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Abstract

Theory and evidence suggest that people born in different countries complement
each other in the labor market. Immigrant diversity could augment productivity by
enabling the combination of different skills, ideas and perspectives, resulting in greater
productivity. Using matched employer-employee data for the U.S., this paper evalu-
ates this claim, and makes empirical and conceptual contributions to prior work. It
addresses potential bias from unobserved heterogeneity among individuals, work es-
tablishments, and cities. The paper also identifies diversity impacts at both city and
workplace scales, and considers how relationships vary across different segments of the
labor market. Findings suggest that urban immigrant diversity produces positive and
nontrivial spillovers for U.S. workers. This social return represents a distinct channel
through which immigration may generate broad-based economic benefits.
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1 Introduction

Since 1960, global flows of international migrants have more than doubled, alongside con-

siderable growth in the mix of locations from which they hail (Özden et al., 2011). Much

of this upswell in immigrant diversity is concentrated in cities in rich countries. In the

U.S., which attracts one in five international migrants, nearly 40 percent of the popula-

tion in large metropolitan areas like New York and Los Angeles was born abroad, more

than twice the national average. Outside of the U.S., London, Hong Kong and other

large metropolitan regions report similar levels of foreign-born residents and immigrant-

derived heterogeneity. Smaller, and less famously cosmopolitan cities are also increasingly

attracting a wide range of foreign-born workers, and consequently becoming more demo-

graphically diverse.

This paper aims to determine whether this diversity affects worker productivity. The-

ory – drawn from psychology, sociology, economics and geography – suggests a double-

edged relationship rooted in externalities in production. Whether good or bad, the starting

point is the assumption that country of birth signals distinctiveness in peoples’ heuristics.

On the positive side, interactions among a heuristically-heterogeneous population widen

the scope of available solutions. On this basis, immigrant diversity can generate spillovers

that raise worker productivity. On the negative side, co-operation among workers from

different backgrounds presents challenges, resulting in higher transaction costs that can

reduce productivity.

Based on the conjecture that economically-significant interactions among a diverse

populace need not occur solely inside work teams and organizations, empirical researchers

have examined the links between diversity and productivity at the metropolitan scale,

considering city systems in the U.S., UK, EU15, Germany, Australia, and the Netherlands.

Quite consistently, researchers find that cities featuring more diverse urban workforces

have higher levels of wages, rents, and employment, suggesting net positive productivity

spillovers from immigrant diversity (e.g., Ottaviano and Peri, 2006; Nathan, 2011; Kemeny,

2012; Bellini et al., 2013; Suedekum et al., 2014; Trax et al., 2015).

The present article makes four main contributions to this growing literature. First

and foremost, it aims to produce the strongest available evidence regarding the existence
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of spillovers from immigrant diversity in U.S. cities. In order to generate high-quality

evidence, we seek to overcome issues of non-random worker selection that are present in

nearly all extant studies, addressing the possibility that highly-productive workers are

drawn to cities that are immigrant-diverse. In this regard, it responds to an open question

about the importance of these sorting dynamics in measuring diversity spillovers: of the

two known papers addressing this issue empirically, Bakens et al. (2013) finds that scant

spillovers remain after accounting for sorting on unobservables in the Netherlands, whereas

in the German context, Trax et al. (2015) find a continuing positive association between

regional cultural diversity and plant productivity. We do not yet know how selection

dynamics might affect prior estimates produced for the U.S., including seminal work by

Ottaviano and Peri (2006). Second, this paper adds value by exploring whether spillovers

from diversity emanate chiefly from within individual establishments, or from the broader

metropolitan scale, what Jane Jacobs’ poetically described as the “ballet of the good city

sidewalk” (Jacobs, 1961, p.50). Third, considering studies by Borjas (2003), Card (2007),

and Lewis and Peri (2014) that highlight how modest aggregate immigration impacts can

conceal substantial variation across the wage distribution, this paper examines whether

benefits or costs derived from immigrant diversity depend on one’s position in the labor

market. Last, it aims to distinguish whether any benefits derived from diversity are

driven by heterogeneity across the entire labor market, as opposed to diversity only among

workers at the top. We formalize these issues in the following research questions:

1. For the average urban worker, does the immigrant diversity present in one’s city or

workplace generate productivity externalities?

2. Are such spillovers unevenly distributed among workers occupying different segments

of the labor market?

3. Who generates spillovers from immigrant diversity? Is it diversity among all workers,

or among only those occupying higher labor market segments?

To answer these questions, we make use of the U.S. Census Bureau’s confidential

Longitudinal Employer-Household Dynamics (LEHD), a uniquely comprehensive matched

employer-employee dataset of U.S. workers and their work establishments. The version of

LEHD used covers nearly all employees in 29 states, on a quarterly basis starting, for some

states, in 1991 and continuing through 2008. We adapt an approach to the identification
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of urban externalities in production suggested by Moretti (2004b) that leverages the panel

dimension of our data. We estimate fixed effects models over a sample of urban workers

who hold multi-year work ‘spells’ in the same establishment and city, thereby accounting

for stationary unobserved heterogeneity at individual, work establishment, and city level.

Individual earnings are used as a proxy for productivity, and key predictors are indicators

of birthplace diversity measured at both metropolitan and workplace levels. Hence, we

estimate how workers’ wages change in response to changes in the diversity in the cities

where they live, as well as in the establishments where they work. We pursue two strategies

to account for potential bias from unobserved shocks that might simultaneously shift

workers’ wages as well as diversity levels. First, we estimate the importance of several

dynamic measures capturing local labor demand. Second, we generate generalized method

of moments (GMM) estimates, using lags of metropolitan and establishment diversity as

instruments.

We find a robust positive relationship between earnings and both city- and workplace

specific manifestations of immigrant diversity. This positive association is materially un-

changed with the inclusion of assorted control variables, including measures that account

for changes in immigrants’ human capital. Results are consistent across various subsam-

ples, including ones that focus narrowly on tradable activities, bolstering the claim that

the link between diversity and wages reflects a productivity effect, rather than being driven

by immigration-related quality-of-life factors. They remain consistent across a range of

different approaches to the measurement of diversity. IV and other robustness checks

suggest that findings are not driven by changes in local demand conditions or other un-

observed shocks. Overall, the evidence supports the idea that immigrant diversity raises

worker productivity, and that benefits flow from one’s broader urban context as well as

one’s workplace.

We also find consistent estimates of spillovers for workers in each wage quartile. We

interpret this to mean that the benefits of diversity are equally shared across the entire

labor market. However, spillovers emanate chiefly from workers holding high-wage jobs.

At the city scale, diversity is only significantly related to wages when measured among

workers at the higher end of the wage distribution; meanwhile workplace diversity emerges

as uniformly positively and significantly, but coefficients are considerably larger when
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diversity is measured only across such high-wage workers.

To provide a sense of the magnitudes of diversity spillovers for the average worker, our

baseline model (Table 2, Model 3) suggests that, all else equal, a one standard deviation

increase in city immigrant diversity is associated with a 5.8 percent increase in wages. At

the same time, a one standard deviation increase in workplace immigrant diversity raises

wages by 1.6 percent. Over the study period, the average metropolitan area experiences an

increase in diversity corresponding to half a standard deviation, although in 15 percent of

cities, immigrant diversity increased by more than a standard deviation. The confirmation

of city effects supports the existing scholarship, though city effects in the present paper

are more modest than for approaches that have not accounted for sorting, workplace

characteristics, and other hard-to-observe factors.

The remainder of the paper is organized in 5 sections. Section 2 reviews the literature

motivating this study. Section 3 lays out the empirical approach. Section 4 describes the

data. Section 5 presents results. Section 6 concludes.

2 Existing Literature

Much of the public debate and academic research on the economic impacts of immigration

has focused on answering a question fraught with political and economic significance:

how will growing flows of immigrants – and in particular relatively low-skill immigrants

– affect job market outcomes of native-born workers (Borjas, 1994, 1995; Card, 2001,

2005)? While debates over negative substitution effects continue (c.f. Borjas, 2015; Peri

and Yasenov, 2015), recent findings leveraging detailed individual and firm-level data

suggest that immigrants and natives can also be thought of as complements, with positive,

albeit relatively modest wage benefits (Ottaviano and Peri, 2012; Dustmann et al., 2013;

Lewis and Peri, 2014). Another strand of this recent work shows how immigrant entry

in labor markets prompts natives to shift occupations, with generally positive outcomes

measured in terms of wages and employment (Peri and Sparber, 2009; Cattaneo et al.,

2013; Ortega and Verdugo, 2014; Foged and Peri, 2016).

The current paper examines a specific dimension of the relationship between immigra-

tion and economic welfare. It asks: how might a labor force including immigrants born in
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a wide range of countries perform differently from one that is more homogeneous? Scholars

examining this question directly have theorized and sought empirical support for a link

between immigrant diversity and innovation, entrepreneurship, and productivity.1 The

outcome of interest in this article is productivity, and thus the remainder of this section

reviews that strand of the literature.

Organization-focused research spanning such fields as psychology, organizational so-

ciology, artificial intelligence and economics suggests that interactions among individuals

from diverse backgrounds could either augment or inhibit productivity. On the positive

side, theorists argue that the experience of having been born in a particular location shapes

one’s worldview (Hong and Page, 2004). It follows that, relative to more homogeneous

sets of people, groups consisting of individuals from diverse birthplaces ought to contain

an enlarged pool of available perspectives and heuristics. This heuristic diversity ought to

improve problem solving in two ways. First, it will map out a larger proportion of the po-

tential solutions available in the total problem space. Second, it will raise the likelihood of

generating innovations by recombining ideas (Aiken and Hage, 1971; Nisbett et al., 1980;

Hong and Page, 2001, 2004). On the other hand, psychology’s ‘social identity theory’

suggests that diversity can inhibit productivity. A long line of studies find that teams

straddling cultural divides can find it hard to generate trust and to effectively co-operate

(e.g., Byrne, 1971; Van Knippenberg and Schippers, 2007; Harrison and Klein, 2007).

Although such arguments were initially made with individual organizations and work

teams in mind, they also map neatly onto the urban scale. A wealth of theory and empirics

suggests that problem solving and knowledge production depend upon interactions that

extend beyond atomized organizations – whether they arise in the context of formal part-

nerships or serendipitous, informal exchanges; it is widely understood that such ‘external’

interactions tend to have a local, metropolitan character (Jacobs, 1969; Feldman and Au-

dretsch, 1999; Jaffe et al., 1993; Storper and Venables, 2004). At this scale, it makes sense

to think about diversity as potentially generating location-specific externalities – indeed

they could be described as a specific form of social returns to human capital. Similar

to the wealth of studies indicating local spillovers from education (for instance: Rauch,

1For a review of the links between diversity and each of these outcomes, see Kemeny (2014). For a
review focused on innovation and entrepreneurship, see Kerr (2013).
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1993; Moretti, 2004a,b), the present article, and ones like it, explores local spillovers from

immigrant diversity.

