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Iterative energy minimization with the aim of achieving self-consistency is a common

feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular

dynamics with polarizable force fields. In the former the electronic degrees of freedom

are optimized, while the latter often involves an iterative determination of induced

point dipoles. The computational effort of the self-consistency procedure can be re-

duced by re-using converged solutions from previous time steps. However, this must

be done carefully, as not to break time-reversal symmetry, which negatively impacts

energy conservation. Self-consistent schemes based on the extended Lagrangian for-

malism, where the initial guesses for the optimized quantities are treated as auxiliary

degrees of freedom, constitute one elegant solution. We report on the performance

of two integration schemes with the same underlying extended Lagrangian struc-

ture, which we both employ in two radically distinct regimes – in classical molecu-

lar dynamics simulations with the AMOEBA polarizable force field, and in BOMD

simulations with the Onetep linear-scaling density functional theory (LS-DFT) ap-

proach. Both integration schemes are found to offer significant improvements over

the standard (unpropagated) molecular dynamics formulation in both the classical

and LS-DFT regime.
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I. INTRODUCTION AND MOTIVATION

Since the first classical molecular dynamics (MD) calculations in the late 1950s, a plethora

of schemes employing a hierarchy of approximations for the description of interatomic inter-

actions have emerged, ranging from classical fixed charge models to fully ab initio treatments.

While molecular dynamics has proved to be an invaluable tool for elucidating many chemical,

biological and physical processes involving a large number of atomic degrees of freedom,1–3

challenges remain in finding models and methods that are able to adequately describe com-

plex environments and show a favorable accuracy-efficiency tradeoff. In this regard, promis-

ing approaches include linear-scaling density functional theory (LS-DFT),4,5 classical polar-

izable force fields,6,7 self-consistent field (SCF) tight-binding,8 and semi-empirical quantum

mechanical (SQM) approaches.9

The last two decades have witnessed significant developments in the sophistication of

classical force fields,10,11 motivated by the need to overcome the deficiencies identified in

earlier fixed point charge models. In the absence of explicit treatment of polarization, the

dynamic response of a molecular system to a given environment, e.g. an organic solvent, or

metallic ions in solution becomes difficult to capture.7 Moreover, for conditions far from the

ones used to parametrize the potential and charges, such as at extreme pressures or temper-

atures, for different physical phases, or at interfaces, fixed point charge models can perform

quite poorly.11 Inclusion of polarization effects is hence crucial for obtaining an adequate

description of complex systems, and improving the transferability of classical models. As a

consequence, a gamut of polarization models has emerged, employing: Drude oscillators12,13

fluctuating charges,14,15 and induced point dipoles16–22 or higher multipoles.23 In most cases,

a physically coherent treatment of polarization involves a relatively costly variational self-

consistent determination of the induction response, although alternate schemes have recently

been proposed.24,25 See Refs. 11, 7 and 6 for a review.

Ab initio molecular dynamics (AIMD) techniques approach the transferability problem

from the opposite direction, by directly (Born-Oppenheimer MD, BOMD) or indirectly (Car-

Parrinello MD, CPMD) modeling the electronic degrees of freedom on a quantum-mechanical

(QM) footing, while treating atomic nuclei classically. The underlying quantum mechanical

scheme is selected depending on the desired trade-off between accuracy and computational

efficiency – starting from inexpensive, qualitative methods like tight binding (TB), through
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density-functional-based tight binding (DFTB),26,27 density functional theory (DFT), to

correlated wavefunction methods. The majority of these approaches are self-consistent,

requiring an iterative procedure to arrive at the converged energy and associated electronic

orbitals, at each MD step.

The existence of a self-consistency loop is a common feature of classical MD calculations

with polarizable force fields and BOMD calculations, leading to important consequences

for energy conservation in both approaches. Energy conservation is known to be sensitive

to how close to convergence the self-consistency loop gets. In polarizable MD with induced

dipoles this is a consequence of a non-Hellmann-Feynman-like force term that is proportional

to the energy gradient residual ∂U
∂µ

.25 This term vanishes in schemes where induced dipoles

are not determined self-consistently (e.g. iAMOEBA24), and in self-consistent schemes it

can only be neglected when the iterative dipole equations are tightly converged. In DFT

BOMD the error in the forces is first order with respect to the error in the incompletely

converged wavefunction, even though the error in the Kohn-Sham energy is second order.2

This means it is significantly more difficult to calculate accurate DFT forces for driving the

ions than it is to calculate energies. Additionally, the numerical machinery of DFT, which

typically involves FFTs on grids with finite spacing and finite extents, numerical integrations

on a variety of grid, the use of moment approximations, etc. results in an increase in the

inaccuracy of the forces compared to the classical case, where closed analytical expressions

are often directly implementable. Furthermore, many DFT approaches have to contend

with additional (beyond Hellmann-Feynman) contributions to the forces, known as Pulay

forces,28 that arise as a result of the dependence of the basis set on ionic positions. Although

the magnitude of the Pulay forces is, in principle, independent of how close the electronic

configuration is to the ground state,2 errors in approximate treatments of Pulay forces can

be larger when the system is insufficiently converged.29 More precisely, this is relevant only

for in situ optimized localized orbitals, whereas for fixed localized orbitals the Pulay forces

can be computed exactly. Finally, in LS-DFT approaches additional difficulties arise due to

the use of strictly localized orbitals,30 where further non-Hellmann-Feynman contributions

to the forces can be expected to arise as a consequence of localization constraints31 or of the

incomplete convergence of localized orbitals,29,31 or, to a lesser extent, the density matrix.29

For polarizable classical MD and BOMD calculations alike, tight SCF convergence is

thus a necessary condition for maintaining adequate energy conservation. The large number
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of SCF steps mandated by this requirement leads to an undesired increase of calculation

walltimes. It is tempting to try to speed up convergence by not starting the SCF proce-

dure from the same fixed initial guess at each MD time step, re-using instead the converged

solutions obtained in preceding time steps. Although the dangers of such intuitive extrap-

olation schemes have been known since early nineties,32,33 adequate solutions have been

proposed only recently.34–36 Simply put, the self-consistent solution is only independent of

the initial guess under exact SCF optimization. In practice, the SCF optimization is always

incomplete, leading to memory effects and the breaking of time-reversal symmetry,36 and, in

consequence, to systematic errors in energy gradients that manifest as a drift in microcanon-

ical energy.35 Such undesired memory effects can be elegantly dealt with through extended

Lagrangian BOMD (XL-BOMD, EL/SCF) formulations, where the initial guesses are not ex-

trapolated, but rather propagated as extended degrees of freedom, allowing time-reversibility

to be recovered.

