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Abstract

Resonator techniques can be successfully used to extract effective medium properties from dispersive
materials. However, in some cases the dispersion can cause modes to repeat. If repeated modes are not
taken into account the useful range of the resonator technique is limited. A resonance tube containing
tethered balloons is used to create a dispersive effective medium. Resonator measurements show that
modes do repeat. Direct measurement of the mode shapes allows exploitation of all longitudinal radially-
symmetric modes and expands the frequency range of the technique. A theoretical model is also used to
predict when modes repeat. For the presented data set this method increases the measurement range from
below 160 Hz to 3000 Hz excluding the stop-band where resonances are damped. A means to account
for non-ideal resonator boundary conditions often found in highly dispersive systems is discussed.

1 INTRODUCTION

An inhomogeneous medium can often be represented
as an effective-medium with a frequency-dependent
phase velocity and attenuation. Resonators are well
suited for measuring the effective-medium proper-
ties of suspended scatterers in water and have been
used to investigate seagrass,1 methane hydrates,2

microparticles,3 freely rising bubbles,4, 5 cavitating
bubbles,6 and encapsulated bubbles7. Freely rising
bubbles, cavitating bubbles, and encapsulated bub-
bles are examples of systems that can exhibit regions
of negative group velocity. In a dispersive region
where the group velocity is negative the wavelength
of sound increases as frequency increases, which can
cause mode repetition. Mode repetition refers to a
single eigenmode occurring at multiple eigenfrequen-
cies. This can also be viewed as being caused by two
frequency bands with different phase speeds cph sep-
arated by a stop band. Group velocity is defined as

cgr =
dω

dk
, (1)

where k = ω/cph is the real part of the wavenum-
ber, and ω is the angular frequency. In systems
with attenuation the wavenumber will be complex.
The complex wavenumber will be represented as k =
ℜ(k) + iℑ(k) = k + iα, where the imaginary compo-
nent α is the attenuation. The convention of bold-
face for complex values will be used. The presence
of repeated modes has either limited analysis to the
low-frequency regime below any region of negative
group velocity or required direct measurements of the
node locations.4, 7− 9 While node location measure-
ment is common practice the concept that modes re-
peat has not received much attention. A method to
significantly increase the upper frequency range of a
resonator-based measurement is developed here. For
the resonator used in this experiment the standard
resonator technique resulted in a frequency range of
measurements from about 80 Hz to the stop band at
approximately 200 Hz, whereas the improved method
results in a measurement range from the upper end of
the stop band at approximately 900 Hz to 3000 Hz.
Further, adjustments to improve the accuracy of the
low-frequency data are presented. This article dis-

cusses experimental measurement of phase velocities
above and below a region of negative group velocity
and how this differs from standard modal analysis. A
forward model is proposed that combines an existing
model for sound propagation in a bubbly liquid with
an elastic waveguide model. This allows the repeti-
tion of modes to be predicted in bubbly liquid. The
elastic waveguide model is also used to predict the
phase speed in free space from the resonances in the
waveguide.

Effective medium sound speeds are extracted by
observing the fundamental resonances of the system
and relating those to the sound speed using an appro-
priate model. In a uniform rigid-walled waveguide of
length L with pressure-release end conditions (a re-
flection coefficient of −1) the wavelength λm of each
fundamental mode m is

λm =
2L

m
, (2)

which can then be used to determine the phase ve-
locity cph,wg(fm) in the waveguide at each resonance
frequency fm using

cph,wg(fm) =
2Lfm
m

. (3)

To avoid confusion, the intrinsic phase velocity
and wave number that would be measured from the
material in the waveguide if it were in free space will
be labeled without subscript c,k; while the values
measured in a waveguide will be given a subscript
cwg,kwg. It is important at this point to clarify the
different families of modes that exist in the resonator.
The modes are indexed according to coordinate di-
rections. Here we are using M for the radial modes,
m, for the longitudinal modes, and l for variations
in the circumferential direction. Any mode in the
system can be identified by its modal coordinates
(M, l,m). For a rigid waveguide the family of modes
where M = 0 and l = 0 refer to modes with no varia-
tion in the radial or circumferential directions. These
modes have no cut-off frequency and the phase veloc-
ity in the waveguide and the sound speed in free space
would be equal. Sections II and III of this paper use
these modes to evaluate the phase velocity and will
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index the modes solely in terms of m. In the real sys-
tem there will be a variation in the radial direction
and the phase velocity will vary from the free space
sound speed.