Using public-use data from the 2007 American Community Survey (ACS), Figure 1

presents the motivating stylized fact: U.S. cities in which the average worker is highly paid

also feature greater immigrant heterogeneity (using the common fractionalization index

measured over birthplace). Researchers have sought to address a variety of substantive and

methodological concerns in order to determine whether this simple bivariate correlation

reflects an underlying relationship running from diversity to productivity.

Figure 1: U.S. Metropolitan Wages and Birthplace Fractionalization, 2007
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Note: Data come from a 2007 1% public-use sample of the American Community Survey (Ruggles et al.,
2010). Points on the scatter plot reflect actual city values for wages and diversity, whereas the solid line
reflects the least squares fitted regression line. Fitted equation: Log (city average of annual wage and
salary income) = 0.372(Birthplace Fractionalization) -3.724; R2=0.194

A wide range of empirical studies find a consistently positive and largely significant

relationship between regional immigrant diversity and worker productivity. The seminal

reference is Ottaviano and Peri (2006), who jointly test the relationship between diversity

and wages and rents across U.S. metropolitan areas. They find that birthplace diversity is

positively and robustly correlated with both outcomes, which they interpret as signalling

that diversity raises productivity. Similar tests in other advanced economies also detect a
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positive relationship (Nathan, 2011; Kemeny, 2012; Trax et al., 2015; Bellini et al., 2013;

Bakens et al., 2013; Longhi, 2013; Ager and Brückner, 2013; Suedekum et al., 2014; Elias

and Paradies, 2016).2 And yet these studies leave key issues unresolved, inhibiting our

ability to make confident statements about the underlying relationship between diversity

and productivity. Most significant among these unresolved issues are nonrandom selection

or sorting; longitudinal dynamics; and firm and workplace heterogeneity.

Sorting refers to the idea that workers select into cities based on underlying features,

some of which may be both (a) unmeasured, and (b) correlated with immigrant diversity

and wages. One plausible version of this idea states that immigrant-diverse cities may also

draw highly-skilled workers (skilled in ways that are not apparent from easily-measurable

characteristics like educational attainment). Researchers have mostly used models in which

it is assumed that workers are homogeneous except for their birthplace, education, and

a relatively modest range of other observable factors. For example, Ottaviano and Peri

(2006) consider the relationship between birthplace diversity and wages for white male

native-born workers between the ages of 40 and 50. But their approach cannot address the

likely scenario that, even among members sharing these features, unobserved differences

in preferences and abilities exist that affect both individual productivity and locational

choices (for discussion of this issue in immigration-impacts research see: Lewis and Peri,

2014). Highly-productive workers may select into high-diversity cities because they have

particular preferences for amenities that flow from diversity (Florida, 2002); alternately,

such sorting could be part of a process by which workers match their abilities to places with

a particular industrial mix or position on quality ladders (Combes et al., 2008; Kemeny and

Storper, 2012; Moretti, 2013). Whatever the cause, the presence of nonrandom selection

is likely to generate upward bias in estimates of the relationship between diversity and

productivity.

To the best of our knowledge, to date only two studies of spillovers from immigrant

diversity have directly addressed this issue. Trax et al. (2015) leverage panel data on

German plants, and find a positive and statistically significant relationship between total

factor productivity and city- and plant-level cultural diversity. Bakens et al. (2013) exploit

2For a detailed review of the recent empirical literature on the productivity implications of urban
immigrant diversity, see Kemeny (2014).
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an individual-level panel of wages and rents in Dutch cities, using a two-step process

that first separates individual-, sector-, and city-level contributions to wages and rents,

and second identifies the importance of city diversity in shaping outcomes of interest.

Though they demonstrate a positive correlation between diversity and wages, coefficients

on diversity are mostly insignificant. Though the Netherlands is particular in terms of

its size and city size distribution, the disjuncture between this finding and prior work

highlights the potential importance of unobservable characteristics in determining how

diversity may be related to economic outcomes of interest.

Another issue is that studies examining regional economies have largely ignored the

scale of the workplace. This is a problem in the general sense of failing to account for

the ways in which characteristics of firms and individual establishments are important

for understanding variation in productivity (Haltiwanger et al., 1999). But it also raises

a particular issue in the context of spillovers from immigrant diversity: we have little

understanding of the scale at which any productivity-augmenting interactions might be

occurring. The earliest scholarly focus on diversity considers impacts in organizations and

the work teams inside them. Meanwhile, city-focused researchers consider that regions

are the appropriate containers bounding the relevant economic interactions. But of course

birthplace-diverse cities are likely to feature birthplace-diverse business establishments.

Hence, what looks like a ‘Jane Jacobs’-style metropolitan effect might properly be an

organizational one; depending on study design, the reverse could also be true. Or there

may be productivity effects operating simultaneously within organizations and at the

metropolitan scale.

Only a handful of empirical articles seek to tease out these effects. In addition to

the article by Trax et al. (2015) which we describe above, Nathan (2015) considers the

influence of ethnic diversity in British cities and firms’ top management teams, and finds

mixed evidence that they are related to sales. More loosely related, Lee (2013) finds a

small, positive relationship between the foreignness of UK firm managers (rather than

their diversity) and firm process and product innovation, but he finds no significant effect

of the share of foreign-born in the overall regional population. More work is needed to

clarify the role of diversity at these different scales.

A further challenge to the current empirical literature is the paucity of studies exploring
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longitudinal dynamics. Urban immigrant diversity varies across cities, but it also varies

within them across time. If it is the case that diversity directly influences productivity,

then shifts in the former should be reflected in changes in the latter. Among the few studies

addressing the potentially dynamic nature of this relationship, Longhi (2013) finds that the

positive relationship between diversity in English Local Authority Districts and workers’

wages found in cross-sections (consistent with much of the existing research), disappears

in panel estimates. This contrarian finding suggests the importance of examining this

relationship in a dynamic framework.

Equally underexplored is how diversity operates across a heterogeneous labor force.

Despite recent work on immigration highlighting the possibility that modest aggregate

welfare effects conceal substantial variability across the labor market (Borjas, 2003; Card,

2007; Ottaviano and Peri, 2012; Lewis and Peri, 2014), most studies of diversity report only

effects for the average worker. Though the idea of competition between less-skilled immi-

grants and natives looms large in academic studies (Borjas, 2015, 2016), a growing body of

research, some of which exploits detailed individual and firm-level data sources, suggests

that immigrants, and especially immigrants further up the skill continuum, act predomi-

nantly as complements to native-born workers (Cortés and Tessada, 2011; Ottaviano and

Peri, 2012; Kerr, 2013; Cattaneo et al., 2013; Lewis and Peri, 2014; Foged and Peri, 2016;

Peri and Yasenov, 2015; Dustmann et al., 2013). Such studies suggest the importance of

exploring potential segment-specific regularities in the elasticity of substitution, as well as

dynamic complementarity across different labor market segments. However, we know of

no paper that explores how the effects of diversity depend on one’s position in local labor

markets.

Just as segment-specific differences generate heterogeneity in how immigrants affect na-

tives’ labor market outcomes, diversity measured among specific subsets of workers may be

differently associated with worker productivity. Particularly as the theorized mechanism

explaining diversity’s positive impact rests on a particular kind of complementarity – of

backgrounds and therefore of perspectives, we need a stronger understanding about how

this may vary systematically across the labor market. One angle to pursue is whether

diversity across workers at higher and lower ends of the labor market contribute equally

to the generation of any productivity spillovers. If one assumes that high-wage or highly-
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skilled workers are more likely to engage in complex problem solving, it is plausible that

spillovers arise only from diversity among such workers, rather than from diversity mea-

sured across the entire labor force. To our knowledge, Suedekum et al. (2014) is the only

paper to address this theme. Their findings suggest that the benefits of immigrant diver-

sity do not emerge only or even mainly from the skilled immigrant population. Instead,

controlling for the share of foreign born immigrants in German urban cities, both high-

and low-skill immigrant diversity generate spillovers that augment productivity among

local natives.

3 Empirical Approach

Concerns about sorting and longitudinal dynamics can be addressed by estimating models

relating diversity and productivity over a large-N , large-T panel of individuals. Differenc-

ing the wages of individuals over time addresses bias arising from sorting driven by unob-

served heterogeneity, as long as relevant individual characteristics are stationary. Panel

data also permits observation of how diversity moves in relation to individuals’ wages. To

answer questions regarding the scale at which spillovers arise, data on individuals must be

supplemented with information about the birthplace composition of each workplace and

urban region.

Using panel data on individuals and their work establishments, we can employ an

identification strategy that is similar to one used in recent research on local educational

spillovers (Moretti, 2004a; Gibbons et al., 2013). Out of the set of all available workers,

we focus on spells of ‘stayers’ – individuals that remain in their work establishment (and

thus metropolitan area) for at least two calendar years. As these workers are fixed in

place, variation comes from the panel structure of the data, and more specifically from the

shifts around these workers in the birthplace composition of the cities in which they live,

and the establishments in which they work. In short, by observing the same individual in

the same workplace and city across time, we control for unobserved permanent individual,

establishment, and city heterogeneity. This is represented in the following equation:

ln(w)ipjt = djtβ + dpjtγ +X ′ipjtδ + E′pjtθ + C ′jt + µipj + ηt + νipjt (1)

where, ln(w) represents the log annual wages of an individual worker i in establishment
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p located in metropolitan area j at time t; djt, a key independent variable of interest,

measures city-specific immigrant diversity, while dpjt measures diversity at the level of

the establishment; X ′ represents time-varying measures of worker-specific characteristics;

E′ describes a vector of dynamic employer characteristics; C ′ indicates time-varying city-

specific characteristics, µipj represents an individual-establishment-city fixed effect which

simultaneously accounts for bias arising due to variation in permanent but unobserved

characteristics of individual workers, the establishments where they work, and the re-

gional economies in which they live. At the individual level, such pertinent stationary

unobserved heterogeneity could arise due to differences in such characteristics as innate

ability, intelligence, or motivation. Among establishments, it could be driven by differ-

ences in such features as capital intensiveness or product quality. And at the level of

metropolitan regions, differences in specialization, agglomeration, and other factors could

be relevant, if hard to observe. Note that µipj also captures the effects of observable

stationary characteristics on wages that are commonly included in Mincerian wage regres-

sions, such as sex, disability and education. ηt represents unobserved time-specific shocks

that exert uniform impacts across all individuals, such as as business cycles; and νipjt is

the standard error term.

