of discrete-time linear systems with missing data in actuators.
Recently, the stochastic perturbations are also considered in the filtering and control for networked control
systems (Hu et al. 2015; Li et al. 2015). Moreover, it is notedthat many previous research works of non-
fragile control are concerned with the state-feedback control, output-feedback control and filtering. These
motivate us to design PID controllers which are insensitiveto gain perturbations, that is, non-fragile PID
controllers. Although, there are a few results concerning non-fragile PID control (Ho 2000; Ho et al. 2001;
Li et al. 2006), only single-input single-output (SISO) systems are considered. Another practical problem
that arises in industrial PID control is the noise effect of the derivative action. Most of the previous results
concerning PID controller designs often do not work properly since they often ignore this effect. It is known
that differentiation is always sensitive to noise and thus the derivative action of practical PID controllers
may amplify high-frequency noise. Then the input signal canbe so large that the performance of the con-
trolled system may become poor and the system may become unstable in the end. Such an issue can be
solved by introducing a low-pass filter which helps to limit the high-frequency gain (Åström and Hägglund
2006). A PID controller with a derivative filter is often referred to as a PIDF controller and some results on
the PIDF controllers for SISO systems can be found in (Knospe2006; Hägglund 2012, 2013). However, to
the authors’knowledge, little results about PIDF control are available for MIMO systems, especially for the
case with controller gain perturbations considered.

With the above background as motivation, we study in this paper the issue of non-fragile PID controller
design for MIMO systems. In particular, we focus on the issueof synthesizing a stabilizing PID controller
for a linear continuous-time system while satisfying anH∞ norm performance with a prescribed level. To
tackle this issue, we extend the original system to an associated system such that the PID control problem
can be formulated into designing a static output-feedback (SOF) controller. Also, additive controller gain
perturbations and multiplicative controller gain perturbations are considered in the controller design. Fol-
lowing the idea of system augmentation (Shu and Lam 2009), the conditions with slack matrices for solving
non-fragileH∞ MIMO PID controller gains are established. Based on these results, a suitable PID control
law can be constructed in terms of a solution to a certain matrix inequality. Linear matrix inequality (LMI)
based iterative algorithms are provided to compute the controller gains. Finally, simulations are conducted
to verify the effectiveness of the non-fragile design.

Notations: Throughout this paper, for real symmetric matricesX andY, the notationX ≥Y (respectively,
X >Y) means that the matrixX−Y is positive semi-definite (respectively, positive definite). I is the identity
matrix with appropriate dimension. The superscript T represents the transpose. For a transfer function
matrix G(s), ‖G‖∞ represents theH∞ norm of G(s). The symbol∗ is used to denote a matrix which can
be inferred by symmetry. The shorthand notionSym(X) representsX+XT. Matrices are assumed to have
compatible dimensions for algebraic operations if not explicitly stated.
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2. Preliminaries

Consider the following linear continuous-time system:











ẋ(t) = Ax(t)+Bu(t)+Bww(t)

z(t) =Cx(t)+Dzuu(t)+Dzww(t)

y(t) =Cyx(t)

(1)

and a PID controller with a derivative (first-order low-pass) filter:

{

u(t) = KPy(t)+KI

∫ t
0 y(η)dη +KDyD(t)

T ẏD(t)+yD(t) = ẏ(t)
(2)

wherex(t) ∈R
n is the state vector,u(t) ∈ R

r is the input vector,y(t) ∈ R
m is the output vector,A,B,Bw,C,

Dzu,Dzw andCy are system matrices with appropriate dimensions. MatrixT := diag(τ1,τ2, . . . ,τr) andτ j >
0 for j = 1,2, . . . , r, are the time constants.KP,KI,KD ∈R

r×m are gains of the PID controller parameters to
be determined. For notational convenience, letK =

[

KP KI KD

]

.

Remark 1. The filter in the PID controllers design provides the advantages of removing the undesired
noise components from the measurement signal and compensating for the undesired dynamics in the pro-
cess (Ḧagglund 2012). Proper filtering action is of great significance for the overall performance of the
control system, especially when the controller is a PID one,since the structure of this controller has limita-
tions(Romero Segovia et al. 2013; Hägglund 2013). In this paper, the first-order low-pass filteris introduced
to the derivative term of the controller as shown in (2).

The objective of the PID controller design is to find a set of gains KP,KI,KD such that the control
system fulfills given specifications or performances. Note that inaccuracies and uncertainties occurring in
the implementation of a designed controller do exist. It is necessary to consider the gain perturbations
of the PID controller parameters, which can be described as∆KP,∆KI,∆KD with respect toKP,KI,KD.
Let ∆K =

[

∆KP ∆KI ∆KD

]

. In this paper, two types of controller gain perturbations will be considered as
follows.

1) Norm-bounded additive perturbations:

∆KP = M1F1N1, ∆KI = M2F2N2, ∆KD = M3F3N3 (3)

2) Norm-bounded multiplicative perturbations:

∆KP = KPM̃1F1N1, ∆KI = KIM̃2F2N2, ∆KD = KDM̃3F3N3 (4)

whereMi, M̃i andNi for i = 1,2,3, are known matrices with appropriate dimensions andFi for i = 1,2,3,
are unknown constant matrices satisfying

FT
i Fi ≤ I (5)

Remark 2. The multiplicative perturbation form described in (4) represents controller input perturbation.
The dual case:∆KP = M̃1F1N1KP, ∆KI = M̃2F2N2KI, ∆KD = M̃3F3N3KD, which corresponds to con-
troller output perturbation, will not be considered in the exposition. However, it can be treated similarly
using the system augmentation approach.

