The University of Southampton
University of Southampton Institutional Repository

Big data and the well-being of women and girls: applications on the social scientific frontier

Big data and the well-being of women and girls: applications on the social scientific frontier
Big data and the well-being of women and girls: applications on the social scientific frontier
Conventional forms of data—household surveys, national economic accounts, institutional records, and so on—struggle to capture detailed information on the lives of women and girls. The many forms of big data, from geospatial information to digital transaction logs to records of internet activity, can help close the global gender data gap. This report profiles several big data projects that quantify the economic, social, and health status of women and girls.
Big Data, Gender data gap, Women and girls, Geospatial data
Data2X
Vaitla, Bapu
d5f5d714-c762-41f7-9710-0863fbd29d5c
Bosco, Claudio
9bf27082-5f4c-4b9f-8f12-6c4159f556f5
Alegana, Victor
f5bd6ab7-459e-4122-984f-2bdb5f906d82
Bird, Tom
b491394a-2b91-42d5-8262-d1c0e9ff17cd
Pezzulo, Carla
876a5393-ffbd-479a-9edf-f72a59ca2cb5
Hornby, Graeme
52fc0227-a0b1-46eb-a08f-ec689c460bf8
Sorichetta, Alessandro
c80d941b-a3f5-4a6d-9a19-e3eeba84443c
Steele, Jessica
5cbba8c8-f3fd-41ee-82c8-0aa13c04c04d
Ruktanonchai, Cori
44e6fcd0-246b-480e-8940-9557dbb7c0cc
Ruktanonchai, Nick
fe68cb8d-3760-4955-99fa-47d43f86580a
Wetter, Erik
dd9554f1-7107-4d5b-b19f-7198af551091
Bengtsson, Linus
f7585eb4-9e78-422d-8178-4310985aa24e
Tatem, Andrew J.
6c6de104-a5f9-46e0-bb93-a1a7c980513e
Di Clemente, Riccardo
1bcd19f7-f95c-4010-8a56-1ba738da3083
Luengo-Oroz, Miguel
b02e5705-0682-4cb6-b148-00c6aaf011c3
Gonzalez, Marta C.
f1859400-3fc2-49a7-a213-cc973da0a705
Nielsen, Rene
240fc883-fb1d-4dd0-a9fc-514c28b4e1b6
Baar, Thomas
d11f8e63-6867-46d2-bda0-e227c08131df
Vacarelu, Felicia
f362332e-ba8b-4163-8d69-89a3e1ce1806
de Choudhury, Munmun
5511383e-e289-41b7-b96f-31b513306cba
Sharma, Sanket
be34eee9-bcc6-4f17-9ade-a2dbedcc3e5b
Logar, Tomas
b39121b3-076d-4763-af6b-6d11c5847f3e
Eekhout, Wouter
fffc6d33-ea27-4bbe-8940-961ba6b1e2ce
Vaitla, Bapu
d5f5d714-c762-41f7-9710-0863fbd29d5c
Bosco, Claudio
9bf27082-5f4c-4b9f-8f12-6c4159f556f5
Alegana, Victor
f5bd6ab7-459e-4122-984f-2bdb5f906d82
Bird, Tom
b491394a-2b91-42d5-8262-d1c0e9ff17cd
Pezzulo, Carla
876a5393-ffbd-479a-9edf-f72a59ca2cb5
Hornby, Graeme
52fc0227-a0b1-46eb-a08f-ec689c460bf8
Sorichetta, Alessandro
c80d941b-a3f5-4a6d-9a19-e3eeba84443c
Steele, Jessica
5cbba8c8-f3fd-41ee-82c8-0aa13c04c04d
Ruktanonchai, Cori
44e6fcd0-246b-480e-8940-9557dbb7c0cc
Ruktanonchai, Nick
fe68cb8d-3760-4955-99fa-47d43f86580a
Wetter, Erik
dd9554f1-7107-4d5b-b19f-7198af551091
Bengtsson, Linus
f7585eb4-9e78-422d-8178-4310985aa24e
Tatem, Andrew J.
6c6de104-a5f9-46e0-bb93-a1a7c980513e
Di Clemente, Riccardo
1bcd19f7-f95c-4010-8a56-1ba738da3083
Luengo-Oroz, Miguel
b02e5705-0682-4cb6-b148-00c6aaf011c3
Gonzalez, Marta C.
f1859400-3fc2-49a7-a213-cc973da0a705
Nielsen, Rene
240fc883-fb1d-4dd0-a9fc-514c28b4e1b6
Baar, Thomas
d11f8e63-6867-46d2-bda0-e227c08131df
Vacarelu, Felicia
f362332e-ba8b-4163-8d69-89a3e1ce1806
de Choudhury, Munmun
5511383e-e289-41b7-b96f-31b513306cba
Sharma, Sanket
be34eee9-bcc6-4f17-9ade-a2dbedcc3e5b
Logar, Tomas
b39121b3-076d-4763-af6b-6d11c5847f3e
Eekhout, Wouter
fffc6d33-ea27-4bbe-8940-961ba6b1e2ce