Applying the fixed effects estimator, Equation 1 explores how an individual’s wages

respond to changes in the level of immigrant diversity around her, while it accounts for

major sources of spurious correlation that might otherwise bias estimates. Over a full

sample of workers, Equation 1 provides estimates of diversity spillovers for the average

worker, but it can be easily adapted to answers our second and third research questions.

To identify differences in who benefits from overall levels of city- and workplace diversity

– our second research question – we generate estimates for samples of workers restricted

to individual city-specific wage quartiles.3 Addressing the third question, djt and dpjt

refer to diversity measures generated for a specific quartile of a city or workplace wage

distribution, as opposed to measures based on all workers at either scale. The aim in this

3Consistent with the variation in average annual wages across different urban areas, quartile thresholds
vary across the sample of CBSAs. Seeking to test whether this choice of city-defined wage distributions
was consequential, we also built measures using cut-offs defined using the national earnings distribution.
Results do not differ materially. In the results in Section 5, we present estimates that rely on city-specific
quartiles because we feel they better capture the importance of the localized (if still multi-scalar) nature
of diversity impacts.
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case is to reveal if the relationship between diversity and productivity originates among

workers occupying specific segments of the labor force.

Following the standard spatial equilibrium setup, one might seek to match a model

predicting wages based on Equation 1 with another predicting rents. Explained formally in

Ottaviano and Peri (2006), we briefly remind readers of the logic here. In a national system

of cities in which workers are relatively free to make locational choices, diversity’s effects

may not be confined to the sphere of production. Though wages are broadly taken to signal

productivity, diversity in this context could also function as an amenity that workers value

(or not) as an object of consumption. This has potential implications for factor prices,

in terms of the wages workers are willing to accept, as well as the costs they face in the

housing market, and relatedly, on their locational choices. Among urban economists, it

is commonly assumed that inter-urban differences in workers’ real utility – a function of

nominal wages as well as housing costs and location-specific amenities – ought to be driven

toward equalisation by the mobility of workers (Rosen, 1979; Roback, 1982; Glaeser and

Gottlieb, 2009). In the current context, this formalizes the idea that immigrant diversity

could also shape welfare by influencing available amenities, which will likely be capitalized

into housing costs. Thus, jointly interpretating the relationships between diversity and

wages as well as diversity and rents allows for a better understanding of whether rising

wages signal actual productivity increases or compensation for reduced quality-of-life.

Yet related work on spillovers from education suggests a simpler approach. Acemoglu

and Angrist (2001) and Moretti (2004a) argue that, in areas containing firms selling goods

and services beyond their immediate locality, higher nominal wages must indicate higher

average worker productivity. While firms in nontradable activities may reference local

prices, traded-goods firms face national prices. If they paid higher wages with no compen-

sating productivity advantages, firms would be forced to relocate to cities offering some

form of compensating differential – whether in the form of cheaper land or higher quality-

of-life. Based on this rationale, models of diversity and wages like Equation 1, estimated

over a population of firms that includes those engaged in tradable activities, can plausibly

shed light on local productivity effects. This is the approach we take.

Another concern in estimation is whether annual earnings effectively gauge produc-

tivity. Though imperfect, wages are widely considered to be the best available indicator
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of worker productivity (Feldstein, 2008), being less subject to measurement error than

output estimates from the Census of Manufactures (Ciccone and Hall, 1996). In an urban

context, rising productivity is likely to be expressed in higher wages (Combes et al., 2005),

and establishment level productivity and wages exhibit similar elasticities with respect to

city size (Combes et al., 2010). Still, given wage stagnation over the study period, in our

reliance on wages as a proxy we assess a greater risk of generating a Type II error; or less

severely, we might underestimate the strength of the relationship between diversity and

productivity. Given the results reported in Section 5, the second of these concerns seems

more plausible than the first.4

To capture the effects of diversity on worker productivity, the main identifying assump-

tion to be satisfied is that the return on unobserved worker ability in their establishment

and city is stationary over time, or at least that changes are uncorrelated with changes

in city-specific diversity. As in Moretti (2004a), this return need not be general across

higher-order categories, in this case establishments and cities.

4 Data

To estimate Equation 1, we use data from the U.S. Census Bureau’s confidential Longitu-

dinal Employer-Household Dynamics (LEHD) Infrastructure files, available in the Federal

Statistical Research Data Centers, administered by the Bureau’s Center for Economic

Studies. The LEHD program integrates administrative records from state-specific unem-

ployment insurance (UI) programs with Census Bureau economic and demographic data,

providing a nearly universal picture of private sector jobs in the U.S. (McKinney and Vil-

huber, 2014). The LEHD has poorer coverage for agricultural workers and Federal parts of

the public sector. Even so, LEHD captures at least 90 percent of civilian jobs (McKinney

4One additional potential source of bias comes from the lack of hourly wages. This could bias wages to
the extent that a labor force where diversity is growing also has many non-salaried workers for whom hours
worked are rising. Though we have no evidence that this is widespread, if it was, positive associations
between wages and diversity could simply be a function of hours worked. To explore potential bias from
this source, we first estimate the relationship between hourly and annual earnings, using 1 percent extracts
from the ACS, spanning 2001 to 2007 (Ruggles et al., 2010). To better match to our LEHD sample, we
restrict our sample to labor-market-active workers with non-zero wages, who are employed 50-52 weeks a
year, and who reside in metropolitan areas. Among these workers, we note a correlation of 0.8 between
annual wage and salary income and hourly wages. To capture longitudinal dimensions, we shift to the
metropolitan scale, and consider how the annual growth rate in metros’ mean hourly income relates to the
growth rate of their mean annual wage and salary income. We find a relationship of r =0.83. These strong
relationships reduce concerns that not having hourly measures of earnings is driving our results.
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and Vilhuber, 2014, p. 7-2). The version of the data available for this study covers 29

states with observations starting as early as 1991 and going through 2008.5

Our strategy depends on being able to assign workers both to work establishments

and to Metropolitan Core-Based Statistical Areas (CBSAs) that reflect economically-

integrated urban regions.6 We need to assign workers to cities in order to measure

metropolitan immigrant diversity and decide who is in and out of the sample. We must

also identify each individual’s work establishment in order to produce establishment-level

diversity measures, as well as other salient workplace characteristics. For workers in jobs

at single-unit firms (firms with only one plant, outlet, or office), knowing the employer tells

you the place of work, because there is only one possible location. However, for workers

employed at multi-unit firms, knowing the employer cannot always definitively reveal the

place of work. About 30-40 percent of workers included in the LEHD data files work at

multi-unit firms (McKinney and Vilhuber, 2014). To produce the Quarterly Workforce

Indicators (QWI), LEHD researchers have built a file (the Unit-to-Worker file, or U2W)

that, for each person employed in a multi-unit firm, provides ten work-unit imputations.

Imputations are based on distance between workers’ homes and establishment locations,

and the distribution of employment across the establishments within the multi-unit em-

ployer, leveraging actual establishment–worker data which is available only for the state

of Minnesota to generalize to the remainder of states (McKinney and Vilhuber, 2014, see

Chapter 9). Because the number of observations is so large and the place of work location

structures much of the data processing necessary for our estimation strategy (building

diversity measures; determining which workers are in and out of the sample; linking city

and establishment characteristics to individual workers in the panel) using the multiple

imputations is impractical. Instead, for each job in a multi-unit employer, we assign

each worker to their most frequently imputed establishment (the mode), using random

5The version of the RDC LEHD data used in this study is known as s2008. The states used in our
project are: AR, CA, CO, FL, GA, HI, IA, ID, IL, IN, LA, MD, ME, MT, NC, NJ, NM, NV, OK, OR, SC,
TN, TX, UT, VA, VT, WA, WI, WV. Note that states become available in the data in different years, and
in earlier years coverage is less comprehensive. While the exclusion of many public sector and agricultural
jobs suggests certain limits to generalizability, we believe these limits are modest. Agricultural jobs are
uncommon in metropolitan areas. And given uncommonly high levels of unionization, public sector jobs
are likely to be remunerated in ways that generate more noise than signal in the relationship between
wages and productivity. So, while our results may not hold up to close examination for LEHD-excluded
jobs, we do not believe their absence ought to produce false positives in our results.

6Throughout, we use the terms ‘city’, ‘metropolitan area’, and ‘region’ interchangeably.
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assignment among tied modal units.7

Once the multi-unit workers are assigned to a single establishment, we link variables

stored in LEHD infrastructure files to individuals and their work places. We capture

workplace features including location, total annual employment, and NAICS industry; as

well as worker characteristics like place of birth, sex, and race, and the length of work

spells in each workplace. Following a common practice in the literature, we limit the age

range of workers to be over 16 and less than 66 years old. Together, these variables allow

us to build annual city- and establishment-level diversity measures; generate person- and

establishment-level characteristics; and to construct a panel of workers with multi-year

job spells in a single location.

To construct metropolitan diversity measures, we first narrow our list of CBSAs to

those that do not cross state boundaries with states unavailable to our project. Thus,

although jobs located in Newark, NJ are included in our raw data, we drop them because

they are part of the CBSA for New York City that also includes jobs in New York State

and Pennsylvania, to which we do not have access. We do include CBSAs straddling

multiple states to which we do have access, such as Texarkana in Texas and Arkansas.

Our final sample includes 163 CBSAs.8 With the list of metropolitan areas determined,

we calculate several alternative measures of birthplace diversity based on all individuals

in the LEHD data who worked in a CBSA in a given calendar year.

We measure establishment-level diversity by considering the mix of workers in each es-

tablishment. When measuring diversity in workplaces, instead of weighting each person’s

7The quality of our city- and establishment-level diversity measures depends on assigning workers to
the correct city in the state and the correct establishment within the employer. Looking across all jobs, the
vast majority can only be assigned to a single city, either because they occur in single-unit employers or
multi-unit employers where all the establishments are located in the same city. This raises our confidence
that our diversity measures are based off workers who actually work in each city. With 30-40 percent
of the workers in the LEHD data employed by multi-unit employers, if we got the assignment wrong in
every case, our diversity measures would be meaningless. However, if we randomly assigned multi-unit
workers to establishments, we estimate that we would get the city incorrect for less than 10% of workers.
Using the most frequently multiply-imputed establishment, we estimate that the proportion of workers
incorrectly assigned to a city to be much smaller than this upper bound. To further explore the robustness
of our city-level, LEHD-derived diversity estimates, we relate these to an analogous index produced using
public-use IPUMS microdata. In the latter case, worker location is certain. For the year 2007, the two
indices were very strongly correlated, with a coefficient of approximately 0.9. Hence, we believe that bias
due to the misallocation of workers to cities is likely to be very small. Furthermore, we have no reason to
believe that there would be any non-random error related to birthplace that would systematically bias our
diversity measures.