The issue of designing non-fragileH∞ PID controllers (NFHPID) in this paper is addressed as follows.
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Problem NFHPID: Design a PID controller:

{

u(t) = (KP+∆KP)y(t)+(KI+∆KI)
∫ t

0 y(η)dη +(KD+∆KD)yD(t)

T ẏD(t)+yD(t) = ẏ(t)
(6)

such that the linear continuous-time system in (1) is asymptotically stable and satisfied:

‖Tzw‖∞ < γ , γ > 0 (7)

where∆KP,∆KI,∆KD are the controller gain perturbations defined in (3)–(5),Tzw represents the operator
of linear continuous-time system in (1) fromw(t) to z(t).

In order to findK, we can extend the linear continuous-time system with a PID controller to another
system by defining a new state vector ¯x(t) =

[

x(t)T ∫ t
0 y(η)Tdη T yD(t)T

]T
and a new output vector ¯y(t) =

[

y(t)T ∫ t
0 y(η)Tdη yD(t)T

]T
, respectively. Thus an extended system is obtained as follows:











˙̄x(t) = Āx̄(t)+ B̄u(t)+ B̄ww(t)

z(t) = C̄x̄(t)+Dzuu(t)+Dzww(t)

ȳ(t) = C̄yx̄(t)

(8)

with an equivalent PID controller of SOF form:

u(t) = (K+∆K)ȳ(t) (9)

where

Ā=





A 0 0
Cy 0 0

CyA 0 −T −1



 , B̄=





B
0

CyB





B̄w =





Bw

0
CyBw



 , C̄ =
[

C 0 0
]

, C̄y =





Cy 0 0
0 I 0
0 0 T −1





This SOF control system in (8)–(9) can be rewritten in closed-loop form:

{

˙̄x(t) = Âx̄(t)+ B̄ww(t)

z(t) = Ĉx̄(t)+Dzww(t)
(10)

whereÂ= Ā+ B̄(K+∆K)C̄y andĈ= C̄+Dzu(K+∆K)C̄y. Through this extension, the issue of non-fragile
H∞ PID controller design is reduced to the following problem.

Problem SOF: Design a SOF controller:

u(t) = (K+∆K)ȳ(t) (11)

such that the closed-loop system in (10) is asymptotically stable and satisfied

‖T̄zw‖∞ < γ , γ > 0 (12)
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where∆K is the controller gain variation,̄Tzw represents the operator of linear continuous-time system in
(10) fromw(t) to z(t). Note thatT̄zw= Tzw , and thereby in order to solveProblem NFHPID, it is sufficient
to solveProblem SOF.

Remark 3. Through the aforementioned manipulation,Problem NFHID is formulated asProblem SOF.
The advantage of this formulation lies in the fact that no assumptions or conditions are needed while
structural assumption and condition are considered in Zheng et al. (2002); Lin et al. (2004); He and Wang
(2006). For example, in Zheng et al. (2002), CyBw = 0 and I−KDCyB invertible are needed for solving the
H∞ control problem.

Note thatK+∆K is embedded between̄B andC̄y, andDzu andC̄y. By the system augmentation approach

(Shu and Lam 2009), a state vector ˜x(t) = [x̄(t)T u(t)T]
T

is introduced, and the closed-loop system in (10)
can be further augmented to give

{

E ˙̃x(t) = Ax̃(t)+Bww(t)

z(t) = Cx̃(t)+Dw(t)
(13)

where

E =

[

I 0
0 0

]

, A =

[

Ā B̄
(K+∆K)C̄y −I

]

, Bw =

[

B̄w

0

]

, C =
[

C̄ Dzu
]

, D = Dzw

In this augmentation representation,K +∆K has been separated from̄B andC̄y, andDzu andC̄y, which
makes matrix parameterizing more flexible. Before ending this section, the following proposition and lem-
ma which are useful in the sequel are given.

Proposition 1. For ∆K ≡ 0, the following statements are equivalent:
1) The linear continuous-time system in (10) is asymptotically stable and satisfied‖T̄zw‖∞ < γ ,γ > 0.
2) There exists a matrix P1 > 0 such that





Sym(ÂTP1) P1B̄w ĈT

∗ −γ I DT
zw

∗ ∗ −γ I



< 0

3) There exist matrices P1 > 0, P2 > 0 and a sufficiently large scalarα > 0 such that

Θ =

[

Sym(A TP)+Λ S T

∗ −γ I

]

< 0 (14)

where

A =









Ā B̄ B̄w

KC̄y −I 0
0 0 0
0 0 0









, P =









P1 0 0
−αP2KC̄y αP2 0

P1 0 0
−αP2KC̄y αP2 0









Λ =





0 0 0
0 0 0
0 0−γ I



 , S =
[

C̄ Dzu Dzw
]

4) There exist matrices P1 > 0, P2 > 0, Gi (i = 1,2, . . . ,6), H j ( j = 1,2, . . . ,8) and a sufficiently large scalar
α > 0 such that
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Σ =





Sym(A TG )+Λ PT−G T+A TH S T

∗ −H −H T 0
∗ ∗ −γ I



< 0 (15)

where

G =









G1 G2 G3
−αP2KC̄y αP2 0

G4 G5 G6
−αP2KC̄y αP2 0









, H =









H1 H2 H3 H4
0 P2 0 0

H5 H6 H7 H8
0 0 0 P2









Proof. Statements 1) and 2) constitute the well-known Bounded RealLemma (Gahinet and Apkarian
1994). Then the whole proof can be obtained by using a procedure similar to the proofs of Theorems 1 and
2 in Shu and Lam (2009). �

Remark 4. Statements 3) and 4) in Proposition 1 are the equivalent characterizations for the Bounded Real
Lemma. Note that in these statements, the Lyapunov matrix P1 has been separated from the system matri-
ces, which may introduce more flexibility for parametrizingK. In particular, Statement 4) is obtained by
introducing the slack matrices (Shu and Lam 2009; De Oliveira et al. 1999; Geromel and Colaneri 2006),
which helps reduce the conservatism and improve the solvability of the iterative computation. Therefore,
the conditions for the existence of a solution ofProblem NFHPID to be presented later are based on
Statement 4).