In this paper we focus our attention on two integration schemes proposed recently – a

dissipative formulation by Niklasson et al.36 and an inertial formulation by Albaugh et al.37

These improvements to the original scheme by Niklasson et al.38 use different strategies

to mitigate the problem of error accumulation that causes two extended potential energy

surfaces – that of the real degrees of freedom, and that of the initial guesses – to diverge

for longer simulation times. In this work we study the properties and performance of the

two schemes in MD simulations of liquid water, which we carry out in two notably differ-

ent regimes – using the polarizable, classical force field AMOEBA, and using the onetep

LS-DFT formulation. Our comparison employs similar systems, but tests how the schemes

operate under distinct conditions (long simulation times with inherently accurate forces and

classical potential energy surfaces vs. short simulation times with inherently more noisy

forces and quantum-mechanical potential energy surfaces). This allows us to highlight the

differences between the two schemes, and their strengths and weaknesses in each of the two

regimes.

We begin with a short presentation of the classical and quantum-mechanical approaches

used in our study (Section II), followed by a presentation of the original extended Lagrangian

scheme (Section III), and the dissipative (Section IV) and inertial (Section V) integration

scheme variants, pausing briefly to comment on issues specific to linear-scaling BOMD and

its non-orthogonal orbital variants in particular. Sections VI, VII A and VII B describe our
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computational set-up and the results obtained in the simulations, respectively. We finish

with conclusions (Section VIII), where we summarize our observations and lay out directions

for promising future research.

II. METHODS

A. Classical polarizable force-field molecular dynamics

For our analysis of classical molecular dynamics, we have adopted the polarizable force

field AMOEBA,20,39 as implemented in the tinker18 program. AMOEBA belongs to a newer

generation of force fields that go beyond the time-honored model using pairwise-additive in-

teractions of fixed point charges. In AMOEBA, electrostatic interactions are computed from

interactions between point multipoles, where each atomic site I is host to a set of permanent

multipoles, MI = {qI ,µI ,QI}, representing a charge, dipole and quadrupole respectively.

Permanent multipoles are parametrized from ab initio calculations.40–42 Alongside perma-

nent multipoles, each atomic site is host to an induced dipole µind
I , allowing polarization

effects to be explicitly captured. Scaling of electrostatic interactions based on interatomic

connectivity,19 and Thole damping43 are used to ensure a smooth transition between the

electrostatic and bonded (valence) descriptions of interactions and to avoid the polarization

catastrophe.

The polarization effect in AMOEBA is modeled by induced dipoles, µind
I , placed on each

atomic site, whose magnitude is determined by the site-specific isotropic polarizability αI

and the total external electric field exerted:

µind
I = αI(EI + E′I), (1)

where EI is the electric field owing to the permanent multipoles on other fragments, and E′I

is the field generated by the induced dipoles on all the other atomic sites:

EI =
∑
J

TIJM
(d)
J (2)

E′I =
∑
J 6=I

T
′

IJµ
ind
J , (3)

where T
′
IJ now refers to appropriate powers of 1/rIJ according to the dipole induction

and the superscript (d) refers to special scaling factors used for electrostatic interactions
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in AMOEBA.18 Since the RHS of Eq. (1) relies on the induced dipoles, a procedure for

guaranteeing self-consistency of induced dipoles is required. This is usually achieved through

iterative techniques, such as successive over-relaxation (SOR)18,44 or the more recent use of a

precondition conjugate gradient self-consistent field (CG-SCF) approach.45 With converged

{µind
I }, the polarization energy is determined by

U ind
ele = −1

2

∑
I

µind
I · EI . (4)

A detailed discussion of the AMOEBA electrostatics model is beyond the scope of this

paper, and the interested Reader is referred to Refs. 46, 47 for a more in-depth discussion,

and a description of bonded and van der Waals interactions used in the AMOEBA model.

B. Linear scaling ab initio molecular dynamics

In contrast to classical molecular dynamics, in AIMD calculations the electronic degrees

of freedom are not integrated out but treated explicitly by finding approximate solutions to

QM equations. Nuclei are treated as classical particles, and the forces acting on them are

obtained from electronic structure calculations. In this work, we made use of Kohn-Sham

(KS) density functional theory48 to solve the electronic problem. In particular, all AIMD

calculations in this work have been carried out in Onetep.49,50

In the Onetep framework, the electronic degrees of freedom are described through the KS

reduced (spinless) single-particle density matrix operator ρ̂, which in position representation

reads

ρ(r, r′) = φα(r)Kαβφ∗β(r′), (5)

where K is the density kernel matrix, a (2,0)-tensor, which is a generalization of the oc-

cupation number matrix in a non-orthogonal basis: Kαβ =
∑
iM

†α
i fiM

α
i . where the φ(r)

are generalized non-orthogonal Wannier functions, hereafter termed NGWFs, and they are

related to the eigenstates of the KS Hamiltonian via a non-unitary matrix M as

ψi(r) = φα(r)Mα
i , (6)

where we have made use of Einstein’s convention for repeated indices. Greek indices are

used to label non-orthogonal objects, while Latin indices label orthogonal quantities.
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The NGWFs are atom-centered real functions (reflecting the Γ-point approximation)

which are strictly localized, that is to say they are non-zero only within a localization re-

gion (LR) centered around the atom they belong to. The use of non-orthogonal functions

allows to impose a tighter LR than for orthogonal functions.51–53 The disadvantage is having

to explicitly take tensorial correctness into account. As a consequence, the (0, 2) metric

tensor, also known as the overlap matrix Sαβ = 〈φα|φβ〉, is not the identity matrix. The

KS electron density function n(r) is simply given by the diagonal part of the density ma-

trix n(r) = 2ρ(r, r), where the factor of 2 accounts for spin degeneracy (which we assume

throughout this work).

Linear scaling is achieved by exploiting the principle of “nearsightedness” of electronic

matter.54,55 For systems with a non-zero band gap, i.e. insulators and semiconductors, the

density matrix (5) decays exponentially as a function of distance between two points in

space. In practical calculations it is therefore possible to truncate the density matrix by

imposing a radial cutoff:

ρ(r, r′) = 0 for |r− r′| > Rcut, (7)

where Rcut is an assumed cutoff distance.

Within Onetep two minimization strategies are available for solving the electronic prob-

lem in a self-consistent way:

1. The total energy can be minimized by optimizing both the elements of the density

kernel K, and the expansion coefficients of the NGWFs in terms of an underlying

periodic cardinal sinc (psinc) function basis50(in situ optimization).