8In fact, we estimated diversity measures for 232 CBSAs, however, our analytical sample was reduced
by the inclusion of city-level measures of college educated share of the labor force, derived from IPUMS.
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contribution to birthplace diversity evenly as we do in the city measures, we weight each

person’s contribution depending on how many quarters they work in a particular estab-

lishment. If they worked half the year in one establishment and half the year in another,

then they count as half a person in the diversity measures of each establishment for that

year.

Our analytical strategy relies on relating annual changes in wages with changes in the

city and workplace diversity. To accomplish this we focus on people who remain in a single

city and in a single establishment as others move in and out of both, changing the level

of diversity around the stayers. Thus, our analytical sample includes fewer people than

those who contributed to the city- and establishment diversity measures, since we keep

only workers with multi-year job spells in a single workplace. Specifically, it is a panel

of individual workers, tracking their wages in a single job spell of at least two continuous

calendar years in one establishment. To construct this, we calculate annual wages from the

reported quarterly wages, trimming years without positive earnings in all four quarters.

Additionally, we exclude workers with wages below the 5th percentile of the wage dis-

tribution, on the basis that LEHD’s inclusion of all workers earning at least one dollar

in a quarter captures some very low earners perhaps operating under irregular employ-

ment situations. We also restrict the sample to jobs at establishments with at least ten

employees, in order to be able to generate meaningful workplace-specific diversity esti-

mates. And we drop workers who are simultaneously employed in multiple jobs, so that

we can clearly identify the source of any establishment-specific diversity effects. For each

worker, we track only their longest job spell in any city in our sample, so an individual

only shows up in one establishment and one city in the panel, even if they have multiple

job spells over their observed career that meet the two-year minimum. These choices limit

our ability to apply our results to certain parts of the American work force – for example,

those with extremely tenuous labor market attachment or very low wages, and those who

consistently hold multiple UI-covered jobs – but here we explicitly prioritize internal over

external validity.
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4.1 Diversity Measures

Researchers commonly measure birthplace diversity using a fractionalization index:9

Fractionalizationj = 1 −
R∑

r=1

s2rj (2)

where s is the proportion of residents in city j who were born in country r ; and R represents

the maximum number of countries captured in the population. The index nears zero as

diversity decreases and it approaches one as heterogeneity increases, with a maximum

of (1 − 1
R); it is often described as measuring the probability that two randomly-drawn

individuals in a location were born in different countries. The pervasiveness of this measure

in diversity research is no doubt related to its simplicity, as well as its ability to capture

both the breadth of countries from which individuals originate, as well as the sizes of these

different country groups in a given location. This index was used to produce measures of

metropolitan immigrant diversity upon which Figure 1 is based.

Because it is the most widely-used measure in the field, in much of the proceeding

analysis, we estimate metropolitan as well as establishment-specific levels of diversity

using the fractionalization index, using the universe of LEHD-coded worker birthplaces in

a metropolitan area or work unit.10

Responding to discussions about the appropriate means of capturing heterogeneity

(Dawson, 2012; Alesina et al., 2013; Kemeny, 2014; Nijkamp and Poot, 2015), we consider

alternative metropolitan diversity indices.11 Although these are likely to be correlated

with the fractionalization index, each measure captures diversity in a somewhat different

way, and none is clearly superior. For instance, Taagepera and Ray (1977) argue that an

entropy index – a common alternative to fractionalization – may provide a more accurate

9This index has been used to capture a wide variety of categorical forms of diversity, including language,
birthplace, race and ethnicity (see, for example, Taylor and Hudson, 1972; Easterly and Levine, 1997; Knack
and Keefer, 1997; Ottaviano and Peri, 2006; Sparber, 2010).

10Seeking to capture dimensions of ‘cultural’ similarity, Trax et al. (2015) weight birthplaces by geo-
graphical distance from Germany. The idea that, for instance, Canadian immigrants offer U.S. workers less
heuristic heterogeneity than Mongolians is an interesting one, one explored in papers such as Parrotta et al.
(2016). However, it is not at all clear that geographical distance is the appropriate measure of this idea,
or that there ought to be a purely linear relationship between heuristic heterogeneity and productivity.
Lacking theoretical guidance, we opt to treat each birthplace as offering equal quantities of heterogeneity,
an assumption broadly in line with Ottaviano and Peri (2006).

11Using public-use Census data for metropolitan areas in the United States, Kemeny (2014) explores
differences across various diversity measures, including those discussed in this section. Most measures
are relatively highly correlated, with the exception of fractionalization indices measured only over the
foreign-born population, which exhibits a moderate negative correlation with alternative measures.
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gauge of diversity when constituent groups are of dissimilar size. Using the same variables

and subscripts as above, the entropy index is measured as:

Entropyj = −
R∑

r=1

srj ∗ ln(srj) (3)

Other measurement approaches seek to address the issue that estimates of heterogene-

ity based on Equation 2 can be dominated by the presence of a large proportion of foreign

born workers, even if those workers are not drawn from a wide range of source countries.

In other words, in practice, fractionalization indices can privilege depth over breadth.

Alesina et al. (2013) respond by decomposing the index into within and between compo-

nents, with Equation 4 below measuring diversity strictly among foreign-born in a given

location, as opposed to capturing heterogeneity across all workers, native and immigrant.

The index is calculated as:

Alesinaj =

R∑
r=2

[ srj
(1 − s1)

∗ (1 − srj
(1 − s1)

)
]
∗ (1 − s1)

2 (4)

where s1 is the share of native-born workers in the city population (with other subscripts

as above), and the equation is indexed over all nonnatives (r = 2).

Motivated by similar concerns, Ozgen et al. (2013) advocate using measures of depth

and breadth in conjunction: the simple proportion of foreign born in the workforce, along-

side a standard fractionalization index that is estimated over only the foreign born pop-

ulation. Like the Alesina index, this approach has the virtue of being able to tease out

the extent to which effects arise due to the sheer presence of foreign-born, as distinct from

their heterogeneity. Unlike an index estimated over the entire population, the immigrant-

only fractionalization measure will not be influenced by the single large group of native

workers in each city and establishment. However, since it cannot account for the likeli-

hood of actually meeting and interacting with those from other groups, estimates using

this measure include the share of foreign born in all workers as a control.

4.2 Individual-level Measures

Our primary outcome of interest is an individual’s annual earnings. Wage data in LEHD

come from UI records, and are measured here in log form. Average annual earnings are

a little over $35,000USD. Given a fixed effects approach, other available individual-level
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information in LEHD cannot be directly included in estimation as controls. Nonetheless,

this information is useful to describe our sample. As Table 1 describes, the average worker

in our sample is 40 years old. Sixty-seven percent of the sample is white, 84 percent is

native-born, and 47 percent is female. These characteristics closely match the broader

U.S. economy (Lee and Mather, 2008; Social Security Administration, 2015). The average

work spell in the sample lasts nearly 5 years.

Table 1: Summary Statistics

Variable Mean Standard Deviation

Individual Characteristics
Log Annual Earnings 10.48 0.637
Age 40.32 11.67
White 0.667 0.471
U.S. Born 0.840 0.366
Female 0.467 0.499
Spell Duration 4.970 3.304

Establishment Characteristics
Birthplace Fractionalization 0.220 0.207
Foreign-Born 0.061 0.147
Employment 63.01 278.39
Multi-Unit 0.349 0.477
Manufacturing 0.091 0.287

City Characteristics
Birthplace Fractionalization 0.180 0.129
College Share, All Workers 0.256 0.074
College Share, Natives 0.261 0.073
College Share, Immigrants 0.273 0.129
Employment (10,000s) 47.20 88.29
Birthplace Entropy 0.563 0.317
Birthplace Alesina 0.011 0.017
Birthplace Fractionalization, Immigrants 0.819 0.182
Share Foreign-Born 0.101 0.084
Race Fractionalization 0.433 0.137
Age Fractionalization 0.977 0.001

Individuals 33,550,000
Establishments 1,193,000
CBSAs 163

4.3 Establishment-level Controls

In addition to workplace-specific immigrant fractionalization, we also capture annual

changes in establishment employment levels. We include employment based on the ratio-

nale that changes in aggregate workforce size can influence productivity through economies

of scale. The average establishment in our sample employs 63 workers. In terms of other
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broad characteristics of our sample, Table 1 shows that six percent of jobs are held by

foreign-born workers, while 35 percent of establishments are part of multi-unit firms. Nine

percent of these units are chiefly engaged in manufacturing activities.

4.4 Metropolitan-level Controls

In addition to indicators of metropolitan birthplace diversity, a variety of city-level char-

acteristics are included in the regression results that follow. In each model we include

indicators of local externalities from scale and education. Measures of CBSA employment

are included to capture the effects of agglomeration economies (Lewis and Peri, 2014). To

measure education levels, we estimate the annual share of each CBSA’s workforce holding

at least a 4-year college degree, using 5% public-use IPUMS extracts from the 1990 and

2000 Decennial Censuses, as well as 1% samples from each year of the 2001–2008 ACS

(Ruggles et al., 2010).12 Among other city-level controls, motivated by related work on

other forms of heterogeneity (for example, Sparber, 2010; Østergaard et al., 2011), we use

LEHD data to calculate additional diversity-based sources of externalities, based upon

city-specific variation in age and race.

5 Results

This section presents estimates of the relationship between birthplace diversity and wages.

As described in Section 3, results are produced using fixed effects models on an annual

panel of workers over their longest job spell during the study period (1991-2008). Each

model includes a fixed effect that eliminates bias from stationary unobserved heterogeneity

among workers, their establishment, and their city. Year dummy variables are included to

capture unmeasured shocks that are uniform across workers, plants and cities, but which

vary over time. Throughout, standard errors are clustered at the establishment level, on

the basis that wages are likely to be most strongly non-independent within workplaces.