Equation (3) is taken as a starting point for the
corrections discussed. For a fill-material with no re-
gion of negative group velocity, Eq. (3) is used to find
the phase speed of the material in the waveguide. The
sound speed in the waveguide is calculated by identi-
fying the radially symmetric resonances of the system
and then relating those resonances to their respective
modes. The modes are generally clearly identifiable
and can be assumed to progress in ascending order,
m = {1, 2, 3, . . .}. Then a correction is made for the
elastic waveguide effect. For the M = 0, l = 0 fam-
ily of modes (this corresponds to the mode defined as
ET0 in Ref. 10) the introduction of an elastic wall re-
duces the sound speed within the waveguide relative
the free field value. Another mode that can propagate
down to zero frequency also exists and is supersonic
with respect to the material in the waveguide, but
for the frequencies investigated this mode is believed
to consist primarily of a plane wave in the wall that
is coupled to the liquid through the radial motion
at the wall-liquid interface.10 The elastic waveguide’s
effect on the phase speed has been addressed by Del
Grosso11 and appropriate models have been used to
either minimize the effect12 or accept the effect and
correct the measured sound speed13− 15.

The experimental design is discussed in Sec. II.
The identification of modes and mode repetition is
discussed in Sec. III. Further, any system with sig-
nificant dispersion is likely to exhibit a complex re-
flection coefficient at the resonator boundary. If the
reflection coefficient is complex then neither a node
nor an antinode occurs at the boundary. If the mate-
rial properties are being calculated from the node po-
sitions, precise knowledge of those locations are nec-
essary. The resultant shift of the nodes away from
the boundary changes the standing wave pattern and
requires modification of Eq. (3), which is discussed
in Sec. IV. The nodal shift is similar to the canoni-
cal problem of the end correction for a resonance tube
and is discussed both in terms of arbitrary impedance
and then applied to bubbly liquids.

2 EXPERIMENT

The resonator needed to be large enough to scan the
internal pressure field with sufficient resolution to de-
termine the mode shapes. It was a constructed from
an aluminum pipe that was 1.985 m long, had an
outer radius of 0.1085 m and a wall thickness of 7
mm. A schematic of the experimental arrangement
is shown in Fig. 1. The bottom of the tube had a thin
rubber membrane which was supported by a layer of

expanded polystyrene foam 12.2 cm thick. The lin-
ear sweep source signal was generated using LabView
software and output by an NI PCI 4461 data acqui-
sition module. The signal was amplified by a Crown
audio power amplifier that drove a Labworks ET-
126HF-1 shaker. The shaker was suspended above
the top surface of the resonator on a resilient support
made of closed-cell foam resting on the top rim of the
resonator. The shaker had a 38.1 mm diameter pis-
ton that was submerged 30 mm below the air-water
interface. The piston had a slight convex curve in
order to prevent bubbles from adhering to it. A Re-
son model TC4013 hydrophone was used to scan the
sound field in the resonator. It was attached to a lin-
ear rail and moved by a stepper motor controlled by
the PC software. The hydrophone signal was ampli-
fied by a Brüel and Kjær Nexus charge amplifier and
recorded by the NI PCI 4461 module.

Foam

L

Shaker/Piston

Power Amp.

D/A

Linear Rail

Sheath

Hydrophone

Charge Amp.

A/D

Computer

Balloons

Figure 1: (Color online) (Left) Picture of the aluminum
pipe resonator apparatus. (Right) Schematic of the res-
onator showing six submerged balloons, a shaker-driven
piston for acoustic excitation, and a hydrophone mounted
on a linear traverse for mapping the modal structure of
the acoustic field.