2. Alternatively, only the elements of the density kernel can be optimized, for a fixed set

of NGWFs that have been suitably initialized e.g. to pseudoatomic orbitals (PAOs),

or to orbitals that have been pre-optimized in advance.

When NGWFs are optimized in situ, a minimal set of NGWFs is sufficient for obtaining high

accuracy and systematic convergence of total energies to those of a plane-wave approach with

KS orbitals. When total energy is minimized with respect to the density kernel elements

only, a non-minimal basis size is typically necessary to achieve accurate energies and forces,

increasing the memory requirements of this strategy, even if it is generally faster.
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In both approaches a modified Li-Nunes-Vanderbilt (LNV) algorithm51,56 is employed to

minimize the energy. The density kernel K is expressed in terms of an auxiliary matrix L as

K = 3LSL− 2LSLSL. Energy is then minimized with respect to the elements Lαβ, which

allows the idempotency constraint to be satisfied to first order during the minimization.

In this paper we have adopted the second strategy, where the NGWFs are not optimized

and we used a non-minimal PAOs basis. Convergence is deemed achieved when the RMS of

the energy gradient gαβ falls below a specified threshold:√
1

N

∣∣∣〈gαβ|gαβ〉∣∣∣ < εLNV. (8)

For a comprehensive description of the energy minimization algorithm and linear-scaling

calculations the Reader is referred to Refs. 49, 50, 57, and 58.

III. EXTENDED LAGRANGIAN FORMALISM

Extended Lagrangian methods were originally introduced to perform MD simulations of

systems in statistical ensembles other than the microcanonical.59–61For example, the action

of a thermostat (barostat) can be described through the interaction of the system with a heat

bath (piston). By postulating operational expressions for the kinetic and potential energy

of the extra dynamical variables one can write an extended Lagrangian which intrinsically

takes into account the new variables. Similarly, CPMD defines the electronic states as

extended classical dynamical variables (classical fields), with a fictitious kinetic energy and

a fictitious mass, with the idea of avoiding the expensive electronic self-consistency procedure

altogether. Recently, several authors have proposed schemes based on the CP Lagrangian,

using the density matrix (DM) elements as the extra degrees of freedom,62,63 where the

orthonormality constraints are replaced with idempotency constraint of the DM.

Starting from the broken time-reversal symmetry problem in BOMD,34 Niklasson et al.

introduced a time-reversible extrapolation scheme for the electronic degrees of freedom.64 It

is now recognized, that the original scheme can be derived from an extended Lagrangian,38,65

in which an additional set of degrees of freedom is propagated alongside the nuclei with the

purpose of generating good quality time-reversal guesses for the SCF calculations. Since the

extra degrees of freedom are only a computational device to reduce the number of iterations

in the SCF step, we will refer to them as auxiliary degrees of freedom hereafter. In its
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most recent refinement it has been shown it can be formulated to completely avoid the SCF

problem.65

Quite generally, a system of classical interacting nuclei moving in an external potential

field U , which contains a SCF-derived component, has the following Lagrangian:

LSCF({RI}, {VI}) =
1

2

∑
I

MIV
2
I − U({RI}, {χSCF,a}), (9)

where {RI} and {VI} represent the sets of the nuclear positions and velocities respectively,

MI is the mass of atom I, and {χSCF,a} is the set of converged degrees of freedom that

generate the SCF-derived part of the external field. The subscript “a” represents a generic

collection of indices, which can account for atomic-centered quantities, such as atomic dipoles

in classical polarizable force field, as well as global (atom-independent) quantities, such as

the density matrix elements in DFT. The detailed form of the potential energy U depends on

the model employed, but in general can be cast as a sum of an SCF-independent part, such

as permanent electrostatics or dispersion interactions, and a potential energy component

obtained through an SCF procedure, for example, solution of inducible dipoles in the case

of a classical polarizable force fields.

Following Niklasson,38 we can introduce generalized auxiliary degrees of freedom {ζa} into

the Lagrangian (9), provided we have a definition for their kinetic and potential energies.

We want {ζa} to closely follow the dynamics of {χSCF,a}, so that they can serve as initial

guesses for {χa} in the SCF calculations. To keep the energy expression simple, a harmonic

potential centered around the converged solution {χSCF,a} can be employed, with a single

parameter k = mω2 to control the steepness of the well, yielding:

Lext = LSCF +
1

2
m
∑
a

ζ̇2
a −

∑
a

k

2
(χSCF,a − ζa)2, (10)

where ζ̇a represent the generalized velocities of the auxiliary degrees of freedom and m

represents their mass. The extended Lagrangian (10) can now be used to derive a new set

of equations of motion (Euler-Lagrange equations):

MIR̈I = − ∂U

∂RI

+ k(χSCF,a − ζa)
∂ζa
∂RI

(11a)

mζ̈a = k(χSCF,a − ζa). (11b)

In the limit m→ 0 (k → 0, k/m→ ω2) we obtain:

MIR̈I = − ∂U

∂RI

(12a)

ζ̈a = ω2(χSCF,a − ζa). (12b)
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It is worth pointing out that (12a) is exactly the same equation we would have obtained

were there no auxiliary variables introduced, i.e. when using (9) instead of (10). This is

a consequence of taking the limit m → 0 only after having derived the Euler-Lagrange

equations. In so doing, we recover the correct potential energy surface, provided the SCF

procedure is converged exactly. Integration of (12b) gives {ζa(t)}, which in turn provide the

initial guesses for the SCF calculations.

A. Adaptation to classical polarizable force-field methods

In order to extend Niklasson’s extended Lagrangian methods to classical polarization, we

introduce a set of auxiliary atomic dipoles as extra variables.37 More specifically, the real self-

consistent induced dipoles {µSCF,I} take the role of {χSCF,a}, and the auxiliary dipoles {µI}

replace {ζa} in (10). The nuclear centers RI are propagated in the usual way, i.e. according

to (13a), while the real self-consistent induced dipoles are solved for using an SCF solver

initiated by an initial guess that is propagated through the auxiliary dipoles according to

(13b):

MIR̈I = −
∂U

(
{RI}, {µSCF,I}

)
∂RI

∣∣∣∣∣∣∣
{µI}

(13a)

µ̈I = ω2
(
µSCF,I − µI

)
, (13b)

where U
(
{RI}, {µSCF,I}

)
is the total potential energy from the AMOEBA force field.