12We use available data to interpolate across absent years (1991–1999) as in Moretti (2004b). Our
measure of education is sourced in this way despite having annual, individual-level imputed values of
schooling attainment available in LEHD, since we found that the latter are only moderately correlated
(<0.4) with the more reliable values drawn from the Decennial and ACS.
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5.1 Diversity Spillovers for the Average Worker

Table 2 presents initial estimates of the relationship between immigrant diversity and

wages for the full sample of workers. Column 1 presents results for city-level birthplace

fractionalization alone, controlling for the metropolitan proportion of college-educated

workers, and metropolitan and workplace employment. This model relates directly to

the extant urban literature, by considering the operation of the independent variable of

interest at the city level only. At the same time, it improves upon prior work, chiefly by

accounting for stationary unobserved heterogeneity at multiple scales, while also control-

ling for changes in wages that might be due to shifts in establishment size. The coefficient

on city immigrant diversity is positive and significant at a one percent level. As expected,

control variables are all significant and positively related to wages. The coefficient on the

share of college educated workers is similar to that reported by Moretti (2004b), indicating

that a one percent increase in the share of college educated workers in a city yields a wage

premium of just over one percent. Overall, the model yields the insight that, all else equal,

workers in U.S. cities featuring larger annual increases in birthplace fractionalization also

experienced larger annual wage growth. This conforms to much of the prior work, adding

new evidence that earlier findings were not fully driven by unobserved, sorting-driven

worker characteristics, nor by unmeasured permanent features of either establishments or

cities.

Column 2 of Table 2 presents estimates of a model where fractionalization measured

at the establishment level is the primary predictor of interest, and where we exclude

city-level diversity. The coefficient on workplace diversity is positive and significant at

a one percent level. Controls remain significant and consistent from the previous model.

Interestingly, once exponentiated, the effect size of the share of college-educated workers in

a metropolitan area is nearly identical to that found in column 1 (1.24 percent for column

2 where there is no measure of city diversity, versus 1.20 for column 1 that includes such a

diversity measure), further supporting the notion that immigrant diversity and education

represent distinct channels for spillovers from human capital.13 Column 3 presents results

13Ideally, we would have liked to measure changes in human capital in establishments, not just in cities.
However, our lack of confidence in the imputed LEHD education variable prevents us from doing so.
Though imperfect, we take the continued distinct significance of diversity and education at the city level
to raise confidence regarding the importance of diversity at the establishment scale.
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Table 2: Spillovers from Immigrant Diversity: Main Fixed-Effects Estimates

Dependent Variable: Log of Annual Earnings
(1) (2) (3) (4) (5)

City Measures
Birthplace Fractionalization 0.406∗∗∗ 0.375∗∗∗ 0.411∗∗∗ 0.390∗∗∗

(0.067) (0.065) (0.067) (0.066)
College Share 0.164∗∗∗ 0.213∗∗∗ 0.162∗∗∗ 0.155∗∗∗

(0.040) (0.041) (0.040) (0.040)
Employment (millions) 0.032∗∗∗ 0.031∗∗∗ 0.031∗∗∗ 0.030∗∗∗ 0.030∗∗∗

(0.005) (0.006) (0.005) (0.005) (0.005)
Race Fractionalization -0.043

(0.037)
Age Fractionalization 2.091

(1.433)
Native College Share 0.040

(0.036)
Immigrant College Share 0.072∗∗∗

(0.009)

Establishment Measures
Birthplace Fractionalization 0.079∗∗∗ 0.073∗∗∗ 0.073∗∗∗ 0.072∗∗∗

(0.008) (0.007) (0.007) (0.007)
Employment (thousands) 0.006∗ 0.006∗ 0.006∗ 0.006∗ 0.006∗

(0.003) (0.003) (0.003) (0.003) (0.003)

Note: Standard errors in parentheses, corrected for clustering by establishment. ∗p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01. Estimated equation is (1). R2 equal to 0.95 in all models. Year and individual x work-
place x city fixed effects included in each model. Each model is estimated over 166,540,000 observations,
nested in 33,550,000 individuals. Overall observation counts are rounded to the nearest 10,000 to ensure
confidentiality.

in which we include measures of both city and establishment diversity. When included

in the same specification, diversity at each scale is positively and significantly related to

wages, though each coefficient is modestly smaller with the inclusion of the other. These

results suggest that there are positive diversity impacts to be felt both from living in a more

birthplace-diverse city, as well as from working in a more birthplace-diverse establishment.

The models in columns 4 and 5 of Table 2 include some additional control variables.

Model 4 adds measures of race and age fractionalization, to test whether immigrant di-

versity captures other aspects of heterogeneity that might be driving the result. Race and

age diversity do not enter significantly into this model, and coefficients for immigrant di-

versity remain consistent. Column 5 presents results in which the city-level measure of the

proportion of college-educated workers is disaggregated to capture the share of college ed-

ucated among native-born, and separately foreign-born workers. Our aim is to ensure that

any effects ascribed to immigrant heterogeneity do not instead reflect changes in the stock
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of human capital specific to the immigrant population (cf., Hunt and Gauthier-Loiselle,

2010; Paserman, 2013). Measures of education among natives and foreign-born are each

positively related to wages, though only the coefficient on immigrant college share is statis-

tically significant. Most importantly, the inclusion of these measures does not materially

affect the direction, magnitude, or significance levels of the immigrant diversity variables.

We next probe the robustness of the results presented thus far. Specifically, we test

whether findings are sensitive to the use of different measures of diversity; to the particular

decisions made in constructing our analytical sample; and to approaches that account for

unobserved shocks at either the city or establishment level. Each of these issues is explored

in turn.

Table 3 reports estimates in which we substitute several alternative measures of metropoli-

tan immigrant heterogeneity for our main birthplace fractionalization measure. Because

the control variables remain stable, we present condensed results, showing results only for

diversity at each scale, with each row of the table indicating a separate model in which

we use a particular measure of city-specific immigrant diversity. The first row reports

estimates produced using the birthplace entropy measure described in Equation 3, whose

strength lies in improved measurement under the quite plausible conditions that popula-

tion subgroups are of different sizes. The coefficient on the entropy measure is positive and

significant at a one percent level, and controls continue to display the expected signs and

statistical significance. Rows 2 and 3 report results of two different approaches to explore

the extent to which results derived from the standard fractionalization index are driven by

the simple share of foreign-born. In row 2, the Alesina diversity index enters as positively

and significantly related to wages. Row 3 reports estimates in which we explicitly distin-

guish between the overall presence of nonnatives and diversity among those nonnatives,

following Ozgen et al. (2013) and Nijkamp and Poot (2015). Controlling for the presence

of foreign-born workers, birthplace diversity within the pool of a city’s immigrants remains

positively and significantly associated with wages. Interpreting the economic significance

of these various diversity indicators in relation to wages suggests that results are not es-

pecially sensitive to one’s choice of measure. Specifically, effect sizes for a one standard

deviation change in city diversity are approximately six percent for the entropy index,

eight percent for the Alesina index, and nine percent for immigrant-only fractionalization.
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Table 3: Robustness: FE Models with Alternative City-Specific Diversity Measures

Dependent Variable: Log of Annual Earnings
Diversity Coefficients

City (β) Estab. (γ)

(1) with City Birthplace Entropy 0.161*** 0.070***
(0.025) (0.007)

(2) with City Birthplace Alesina 1.703*** 0.070***
(0.225) (0.008)

(3) with City Birthplace Immigrant-Only Frac. 0.403*** 0.068***
(0.036) (0.008)

Note: Each numbered row presents estimates for a single model, containing city-level education and
employment controls, as well as a workplace-level measure of employment. Year and individual x workplace
x city fixed effects included in each model. ∗p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in
parentheses, corrected for clustering by establishment. Estimating equation is (1). R2 equal to 0.95 in
all models. Each model in this table is estimated over 166,540,000 observations, nested in 33,550,000
individuals. These observation counts are rounded to the nearest 10,000 to ensure confidentiality.

We turn next to particular subsets of the main sample which, in different ways shed

light on the relationship of interest. Results in Table 4 are from models that are directly

comparable to those found in Column 3 in Table 2 in that each includes the usual controls

as well as measures of immigrant fractionalization at both city and work unit scales. The

first numbered row of Table 4 addresses concerns that measures of diversity may not be

meaningful in small workplaces. The estimates reported are produced over a sample of

workers holding jobs in establishments that have at least 20 employees. Coefficients for

city- and establishment-diversity remain positive and statistically significant at a 1 percent

level, and are closely comparable to estimates for the entire sample.

The second row of Table 4 aims to determine whether or not the process of imputation

of workers to establishments in multi-unit firms generates bias. This process could incor-

rectly assign some workers to establishments, and to a lesser extent to cities; in turn, this

could bias measures of diversity, while also incorrectly relating other workplace character-

istics to that particular worker. Row 2 of Table 4 presents estimates generated solely for

the subset of employees working for single-unit firms. For these workers, there is only one

possible place of work, thus we are confident we have each worker placed among the correct

co-workers in the workplace. Results remain consistent: increased diversity at both the

city- and workplace-level is positively and significantly related to increased wages. These

results raise our confidence that our process for assigning multi-unit employees to work

locations is not spuriously driving results.
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Table 4: Robustness: FE Models on Selected Subsamples of Workers and Establishments

Dependent Variable: Log of Annual Earnings
Fractionalization Coeffs. Counts (millions)

City (β) Estab. (γ) Observations Individuals

(1) Larger establishments only 0.362∗∗∗ 0.081∗∗∗ 151.53 30.38
(0.071) (0.010)

(2) Single-unit firms only 0.547∗∗∗ 0.079∗∗∗ 81.96 16.66
(0.089) (0.009)

(3) Native-born white males only 0.502∗∗∗ 0.079∗∗∗ 59.02 11.34
(0.079) (0.009)

(4) Manufacturing plants only 0.740∗∗∗ 0.114∗∗∗ 29.61 5.49
(0.170) (0.014)

Note: Each numbered row presents estimates for a single model, containing city level education and
employment controls, as well as workplace-specific employment, and year and individual x workplace x
city fixed effects. Standard errors in parentheses, corrected for clustering by establishment. ∗p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01. Estimated equation is (1). R2 equal to 0.94 in all models. Overall observation
counts are rounded to the nearest 10,000 to ensure confidentiality. Larger plants in row 1 are those with
at least 20 employees. Natives in row 3 are white male workers born in the U.S..

Model 3 in Table 4 estimates the relationship between diversity and wages for white,

native-born, male workers, in keeping with the main focus of much of the broader literature

on the economic impacts of immigration. It is often contended that foreign-born workers

displace and exert negative wage pressure on natives in the labor market, and especially

native males. This subgroup has also been the focus of selected research on immigrant

diversity, as a strategy for limiting worker heterogeneity within the analytical sample (for

instance: Ottaviano and Peri, 2006; Kemeny, 2012). As with all of the previous models

discussed, coefficients for diversity at each scale are positively and significantly linked to

worker wages.