Lemma 1. (Xie et al. 1991)Given a real symmetric matrixU , real matricesV , W with appropriate
dimensions, then

U +V X W +W
T
X

T
V

T < 0

for all X satisfyingX TX ≤ I if and only if there exists a scalarµ > 0 such that

U +µV V
T+µ−1

W
T
W < 0

3. Main results

The aim of this paper is to design a non-fragile PID controller for the linear continuous-time system in (1)
such that it is stable under theH∞ performanceγ . Hence, the conditions for designing desired non-fragile
controllers are obtained in the following theorems.

Theorem 1. For ∆K defined in (3) and (5),Problem NFHPID has a solution if there exist matrices P1 > 0,
P2 > 0, Gi (i = 1,2, . . . ,6), H j ( j = 1,2, . . . ,8), L,M, a sufficiently large scalarα > 0 and a scalarε > 0
such that

Ξ̄(α ,M) =





Ξ εξP2M̄ ϒTN T

εM̄ TP2ξT −ε I 0
N ϒ 0 −ε I



< 0 (16)

whereM̄ =
[

M1 M2 M3
]

, F = diag(F1, F2, F3), N = diag(N1, N2, N3),

6



January 19, 2017 International Journal of Systems Science NFHPID

Ξ =

























Ξ11 Ξ12 Ξ13 P1−GT

1 + ĀTH1 ĀTH2+C̄T
y LT P1−GT

4 + ĀTH3 ĀTH4 C̄T

∗ Ξ22 B̄TG3+GT

2 B̄w −GT

2 + B̄TH1 B̄TH2−P2 −GT

5 + B̄TH3 B̄TH4 DT
zu

∗ ∗ Ξ33 −GT

3 + B̄T
wH1 B̄T

wH2 −GT

6 + B̄T
wH3 B̄T

wH4 DT
zw

∗ ∗ ∗ −H1−HT

1 −2P2 −HT

6 0 0
∗ ∗ ∗ −2P2 −HT

6 0 0
∗ ∗ ∗ ∗ ∗ −H7−HT

7 −H8 0
∗ ∗ ∗ ∗ ∗ ∗ −2P2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ I

























(17)

Ξ11 =Sym(ĀTG1−2αMTLC̄y)+2αMTP2M

Ξ12 =ĀTG2+GT

1 B̄+2αC̄T

y LT

Ξ13 =ĀTG3+GT

1 B̄w

Ξ22 =B̄TG2+GT

2 B̄−2αP2

Ξ33 =B̄T

wG3+GT

3 B̄w− γ I

ξT =
[

−2αM −2α 0 0 I 0 0 0
]

, ϒ =
[

C̄y 0 0 0 0 0 0 0
]

Under this condition, a non-fragile PID controller gain K=
[

Kp Ki Kd
]

can be obtained as

K = P−1
2 L (18)

Proof. SubstitutingK +∆K into (15) and expanding it yield

Σ̄ =

























Σ11 Σ12 Σ13 P1−GT

1 + ĀTH1

∗ Σ22 B̄TG3+GT

2 B̄w −GT

2 + B̄TH1

∗ ∗ Σ33 −GT

3 + B̄T
wH1

∗ ∗ ∗ −H1−HT

1
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

ĀTH2+C̄T
y (K+∆K)TP2 P1−GT

4 + ĀTH3 ĀTH4 C̄T

B̄TH2−P2 −GT

5 + B̄TH3 B̄TH4 DT
zu

B̄T
wH2 −GT

6 + B̄T
wH3 B̄T

wH4 DT
zw

−H2 −HT

5 −H3 −H4 0
−2P2 −HT

6 0 0
∗ −H7−HT

7 −H8 0
∗ ∗ −2P2 0
∗ ∗ ∗ −γ I

























< 0 (19)
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where

Σ̄11 =Sym(ĀTG1)−2αC̄T

y (K+∆K)TP2(K+∆K)C̄y

Σ̄12 =ĀTG2+GT

1 B̄+2αC̄T

y (K+∆K)TP2

Σ̄13 =ĀTG3+GT

1 B̄w

Σ̄22 =B̄TG2+GT

2 B̄−2αP2

Σ̄33 =B̄T

wG3+GT

3 B̄w− γ I

According to Proposition 1,Problem SOF has a solution if and only if there exist matricesP1 > 0, P2 > 0,
Gi (i = 1,2, . . . ,6), H j ( j = 1,2, . . . ,8) and a sufficiently large scalarα > 0 such that (19) holds. Thus now
we have to prove (19). It follows fromP2 > 0 and (18) thatL = P2K. The additive gain perturbations can
be compactly expressed as∆K = M FN . By Schur complement equivalence,Ξ̄ < 0 is equivalent to

Ξ+ εξP2M (ξP2M )T+
1
ε

ϒT
N

T
N ϒ < 0 (20)

It is noted thatFi for i = 1,2,3, satisfying (5) is equivalent to thatF satisfiesFTF ≤ I . From Lemma 2 and
(20), it can be obtained that