B. Adaptation to linear-scaling DFT

In the case of linear-scaling DFT the density matrix elements Kαβ would take the role of

the real degrees of freedom χa in (10). Analogously to the classical case, we would proceed by

introducing matrix elements of an auxiliary matrix Xαβ as the auxiliary degrees of freedom

ζa. However, simply substituting quantities in (12b) leads to equations that are geometrically

inconsistent due to the tensorial nature of K and X and the fact that the underlying metric

also changes with time. It is worth stressing here that the metric tensor S is not propagated

(as the NGWFs are not treated as dynamical variables), but rather it is generated at every

MD step from the current NGWFs. Arita et al. have proposed an alternative scheme66 based
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on propagating the matrix elements (KS)αβ as dynamical variables in (10), with associated

Xα
β as auxiliary degrees of freedom. This approach has the advantage of propagating a

representation of the density matrix which maintains the correct metric. At a given MD

step n, the initial guess Kinit for the SCF procedure is computed from the auxiliary matrix

X as

Kinit = XS−1, (14)

where S−1 is the inverse overlap matrix at step n, approximated through an iterative

Hotelling algorithm67 (to maintain a linear scaling behavior).

The disadvantage of the above approach is that it does not preserve the symmetry of

the density kernel matrix, i.e.K† 6= K, since at a given step X and S−1 do not commute

in general. One possible solution is to instead employ the symmetrized version of (14).

In our experience this quickly leads to instabilities for larger systems, particularly with a

velocity-Verlet integrator (to be outlined in Section V).

Here, we propose a different approach, based on a different, orthogonal representation of

the density kernel matrix K⊥ = S
1
2 KS

1
2 , where S

1
2 is computed through a modified Newton-

Schulz linear-scaling algorithm.68 This procedure can be performed to a desired level of

accuracy, and can be made numerically exact, thus not introducing time-irreversibility, or,

strictly speaking, it does not introduce any more time-irreversibility than other operations

performed with finite-precision floating-point arithmetic, such as matrix multiplications or

inversions. The initial guess for the SCF procedure at a given step n is given by

Kinit = S−
1
2 XS−

1
2 , (15)

which ensures K is symmetric at all times.

The Euler-Lagrange equations in our framework read

MIR̈I = −∂E[KSCF, {φSCF}; {RI}]
∂RI

∣∣∣∣∣∣∣
K,{φ}

(16a)

Ẍ = ω2[K⊥SCF −X], (16b)

where E[KSCF, {φSCF}; {RI}] is the potential energy in onetep

E[KSCF, {φSCF}; {RI}] = Eelec[KSCF, {φSCF}; {RI}]

EEwald({RI}) + Edisp({RI}),

(17)
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given by a sum of three terms: 1) the electronic potential energy Eelec; 2) the Ewald Coulom-

bic interaction energy of the atomic cores; 3) an empirical dispersion energy correction for

dealing with a well-known deficiency of generalized gradient approximation (GGA) func-

tionals in describing dispersion interactions.69

Within KS theory the potential energy Eelec can be cast as a functional of the single-

particle density matrix, hence the dependence on K and {φα(r)}, as

Eelec[KSCF, {φSCF}; {RI}] = −1

2

∫
dr
[
∇2

r′ρ(r, r′)
]
r′=r

+
1

2

∫∫
drdr′

n(r)n(r′)

|r− r′|

+
∫

dr vext({RI})n(r)

+EXC[n(r)],

(18)

where the terms on the RHS represent, respectively, the kinetic energy of the non-interacting

KS states, the classical interaction between charged densities, the potential interaction en-

ergy of electrons and clamped nuclei, and the exchange-correlation energy. Equations (16a)-

(16b) are the AIMD counterparts to the classical equations (13a)-(13b).

IV. EXTENDED LAGRANGIAN WITH DISSIPATIVE VERLET

INTEGRATOR (dXL)

It is now recognized37,38 that the above simple formulation suffers from numerical insta-

bilities in the evolution of the auxiliary degrees of freedom. In fact, the velocities of the

auxiliary degrees of freedom increase in an unbounded fashion, ultimately resulting in initial

guesses that are unacceptably far from the converged values, negating the efficiency gains

of the scheme.37 The origin of this phenomenon lies in the fact that exact convergence is

never achieved in practical calculations, which couples (12a) and (12b) through a “memory

effect”.36 or kinetic resonances.37 Energy can therefore flow from the real degrees of freedom

to the (massless) auxiliary ones, producing a runaway increase in the velocities of the lat-

ter. This is demonstrated in Fig. 1, which displays the runaway in the velocities for a 64

H2O-molecule AIMD simulation, with an LNV convergence threshold of 10−5 Ha a
−3/2
0 .The

temperature of the auxiliary degrees of freedom was computed as Tr[Ẋ2]/N and the temper-

ature associated with the real degrees of freedom was calculated as Tr[K̇2]/N (cf. comment
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following (26)). The arrow at 0.27 ps indicates the point where the initial guesses obtained

from propagation become worse than the default initialization, negating the efficiency gains

of the scheme. The arrow at 0.53 ps indicates the point where the guesses become so far

from the converged values as to make the QM calculation unstable.
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FIG. 1. Illustration of the runaway accumulation of kinetic energy in the auxiliary degrees of

freedom in the original XL scheme. See text in Sec. (IV)

Recognizing this issue, Niklasson et al. proposed a modified Verlet integrator,36 which

breaks the time-reversal symmetry of the equations of motion of the auxiliary variables to

a small degree through the addition of a dissipative-like term in the integration. Since this

effect is introduced through the integration, rather than a physical term in the Lagrangian,

it does not yield new equations of motion for the auxiliary degrees of freedom. Instead,

the approach can be thought as being similar to Langevin-like dynamics for the degrees of

freedom {χa} with internal numerical error fluctuations and external, approximately energy

conserving, dissipative forces fdiss.

In order to minimize the breaking of time-reversal symmetry, dissipative forces propor-

tional to ζ̇diss are avoided so that the time-reversal symmetry can be maintained to a chosen

higher order. Hence, the modified Verlet algorithm to integrate (12b) for the dXL scheme
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is given by

ζn+1
a = 2ζna − ζn−1

a + κ(χSCF,a − ζa)n + γ
L∑
l=0

clζ
n−l
a , (19)

where we δt is the time-step chosen to integrate the equations of motion and κ = δt2ω2. The

coefficients γ and cl are obtained in such a way that for a given L all the odd-order terms

in δt cancel out36 up to order δt2L−3. Fig. 2 illustrates the behavior of the dXL scheme,

for a 64 H2O-molecule AIMD simulation, with the same approach for the calculation of

temperatures as explained above for Fig. 1. The auxiliary degrees of freedom closely follow

their real counterparts and the instability is removed.
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FIG. 2. Illustration of the stability of the dXL (L = 7) scheme. In the interest of clarity, averages

over 10 fs are shown.