The final model in Table 4 aims to more deeply probe spatial-equilibrium concerns that

the association between diversity and wages may indicate that diversity affects quality-of-

life, not productivity. Since, due to data limitations, we cannot more directly capture the

co-movement of changes in diversity and individual rents, we rely on the argument that

changes in wages in a local economy that feature industries serving a national market must

reflect changing productivity, otherwise the firms would be forced to relocate. Though

Moretti (2004b) contends that the argument holds for wages if the local economy includes

any national-serving or tradable products and services, in this model we interpret the point

conservatively, limiting our model to a subset of activities that is certainly facing national

(and even global) price competition: manufacturing. Model 4 presents results with the
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sample restricted to only workers in establishments classified within two-digit NAICS

headings 31, 32 and 33. As in all of the previous models, city and workplace diversity

emerge as positive and significant. Hence, the positive relationship between diversity and

wages holds among workers about whom we are most confident that increased wages reflect

increased productivity.

We turn next to addressing concerns about endogeneity. Though our baseline empirical

approach aims to account for bias from worker selectivity into plants and metropolitan

areas, interpretation remains vulnerable to the possibility that unobserved shocks at the

level of the city or workplace may be driving the relationships of interest. We seek to

address such concerns in two ways: (1) by considering the potential role of local demand

shocks, and (2) by instrumenting for city- and workplace-specific immigrant diversity.

Instead of rising wages being driven by shifting supplies of diverse workers, they could

be a function of city-specific positive shocks to labor demand. To the extent that such

local demand shifters are correlated with changes in diversity (perhaps due to the generally

higher geographical mobility of immigrants as compared with natives), their exclusion

could bias results. We use two approaches to measure local demand shocks. The first

draws on a method developed by Bartik (1991), and used in such studies as Bound and

Holzer (2000) and Wozniak (2010). As a means to produce measures of local demand that

are unrelated to shifts in local labor supply, the measure applies industry-specific national

employment growth rates to local industry employment shares. Our ‘Bartik’ measure is

constructed as follows:

Bartikjt =
L∑
l=1

ejlt−1(lnElt − lnElt−1) (5)

where (lnElt− lnElt−1) captures the growth of the log of national employment in industry

l in time t, and the local (CBSA) employment weight to the national measures is indicated

by ejlt−1. Data for this index comes from the Census Bureau’s County Business Patterns

dataset, which offers fine-grained 6-digit (NAICS) industrial data. Because of the shift

ion the United States from SIC to NAICS codes in 1997, annual NAICS-based Bartik

measures can be produced from 1998.

Concerned with the fact that measures of employment growth may imprecisely cap-

turing shocks, our second gauge of local demand conditions uses information from the Bu-
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reau of Labor Statistics’ Job Openings and Turnover Survey (JOLTS). JOLTS is based on

surveys of over 16,000 nonagricultural firms conducted since 2001, and describes industry-

specific national monthly unmet demand by listing unfilled jobs for which firms are ac-

tively recruiting. CBSA- and year-specific measures of job openings are constructed by

weighting nationally-representative 2-digit NAICS JOLTS data with city-specific shares of

employment by industry. We then divide this indicator by a measure of CBSA-specific un-

employment, constructed by summing county-level estimates derived from the BLS Local

Area Unemployment Statistics program.14

To match the availability of the JOLTS data, the first three models in Table 5 report

results estimated on a sample restricted to job spells that occur between 2001 and 2008.

Model 1 is a reference model with the standard controls but no demand shifters, offering a

comparison for results generated over the restricted time period. Coefficients for workplace

and metropolitan diversity are positive and significant at a 1 percent level, though they are

smaller than for those produced for the full study period. Model 2 presents coefficients of

interest in a model that includes the JOLTS-derived demand shifter. Though the demand

shock measure enters significantly in the model, the size of the coefficient on city diversity

is only modestly reduced, and both workplace and city diversity remain comparable in

terms of sign and significance. Model 3 reports estimates that include the Bartik demand

shifter. As expected, the Bartik measure is positively and significantly related to wages.

But, the inclusion of this indicator does not materially change the relationship between

wages and diversity measured at either the city or workplace scale.15

To further account for bias from dynamic unobserved heterogeneity, we also generate

estimates using instrumental variables. In seeking suitable instruments, the strengths of

the primary estimation strategy turn into liabilities. Simply, it is extremely difficult to

find annually-available candidate instruments for individual workplaces and cities that are

sufficiently strong predictors of differences in immigrant diversity at the relevant level, and

which are also plausibly orthogonal to unobserved shocks. Given the scarcity in LEHD

of variables capturing workplace-specific characteristics, the challenge is most acute at

14In a related manner, Hirasuna (2013) calculates the ratio of national unemployment to national job
openings to estimate excess supply.

15For robustness, we also generate estimates using the Bartik measure using 1997 as a start year. The
decision to use the restricted timeframe does not change the overall findings.
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Table 5: Robustness: Demand Shocks and Instrumental Variables
Dependent Variable: Log of Annual Earnings

Fractionalization Coeffs. Counts (millions)

City (β) Estab. (γ) Observations Individuals

(1) Baseline model 2001-2008 0.192∗∗∗ 0.037∗∗∗ 92.3 22.6
(0.069) (0.005)

(2) with JOLTS demand shock 0.176∗∗∗ 0.037∗∗∗ 92.3 22.6
(0.069) (0.005)

(3) with Bartik demand shock 0.198∗∗∗ 0.038∗∗∗ 92.3 22.6
(0.068) (0.005)

(4) GMM FE IV (1991-2008) 0.432∗∗∗ 0.058∗∗∗ 15.89 3.24
(0.144) (0.013)

Note: Each numbered row presents estimates for a single model, containing city level education and
employment controls, as well as workplace-specific employment. Standard errors in parentheses, corrected
for clustering by establishment. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Observation counts are rounded to
the nearest 10,000 to ensure confidentiality. Columns (1)-(3) estimated over 2001-2008; R2 greater than
0.96 in columns (1)-(3). Model 4 estimated over 1991-2008, on a 30-percent random sample of individuals
in the main analytical sample of ‘stayers’. Instruments used in this model are 3- and 4-year lags of city-
level diversity, and 1-year lags of establishment-level diversity. Model 4 generated Kleibergen-Paap LM
(underidentification) of 1.5e+04 (p=0.000) and a Hansen J of 0.045 (p=0.83).

the establishment scale. After rejecting several ‘external’ instruments, we subjected a

multitude of lags of city and establishment immigrant diversity to tests of exclusion, under-

and overidentification.16 An instrument set featuring three- and four-year lags of city

diversity and one-year lags of establishment diversity passed these hurdles. Due to the

nesting of individual workers inside establishments, we opt for cluster-robust GMM-FE

IV, as this approach ought to produce more efficient estimates than conventional standard

two-stage least squares (Baum et al., 2003).

Model 4 of Table 5 reports our instrumental variables estimates, produced for the full

study period from 1991. To reduce computational intensiveness to a manageable level,

estimates are produced on a 30 percent random sample of individuals from the main

analytical sample, covering job spells for over three million workers. Instruments pass

the Kleibergen-Paap underidentification test, indicating their relevance, though a large

test score suggests that, despite the deeper lags, the instruments may be ‘too good’ –

16As candidate external city-specific instruments, we experimented with various indicators, including
a longitudinal version of the shift-share ‘predicted diversity’ instrument that is widely used in studies of
immigration and immigrant diversity (see, for instance, Card, 2001; Ottaviano and Peri, 2006; Kemeny,
2012; Trax et al., 2015), and an annual measure capturing the presence of refugees in metropolitan areas,
using information drawn from The Department of State’s Refugee Processing Center. Neither these nor
other potential instruments passed tests of both instrument under- and overidentification. The shift-share
instrument enters significantly into standard estimates of Equation 1, and thereby fails to satisfy the
exclusion restriction. The refugee instrument passes the exclusion test but does not emerge as sufficiently
strong in first-stage predictions.
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too closely related to the potentially endogenous regressor. As the estimating equation is

overidentified, we test for the joint orthogonality of the excluded instruments, using the

Hansen J test statistic; results indicate that the instruments are independently distributed

of the error process and that they are properly excluded from the model. The second

stage results shown in Model 4 broadly support non-instrumented findings. Diversity

at the metropolitan scale is positively and significantly related to wages, as is diversity

estimated at the establishment level. Coefficients for both key independent variables of

interest remain close to those produced using the standard fixed effects estimator reported

in Tables 2–4. These findings, even with less-than-perfect instruments, are consistent with

cross-sectional studies using other IV strategies (e.g., Ottaviano and Peri, 2006; Kemeny,

2012).

Although we cannot fully eliminate the possibility that unmeasured shocks to cities and

workplaces are driving the relationships between diversity and productivity, the evidence

presented in Table 5 is consistent with the interpretation that the results in this paper

are not driven by such shocks. They offer support for the idea that immigrant diversity

in cities and work establishments generate wage-augmenting productivity spillovers.

5.2 Who benefits from spillovers from immigrant diversity?

In this section we seek an answer to our second research question: are spillovers from im-

migrant diversity unevenly distributed among workers occupying different segments of the

labor market? As described in Section 3, to investigate this question we begin by splitting

our analytical sample into four groups. Workers are assigned to quartiles based where

they stand in their CBSA’s wage distribution. Equation 1 is then estimated separately

for the subsample of workers in each quartile. The top panel of Table 6 presents results

from models that include the usual controls, individual x establishment x city fixed effects,

and standard errors clustered at the establishment level. Models 1 to 4 present results for

workers in progressively higher quartiles of their city’s wage distribution. Across each of

these models, coefficients for city-specific and establishment-specific immigrant diversity

remain positively related to wages at a one percent level of significance. Magnitudes for

city diversity coefficients are relatively stable, with formal tests indicating no statistically
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significant differences across quartiles.17 Coefficients for establishment-level diversity are

also consistent across quartiles, with the exception of the highest wage quartile, where

the social returns to rising workplace diversity are significantly larger in statistical terms,

though substantively the differences are modest. Overall, we interpret the results in the

top panel of Table 6 to indicate that productivity benefits from immigrant diversity are

more or less evenly shared across the entire earnings spectrum.

