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Abstract. In this paper. a method is presented to enable automatic classification 
of the degree of abnormality of susceptibility-weighted images (SWI) acquired 
from babies with hypoxic-ischemic encephalopathy (HIE), in order to more ac-
curately predict eventual cognitive and motor outcomes in these infants. SWI 
images highlight the cerebral venous vasculature and can reflect abnormalities 
in blood flow and oxygenation, which may be linked to adverse outcomes. A 
qualitative score based on magnetic resonance imaging (MRI) analyses is as-
signed to SWIs by specialists to determine the severity of abnormality in an 
HIE patient. The method allows the detection of image ridges, representing the 
vessels in SWIs, and the histogram of the ridges grey scales. A curve with only 
four parameters is fitted to the histograms. These parameters are then used to 
estimate the SWI abnormality score. The images are classified by using a kNN- 
and multiple SVM classifiers based on the parameters of the fitting curves. The 
algorithm is tested on an SWI-MRI dataset consisting of 10 healthy infants and 
48 infants with HIE with a range of SWI abnormality scores between 1 and 7. 
The accuracy of classifying babies with HIE vs. those without (ie: healthy con-
trols) using our algorithm with a leave-one-out strategy is measured as 91.38%. 
Our method is fast and could increase the prognostic value of these scans, 
thereby improving management of the condition, as well as elucidating the dis-
ease mechanisms of HIE. 
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1 Introduction 

Hypoxic-ischemic encephalopathy (HIE) is a type of neurological impairment or inju-
ry in infants caused by low oxygen during the perinatal period, and it is a long-term, 
frequent, severe disease [1-2]. In the developed world, HIE is a common illness af-
fecting approximately 1.5–2 patients per 1,000 new-born infants per year [3]. Infants 
with moderate encephalopathy have a 10% risk of death, and those who survive have 
a 30% risk of disability. Sixty percent of infants with severe encephalopathy die, and 
many, if not all, survivors are handicapped [4-5]. Hence, specialists need to diagnose 
the infant in good time and look at the severity of abnormality. So far, MRI plays an 
important role in HIE diagnosis. An MR image can confirm a normally developed 
brain, assess the severity and pattern of any neonatal injury, or even potentially pre-
dict the outcome from the pattern of injury and clinical details. Susceptibility 
weighted imaging (SWI) is a type of MR image; an SWI image highlights the cerebral 
venous vasculature, reflecting abnormalities in blood flow and oxygenation which 
may be linked to adverse outcomes. A qualitative score based on MRI analyses can be 
assigned to SWIs by specialists to provide an assessment of the degree of severity of 
an abnormality in an HIE patient [19]. 

In previous research, numerous studies have focused on the cerebral vessel struc-
ture and vessel detection. In the medical research, a number of studies on HIE diagno-
sis have focused on Diffusion Weighted Imaging (DWI) [6-7, 21] and Electroenceph-
alogram (EEG) diagnosis [8-9]. In [21], DWIs are acquired for the apparent diffusion 
coefficient (ADC) map to evaluate the quantification of ischemic injury by employing 
the watershed and superpixel methods. This is considered the first step of diagnosis in 
which the 2D slices of DWIs are inspected.  The main issue in the work [21] is that 
the number of abnormal cases is limited to three patients. However the score predict-
ed by the method proposed in [3] has a 0.84 correlation coefficient. The other type of 
MRIs, which is T1W1 and proton MR spectroscopy is useful to distinguish between 
HIE and normal infants, However the study presented in [20] is performed manually 
on MRIs.  In my opinion, these two areas have been not evaluated on large datasets or 
fail to give a good result for the largest number of images in screening processing. To 
the best of our knowledge, no attempt has been made to automate the HIE diagnosis 
so far in the medical image processing community. Some approaches are focused on 
ridge detection of the vessels’ centreline and rebuilt the vessel 3D structure for the 
detection of the sickle cell disease [10]. Some methods are used to develop the appli-
cation of Hessian matrix eigenvalues and eigenvectors to find the ridge-valley inflec-
tion points and the application of eigenvalues [11].  The aforementioned methods are 
not automated to provide advice to medical personnel.   