The pipe was filled with water. The water in
the resonator was raised to approximately 40 degrees
Celsius, stirred and tapped to cause any bubbles on
the walls to rise, and then allow to settle to 30.4 de-
grees Celsius. This was done to decrease the dissolved
gas content of the resonator and to eliminate any un-
wanted bubbles. The temperature did not change
more than 0.2 degrees Celsius during the experiment
and the sound speed16 and density17 used in the anal-
ysis were taken from tabulated values for pure de-
gassed water at this temperature. Air-filled Qualatex
balloons that deviated slightly from a spherical shape
were used. Small variations from spherical conditions
are not believed to significantly affect the bubble res-
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onance18 since a prolate spheroid of aspect ratio of
1.414 only varies in resonance frequency and damp-
ing from a spherical bubble by less that 1%.19 The
volume of each balloon was measured through the
water it displaced when submerged, then the equiv-
alent spherical radius was determined as the radius
that would displace the same volume of water. Six
balloons with equivalent spherical radii of 2 cm were
attached to a monofilament nylon line so that there
was an L/6 distance between each balloon and an
L/12 distance between each end balloon and a ter-
mination, where L is the length of the water column
in the pipe. From a metamaterials perspective this
would equate to six segments of water each with a
balloon at the center. A pulley attached at the bot-
tom of the tube was used to lower the balloons into
the resonator. This system had the material prop-
erties shown in Tab. I. The values that define the
waveguide are the sound speed and density of water
without bubbles (c1 and ρ1 respectively), the com-
pressional and shear wave speeds of the wall material
(cc and cs respectively), the density of the wall ma-
terial (ρw), the sound speed and density of the foam
layer (cfoam and ρfoam), the sound speed and den-
sity of the floor (cfloor and ρfloor), the inner and outer
radii of the pipe (b and d), and the length of the foam
layer (l). The parameters used to define the effective
medium are the shear modulus, density, viscosity, and
thickness of the balloon shell material (G, ρs, µ, and
t respectively), the number of balloons (N), and the
inner radius of the bubbles (r). In terms of practi-
cal application the bubble radius, number of bubbles,
and volume of the pipe can be used to calculate the
probability density function of bubble size and vol-
ume fraction of air. The probability density function
f(r) is a dirac-delta located at r = 0.02 since the pop-
ulation is mono-disperse. The volume fraction of air
was χ = 0.00337. The shear modulus of the balloon
shells was a free parameter with no direct method of
measurement. In addition evidence suggests that the
elastic and shear moduli vary nonlinearly with the
amount of inflation.20, 21 Therefore the only method
of determining the shear modulus available for this
study was to use it as a fitting parameter with the
model. The shear modulus was determined by find-
ing value of G that minimized the mean-squared error
between the model and the data for the first four res-
onances. The value used was found to be within the
uncertainty for natural rubber.22 The shear viscos-
ity of the shell material was chosen to be within the
possible range for latex rubber, however using any
value from 0.0 - 50 Pa s has no impact on the results.
For balloons of this size the effect of surface tension
is negligable and was omitted by setting the surface
tension terms to zero. The physical parameters of
the resonator wall material were verified by measur-

ing the system sound speed while filled with degassed
water.

Resonator parameters

Sound speeds [m/s] Densities [kg/m3] Dimensions [m]
c1 = 1510 ρ1 = 995.5 b = 0.1015
cc = 6420 ρw = 2700 d = 0.1085
cs = 3205 ρair = 1.21 L = 1.844
cfoam = 717 ρfoam = 29 l = 0.1220
cfloor = 3100 ρfloor = 2600

Effective medium parameters

G = 2.02 × 106 Pa ρs = 930 kg/m3 r = 0.02m
µ = 5Pa s N = 6 t = 0.000 08m

D = 2.207 × 10−5 m2/s γ = 1.40

Table I: Parameters for the resonator and effective
medium discussed in Secs. III and IV.