Ξ+Sym(ξP2M FN ϒ)< 0

It follows from ((K+∆K)C̄y−M)TP2((K+∆K)C̄y−M)≥ 0 that

−2αC̄T
y (K+∆K)TP2(K+∆K)C̄y ≤−Sym(2αMTP2KC̄y)+2αMTP2M−

Sym(2αMTP2∆KC̄y)

Therefore by observinḡΣ11 andΞ11, we have

Σ̄ ≤ Ξ+Sym(ξP2M FN ϒ)< 0

This concludes thatProblem SOF has a solution which also means thatProblem NFHPID has a solution
if (16) holds. The proof is completed. �

The multiplicative gain perturbations can be written as∆K =KM̃ FN compactly whereM̃ = diag(M̃1,
M̃2, M̃3). Then by following a similar line from the proof in Theorem 1,the condition for designing desired
non-fragile controllers is obtained as follows.

Theorem 2. For ∆K defined in (4) and (5),Problem NFHPID has a solution if there exist matrices P1 > 0,
P2 > 0, Gi (i = 1,2, . . . ,6), H j ( j = 1,2, . . . ,8), L,M, a sufficiently large scalarα > 0 and a scalarε > 0
such that

Ξ̃(α ,M) =





Ξ εξLM̃ ϒTN T

εM̃ TLTξT −ε I 0
N ϒ 0 −ε I



< 0 (21)

where F,N , Ξ, ξ andϒ are defined in Theorem 1. Under this condition, a non-fragilePID controller gain
K =

[

Kp Ki Kd
]

can be obtained as

K = P−1
2 L (22)

8
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Remark 5. Additive gain perturbations have been considered in Theorem 1 while the multiplicative gain
perturbations have been considered in Theorem 2. If the controller gain perturbations are neglected, that
is ∆K ≡ 0, the condition (16) in Theorem 1 and the condition (21) in Theorem 2 are both reduced to that

Ξ(α ,M)< 0 (23)

It is worth mentioning that (23) is a sufficient condition forthe existence of a solution forProblem NFH-
PID (which is also a necessary and sufficient condition for the existence of a solution forProblem SOF)
when∆K ≡ 0. Hence one can design a nominal PID controller by computing this condition directly in the
algorithm.

Remark 6. In this paper, we focus on the PID controller of centralised type whose structure is more
complicated. By observing its controller gains KP,KI,KD ∈ R

r×m, the number of parameters to find is
3rm. Particularly, if r = m, it is possible to design a decentralised PID controller ofwhich gains have the
following structure:

K =
[

KP KI KD

]

=











kP1 0 · · · 0 kI1 0 · · · 0 kD1 0 · · · 0
0 kP2 · · · 0 0 kI2 · · · 0 0 kD2 · · · 0

0 0
. . . 0 0 0

. . . 0 0 0
. . . 0

0 0 · · · kPr 0 0 · · · kIr 0 0 · · · kDr











∈ R
r×3m (24)

and the number of parameters to find is3r. It is obvious that the centralised PID controller requires many
more parameters to tune compared to the decentralised type.Furthermore, if P2 and L defined in previous
Theorems 1 and 2 have the following structures:

P2 =











p21 0 · · · 0
0 p22 · · · 0

0 0
. . . 0

0 0 · · · p2r











, L =











l11 0 · · · 0 l21 0 · · · 0 l31 0 · · · 0
0 l12 · · · 0 0 l22 · · · 0 0 l32 · · · 0

0 0
. . . 0 0 0

. . . 0 0 0
. . . 0

0 0 · · · l1r 0 0 · · · l2r 0 0 · · · l3r











where p2 j , l1 j , l2 j and l3 j for j = 1,2, . . . , r, are scalars, we can design decentralised PID controllers with
gains as shown in (24) under similar conditions (16), (21), and (23), though the controllers may not achieve
better performances than the centralised type.

Remark 7. SinceProblem NFHPID has been transformed toProblem SOF, one can solve the conditions
(16), (21) and (23) by constructing an LMI based iterative algorithm which is similar to Algorithm 1 in
Shu and Lam (2009). In addition, it is worth pointing out thatthe initial values in the algorithm can be
optimised to improve the solvability of it. For details about the algorithm and the optimisation of initial
values, one may refer to (Shu and Lam 2009).

4. Illustrative examples

To illustrate the use of the proposed approaches, simulations are conducted on the design of PID con-
troller in this section. Examples 1 is used to verify the effectiveness of our proposed approach and the PID
controllers for the system in Zheng et al. (2002) are designed. In Examples 2 and 3, the non-fragility of
PID controllers under two types of gain perturbations is verified and comparisons of them are provided as
well. For convenience of illustration, matrixT = τ I whereτ = 0.015915 is used in the simulations. The
value of the low-pass filter time constant corresponds to a cut-off frequency of 10Hz.
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4.1. Example 1

For the purpose of comparison, we consider and discuss the aircraft (AC) state-space model (Zheng et al.
2002) with the following parameters:

A=

















−0.0266−36.6170−18.8970−32.0900 3.2509 −0.7626
0.0001 −1.8997 0.9831 −0.0007 −0.1708 −0.0050
0.0123 11.7200 −2.6316 0.0009 −31.6040 22.3960

0 0 1.0000 0 0 0
0 0 0 0 −30.0000 0
0 0 0 0 0 −30.0000

















, B=

















0 0
0 0
0 0
0 0
30 0
0 30

















Bw =
[

0 0 0 0 30 0
]

T
, C =

[

0 1 0 0 0 0
]

Cy =

[

0 1 0 0 0 0
0 0 0 1 0 0

]

, Dzu=
[

1 1
]

, Dzw=
[

0
]

Simulation results on the design of PID controllers for the AC model are summarized in Table 1. The result
solved by the approach of (Zheng et al. 2002) is reproduced here as well.