Equation (19) is readily adapted to the classical framework with the usual substitution

ζa → µI :

µn+1
I = 2µn

I − µn−1
I + κ(µSCF,I − µI)

n

+γ
L∑
l=0

clµ
n−l
I . (20)

Here the dissipative force is given as a linear combination of previous values of the auxiliary

dipoles up to some order L, with the optimal expansion coefficients cl, and overall scaling
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parameter γ given in Ref. 36.

The dXL can be analogously introduced for the linear-scaling DFT framework through a

linear combination of previous auxiliary degrees of freedom:

Xn+1 = 2Xn −Xn−1 + κ(K⊥SCF −X)n

+ γ
L∑
l=0

clX
n−l, (21)

where the coefficients γ and cl are the same as the ones used for the classical approach.36

V. EXTENDED LAGRANGIAN WITH THERMOSTAT-CONTROL (iXL)

The success of the dissipative scheme for a number of QM models has been reported in

the literature.36,38 Since the role of the dissipation is to counteract the numerical instabil-

ities generated by the propagation scheme, for short timescales a bona fide microcanonical

dynamics can be generated. On the other hand, the main drawback of the scheme lies in

the fact that it breaks time-reversibility (though to a high order), and therefore introduces

a small, but measurable drift in the total energy. This can be ameliorated by carefully

optimizing the coefficients of the expansion, but it cannot be removed completely. For

long time scales, the steady drift of total energy is unavoidable, as first demonstrated in

Ref. 37, which is consistent with our results obtained with classical polarizable force-field

MD (Section VII A).

An alternative approach for overcoming the problem of breaking time-reversal symmetry

has been proposed by Albaugh et al.37 The main idea is to apply a simple thermostat to

the velocities of the auxiliary variables, resulting in an inertial extended Lagrangian SCF

formulation (iXL) in lieu of dissipation. Here the scheme will be illustrated using a general

thermostat, γ, applied to the time-reversible velocity-Verlet integrator (12b):

ζ̇
n+ 1

2
a = ζ̇na +

1

2
δtω2ζ̈na (22)

ζn+1
a = ζna + δtζ̇

n+ 1
2

a (23)

{ζa}n+1 → SCF→ {χSCF,a}n+1 → ENERGY AND FORCES

˙̃
ζn+1
a = ζ̇

n+ 1
2

a +
1

2
δtω2ζ̈n+1

a (24)

ζ̇n+1
a = γn+1 ˙̃

ζn+1
a , (25)
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where γn+1 is the velocity scaling factor generated by a general thermostatting procedure

at full time-step update. For example, in the case of Berendsen velocity rescaling, γn+1 is

given by

γn+1 =

√
1 +

δt

τ

(
T ∗

T n+1
− 1

)
, (26)

where T n+1 is the temperature of the auxiliary degrees of freedom at MD step n+1, T ∗ is the

target (desired) value of this temperature, and τ is the characteristic time of the thermostat.

T ∗ and τ are parameters of the scheme.

Although strictly speaking in the limit m→ 0 one can no longer define a kinetic energy,

and therefore a temperature, for the auxiliary degrees of freedom ζa, Albaugh et al.37 have

suggested the ensemble average of the squared auxiliary velocities, i.e. T = 〈ζ̇2
a〉 as an

operational definition for the pseudo-temperature T . In this paper we follow this convention,

referring to the quantity in question simply as “temperature”. The characteristic time τ is

chosen similarly as in typical applications of thermostats – on the one hand we want the decay

rate of the temperature towards T ∗ to be much shorter than the length of the simulation

tsim: τ � tsim; on the other hand we want to avoid a strong damping of instantaneous jumps

in the temperature, and so τ � δt. Provided τ satisfies the above constraints, the exact

choice is expected to be inconsequential to the dynamics.

The desired auxiliary temperature T ∗ is chosen to approximately conform to the equipar-

tition of energy consistent with a classical harmonic oscillator.37 One possible way of ob-

taining T ∗ is by approximating the auxiliary velocity with the maximum displacement of

the distribution of the real degrees of freedom.37 One can also run a brief dXL calculation

beforehand, and subsequently set T ∗ to the time average of T n obtained from that run.

Another option is to simply compute the temperature of the real degrees of freedom, i.e.

〈χ̇SCF,a〉 over a brief initialization period, and use a value slightly larger than that (since

the real degrees of freedom are the minimum around which auxiliary degrees of freedom

are meant to harmonically oscillate). A typical behavior of the iXL scheme is illustrated in

Fig. 3.

The equations for the iXL approach for a polarizable force field are obtained from

(22)-(25), with the substitutions µ → ζ and µ̇ → ζ̇. The coupling constant γn is given

by

γn =

√√√√1 +
δt

τ

(
T ∗

〈µ̇2
I〉
n − 1

)
. (27)
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FIG. 3. Illustration of the behavior of the iXL scheme – the temperature of the auxiliary degrees

of freedom quickly decays to the preset desired temperature T ∗ (shown as a dashed line). The two

peaks correspond to instants where the number of SCF steps briefly flipped from 7 to 6, causing a

temporary increase in the auxiliary temperature. Here T ∗ = 10−7 and τ = 30 fs. Testcase and the

approach to calculation of temperatures: as in Fig. 1. In the interest of clarity, averages over 10 fs

are shown.

For the sake of clarity, a simple Berendsen thermostat has been used to illustrate the

iXL approach. However, any other (more efficient) thermostat can be used in principle,

since the scope of a thermostat in this scheme, is only to remove heat (numerical noise)

from the auxiliary degrees of freedom. In fact, in all results reported later we use 4th or-

der Nosé-Hoover chains for thermostatting the auxiliary velocities, which we found to be

marginally better than the Berendsen thermostat.

Analogously, for a linear-scaling DFT approach, we apply the following substitutions in

(22)-(25): K⊥αβ → ζ and K̇⊥αβ → ζ̇. The coupling constant is given by

γn =

√√√√1 +
δt

τ

(
T ∗

Tr[Ẋ2]n
− 1

)
. (28)
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VI. COMPUTATIONAL DETAILS

We studied the three extended Lagrangian schemes described in the previous sections –

the original extended Lagrangian scheme (extended Lagrangian), and its dissipative (dXL)

and inertial (iXL) variants. Calculations not employing any propagation (starting the SCF

procedure from scratch at every MD iteration) were used as baseline comparisons. We

tested the extended Lagrangian schemes in two regimes – in classical MD calculations with

the AMOEBA polarizable force field, and in AIMD calculations with linear-scaling DFT.