3 IDENTIFICATION OF LONGITUDINAL MODES

Mode identification can be approached by considering
the system as a three-medium plane-wave propaga-
tion problem where a plane wave originates in a mate-
rial with an acoustical impedance Z1, passes through
the fill material with impedance Zfill, then a wave is
transmitted into another medium on the far side with
impedance Z2, as shown in Fig. 2. According to ideal
theory, as long as all of the acoustic impedances are
real, Z1 < Zfill, and Z2 < Zfill, pressure minima will
occur at the interfaces and the standing wave pat-
tern inside the resonator evolves with the addition
of one half-wavelength inside the tube each time the
mode number increases. In practice the minima are
expected to occur near the interfaces only if Z1 and
Z2 are both significantly smaller than Zfill.

Z1 Zfill Z2

Figure 2: Illustration of the impedances (Z1, Zfill, Z2)
in a three medium problem, where acoustic plane waves
would be propagating from left to right.

It is also generally expected that each resonance
frequency of the system has a unique mode shape.
Consider the measurements from this study shown in
Fig. 3. They show the relative acoustic pressure at
one position within a bubbly-liquid filled resonator
including the frequency range of individual bubble
resonance. This response would be interpreted as
consisting of four fundamental modes corresponding
to one through four half-wavelengths filling the res-
onator, then a high attenuation region in which reso-
nances are damped out, and then some higher-order
modes appearing around 900 Hz. The gap in the har-
monic modal structure between 200 Hz and 900 Hz
makes it impossible to interpret the modes above
900 Hz, and with no other information, there is no
way to unambiguously relate the resonances above
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900 Hz to the sound speed. Knowledge of the mode
shapes allow the appropriate modes to be identified
and reveals the unusual phenomenon of mode repeti-
tion.
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Figure 3: Example spectrum from a water-filled res-
onator with 6 elastic-shelled air bubbles present. The
first four fundamental modes repeat above the high at-
tenuation region because of negative group velocity in the
high attenuation region. The dB scale represents relative
acoustic pressure.

The acoustic pressure measured within the res-
onator at 102 lengthwise positions is shown in Fig. 4,
where the dashed line represents the location of the
spectrum shown in Fig. 3. The first resonance above
the high attenuation region is a repeatedm = 1 mode
(a single half-wavelength fills the resonator), and the
progression repeats as seen in the lower frequency
range. The corresponding modes between 900 Hz and
1.5 kHz are m = 1, 2, 3, and 4, as shown in Fig. 3.

We can model the effect of repeating modes by
replacing the real acoustic impedances in the three
medium problem with appropriate complex acoustic
impedances. First we need the sound speed c and
density ρ of the fill material in free space. For encap-
sulated bubbles we use Church’s model23 to obtain
the complex sound speed c.

c21
c2

= 1 +
4πc21ρ1
αcρs

∫
∞

0

rf(r) dr

ω2
0 − ω2 + jωδ

, (4)

where c1 and ρ1 are the sound speed and density of
water without bubbles, r is the inner radius of the
bubble shell, αc = [1 + (r/(r + t))(ρ1 − ρs)/ρs], f(r)
is the probability density function of bubble size, t
is the thickness of the shell, and ω0 is a frequency
dependent resonance frequency

ω0 = (ρsr
2αc)

−1

{

3κP0 −
2σ1
r

−
2σ2r

3

(r + t)4
+

4
VsGs

(r + t)3

[

1 + Zc

(

1 +
3r3

(r + t)3

)]}

, (5)
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Figure 4: (Color online) An example spectra from a
water-filled resonator with 6 elastic-shelled air bubbles
present. The dashed line represents the spectrum shown
in Fig. 3. The origin is located at the air-water interface.

where σ1 is the surface tension on the inner interface
of the shell, σ2 is the surface tension on the outer in-
terface of the shell, P0 is the static pressure outside
the bubble, Vs = (r + t)3 − r3 , Zc is defined by

Zc =

[
2σ1
r

+
2σ2

(r + t)

] [
(r + t)3

Vs

]

(4Gs)
−1, (6)

and κ = ℜ(Φ)/3 is an effective polytropic exponent
of the gas. The term Φ comes from thermodynamic
relations of the bubble’s volume oscillations24 and is
defined as

Φ =
3γ

1− 3(γ − 1)iχc[(i/χc)1/2 coth((i/χc)1/2)− 1]
,

(7)

where γ is the gas ratio of specific heats, χc =
D/(ωr2), and D is the gas thermal diffusivity.