For this model, centralised and decentralised PID controllers have been designed by our proposed ap-
proaches without perturbations considered. It can be seen from Table 1 that the proposed centralised ap-
proach achieves a better performance than the proposed decentralised one. Besides, both our approach
(centralised) and the approach of (Zheng et al. 2002) achieve the same performance levelγ = 1.0000. It
can be observed that many closed-loop poles obtained from their method are very close to the stability
boundary which is undesirable. Simulation results have verified the effectiveness our proposed approaches.

Table 1. PID-controller andH∞ performance of AC model.

Approach Controller gains Closed-loop poles Performance

Proposed
(Centralised)

KP =

[

26.203 −6.0394
2.5499−5.9430

]

KI =

[

16.413 −1.7124
−0.55271−5.4532

]

KD =

[

6.8425 −6.4368
−0.95989 0.60049

]

−69.230
−42.073± j39.294
−13.895± j16.880

−0.024923
−0.59398± j0.31582
−3.9208±3.2282

1.0000

Proposed
(Decentralised)

KP =

[

1.4115 0
0 −3.2398

]

KI =

[

9.0245 0
0 −13.3225

]

KD =

[

0.34970 0
0 −0.47470

]

−74.639
−60.770
−31.870

−8.8086± j21.264
−2.1328± j4.9966
−0.51820± j0.69770

−0.02480

1.5240

(Zheng et al. 2002)

KP =

[

422.17 221.64
−188.84 −104.44

]

KI =

[

0.38450−0.50190
0.10680−0.33730

]

KD =

[

48.030 −31.850
−19.310 8.8000

]

−0.00010
−0.0020000
−0.0050000
−0.72000
−19.910

−48.020± j77.790
−191.00

1.0000

10
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4.2. Example 2

In this example, we consider a system which is the longitudinal motion of a VTOL helicopter (HE1)
(Leibfritz 2003) with the following given model data:

A=









−0.0366 0.0271 0.0188−0.4555
0.0482 −1.01 0.0024−4.0208
0.1002 0.3681−0.707 1.42

0 0 1 0









, B=









0.4422 0.1761
3.5446−7.5922
−5.52 4.49

0 0









, CT

y =









0
1
0
0









We chooseC =
[√

2 0 0 0
]T

, Bw =
[

0.0468 0 0.0437 0
]

T
, Dzw= 0 andDzu=

[√
2/2 0

]

, respectively, so
thatCyBw = 0 (Assumption 1 in Zheng et al. (2002)) holds. To verify the non-fragility of PID controllers,
gain perturbation parameters are given as follows.

• Norm-bounded additive form:M1 =
[

−0.00016782−0.00081491
]T

, M2 = [−0.00062758−
0.0022820]T, M3 =

[

0.000049118 0.000062182
]

T
, N1 = N2 = N3 = 1.

• Norm-bounded multiplicative form:M̃1 =−0.057576,M̃2 = 0.0012543,M̃3 =−0.048352,N1 =
N2 = N3 = 1.

Simulation results on the design of PID controllers for the HE1 model are summarized in Table 2. The
result solved by the approach of (Zheng et al. 2002) is also provided here. Note that the non-fragile additive
and multiplicative PID controllers have their guaranteedH∞ performance values given by 0.85822 and
0.56273, respectively.

In order to verify the non-fragility of controllers, 50 samples of Fi ∈ R for i = 1,2,3, are randomly
generated from the standard uniform distribution on the interval (−1,1). Under the gain perturbations,
stability andH∞ performance results of this model with PID controllers in Table 2 are given in Tables 3
and 4. Also, the perturbed poles of closed-loop system underadditive and multiplicative perturbations are
presented in Figures 1 and 2. It can be seen from Tables 3 and 4,and Figures 1 and 2 that under the gain
perturbations, the PID controllers designed by our proposed approach are always stabilizing but the one
designed by (Zheng et al. 2002) is not. Furthermore, from theview of H∞ performance, the results of PID
controllers designed by our proposed approach in Table 3 show that the non-fragile PID controller achieves
higher reliability than the nominal PID controller. This isbecause through our approach, the non-fragile
PID controllers have the guaranteedH∞ performances (shown in Table 2 as bracketed numbers) while the
PID controllers designed by the proposed nominal approach and that of (Zheng et al. 2002) do not have.

4.3. Example 3

Consider the system (NN17) borrowed from (Leibfritz 2003) as in (1) with the following parameters:

A=





0 −1 2
1 −2 3
0 1 0



 , B=





1 0
0 0
0 −1



 , Bw =





1
−1
0



 , Cy = [1 0 0]

Dzu=

[

0 1
0 0

]

, Dzw=

[

0
0

]

, C=

[

1 0 1
1 0 1

]

(25)

Similarly, the perturbation parameters are given as follows.

• Norm-bounded additive form:M1 =
[

0.064950 0.052817
]

T
, M2 =

[

0.023166 −0.085149
]

T
, M3

=
[

−0.048706 0.13497
]

T
, N1 = N2 = N3 = 1.

• Norm-bounded multiplicative form:M̃1 = 0.019154,M̃2 = −0.018656,M̃3 = −0.020334,N1 =
N2 = N3 = 1.