The former calculations were carried out using the tinker18 program, and the latter – using

Onetep.49,50

As test systems we chose pure water-box systems with increasing numbers of water

molecules: 16, 32, 64, 128 (and 512 with classical calculations), although all methods de-

scribed should be generalizable to any molecular system. Liquid water is ubiquitous in

biological systems and, as it is well-known, is a prototypical system for hydrogen bonding

that influences its anomalous behavior throughout its phase diagram. Standard DFT GGA

models struggle to correctly describe the structure and dynamics of water, with the non-

locality of dispersion interactions, deficiencies of local and semi-local exchange, presence of

self-interaction error, and the neglect of quantum nuclear effects often cited as culprits.70–72

At the same time, many successes and failures of both classical and quantum approaches for

bulk water systems have been reported.18,24,70–75 Consequently, bulk water systems provide

an appropriate and stringent test for the extended Lagrangian methods where many-body

effects are paramount.

For all classical polarizable force-field simulations we used the water parameters of the

AMOEBA14 water model.75 The equations of motion for the nuclear degrees of freedom

were integrated using the velocity Verlet integrator76 with a time step of δt = 1.0 fs. Each

system started with the water molecules arranged on a lattice in an equilibrium geometry

with a cubic cell, whose volume corresponded to the reported density for the force field ρ =

1.0003 g cm−3. The Particle-mesh Ewald method77,78 with a 9 Å real-space cutoff for long-

range electrostatics was employed. Equilibration simulations were carried out in the NV T

ensemble at 298 K for 0.5 ns, with temperature controlled using a Nosé-Hoover thermostat79

with a fourth-order chain and a characteristic time of τ = 0.1 ps.

Following equilibration, we ran NV E production calculations for 1 ns with each of the
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above extended Lagrangian schemes, along with a baseline calculation where initial guesses

were not propagated using the default conjugate gradient (CG) SCF method in tinker,

with a threshold of 10−6 D. For production calculations, we integrated the equation of mo-

tion (13b) using the time-reversible velocity Verlet integration for the original extended

Lagrangian scheme and iXL, whereas a modified Verlet scheme was used for dXL, as de-

scribed in section (IV). For the original extended Lagrangian scheme and for the iXL scheme

we set ω =
√

2/δt according to the criterion in Ref. 38. The target temperature T ∗ for the

auxiliary degrees of freedom in the iXL scheme was estimated by approximating the square

of the auxiliary dipole velocity 〈µ̇2
I〉 with the maximum displacement of the distribution of

the real dipoles.37 For these systems this gave a value of T ∗ ≈ 105 e2Å2/ps2, which is the

value used in this work. The Nosé-Hoover thermostat79 with a fourth-order chain and a

characteristic time of τ = 0.1 ps was used for the auxiliary degrees of freedom. For all the

extended Lagrangian schemes and for all the system sizes N , we ran our simulations with

three different thresholds for the SCF optimization: 10−1 D (loose), 10−4 D (moderate) and

10−6 D (tight).

For linear-scaling DFT calculations we used the pre-equilibrated systems obtained from

the classical calculation to avoid lengthy equilibration in AIMD. These were subsequently

further equilibrated with onetep for 1 ps with conventional BOMD (i.e. in the absence

of a propagation scheme) in order for the systems to adjust to the switch from a classical

to an ab initio Hamiltonian. The NV T ensemble was used, with temperature controlled

via a Nosé-Hoover chain thermostat. No adjustments were made to the densities of the

systems. The LNV convergence threshold was set to an RMS gradient of 10−6 Ha a
−3/2
0 ,

which generally required 19-20 SCF steps to converge.

For both equilibration and production calculations, we used the BLYP exchange-

correlation functional80,81 with Grimme D2 dispersion correction82 in order to improve

the DFT description of water.71 The kinetic energy cutoff was set to 900 eV, and norm-

conserving pseudopotentials were employed. We used 8 a0 as the localization radii of the

NGWFs throughout, except for the 16 H2O system, where the small size of the periodic box

(14.78 a0) forced us to use a slightly smaller localization radius of 7.35 a0. Since we used

fixed (non-in situ-optimized) localized orbitals, we chose a non-minimal double-zeta with

polarization (DZ+P) basis set to improve the description. No density kernel truncation was

applied, due to the systems’ sizes being too small for the truncation to show any benefit. A
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velocity Verlet scheme was employed, with a timestep of δt = 0.5 fs to integrate the nuclear

degrees of freedom.

Production calculations were carried out with all of the extended Lagrangian schemes,

and calculations with no propagation as baseline, using a selection of LNV convergence

thresholds: 10−4 Ha a
−3/2
0 (loose), 10−5 Ha a

−3/2
0 (moderate) and 10−6 Ha a

−3/2
0 (tight). These

sampled the NV E ensemble and were carried out for 10 ps. While a longer sampling would

certainly be desired, the large computational cost of AIMD simulations precluded that.

Analogously to the classical calculations, we employed a velocity Verlet scheme for the

auxiliary degrees of freedom both for the original extended Lagrangian scheme and the iXL

scheme, with a timestep of 0.5 fs. For the dissipative dXL scheme we used a modified Verlet

scheme as explained in Sec. (IV). The target temperature T ∗ for the iXL was set by running

a brief dXL calculation, taking the time average of the auxiliary temperature, and using

a slightly larger (more conservative) value for iXL, as otherwise the scheme’s thermostat

struggled to keep the desired temperature, leading to excessive drift. This more heuristic

approach has the advantage of avoiding a long simulation to compute the distribution of

the displacements of real electronic degrees of freedom, which can be quite computationally

demanding for AIMD. The value we settled for was T ∗ = 10−7 e2/fs2 for all thresholds, except

for the 128 H2O system at the loose threshold, where a larger value of T ∗ = 10−6 e2/fs2 was

necessary to maintain stability. Due to the short time scale of our AIMD simulations, we

set τ = 0.03 ps for the thermostat characterstic time, forcing the thermostat to work six

times faster than its classical counterpart.