For the meaurements presented in the paper the
collection of balloons is mono-disperse, therefore f(r)
is a delta function located at r = 0.02 m The com-
plete set of equations provides a solution in terms of
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c1, ρ1, r, t, the volume fraction of air χ, the gas ra-
tio of specific heats γ, the gas thermal diffusivity D,
the shell shear modulus G, the shell density ρs, the
shell viscosity µ, and the viscosity of water µl. For
bubbles of this size the surface tension does not play
a significant role so both the surface tension at the
gas-shell interface and the shell-liquid interface were
considered to be zero. The value for the damping co-
efficient δ contains terms to account for four different
damping mechanisms

δ =
4rµl

(r + t)3ρsαc
︸ ︷︷ ︸

viscous liquid

+
4Vsµs

(r + t)3r2ρsαc
︸ ︷︷ ︸

viscous shell

+

4µth

r2ρsαc
︸ ︷︷ ︸

thermal

+
ω2(r + t)

c1(1 + (ω(r + t)/c1)2)
︸ ︷︷ ︸

acoustic

, (8)

where µth = P0ℑ[Φ]/(4ω) is an effective thermal vis-
cosity.25

The complex wavenumber of the system is k =
ω/c, the phase velocity is cph = ω/ℜ [k], and the at-
tenuation coefficient is α = ℑ [k]. The instance of
multiple resonances for the same modal shape can be
predicted by looking at the k− ω plot of the system.
Equation (3) can be rearranged to solve for kL to give

kL = πm. (9)

Each time Eqn. 9 is satisfied, the mth resonance
occurs. Since πm is real we match the condition to
the real part of the wavenumber. The bubbly-liquid
case mentioned earlier had the parameters listed in
Tab. I. The k− ω plot is shown in Fig. 5, where the
real part of the wavenumber is shown on the right
and the imaginary part of the wavenumber is shown
on the left. The plot would appear to indicate that
each resonance occurs three times; however, when the
slope of the k − ω plot is negative the group veloc-
ity is negative. The negative group velocity occurs
in a stop band, therefore no resonances occur in that
region. The beginning and end of the stop band is
determined by setting δ in Eq. (4) to zero and deter-
mining when the wavenumber is entirely imaginary.
If scanning the length of the resonator with a hy-
drophone is not feasible a forward model can be used
to predict the approximate node locations and mode
numbers.

Figure 5: A k − ω plot for a bubbly-liquid fill material.
The vertical dashed lines represent each mode and each
mode is present when the dashed line crosses the solid
line, except for the region around ω ≈ 1270 rad/s, where
the group velocity is negative.

When considering the physical phenomenon of
repeating modes in bubbly liquid there are at least
two distinct ways to visualize what happens. The first
is to consider that the low-frequency limit of a bub-
bly liquid is considered to act like an effective medium
where the densities are averaged and the stiffnesses
add in parallel.26 In the high frequency limit the bub-
bles appear acoustically rigid and the sound speed
approaches that of bubble free water. Between these
two limits is a stop-band. Therefore according to
this mindset you are seeing the resonances for each
regieme on the opposing sides of the stop band. This
is illustrated in Fig. 6. A refinement of this view is
acheived when the damping term Eq. (8) is set to zero
in Eq. (4), which is also illustrated in Fig. 6. Here
the low-frequency phase velocity tends toward zero
as frequency increases, then there is a stop band, and
then there is an asymptote with infinite phase speed
at the upper end of the stop-band that trends toward
the high-frequency limit. When a real system with
finite damping is considered these two regions stitch
together to make the phase speed continuous. Exper-
imental measurements by Cheyne et al