In this paper, a method is proposed to aid diagnosis in infants who have HIE auto-
matically by processing their SW images. In our work, we extract features from SW 
images to classify babies into healthy and HIE infants. Our feature extraction tech-
nique proposed here is based on the fact that the appearance of anoxic vessels is dif-
ferent from the healthy vessels in that the anoxic vessels look darker than the healthy 
ones. Here a ridge detection method is applied to detect the vessels. A pixel on the 
detected ridges (vessels) is then assigned a value proportional to the eigenvalue of 



Hessian matrix in that pixel to obtain a soft ridge map of the SWI. The histogram of 
such a soft ridge map for each infant’s SWIs is then calculated. A curve characterized 
by four parameters is also fit to the soft ridge histograms to avoid overfitting issues. 
In our method, SW images are classified based on the parameters of this curve. Our 
method provides a reliable diagnosis without the need for specialists to spend a great 
deal of time to examine SWIs. The diagnosis provided by our system is also free from 
human error.  

2 Methodology 

2.1 Ridge Detection 

Ridge detection in this research is used to define the centreline of deoxygenated ves-
sels.  We apply a local median filter and Gaussian filter to remove the noise first. A 
median filter removes the noise and preserves most of the original features of SWI. 
As the SWIs are three dimensional images consisting of two dimensional slices, we, 
therefore, start our analysis of ridge detection for a two dimensional grey scale image. 
This ridge detection method is based on the retinal vessel segmentation method [12-
14, 18]. 

Let us denote 𝐼𝐼(𝐱𝐱) with 𝐱𝐱 = (𝑥𝑥,𝑦𝑦)𝑇𝑇  to be the SW image, where the first derivative 
of the image  𝐼𝐼(𝐱𝐱)  in the direction perpendicular to the ridge tangent has a zero-
crossing. Because images contain noise a Gaussian filter with a standard deviation of 
σ is convolved with the image derivative, i.e.: [12]. 
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where 𝑥𝑥𝑗𝑗is the image coordinate with respect to which the derivative is taken. The 
higher order derivatives could be computed by taking a higher order derivative of the 
Gaussian kernel. 

The ridge point is detected by setting pixels corresponding to local minima (valley 
ridges) to -1 pixels corresponding to local maxima (hill ridges) to +1 and 0 otherwise 
by using the following equation in a simple ridge detector [12]: 

 𝑅𝑅(𝐱𝐱,𝜎𝜎) = −1
2
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where the gradient operator ∇ is defined as (𝜕𝜕 𝜕𝜕𝜕𝜕⁄ , 𝜕𝜕 𝜕𝜕𝜕𝜕⁄ )𝑇𝑇and 𝜆𝜆(𝐱𝐱,𝜎𝜎) is the largest 
absolute value of the eigenvalue for Hessian matrix 𝐻𝐻, in each pixel as calculated in 
Eq. (3). Eigenvalue 𝜆𝜆 and 𝐯𝐯 �are then evaluated at(𝐱𝐱,𝜎𝜎). Ridge map R calculated in Eq. 
(2) contain both valley and hill ridges. Such a ridge map is known as hard ridge since 
the ridge location is specified in the map however the ridge magnitudes are ignored in 
this ridge map. 
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where  𝐼𝐼𝑎𝑎𝑎𝑎 = 𝜕𝜕2𝐼𝐼
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

 . 