VII. RESULTS

A. Polarizable force fields

We will use the largest (512 H2O) system as the main testcase for classical calculations,

and all results will refer to this system, unless indicated otherwise. We begin by confirming

the problems of the original extended Lagrangian scheme due to its quickly deteriorating

quality of the propagated guesses. We laid out the origin of this undesired behavior in

Sec. III. Fig. 4 shows how the number of SCF iterations increases over time, regardless of

the assumed convergence threshold. Given sufficient time, the quality of the propagated
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TABLE I. Comparison of the energy drift (K/ps) between calculations with no propagation, and

calculations using the dXL (L = 6) and iXL schemes – for four different system sizes (16, 32, 64

and 128 H2O molecules) and three different CG-SCF convergence thresholds. NSCF is the average

number of SCF steps for a combination of method and threshold (detailed breakdown in Tab. II).

CG-SCF Propagation

System size

NSCF16 H2O 32 H2O 64 H2O 128 H2O

threshold [D] scheme drift [K/ps (×10−4 )]

10−1
no prop. 48752.2 ± 5969.3 49642.4 ± 8490.7 40048.8 ± 5110.5 38739.4 ± 3827.8 1.0

dXL 2395.9 ± 685.2 −3371.2 ± 663.7 −6003.1 ± 3986.1 −5613.2 ± 4632.9 1.0

(loose) iXL −7.9 ± 154.9 158.4 ± 104.7 84.8 ± 93.8 74.9 ± 18.7 3.0

10−4
no prop. 5.0 ± 7.4 −6.7 ± 9.4 −3.7 ± 1.7 1.6 ± 2.1 5.6

dXL −20.8 ± 9.2 −23.4 ± 4.6 −20.0 ± 1.7 −22.9 ± 3.2 3.7

(moderate) iXL −0.9 ± 8.0 0.4 ± 2.6 −0.8 ± 1.0 −0.5 ± 29.6 6.9

10−6
no prop. 5.9 ± 7.9 −0.8 ± 2.7 −0.4 ± 1.5 −0.6 ± 1.7 8.7

dXL 1.4 ± 5.3 0.3 ± 4.0 0.0 ± 1.8 −0.6 ± 1.4 6.9

(tight) iXL 3.5 ± 6.8 2.3 ± 2.1 0.8 ± 5.0 −0.7 ± 1.5 9.1

guesses becomes worse than in the absence of propagation, negating the efficiency gains of

the scheme, even if, in principle, this formulation is expected not to introduce a drift in the

energy.

TABLE II. A comparison of the number of CG-SCF iterations between calculations with no prop-

agation, and calculations using the dXL and iXL schemes – for four different system sizes (16, 32,

64 and 128 H2O molecules) and three different CG-SCF thresholds.

CG-SCF Propagation System size

threshold [D] scheme 16 32 64 128

10−1
no prop. 1.00 1.00 1.00 1.00

dXL 1.00 1.00 1.00 1.00

(loose) iXL 3.00 3.00 3.00 3.00

10−4
no prop. 5.42 5.51 5.65 5.77

dXL 3.62 3.65 3.83 3.79

(moderate) iXL 6.89 6.72 6.84 6.99

10−6
no prop. 8.38 8.70 8.92 8.99

dXL 6.68 6.85 6.96 6.99

(tight) iXL 9.02 9.07 9.17 9.16

The dissipative scheme addresses the deficiency of the original formulation, at the price

of weaker (finite-order) time-reversibility as outlined in Sec. IV. We will now estimate the

typical energy drift that manifests as a consequence. Fig. 5 shows the change in energy per
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FIG. 4. Decaying quality of the initial guesses propagated through the original extended La-

grangian scheme, evidenced by the number of SCF steps needed to converge the induced dipoles

(solid lines).

atom in an NV E simulation with the dXL scheme, for several selected values of the order

parameter L (cf. (19)) and for calculations with a loose, moderate and tight SCF threshold.

For all three SCF convergence thresholds the drift is substantial, with the loose threshold

being the most severe case, corresponding to a drift rate of ∼ 2 × 10−1 K/ps. While the

energy drift rate gets smaller as the SCF tolerance increases, the drift is systematic and will

become non-negligible in calculations spanning hundreds of nanoseconds.

The iXL scheme adopts yet another approach to overcome the issues of the original

extended Lagrangian scheme. A thermostat is introduced to control the temperature of

the auxiliary dipoles in order to avoid the accumulation of noise in the propagation, as

described in Sec. V. Fig. 6 shows the change in energy per atom in a NV E simulation for

this case. Energy conservation is maintained even at loose thresholds, with a drift rate of

∼ 3× 10−3 K/ps and requiring only three SCF iterations at the 10−1 D threshold (see inset

in Fig. 6), making this scheme very competitive and suitable for performing long (µs-scale)

NV E simulations. A modest price to pay for the iXL method, apart from the need to choose

suitable parameters T ∗ and τ (cf. Sec. V), is its dependence on a definition of “pseudo-
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FIG. 5. Total energy conservation of dXL for different dissipation orders: L=3 (panel a), L=6

(panel b), and L=9 (panel c). Different curves within each panel correspond to different SCF

thresholds: loose, moderate and tight. The dashed lines are meant as a guide to the eye and

correspond to energy drifts expressed as system cooling/heating rates in K/ps. In the interest of

clarity, only points 20 ps apart are shown. 24



temperature” through the kinetic energy of the system, which may become less valid as the

number of degrees of freedom in the system decreases. It is thus prudent to examine the

behavior of the method for smaller systems to assess its transferability to other systems.

Table I and Table II summarize our findings for the smaller systems. In particular, in Tab. I

we compare the drift in the total energy for the unpropagated (conventional SCF-MD)

scheme, which serves as reference, the dXL scheme and the iXL scheme for four system sizes

each with three SCF-CG thresholds. The reasons for large uncertainties in the drifts, even

given a long simulation time, are as follows: for the loose threshold, the drift is so severe that

over 1000 ps the system heats up (cools down) so much that the drift is no longer linear due

to the massive increase (decrease) in kinetic energy. For the moderate and tight thresholds,

the large uncertainty reflects the difficulty of accurately estimating extremely small (sub-

mK/ps) drifts. The drifts and their uncertainties were calculated by assuming the drifts to

be approximately linear. In a simulation with a length of t (t = 1000 ps), we can use a subset

of data, viz. the interval [0, t0] to evaluate the linear coefficient in the drift, a (t0), over this

interval. The final drift estimate is a (t). The uncertainty is taken as the largest difference

between a (t0) and a (t) calculated over t0 ≥ t/2. Tab. II presents an analogous analysis to

Tab. I, with the number of CG-SCF iterations replacing the energy drift. Tab. I and Fig. 7

demonstrate that for loose and moderate CG-SCF thresholds the iXL scheme outperforms

all orders of the dXL scheme in terms of energy conservation, even for very small system

sizes. In the tight threshold regime the two schemes are equivalent. However, as shown in

Tab. II, the trend is inverted when considering the average number of CG-SCF iterations.