4 reveal that
phase speeds can be measured in the stop band and
they bridge the two regions. It is in this region where
theoretically a region of negative group velocity exists
where the wavelength increases with frequency. An
alternate view is that the presence of regions of nega-
tive group velocity can cause modes to cease progres-
sion in monotonically ascending order and can cause
modes to repeat. This study did not measure any
velocities in this region. Regardless of the viewpoint,
once the repeated modes are accounted for the phase
speed can be correctly determined.
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Figure 6: The phase velocity can be thought of as two
regions separated by a stop-band with different limits
or a continuous function with a region where the wave-
length increases as frequency increases. If damping is not
included in the bubbly liquid model the phase velocity
starts at a low-frequency effective medium limit and goes
to zero at bubble resonance. After the stop band the
phase velocity starts from a vertical asymptote of pos-
itive infinity and approaches a high-frequency effective
medium limit. These different limits can cause modes to
occur more than once.

The next step in relating the observed and iden-
tified resonance frequencies to the intrinsic phase ve-
locity of the fill material is to account for the elastic
walls of the waveguide. Del Grosso11 derived expres-
sions for the axially symmetric velocity potentials in
an elastic tube and a fluid core that were coupled
through the radial motion at the inner radius b, of
the elastic tube. The additional boundary conditions
were that the tangential stress vanishes at the inner
radius and the outer radius d, of the elastic tube,
and the equality of negative pressure to radial stress
at both boundaries. The derivation later goes on to
assume the external liquid vanishes (pressure release
condition). By applying the boundary conditions to
velocity potentials in the wall and liquid a set of equa-
tions is obtained, the solution of which must have a
determinant of zero. The expression of the determi-
nant in the form of Eq. (5) of the revisited deriva-
tion by Lafleur and Shields,10 was used and requires
the phase velocity of the fill material in the wave-
guide cph,wg, the phase velocity of the fill material
in free space c, the density of the material in the
waveguide ρ = ρ1(1 − χ) + ρairχ, the compressional
and shear wave speeds of the wall material cc and cs
respectively, and the angular frequency ω. The de-
terminant cannot be solved analytically for either the
phase velocity of the fill material in the waveguide or
the phase velocity of the fill material in free space,

but given either parameter the other can be found
numerically.

The wavenumber in the waveguide kwg is con-
sidered to be the combination of the real wavenumber
computed from the phase velocity in the waveguide
k = ω/cwg and the attenuation from the bubbly liq-
uid model α = ℑ[ω/c],

kwg =
ω

cph,wg
− jα. (10)

To summarize, the forward model consists of de-
termining the phase velocity cph and the attenuation
in bubbly liquid. The phase velocity is then used as
an input to an elastic waveguide model to produce the
phase velocity in the waveguide cph,wg. Then the at-
tenuation from the bubbly liquid model and the phase
velocity from the elastic waveguide model are used
to determine the complex wavenumber in the wave-
guide kwg. In this low-frequency, low-attenuation,
region of the elastic waveguide model, using the at-
tenuation from free space is not believed to introduce
significant error and this simplification significantly
reduces the computation complexity. The model does
have limitations. As the phase velocity of the liquid
in the waveguide is increased the system phase ve-
locity approaches a maximum phase speed. If the
experimental phase velocity is higher than this max-
imum system phase velocity then an inversion from
system phase velocity to free space phase velocity is
not possible.

4 TERMINATION BOUNDARY CONDITIONS

For a water filled waveguide with a free air surface the
approximation of a pressure-release condition is ap-
propriate. At a temperature of 20◦ C and an absolute
pressure of 1.013 × 105 Pa the plane-wave reflection
coefficient is:

R =
Zend − Z

Zend + Z
=

415− 1.48× 106

415 + 1.48× 106
= −0.9994, (11)

where Zend is the characteristic impedance seen at
the end of the resonator (approximated by a plane
wave propagating in air) and Z is the characteris-
tic impedance of the fill material. The difference in
impedances is so large that even if the fill material
had a complex impedance, the resulting reflection will
be close to -1 and have only a very small complex
component.