Vaitla, Bapu, Bosco, Claudio, Alegana, Victor, Bird, Tom, Pezzulo, Carla, Hornby, Graeme, Sorichetta, Alessandro, Steele, Jessica, Ruktanonchai, Cori, Ruktanonchai, Nick, Wetter, Erik, Bengtsson, Linus, Tatem, Andrew J., Di Clemente, Riccardo, Luengo-Oroz, Miguel, Gonzalez, Marta C., Nielsen, Rene, Baar, Thomas, Vacarelu, Felicia, de Choudhury, Munmun, Sharma, Sanket, Logar, Tomas and Eekhout, Wouter (2017) Big data and the well-being of women and girls: applications on the social scientific frontier Data2X 40pp.

Record type: Monograph (Project Report)

Abstract

Conventional forms of data—household surveys, national economic accounts, institutional records, and so on—struggle to capture detailed information on the lives of women and girls. The many forms of big data, from geospatial information to digital transaction logs to records of internet activity, can help close the global gender data gap. This report profiles several big data projects that quantify the economic, social, and health status of women and girls.

Text
Big-Data-and-the-Well-Being-of-Women-and-Girls - Version of Record
Download (8MB)

More information

Accepted/In Press date: 2017
Published date: April 2017
Keywords: Big Data, Gender data gap, Women and girls, Geospatial data
Organisations: WorldPop, GeoData, Population, Health & Wellbeing (PHeW)

Identifiers

Local EPrints ID: 407908
URI: http://eprints.soton.ac.uk/id/eprint/407908
PURE UUID: 91c0f85f-ce33-40be-885a-5f74796f942b
ORCID for Victor Alegana: ORCID iD orcid.org/0000-0001-5177-9227
ORCID for Carla Pezzulo: ORCID iD orcid.org/0000-0003-4775-1787
ORCID for Graeme Hornby: ORCID iD orcid.org/0000-0002-2833-8711
ORCID for Alessandro Sorichetta: ORCID iD orcid.org/0000-0002-3576-5826
ORCID for Andrew J. Tatem: ORCID iD orcid.org/0000-0002-7270-941X

Catalogue record

Date deposited: 28 Apr 2017 01:07
Last modified: 16 Mar 2024 04:16

Export record

Contributors

Author: Bapu Vaitla
Author: Claudio Bosco
Author: Victor Alegana ORCID iD
Author: Tom Bird
Author: Carla Pezzulo ORCID iD
Author: Graeme Hornby ORCID iD
Author: Jessica Steele
Author: Cori Ruktanonchai
Author: Nick Ruktanonchai
Author: Erik Wetter
Author: Linus Bengtsson
Author: Andrew J. Tatem ORCID iD
Author: Riccardo Di Clemente
Author: Miguel Luengo-Oroz
Author: Marta C. Gonzalez
Author: Rene Nielsen
Author: Thomas Baar
Author: Felicia Vacarelu
Author: Munmun de Choudhury
Author: Sanket Sharma
Author: Tomas Logar
Author: Wouter Eekhout

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×