11
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Since the assumptionCyBw = 0 (Assumption 1 in Zheng et al. (2002)) does not hold for this system, the
approach of (Zheng et al. 2002) is not applicable here when theH∞ performance is considered. For compar-
ative purpose, we use the stabilization approach of (Zheng et al. 2002) to obtain the controller and obtain
its nominal performance (guaranteed performance cannot becomputed since the assumptionCyBw = 0 is
not satisfied in their method). Simulation results on our three design conditions and the stabilization ap-
proach of (Zheng et al. 2002) are given in Table 5. Note that for the non-fragile additive and multiplicative
PID controllers, the guaranteedH∞ performances are 14.029 and 14.762, respectively. Also theH∞ perfor-
mance value of closed-loop system with PID controller by theapproach of (Zheng et al. 2002) is 57.692.
50 samples ofFi ∈ R for i = 1,2,3, are randomly generated from the standard uniform distribution on the
interval(−1,1). Under the gain perturbations, stability andH∞ performance results of this model with the
PID controllers are shown in Tables 6 and 7. The perturbed poles of closed-loop system are presented in
Figures 3 and 4 .

Simulation results in Tables 6 and 7, and Figures 3 and 4 show that the PID controllers designed by

Table 2. PID-controller andH∞ performance of HE1 model.

Approach Controller gains Closed-loop poles

Nominal
Performance
(Guaranteed
Performance)

Proposed
(No perturbation)

KP =

[

1.0864
5.0973

]

KI =

[

0.032433
0.10730

]

KD =

[

−0.39615
4.6688

]

−2413.1
−0.60537± j0.86869
−0.22182± j0.15459

−0.019836

0.22136

Proposed
(Additive perturbation)

KP =

[

3.5878
19.265

]

KI =

[

0.28716
2.2423

]

KD =

[

−0.071181
10.787

]

−5357.2
−0.096218

−0.48116± j0.51279
−0.53359
−0.72961

0.14714
(0.85822)

Proposed
(Multiplicative perturbation)

KP =

[

0.093724
0.49328

]

KI =

[

0.068802
0.27793

]

KD =

[

0.29087
1.6678

]

−797.74
−0.27045

−0.24447± j0.54723
−0.16483± j0.33556

0.22660
(0.56273)

(Zheng et al. 2002)

KP =

[

0.62414
−0.52290

]

KI =

[

−0.024578
−0.85139

]

KD =

[

−0.0069242
−0.13600

]

−641.99
−1.0001± j1.3717

−0.21001± j0.015734
0.24570

12
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Table 3. Stability andH∞ performance of HE1 model (Additive perturbation) over 50 trials.

Approach Stability Performance
Min Max Mean Standard deviation

Proposed
(No perturbation) 100% 0.16960 6.8316 0.82261 1.3078

Proposed
(Additive perturbation) 100% 0.14533 0.14831 0.14724 0.00072563

(Zheng et al. 2002) 52% 0.20088 0.24839 0.21635 0.011695

Table 4. Stability andH∞ performance of HE1 model (Multiplicative perturbation) over 50 trials.

Approach Stability Performance
Min Max Mean Standard deviation

Proposed
(No perturbation) 100% 0.22139 0.22139 0.22139 0

Proposed
(Multiplicative perturbation) 100% 0.22094 0.23440 0.22688 0.0038731

(Zheng et al. 2002) 59% 0.24553 0.25014 0.24638 0.00085381

our proposed approaches are always stabilizing under the gain perturbations. Although the PID controller
designed by the approach of (Zheng et al. 2002) is always stabilizing under the 50 randomly generated ad-
ditive and multiplicative perturbations despite stability robustness is not theoretically ensured, the achieved
H∞ performance values are much greater than that of the PID controllers designed by our proposed ap-
proaches. From the view ofH∞ performance, the non-fragile PID controllers can achieve smaller values
and they are more reliable as compared with the nominal PID controller. In Table 7, theH∞ performance
values of closed-loop system with PID controller do not varyunder multiplicative gain perturbation. This
result can be illustrated intuitively by Figure 5 which presents the closed-loop frequency response with PID
controller synthesized for tackling multiplicative perturbation. It shows that at frequency 0rad/s, the peak
gain is achieved and is analytically given by

√

2K2
I1−22KI1KI2+73K2

I2

|3KI1+KI2|

whereKI =
[

KI1 KI2
]T

. With the values ofKI, theH∞ norm is 11.594 (21.285dB). It should be noted that
the multiplicative perturbation structure in (4) does not affect theH∞ norm in this example.

Furthermore, in order to verify the decentralized PID controllers designed by our approach, we consider
the same system as in (25) but with a different output matrix:

Cy =

[

1 0 0
0 0 1

]

Denote this system as the modified NN17 (MNN17) model. Noticethat the assumptionCyBw = 0 required
in (Zheng et al. 2002) is again not satisfied. The perturbation parameters are given as follows.

• Norm-bounded additive form:

M1 =

[

0.54760 0
0 −0.67936

]

M2 =

[

−0.62385 0
0 0.20328

]

M3 =

[

0.69881 0
0 0.11295

]

N1 = N2 = N3 =

[

1.0000 0
0 1.0000

]
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(a) Perturbed closed-loop poles with proposed nominal PID controller.
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(b) Perturbed closed-loop poles with proposed non-fragile(additive) PID con-
troller.

−600 −400 −200 0 200 400 600 800 1000 1200 1400
−1.5

−1

−0.5

0

0.5

1

1.5

Im

Re

(c) Perturbed closed-loop poles with PID controller (Zhenget al. 2002).