Since we are interested in only vessels corresponding to valley ridges, we aim to 
construct a ridge map containing only valley ridges. SWIs of the deoxygenated infants 
demonstrate darker and wider vessels corresponding to deeper valleys. It is, therefore, 
interesting to know how deep or shallow a valley (vessel) is for the diagnosis of HIE. 
To this end, the absolute maximum eigenvalue of the Hessian matrix associated with 
each pixel on the ridge is calculated and then the corresponding pixel value in the 
ridge map is set to the absolute maximum eigenvalue.  Otherwise, the pixel values of 
the ridge map in non-ridge locations are considered zero. The eigenvalues of a Hessi-
an matrix on a ridge point is proportional to how deep the valley ridge (vessel) is, and 
the direction of the eigenvector on that ridge point is perpendicular to the ridge tan-
gent [13]. The ridge map produced with the aforementioned process is known as soft 
ridge map as calculated by Eq. (4). 
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where 𝜆𝜆1, 𝜆𝜆2 are the eigenvalues of the Hessian matrix. 
 
 

     
(a)                                        (b)                                          (c) 

Fig. 1. Ridge maps for an SW image of an infant with HIE. (a) Original SW image smoothed 
with a Gaussian kernel, 𝜎𝜎 = 2.0  pixels. (b) The hard ridge corresponding to local minima 
ridges. (c) The soft ridge map.  



   
(a)                                        (b)                                          (c) 

Fig. 2. Ridge maps for an SW image of a healthy infant. (a) Original SW image smoothed with 
Gaussian kernel, 𝜎𝜎 = 2.0 pixels. (b) The hard ridge corresponding to local minima ridges. (c) 
The soft ridge map.  

By comparing with abnormal (Fig. (1-c)) and normal (Fig. (2-c)) soft ridge maps, 
the soft ridge maps of an SWI indicates the presence and severity of the HIE. There-
fore, the soft ridge detection is an effective method to detect and determine the pres-
ence and severity of deoxygenated brain in SWIs. 

2.2 Feature Extraction  

The deoxygenated vessels in the cerebrum of SWIs are used to produce the soft ridge 
maps as explained in the previous section. The histograms of soft ridge maps are ini-
tially calculated. In these histograms, we ignore the pixels with grey scale zero, be-
cause they correspond to the background and are of no importance. The soft ridge 
maps are calculated for all slices of SW images of an infant. Then the histogram of 
the soft ridge maps for all slices is computed for an infant. In fact, this histogram is 
considered a feature representing all slices of SWIs of an infant. Such a histogram is 
shown in Fig. (3-a) for an infant suffering from HIE. The histogram for a healthy 
baby is also depicted in Fig.  (3-b). In these figures, the bins start from 0.00001 with 
the bin size of 0.001. In our numerical experiments, the maximum value of these his-
tograms in our dataset is around 30. In our dataset, there are 10 healthy infants and 48 
infants suffering from HIE with various scores of severity. In order to avoid overfit-
ting problems, we fit a curve whose function is presented in Eq. (5). This function is 
characterised with four parameters a,b,c,n, i.e.: 

 𝐷𝐷 = 𝑎𝑎
√𝑥𝑥𝑛𝑛

𝑒𝑒−(𝑏𝑏𝑏𝑏+𝑐𝑐 𝑥𝑥⁄ ) (5) 

where 𝑥𝑥 is the grey scale of the soft ridge map (the horizontal axis in Fig. 3).  



 
(a)                                                                 (b) 

Fig. 3. (a) Histogram with a fitting curve of the infant of Fig. 1. (b) Histogram with a fitting 
curve of the infant of Fig. 2. The yellow curves are the fitting curving using Eq. (5). 

 
(a)                                                                 (b) 

Fig. 4. The autocorrelation plot of the errors between the histogram and fitting curve. (a) The 
autocorrelation plot for a patient with HIE. (b) The autocorrelation plot for a healthy infant. The 
red points illustrate the correlation error between the histogram and the fitting curve. Two par-
allel lines on the both side of the coordinate axis are the error bounds, which have a default 
value of 2 standard deviations.  

Equation (5) is fit to the histograms by using a nonlinear least square technique 
with 95% confidence bounds. The results of the fitting process are also presented in 
Fig.3 for both histograms. The autocorrelation of the errors between the actual histo-
gram data and the fitted curve is also depicted in Fig. (4-a) can be observed from 
Fig.4, most of the autocorrelation data is random, however, there is a pattern inside 
the autocorrelation function. This is due to that fact that function proposed in Eq. (5) 
can be modified for a better fit until the autocorrelation function contains only random 
data. Since the modification of Eq. (5) is an intuitive process which is based on trial 
and error, we leave this for our future work. These autocorrelations are calculated 
with the estimation error bounds 2 standard deviations away from zero which corre-
sponds to 95% confidence bounds. 