Table 6: Estimates of Spillovers from Immigrant Diversity by Wage Quartile

Dependent Variable: Log of Annual Earnings
Fractionalization Coeffs. Counts (millions)

City (β) Estab. (γ) Observations Individuals R2

FE Estimates
(1) Wage Quartile 1 (lowest) 0.436∗∗∗ 0.069∗∗∗ 51.57 11.90 0.86

(0.058) (0.004)
(2) Wage Quartile 2 0.384∗∗∗ 0.040∗∗∗ 42.30 8.44 0.83

(0.086) (0.007)
(3) Wage Quartile 3 0.347∗∗∗ 0.062∗∗∗ 37.92 6.97 0.83

(0.099) (0.013)
(4) Wage Quartile 4 (highest) 0.414∗∗∗ 0.139∗∗∗ 34.65 6.23 0.89

(0.123) (0.018)

GMM FE IV Estimates
(5) Wage Quartile 2 0.539∗∗∗ 0.025 4.08 0.830 –

(0.178) (0.015)
(6) Wage Quartile 3 0.408∗∗ 0.046∗∗ 4.06 0.795 –

(0.179) (0.019)
(7) Wage Quartile 4 (highest) 0.492∗∗∗ 0.123∗∗∗ 3.74 0.750 –

(0.181) (0.026)

Note: Each numbered row presents estimates for a single model, containing city level education and
employment controls, as well as workplace-specific employment, and year and individual x workplace x
city fixed effects. Standard errors in parentheses, corrected for clustering by establishment. ∗p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01. Overall observation counts are rounded to the nearest 10,000 to ensure
confidentiality. GMM FE IV results not shown for wage quartile 1, as instruments were not found that
passed exclusion restrictions, underidentification and overidentification tests. Instruments used include:
3- and 4- year lags of city-level immigrant diversity, and 1-year lags of establishment diversity. Results in
models 5-7 are produced on a 30 percent random subsample of our primary analytical sample. Tests of
Model 5 yielded Kleibergen-Paap LM (underidentification) of 1.1+e04 (p=0.000) and a Hansen J of 0.299
(p=0.58). Tests of Model 6 yielded Kleibergen-Paap LM (underidentification) of 8722 (p=0.000) and a
Hansen J of 0.394 (p=0.53). Tests of Model 7 yielded Kleibergen-Paap LM (underidentification) of 7428
(p=0.000) and a Hansen J of 0.173 (p=0.68).

17To formally compare coefficients across quartile groups, we calculate z-scores according to the approach

described for large samples in Clogg et al. (1995), as follows: z = β̂m1 − β̂m2/
√

(s2
β̂m1

+ s2
β̂m2

), where s

is the standard error for a given estimated coefficient β̂ and mn indicates the specific regression models
being compared. The null hypothesis being tested is that there are no differences between the coefficients
in the pair of models, against an alternative that one coefficient is larger than another. We compare each
model in the top panel of Table 6 to each other model, seeking to identify differences between estimates
for CBSA-specific immigrant diversity, and separately for establishment-specific diversity. For each of the
city diversity comparisons, at a threshold of 5 percent (as well as 1 percent), we fail to reject the null of
no differences. We reject the null for establishment diversity in Model 4 against each of the other models;
we also do so comparing establishment diversity in Model 1 against 2.
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When we instrument for immigrant diversity at the city and establishment scales,

results are broadly supportive of this conclusion. The lower panel of Table 6 presents

two-stage GMM FE IV estimates, with deeper lags of diversity used as instruments. For

quartiles 2–4 we find combinations of lags that satisfy the exclusion restriction; we are

unable to do so for the lowest wage quartile. Models 5–7 in Table 6 present estimates

that instrument for city and workplace immigrant diversity using a combination of three-

and four-year lags of metropolitan diversity, and a one-year lag of establishment diversity.

As above, to avoid convergence problems in estimation, results are produced on a 30

percent random subsample of our primary analytical sample. These models pass tests

of under and overidentification. The coefficient for city immigrant diversity is positively

and significantly related to wages across each of the wage quartiles for which results are

produced. Though somewhat larger, magnitudes are broadly comparable to those in the

upper panel. Instrumented and uninstrumented coefficients on the establishment diversity

variable are also similar, however the coefficient is only statistically significant for wage

quartiles above the median.

Though incomplete, our IV estimates strengthen confidence in the idea that the benefits

of diversity are spread across the wage distribution. This is clearest for spillovers from

diversity at the metropolitan scale, while within establishments benefits appear to be

concentrated among those occupying higher rungs of the ladder. It is worth noting that,

due to the sampling strategy and the use of lagged instruments, results generated using

GMM FE IV are drawn from a much more restricted sample than many of the other

models presented earlier in this article, including the upper panel of Table 6. We recognize

tradeoffs in privileging instrumented over uninstrumented estimates. Though results are

broadly similar, for precision we prefer estimates reported in the upper panel.

5.3 Who generates spillovers from immigrant diversity?

While the previous section investigated whether diversity’s benefits are spread evenly

across the labor force, we now turn to this article’s third and final question: who generates

these spillovers? Specifically, we seek to determine whether the benefits from diversity

emanate from the full pool of workers in a workplace or city, or rather, from diversity within

particular subgroups. On the intuition that variation might be related to hierarchy in the
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labor market, we build an additional series of birthplace fractionalization measures that

describe heterogeneity among low-wage, and separately, high-wage workers. To capture

low-wage urban immigrant diversity, for each year and CBSA, we calculate the level of

birthplace fractionalization present among workers with wages below the 25th percentile

of their city’s wage distribution. High-wage urban immigrant diversity is measured in an

analogous way for workers at or above the 75th percentile. Using a similar approach, we

also build measures of low- and high-wage immigrant diversity at the establishment level,

using wage distributions specific to each workplace.18

The top panel of Table 7 presents estimates based on a variant of Equation 1, predicting

the relationship between a worker’s earnings and the immigrant diversity present among

workers who belong to the least-well paid quartile of their city and workplace. As with the

immediately previous tables, each row in Table 7 summarizes results for a distinct model

estimated on a particular group of workers. Model 1 is estimated on the full analytical

sample. Models 2–5 are estimated on progressively higher quartiles of the CBSA-specific

wage distribution. Results across all of these models are consistent. In each, the coefficient

for low-wage urban birthplace fractionalization is not statistically significant. Meanwhile,

we find a consistent positive and significant relationship between wages and low-wage

diversity at the workplace scale, though coefficients are roughly an order of magnitude

smaller than typical estimates for establishment immigrant diversity measured over the

entire workforce (i.e. Model 3 in Table 2). Overall, absent a significant link between wages

and city-level diversity among low wage workers, we conclude that the benefits described

in relation to rising metropolitan immigrant diversity do not emanate from heterogeneity

among a city’s lowest-paid workers.

In the middle panel of Table 7, we turn to models in which the key predictors are

high-wage city- and establishment-specific diversity. Model 6 regresses log wages on high-

wage immigrant diversity across the full analytical sample of workers. Models 7 through

10 repeat the exercise for workers in progressively higher quartiles of their city’s wage dis-

tribution. In each, high-wage urban immigrant diversity is consistently positively related

to wages at a one percent level of significance. Coefficients for this predictor are large

18We also build measures for workers above and below the median. Results based on these are available
upon request. We opt not to report them for brevity, and because they present a consistent picture with
the results displayed in Table 7.
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Table 7: Estimates of Spillovers from Immigrant Diversity by Wage Quartile

Dependent Variable: Log of Annual Earnings
Fractionalization Coeffs. Counts (millions)

City (β) Estab. (γ) Observations Individuals R2

FE Estimates – Low-Wage Birthplace Diversity (< 25th%)
(1) All Workers 0.007 0.009∗∗∗ 166.44 33.54 0.95

(0.047) (0.001)
(2) Wage Quartile 1 (lowest) 0.017 0.008∗∗∗ 51.57 11.90 0.86

(0.037) (0.001)
(3) Wage Quartile 2 0.018 0.004∗∗∗ 42.30 8.44 0.83

(0.063) (0.001)
(4) Wage Quartile 3 -0.036 0.008∗∗∗ 37.92 6.97 0.83

(0.072) (0.002)
(5) Wage Quartile 4 (highest) 0.084 0.023∗∗∗ 34.65 6.23 0.89

(0.090) (0.004)

FE Estimates – High-Wage Birthplace Diversity (≥ 75th%)
(6) All Workers 0.819∗∗∗ 0.056∗∗∗ 166.44 33.54 0.95

(0.044) (0.003)
(7) Wage Quartile 1 (lowest) 0.813∗∗∗ 0.062∗∗∗ 51.57 11.90 0.86

(0.047) (0.002)
(8) Wage Quartile 2 0.715∗∗∗ 0.051∗∗∗ 42.30 8.44 0.83

(0.055) (0.003)
(9) Wage Quartile 3 0.858∗∗∗ 0.045∗∗∗ 37.92 6.97 0.83

(0.046) (0.005)
(10) Wage Quartile 4 (highest) 0.873∗∗∗ 0.061∗∗∗ 34.65 6.23 0.89

(0.088) (0.007)

GMM FE IV Estimates – High-Wage Birthplace Diversity (≥ 75th%)
(11) Wage Quartile 2 0.570∗∗∗ 0.049∗∗∗ 3.06 0.640 –

(0.161) (0.014)
(12) Wage Quartile 3 0.876∗∗∗ 0.045∗∗∗ 4.06 0.795 –

(0.143) (0.018)
(13) Wage Quartile 4 (highest) 0.747∗∗∗ 0.508∗∗∗ 4.89 0.950 –

(0.160) (0.235)

Note: Each numbered row presents estimates for a single model, containing city level education and
employment controls, as well as workplace-specific employment, and year and individual x workplace x
city fixed effects. Standard errors in parentheses, corrected for clustering by establishment. ∗p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01. Overall observation counts are rounded to the nearest 10,000 to ensure
confidentiality. GMM FE IV results in models 11-13 are produced on a 30 percent random subsample
of our primary analytical sample. Instruments used include: 3- and 4- year lags of city-level immigrant
diversity, and 1-year lags of establishment diversity. IV results not shown for wage quartile 1, as instru-
ments were not found that satisfied exclusion restrictions. Tests of Model 11 yielded Kleibergen-Paap
LM (underidentification) of 5700 (p=0.000) and a Hansen J of 4.21 (p=0.04). Tests of Model 12 yielded
Kleibergen-Paap LM (underidentification) of 5719 (p=0.000) and a Hansen J of 0.412 (p=0.52). Tests of
Model 13 yielded Kleibergen-Paap LM (underidentification) of 203 (p=0.000) and a Hansen J of 0.056
(p=0.81).

compared to those for which diversity is measured across the entire urban workforce (cf.

Model 3 in Table 2). Meanwhile, across Models 6–10, high-wage establishment immigrant

diversity is also positively and significantly related to wages, with magnitudes that are

relatively stable. Consistent with the results thus far, the magnitude of the establishment
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effect is smaller than that estimated for urban immigrant diversity.