Figure 1. Perturbed closed-loop poles (HE1) under additiveperturbation.
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(a) Perturbed closed-loop poles with proposed nominal PID controller.
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(b) Perturbed closed-loop poles with proposed non-fragile(multiplicative) PID
controller.
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(c) Perturbed closed-loop poles with PID controller (Zhenget al. 2002).

Figure 2. Perturbed closed-loop poles (HE1) under multiplicative perturbation.
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Table 5. PID-controller andH∞ performance of NN17 model.

Approach Controller gains Closed-loop poles

Nominal
Performance
(Guaranteed
Performance)

Proposed
(No perturbation)

KP =

[

−0.071856
0.94713

]

KI =

[

−0.48832
4.5877

]

KD =

[

0.33505
3.3998

]

−21.651± j4.7042
−0.083918± j1.0183

−0.38289
15.268

Proposed
(Additive perturbation)

KP =

[

−9.6513
195.41

]

KI =

[

−10.502
247.52

]

KD =

[

−3.4553
35.122

]

−269.74
−15.821
−3.4105
−2.1913
−0.42559

9.8528
(14.029)

Proposed
(Multiplicative perturbation)

KP =

[

−2.0145
16.694

]

KI =

[

−1.4523
17.178

]

KD =

[

0.096302
4.4458

]

−42.612
−14.238

−1.7642± j0.25359
−0.41800

11.593
(14.762)

(Zheng et al. 2002)

KP =

[

−12.925
53.918

]

KI =

[

−8.5997
34.874

]

KD =

[

−32.665
4.1482

]

−0.49563± j14.517
−0.56533± j0.046942 57.692

Table 6. Stability andH∞ performance of NN17 model (Additive perturbation) over 50
trials.

Approach Stability Performance
Min Max Mean Standard deviation

Proposed
(No perturbation) 100% 12.889 18.139 15.419 1.3094

Proposed
(Additive perturbation) 100% 9.8500 9.8553 9.8528 0.0014786

(Zheng et al. 2002) 100% 57.274 58.242 57.703 0.25994

• Norm-bounded multiplicative form:

M̃1 =

[

−0.011154 0
0 0.0030439

]

M̃2 =

[

−0.027305 0
0 0.030748

]

M̃3 =

[

−0.0072509 0
0 −0.030303

]

N1 = N2 = N3 =

[

1.0000 0
0 1.0000

]
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(a) Perturbed closed-loop poles with proposed nominal PID controller.
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(b) Perturbed closed-loop poles with proposed non-fragile(additive) PID controller.

Figure 3. Perturbed closed-loop poles (NN17) under additive perturbation.

Table 7. Stability andH∞ performance of NN17 model (Multiplicative perturbation) over 50
trials.

Approach Stability Performance
Min Max Mean Standard deviation

Proposed
(No perturbation) 100% 14.488 15.965 15.291 0.36329

Proposed
(Multiplicative perturbation) 100% 11.593 11.593 11.593 0

(Zheng et al. 2002) 100% 56.732 58.597 57.707 0.45078
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(a) Perturbed closed-loop poles with proposed nominal PID controller.
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(b) Perturbed closed-loop poles with proposed non-fragile(multiplicative) PID controller.

Figure 4. Perturbed closed-loop poles (NN17) under multiplicative perturbation.

Simulation results on the decentralized PID controllers are given in Table 8. The guaranteedH∞ perfor-
mances are 7.3206 and 8.2321 for the decentralised non-fragile additive and multiplicative PID controllers,
respectively. Similarly, 50 samples of diagonal matricesFi ∈ R

2×2 for i = 1,2,3, are randomly generated
from the standard uniform distribution on the interval(−1,1). Under the gain perturbations, stability and
H∞ performance results of this model with the decentralised PID controllers are shown in Tables 9 and 10.
The perturbed poles of the closed-loop systems are presented in Figures 6 and 7.

The results in Tables 9 and 10, and Figures 6 and 7 show that thedecentralised non-fragile PID controllers
are always stabilizing though theH∞ performance values of the corresponding closed-loop systems are
greater. They have verified the reliability of the decentralised PID controllers designed by our approach.
In all, these simulation results indicate that the non-fragile PID controllers have better gain perturbation
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Figure 5. Closed-loop frequency response (NN17) with proposed non-fragile (multiplicative) PID controller.

Table 8. PID-controller andH∞ performance of MNN17 model.

Approach Controller gains Closed-loop poles Performance

Proposed
(No perturbation)

KP =

[

−1.1904 0
0 2.0835

]

KI =

[

−0.53432 0
0 0.27333

]

KD =

[

−0.46293 0
0 0.73091

]

−92.304
−60.480
−2.4217
−1.4922
−0.47311

−0.38487±0.18197

1.4295

Proposed
(Additive perturbation)

KP =

[

−70.401 0
0 32.3241

]

KI =

[

−314.66 0
0 54.825

]

KD =

[

−2.1392 0
0 4.6663

]

−248.93
−42.030
−3.3379

−13.749± j3.2112
−5.3371± j0.93023

5.6651
(7.3206)

Proposed
(Multiplicative perturbation)

KP =

[

−20.208 0
0 23.427

]

KI =

[

−30.590 0
0 26.079

]

KD =

[

−1.9400 0
0 4.8907

]

−198.44
−39.160
−20.380
−5.1694
−1.9377

−2.3377± j0.70046

5.5045
(8.2321)
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Table 9. Stability andH∞ performance of MNN17 model (Additive perturbation) over 50
trials.

Approach Stability Performance
Min Max Mean Standard deviation

Proposed
(No perturbation) 98% 1.2547 1.9758 1.4817 0.17483

Proposed
(Additive perturbation) 100% 5.6044 5.7244 5.6650 0.033200
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(a) Perturbed closed-loop poles with proposed nominal PID controller.
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(b) Perturbed closed-loop poles with proposed non-fragile(additive) PID controller.