For a vertically oriented resonator, an air-water
interface is easy to maintain on the upper end; how-
ever, because of gravity it is not possible at the other
end. An adequate substitute is often closed cell foam.
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Lacking any way to have an ideal boundary at the
lower end, closed-cell foam was cut to have a cir-
cular cross section slightly larger than the pipe and
placed underneath the tube to support the thin rub-
ber membrane that held the water. It was hoped
that this would prevent the sound field from coupling
into the floor, however modeling and experimental
data showed that it was insufficient at low frequen-
cies. The closed-cell foam used in this discussion has
an acoustic impedance of 2.08× 104 Rayl as deter-
mined by measuring the mass, volume, and sound
speed of samples. The sound speed was determined
by measuring the pulse time of flight across sheets of
the foam. As discussed at the beginning of Sec. II, if
all impedances are real and the fill material has the
highest impedance, pressure minima occur at the ter-
minations. If either the acoustic medium within the
resonator or the termination at the lower end of the
resonator has a complex acoustic impedance, a pres-
sure minimum does not occur at the termination. In-
stead the node shifts away from the termination. The
fill material will have a complex acoustic impedance
if it is dispersive or has attenuation and the bound-
ary condition at the termination will be complex if
the termination deviates from anything other than
an ideal, infinite half space. In this case neither the
foam layer nor the floor could be considered to have
1-D propagation, but it was considered a sufficient
approximation. While the nodal shift may be small
enough to be neglected in many cases, an expression
for the nodal shift can be used to predict the error in
assuming a node at the termination. The reflection
coefficient R of any termination can be expressed as:

R = φejψ, (12)

where φ = |R| is the amplitude of the reflection co-
efficient and ψ is the phase angle. The phase angle
can be related to the distance of the pressure minima
dmin,n from the termination through the relation:

kdmin,n =
1

2
ψ −

1

2
π − nπ, (13)

where k is the wave number of the fill material in
the waveguide and n is a non-negative integer. For
example, consider a water-filled resonator tube with
rigid walls that is terminated by closed cell foam of
thickness l and an acoustic impedance of Zfoam =
2.08× 104 Rayl that is on a concrete floor with an
acoustic impedance of Zfloor = 8.06× 106 Rayl.27

Since the concrete floor had an unknown finite thick-
ness and the acoustic impedance of concrete can vary
it is acknowledged that there was no way for the
model to exactly match the physical system. The
local impedance at the termination of the resonator
can be found using the impedance translation theo-
rem28

Zend = Zfoam
Zfloor cos(kfoaml)− jZfoam sin(kfoaml)

Zfoam cos(kfoaml)− jZfloor sin(kfoaml)
,

(14)

where kfoam is the wave number in the closed cell
foam layer. Even if the medium in the resonator is
non-dispersive, the complex termination impedance
will cause the pressure minima to depart from the
termination. The distance of this variation can be
calculated using Eqs. (11) through (14) for an elastic-
walled, resonator with tethered balloons and the
same length and sound speed properties listed in Tab.
I and is shown in Fig. 7. Another interesting phe-
nomena to observe is that at around 2900 Hz there
is a pressure maximum at the interface due to a half
wavelength standing wave in the foam layer.
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Figure 7: Distance of pressure minimum from boundary.
In shaded regions the pressure minimum is more than 1
cm from the boundary. Although the boundary is acous-
tically softer than the contents of the waveguide, nodes
depart from the boundary at low frequencies and around
resonances of the foam layer.

There are two ways to compensate for this condi-
tion. The first is to compensate the phase speed cal-
culation using a measurement of the distance, x, be-
tween the lowest node and the upper boundary. The
second is to use the relation for nodal shift to adjust
the phase speed. This second method, however, re-
quires either a model that represents the system well
or iterative solution involving both the sound speed
and attenuation.