3 Results  

The deoxygenated vessels in SW images are detected with the ridge detection method 
discussed in section 2. It is, therefore, important to evaluate the performance of our 
ridge detection algorithm by plotting its receiver operating characteristic (ROC) curve 
[15-16], before the feature extraction process. In our data set, there are over 2400 SW 
45images, which come from 58 infants and each infant dataset contains more than 40 
slides. We manually detect the ridges for 200 slices of these SW images and also 
apply our ridge detection algorithm to these 200 slices of SW images for comparison 
purposes. The ridges are manually annotated to compare the annotated ridges with the 
ridges detected by our algorithm to measure the performance of our algorithm using 
ROC curves. We have applied Gaussian and local mean filters on the SW images 
prior to the ridge detection. The performance evaluations of our method are plotted as 
ROC curves shown in Fig. 5.  

 
Fig. 5. ROC curves to evaluate the performance of our ridge detection algorithm when various 
filtering schemes are used before the ridge detection. The cyan line is the ROC curve corre-
sponding to the case no filter is used. The green ROC curve is when the original SW images are 
filtered with a Gaussian kernel with the standard deviation of 2. The red ROC curve is associat-
ed with the case where a local 3 × 3 mean filter is employed prior to ridge detection. The black 
ROC curve represents the performance of our ridge detection when both filters (Gaussian and 
mean filters) are applied to SW images. 

The ROC curve is created by plotting the rate of the manually detected vessel 
points (true positive rate) against the rate of the auto-detected vessel points which are 
not detected by manual work (false positive rate). The cyan ROC curve corresponds 
to the case where no filter is applied to the original SW images. The green ROC curve 
is associated with the case where the Gaussian filter with standard deviations of 2 is 
applied to the SW images prior to the ridge detection. The red ROC curve is obtained 
by employing a local 3 × 3 mean filter. Finally, the black ROC curve corresponds to 
the case where both Gaussian and the local mean filters are employed. As can be seen 



from Fig. 5, the best performance is achieved, when the Gaussian filter is applied 
before the local mean filter on SWI slices prior to ridge detection process. 

In the next experiment, we would like to classify the infants whose SWIs are in our 
dataset, into two groups: healthy infants and infants with HIE. Initially, the histo-
grams of the soft ridge maps are recalculated with 24 bins. Therefore there are 24 
features (parameters) for each histogram. These features (parameters) are then fed 
into various kinds of classifiers presented in Table 1.  

Table 1. Classification accuracy with 24-bin histograms to represent SWIs  

Classification 
Method 

Branch Method and 
the Coefficient Accuracy Result 

kNN 

k=1 89.66% 
k=3 91.83% 
k=5 91.83% 
k=7 89.66% 

SVM 

Gaussian Kernel 87.93% 
Linear 86.21% 

Polynomial  
(Kernel Order: p) 

p =2 94.83% 
p =3 93.10% 
p =4 91.83% 

As can be seen from this table, the SVM classifier with a polynomial kernel with 
order 2 produces the best classification accuracy of 94.83% and the cross-validation 
rate of approximately 5%. It is important to note that every infant in our dataset is 
already diagnosed by specialists to be either healthy or with HIE illness. To calculate, 
the classification accuracies presented in Table 1, a leave-one-out strategy in which 
the data of an infant is taken out as a test sample without any knowledge of the spe-
cialists’ diagnosis, is employed. Leave-one-out strategy is a type of cross validated, 
which the predicted infant’s data is picked out of the validation dataset (soft ridge 
map dataset of whole infants). 