Figure 6. Perturbed closed-loop poles (MNN17) under additive perturbation.
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Table 10. Stability andH∞ performance of MNN17 model (Additive perturbation) over 50trials.

Approach Stability Performance
Min Max Mean Standard deviation

Proposed
(No perturbation) 100% 1.4185 1.4386 1.4285 0.0054154

Proposed
(Multiplicative perturbation) 100% 5.3713 5.6382 5.5099 0.083601
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(a) Perturbed closed-loop poles with proposed nominal PID controller.
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(b) Perturbed closed-loop poles with proposed non-fragile(multiplicative) PID controller.

Figure 7. Perturbed closed-loop poles (MNN17) under multiplicative perturbation.
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rejection performance.

5. Conclusions

This paper has provided an LMI-based iterative approach fornon-fragile multivariable PID controller
design. The main idea of proposed approaches is to transformthe PID controller design problem into an
SOF control problem by extending the original system to an equivalent continuous-time system. Additive
gain perturbations and multiplicative gain perturbationshave been considered in the PID controller design
problem. By virtue of the system augmentation approach, theconditions with slack matrices for solving the
multivariable PID controller gains have been established and LMI based iterative algorithms have been pro-
vided to solve the conditions. Simulation results and comparison with other approaches have demonstrated
the effectiveness and advantages of the proposed approach.
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Romero Segovia, V., Hägglund, T., andÅström, K.J. (2013), “Noise filtering in PI and PID control,” in Proceedings

of American Control Conference, 2013, IEEE, pp. 1763–1770.
Shen, H., Wu, Z., Zhang, Z., and Park, J.H. (2014), “Non-fragile mixed H∞ / l2 − l∞ synchronisation control for

complex networks with Markov jumping-switching topology under unreliable communication links,”IET Control
Theory & Applications, 8(18), 2207–2218.

Shu, Z., and Lam, J. (2009), “An augmented system approach tostatic output-feedback stabilization with performance
for continuous-time plants,”International Journal of Robust and Nonlinear Control, 19(7), 768–785.

Shu, Z., Lam, J., and Xiong, J. (2009), “Non-Fragile Exponential Stability Assignment of Discrete-Time Linear Sys-
tems With Missing Data in Actuators,”IEEE Transactions on Automatic Control, 54(3), 625–630.

Tandon, A., and Dhawan, A. (2016), “Non-fragile robust optimal guaranteed cost control of uncertain 2-D discrete
state-delayed systems,”International Journal of Systems Science, 47(14), 1464–5319.

Vu, T.N.L., and Lee, M. (2010), “Independent design of multi-loop PI/PID controllers for interacting multivariable
processes,”Journal of Process control, 20(8), 922–933.

Wang, Q.G., Zou, B., Lee, T.H., and Bi, Q. (1997), “Auto-tuning of multivariable PID controllers from decentralized
relay feedback,”Automatica, 33(3), 319–330.

Wu, M., Yan, J., She, J.H., and Cao, W.H. (2009), “Intelligent decoupling control of gas collection process of multiple
asymmetric coke ovens,”IEEE Transactions on Industrial Electronics, 56(7), 2782–2792.

Wu, Z.Z., Iqbal, A., and Amara, F.B. (2011), “LMI-based multivariable PID controller design and its application to
the control of the surface shape of magnetic fluid deformablemirrors,” IEEE Transactions on Control Systems
Technology, 19(4), 717–729.

Xie, L., de Souza, C.E., and Fragoso, M.D. (1991), “H∞ filtering for linear periodic systems with parameter uncer-
tainty,” Systems & Control Letters, 17(5), 343–350.

Xu, S., Lam, J., Wang, J., and Yang, G.H. (2004), “Non-fragile positive real control for uncertain linear neutral delay
systems,”Systems & Control Letters, 52(1), 59–74.

Yang, G.H., and Che, W. (2008), “Non-fragileH∞ filter design for linear continuous-time systems,”Automatica,
44(11), 2849–2856.

Yang, G.H., and Wang, J. (2001), “Non-fragileH∞ control for linear systems with multiplicative controllergain
variations,”Automatica, 37(5), 727–737.

Yu, W., and Rosen, J. (2013), “Neural PID control of robot manipulators with application to an upper limb exoskele-
ton,” IEEE Transactions on Cybernetics, 43(2), 673–684.

Yue, D., and Lam, J. (2005), “Non-fragile guaranteed cost control for uncertain descriptor systems with time-varying
state and input delays,”Optimal Control Applications and Methods, 26(2), 85–105.

Zhang, D., Cai, W., and Wang, Q.G. (2014), “Robust non-fragile filtering for networked systems with distributed
variable delays,”Journal of the Franklin Institute, 351(7), 4009–4022.

Zhang, H., Shi, Y., and Mehr, A.S. (2012), “RobustH∞ PID control for multivariable networked control systems with

23



January 19, 2017 International Journal of Systems Science NFHPID

disturbance/noise attenuation,”International Journal of Robust and Nonlinear Control, 22(2), 183–204.
Zhang, Y., Shieh, L.S., and Dunn, A.C. (2004), “PID controller design for disturbed multivariable systems,”IEE

Proceedings—Control Theory and Applications, 151(5), 567–576.
Zheng, F., Wang, Q.G., and Lee, T.H. (2002), “On the design ofmultivariable PID controllers via LMI approach,”

Automatica, 38(3), 517–526.

24