Seeking to strengthen confidence that the findings reported above indicate a causal

relationship running from diversity to productivity, in the bottom panel of Table 7 we

report GMM FE IV estimates of the association between high-wage immigrant diversity

and wages by quartile. As above, we use the 30 percent random sample with lagged

internal instruments: 3 to 5-years for city diversity and 1 to 3-years for establishment

diversity. Results mostly match non-instrumented results, though the correspondence is

somewhat looser. High-wage urban and establishment diversity are both positively and

significantly related to wages for workers in each wage quartile. However, instruments

for quartile 2 fail the Hansen J test of joint exogeneity. In quartile 4, the coefficient on

establishment diversity is nearly an order or magnitude larger than all other estimates. As

in the previous section, given constraints relating to our choice of instruments as well as

much smaller sample sizes, we believe that non-IV coefficients are more indicative of the

true scale of the relationship, although we conclude that IV results offer support for the

idea that high-wage immigrant diversity generates spillovers across the wage distribution.

6 Conclusion

Using data for the U.S., this article has sought to identify whether immigrant diversity in

cities and workplaces generates productivity spillovers. The empirical strategy leverages

comprehensive matched employer-employee data to estimate how wages and diversity co-

move for a sample of workers who remain in their city and establishment over a spell of

at least two consecutive years. This approach, sharing some commonalities with recent

work on Germany by Trax et al. (2015), improves upon earlier studies by accounting for a

wide range of sources of mismeasurement, not least of which is nonrandom selection of in-

dividuals to cities and workplaces. This article adds further value by considering diversity

simultaneously in cities and work establishments, thereby enhancing our understanding

of the site at which diversity spillovers originate. In addition to generating estimates of

spillovers from immigrant diversity for the average worker, we explore whether the impact

of diversity depends on one’s position in local labor markets; we also consider whether

spillovers emanate from diversity within specific subsets of the labor market.
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Based on the estimation approach and the comprehensive coverage available in the

LEHD data, we believe that this paper offers strong evidence supporting the motivating

theoretical ideas: that immigrant diversity in U.S. cities and workplaces has an indepen-

dent positive influence on worker productivity. Findings indicate that growing diversity

in American cities and in workplaces is associated with rising wages, and by implication,

productivity. Results generated using the standard birthplace fractionalization measure

indicate that, as the immigrant diversity present in a city rises by one standard deviation,

wages earned by its average worker are expected to grow by nearly six percent. Meanwhile,

a one standard deviation increase in workplace-specific immigrant diversity is associated

with a 1.6 percent increase in the average worker’s wage. These results are robust to the

inclusion of a host of control variables; to alternative approaches to the measurement of

diversity; to narrower samples limited to workers in larger firms, single-unit firms, firms

engaged in tradable activities, and to subsets of the workforce; as well as to attempts to

account for potential bias from unobserved shocks and reverse causality.

Answering our second research question, we find that spillovers from immigrant diver-

sity are consistent across workers occupying different positions in the labor market. Across

each quartile of a city’s wage distribution, estimates of spillovers from urban immigrant

diversity are statistically indistinguishable. To the extent that we are observing a social

return from immigrant diversity, this return is evenly spread across a very wide spectrum

of earners. The same pattern is repeated at the establishment scale, although there ben-

efits appear to be larger for higher earners. With respect to our third research question,

we find that the seeds of spillovers from immigrant diversity are less democratic. Ris-

ing diversity among the lowest-earning workers in a city is unrelated to changes in wages

across the full analytical sample, as well as for each wage quartile. Meanwhile, urban

immigrant diversity among high-earners is uniformly positively and significantly related

to wages, for both full and quartile-specific samples. We speculate that this finding means

that high-wage earners are more likely to be engaged in activities that are more germane

to the generation of diversity spillovers rooted in heuristic heterogeneity. Results for the

workplace scale differ somewhat. We find evidence of a modestly positive association be-

tween diversity and wages even when diversity is measured only among the lowest-earners

in the workplace. But establishment diversity coefficients are considerably larger when
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diversity is measured among workers in the highest quartile of workplace earnings.

This study was born from the idea that, in order to better understand spillovers from

urban immigrant diversity, researchers need to capture myriad hard-to-observe worker,

workplace and city factors that might influence productivity and that may also be corre-

lated with diversity. This rationale motivated the empirical approach, and necessitated

the matched worker-employer microdata from which estimates were generated. Given this,

it is worthwhile to consider how the relationship documented in this paper compares to

(a) studies seeking to address similar econometric concerns, and (b) studies that make

use of more aggregate information in which selectivity concerns remain unaddressed. Of

the former studies, like Trax et al. (2015), we find a positive association at both the city

and workplace scales; like them we also find that metropolitan diversity has a consistently

larger influence on productivity than workplace diversity, though in the case of this paper

the disjuncture between effects at each scale are considerably larger.19

Regarding studies that do not deal with selectivity issues, the most obvious reference

point for the present study is the seminal paper by Ottaviano and Peri (2006), with whom

we share a focus on the U.S. urban system, comparable approaches to diversity measure-

ment, and immediately adjacent study periods of broadly similar length. Ottaviano and

Peri (2006) conclude that a 0.1 shift in the birthplace fractionalization index corresponds

to an 11 percent change in wages for white male natives between the ages of 40 and 50.

Model 3 of Table 4 presents results for all white male native workers in our analytical sam-

ple. In this estimate, a corresponding 0.1 increase in immigrant diversity is associated with

a 6.5 percent increase in wages. For workers of all kinds, based on estimates in column 3 of

Table 2, a similar increase in diversity is associated with a 4.5 percent increase in annual

pay. We take this contrast as supporting the approach taken in this paper; the comparison

suggests that perhaps half of the wage premium that Ottaviano and Peri (2006) ascribe to

diversity resides in fact elsewhere – some in diversity as it appears in workplaces, but also

in the distinguishing features of individuals, their work establishments, and their regional

economies.

While absolute certainty regarding the causal nature of this relationship will remain

19Three key differences between the two papers should be noted: their paper studies plants; measures
productivity using TFP; and measures diversity strictly over the non-native population – on this last point
comparable to Table 3, Model 3.
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out of reach, some challenges to validity merit discussion. The value of this discussion

lies partly in highlighting opportunities for future work. One challenge in the present

study comes from potential bias from unobserved shocks; if systematically correlated with

changes in diversity, such shocks could be driving the observed relationships. Though

we take steps to absorb bias of this sort, we cannot be sure to have fully eliminated it,

especially not at the establishment scale. For instance, particular management decisions

or shocks to a plant’s capital intensity could simultaneously raise worker productivity

while also stimulating changes in the birthplace composition of a workforce. Perhaps

most plausibly, establishments might receive positive shocks to human capital that occur

alongside, and possibly embodied in increases in their immigrant population (Parrotta

et al., 2014). Kerr et al. (2015) demonstrate that this issue is not merely theoretical: in

a sample of around 300 of the most innovative high-technology firms in the U.S., they

show that the hiring of young immigrant workers is associated with increases in the skills

available to the enterprise. In this regard, the availability of reliable measures of individual

educational attainment would represent an improvement to our approach, though hardly

a perfect one, given the noisiness of education as an indicator of human capital (Acemoglu

and Autor, 2012; Delgado et al., 2014). Since we lack reliable information on worker

quality, we cannot completely exhaust this possibility. Nonetheless, it is important to

qualify this threat in a number of ways. First, the immigrant workers who are the focus

of Kerr et al. (2015), and related work like Kerr (2013), do not represent all foreign-born

workers in the U.S. economy. The U.S. is unusual among high-wage economies to have

maintained a system of immigration in which the priority is family reunification, more

than a focus on the recruitment of skilled foreign workers. Taking 2014 as an example,

the U.S. granted lawful permanent resident status to 1.1 million immigrants, accepted

100 thousand refugees and asylees, naturalized 650 thousand residents, and admitted less

than half a million H1-B ‘speciality occupation’ non-immigrant visa holders.20 Even if

we assume that each of those H1-B visa holders affects their workplaces in a manner

analogous to the highly select group of them studied in Kerr et al. (2015), they remain

20Authors’ estimates from figures reported in the Department of Homeland Security’s 2014 Year-
book of Immigration Statistics: Tables 1, 13, 20, and 25, https://www.dhs.gov/yearbook-immigration-
statistics-2014-nonimmigrant-admissions. Other potentially high-skilled non-immigrant visa categories in-
clude NAFTA-based TN visa-holders and intra-company transferees (L1).
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a minority in the context of the larger participation of foreign born workers in the U.S.

labor force who are are certain to appear in the LEHD data. Given this reality, unlike in

many other advanced economies, there is less reason to expect there to be a systematic

link between human capital and immigration in the U.S. context. Still, although this is

less of an issue for the interpretation of the metropolitan effects of immigrant diversity,

we cannot completely rule out the possibility that the range of workplace-specific results

shown in this paper are driven by unobserved shocks to worker quality, driven by a specific

subset of immigrants. Subsequent studies should seek ways of addressing these concerns.

There exist additional opportunities to deepen our understanding of the relationship

of interest. As in Cooke and Kemeny (2016), further studies might move closer to the

theory motivating studies of diversity by testing whether it matters most in activities in

which problem solving is particularly important. Another important puzzle to explain is

why and how spillovers can be larger in cities than in establishments, a pattern observed

not just in the present study but also in Trax et al. (2015). Intuitively, one expects the

workplace or firm to be the primary container for interactions yielding spillovers. And

yet, we can draw a line from Alfred Marshall through more recent work like Jaffe (1989),

Audretsch and Feldman (2004), and Kerr and Kominers (2015), identifying important

regional externalities in the production and dissemination of knowledge. The present

article may be read as complementary to this tradition, suggesting that economically-

significant interactions among diverse problem solvers are not fully, or even mainly confined

within individual workplaces. Speculating, just as in Saxenian’s (1996) singular account

of Silicon Valley’s leapfrogging over Route 128, interactions in Walker’s Wagon Wheel

and other ‘third places’ (Oldenburg, 1989) may be vitally important for the exchange of

ideas among birthplace-heterogeneous individuals. A better understanding of this puzzle

might come from econometric work, but it may also emerge from closer studies that can

better clarify the mechanisms through which benefits emerge in the Jacobsian ‘sidewalk

ballet’ beyond atomized workplaces. In sum, this paper provides evidence of spillovers

from immigrant diversity in U.S. cities and workplaces, but more work remains to be

done to improve our understanding of how these are generated and distributed across the

economy.
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