Given direct knowledge of the node location, the
phase speed cph,wg can be determined as:

cph,wg =
2Lf

q
x̄, (15)
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where q is the number of half wavelengths between
the air/water interface and the node at x̄ = x/L.
Many times it is not possible to measure the pressure
field along the length of the resonator, but a correc-
tion is still possible if there is a sufficient model for
the medium in the resonator and the impedance of
the interface is well known through the relation:

cph,wg =
2(L+ dmin)f

n
, (16)

where dmin is the closest pressure minimum to the
end of the resonator as determined by Eq. (13). Note
that dmin will be negative if the node has shifted into
the resonator.

For example, a model for the dispersion through
elastic-shelled bubbles can provide an approximation
for the acoustic impedance of the medium, which can
be used to predict the change in the position of the
nodes. The acoustic field measurements shown in
Fig. 4 and described in Sec. II are replotted in Fig. 8
to emphasize the frequency range below 200 Hz. The
first four modes are labeled and the nodal deviations
away from the boundary can be easily seen. Fig. 9
shows the phase speed calculated from the spectra
if a) no nodal shift is not taken into account b) if
Eq. (15) is used given the location of the last node,
and c) if Eq. (16) is used to estimate the correction.
It is important to note that Eq. (16) can only be
used if there is a reasonable estimate for the acoustic
impedances of both the termination and the medium
under test. Here the system is well modeled and both
corrections adjust the sound speed to within 10 m/s
of the prediction for the resonances below the individ-
ual bubble resonance frequency. Above the individ-
ual bubble resonance frequency free medium sound
speeds are calculated for modes four through eleven.
No correction for the measured node location is pre-
sented for this range because the node shifts beyond
the boundary. The sound speeds for the repeat modes
one through three could not be calculated due to the
artificial maximum sound speed introduced by elastic
waveguide model as discussed at the end of Sec. III.
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Figure 8: (Color online) Example spectra from a water-
filled resonator with 6 elastic-shelled air bubbles present
focused on the low-frequency region. The dashed line
represents the spectrum shown in Fig. 3. The origin is
located at the air-water interface.
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Figure 9: Phase speeds estimated using different as-
sumptions regarding the node locations compared to the
analytical prediction of the Church model. (a) The reso-
nances above the individual bubble resonance frequency.
Shown here are modes 4 through 11. Note that a correc-
tion due to the measured node locations was not possible
because the node shifts beyond the boundary at these
frequencies. (b) The entire frequency range. (c) The low-
frequency resonances below the individual bubble reso-
nance frequency.
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5 CONCLUSIONS

Improvements in the understanding of errors associ-
ated with the use of water filled resonators exhibit-
ing negative group velocity were discussed and cor-
rections presented. It is important to determine the
modal shape of each resonance as mode shapes can
repeat when highly dispersive fill materials are stud-
ied. Two methods can be used to utilize repeated
modes in the analysis. A pressure sensor can be used
to scan the system to determine the mode shapes
experimentally. Alternatively when scanning with a
sensor is not possible a forward model that predicts
the phase velocity and attenuation through bubbly
liquid can be used,the phase velocity can be compen-
sated for the presence of an elastic cylindrical shell
and the location and mode numbers and frequencies
can be estimated. Once the mode numbers are identi-
fied the experimental resonances can be used to com-
pute phase velocities. Both experimental measure-
ment of the mode shapes and the use of a forward
model allowed the modes above the individual bub-
ble resonance frequency to be utilized.

When using closed-cell foams to approximate a
pressure-release boundary condition, either standing
waves in the foam layer or the dispersive nature of
the fill material can cause nodes to shift away from
the termination. The change in wavelength associ-
ated with the nodes shifting away from the termi-
nation can be corrected similarly by either scanning
the effective medium to locate the last node of each
resonance or using a forward model to estimate the
change in the node locations.
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