Having fit the curve (Fig. 5) to the histograms of the SWIs in our dataset, every in-
fant is represented by a feature vector containing the values of the four parameters a, 
b, c and n. These vector features are then fed to kNN and SVM classifiers with vari-
ous classification parameters and various kernels to produce the accuracy classifica-
tion results presented in Table 2. As explained before for Table 1, a leave-one-out 
strategy is also employed here to calculate the classification accuracies. The best clas-
sification result achieved with the curve fitting method is 91.38% which is with an 
SVM classifier with a polynomial kernel of order 3. It is important to note that the 
fitting curve method may be characterised with a slightly lower accuracy result but it 
avoids the problems related to overfitting issues from which the first method associat-
ed with 24 bin histograms, may suffer. 



Table 2.  Classification accuracy with parameters of equation (5) chosen as features to repre-
sent SWIs  

Classification 
Method 

Branch Method and 
the Coefficient Accuracy Result 

kNN 

k=1 84.48% 
k=3 89.66% 
k=5 86.20% 
k=7 84.48% 

SVM 

Gaussian Kernel 87.93% 
Linear 81.03% 

Polynomial  
(Kernel Order: p) 

p =2 87.93% 
p =3 91.38% 
p =4 84.48% 

 
To evaluate the classifiers’ performance, the precision (specificity) and recall (sen-

sitivity) values of the HIE infants is presented in Table 3. Table 3 is clearly and di-
rectly to show the advantages of our classification features and classifier, which 
shows the sensitivity and specificity of this automatic algorithm. The method present-
ed in [21], has a sensitivity and specificity of 0.72 and 0.99 respectively. Therefore 
the performance of our algorithm is better than the method presented in [21] in terms 
of sensitivity and specificity values. 

Table 3. The precision and recall values for the classifiers employed in Table 2. 

Classification 
Method 

Branch Method and 
the Coefficient 

Precision 
Value 

Recall 
Value 

kNN 

k=1 92% 93.88% 
k=3 91.84% 91.84% 
k=5 90.57% 100% 
k=7 90.38% 100% 

SVM 

Gaussian Kernel 87.27% 100% 
Linear 85.71% 100% 

Polynomial  
(Kernel Order: p) 

p =2 94.83% 95.92% 
p =3 93.10% 92.31% 
p =4 91.83% 92% 

 



4 Conclusion and Future Work 

The method in this paper presents an automatic diagnosis of HIE based on SWI-
MRIs. Unlike the previous ridge detection methods, the eigenvalues of ridge pixels 
intuitively determine if an infant suffers from HIE or not. The image containing the 
eigenvalues of the Hessian matrix for all ridge pixels is known as the soft ridge map. 
The soft ridge maps consist of the vessels detected as ridges with eigenvalues of the 
Hessian matrix calculated for each ridge pixel. In the method proposed here, we find 
the features as histograms of soft ridge maps to represent each infant for classifica-
tion. To reduce the dimensionality of our feature space, we have used two techniques: 
1) simply reducing the number is bins into 24 and 2) exploiting the parameters of the 
curve fitted to the histograms. In the second technique, after the soft ridge detection, 
the histogram of each patient’s soft map is represented by a curve. This curve has 
been optimally fitted to that histogram. Such a curve is described by four parameters 
which are used as features for classification stage. Then these features (each consist-
ing of four parameters) are used to classify infants as healthy or a baby suffering from 
HIE, with kNN and SVM classifiers. The SVM classifier with polynomial kernel of 
order 2 presents the best accuracy rate of 91.38%. A leave-one-out strategy is em-
ployed for the measurements of classification accuracies. Our automatic classification 
method can, therefore, produce reliable diagnosis without the specialists’ interven-
tions and inspections. As a result, our method is faster than a specialist for diagnosis, 
is not prone to human errors and would save the specialists’ time taken for diagnosis. 
Our method could increase the prognostic value of these SWIs, thereby it improves 
the management of the illness as well as elucidates the disease mechanisms. This 
method can also be extended to estimate different MR scores [17, 19] assigned by 
specialists to HIE infants. Such an extension is an interesting topic for our future 
work. 
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