In fact, NSCF for iXL is always larger than the corresponding NSCF for dXL, regardless of

the CG-SCF threshold. Notably, at moderate convergence thresholds the dXL scheme shows

energy drifts of the same order of magnitude (10−3 K/ps ) as iXL with a loose threshold,

and also a comparable average number of CG-SCF iterations (NSCF = 3.7). Therefore, dXL

and iXL display similar performance but in different SCF threshold windows: moderate for

dXL and loose for iXL.

To assess how these integration schemes affect the actual dynamics, the oxygen-oxygen

pair correlation function gOO (r) has been computed, see Fig. 8. Clearly, the red curve and

cyan curve in Fig. 8, corresponding to dXL with a moderate threshold and iXL with a loose

threshold respectively, lie on top of each other and they are indistinguishable from the refer-

ence curve (solid gray). The latter has been obtained with the conventional (unpropagated)
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scheme and a tight threshold to provide a robust baseline. No artifacts are hence introduced

in the dynamics by these two integration schemes, and they essentially provide the “correct”

result as obtained from the reference calculation.
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FIG. 6. Total energy conservation of iXL for different convergence thresholds (solid lines): loose,

moderate, and tight. The dashed line is meant as a guide to the eye and corresponds to energy

drift expressed as system heating rates in K/ps. In the interest of clarity, averages over 10 fs are

shown.
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B. Linear-scaling DFT

As the main testcase for linear-scaling DFT calculations we will use the 64 H2O system,

unless indicated otherwise. As we have done for the classical calculations, we begin by con-

firming the impracticality of the original extended Lagrangian scheme. Fig. 9 shows that

for linear-scaling DFT calculations the quality of the propagated guesses decays even more

rapidly than for the classical calculations. Indeed, for the loose SCF convergence thresh-

old the original extended Lagrangian scheme becomes less efficient than the unpropagated

scheme as early as after 0.04 ps (80 MD steps), probably reflecting the good quality of

Onetep’s (unpropagated) initial guesses for the simpler scenario of fixed NGWFs.
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Dashed lines denote corresponding number of SCF steps in the absence of propagation. Crosses at

0.04 ps, 0.27 ps and 1.33 ps denote points where the efficiency gain of extended Lagrangian over

the unpropagated scheme is lost.

A significant difference between classical MD calculations and their linear-scaling DFT

counterparts is the much higher ”noise floor” of ab initio-derived forces. This is a conse-

quence of more intricate numerical machinery involved in DFT calculations (commonplace
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use of grid-based operations, such as Fast Fourier Transforms (FFTs), numerical integra-

tion of quantities on a variety of grids with up- and downsampling between grids, inexact

translational and rotational invariance (“egg-box effect”), use of polynomial interpolations

in the handling of pseudopotentials, etc.), and the fact that the error in Kohn-Sham DFT

forces is first order with respect to the error in the incompletely converged wavefunction,

even though the error in the energy is second order.2 While tighter SCF convergence can be

imposed for dynamical calculations, this can quickly become impractical, as to reach those

stricter convergence thresholds grids must be made finer, and other approximations need

to be well-controlled. In practice, the resultant noise in DFT forces, even though perfectly

acceptable e.g. for geometry optimization, leads to energy drifts in the order of 10−1 K/ps,

while in classical MD, even when iterative schemes are involved, drifts are not expected to

exceed 10−3 K/ps (cf. Tab. I).

Linear-scaling formulations of DFT necessarily add further approximations to conven-

tional DFT, even if in robust approaches these approximations are controllable. For ex-

ample, the use of finite-box FFTs leads to a slight delocalization of gradients beyond the

localization regions of local orbitals, exchange-correlation energy is typically evaluated on a

finite Cartesian grid, and Pulay-like corrections to forces are often not numerically exact for

reasons of efficiency. Some of these approximations are common to all LS-DFT formulations,

whereas others are specific to the different implementations. A consequence of these approx-

imations is a further increase in the inaccuracy of forces, with residual errors in Onetep

typically in the order of 0.1%83 – this can be estimated from the magnitude of the net force,

which, in the absence of noise, should be zero by Newton’s 3rd law of motion. While ap-

proaches for correcting some of these approximations have recently been proposed,29,31 the

current state of the art necessitates using mild thermostatting to control for energy drifts in

LS-DFT, as these typically result in temperature increase/decrease rates of several K/ps.

To wit, in Fig. 10 we show drifts obtained for the 64 H2O system in the absence of any

propagation scheme. For consistency, we adopt the same criterion to initialise the NGWFs as

outlined in Sec. VI. While the drift in excess of 100 K/ps obtained for the LNV convergence

threshold of 10−3 Ha a
−3/2
0 is clearly due to an excessively loose threshold, there is little

improvement when the threshold is tightened from 10−4 Ha a
−3/2
0 to 10−5 Ha a

−3/2
0 , and no

further gain whatsoever with 10−6 Ha a
−3/2
0 , which indicates the presence of an inherent drift

that cannot be mitigated by improving the degree of SCF convergence. The magnitude of
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FIG. 10. Drift in the total energy for linear-scaling DFT for unpropagated BOMD (testcase:

64 H2O molecules), for a selection of SCF convergence thresholds. Excessively loose thresholds

lead to extreme drift, but inherent drift at ∼ 5 K/ps is apparent regardless of how tight SCF

convergence is. The dashed lines are meant as a guide to the eye and correspond to energy drifts

expressed as system cooling/heating rates in K/ps.

this drift is in the order of 5 K/ps, which leads us to expect that the drift due to time-reversal

symmetry breaking in dXL (estimated between 10−3 and 10−4 K/ps in the classical case,

cf. Tab. I, for moderate and tight thresholds) will be entirely obscured by the intrinsic drift

due to forces.

Fig. 11 compares the energy drift of the unpropagated calculation, and the two extended

Lagrangian approaches for a loose SCF threshold (10−4 Ha a
−3/2
0 ). The drift in the absence of

propagation is 8.5±0.9 K/ps, with dXL and iXL performing better: at −1.5±0.3 K/ps and

2.8± 2.1 K/ps, respectively. The fact that the drifts are comparable between dXL and iXL

is in line with our expectations – the drift that makes dXL less desirable for long classical

MD simulations does not play an appreciable role in LS-DFT MD, since it is dwarfed by

inherent drift due to the noise in LS-DFT forces.

To add more weight to this argument, we examine the drifts for the remaining systems
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FIG. 11. Comparison of drifts in total energy between calculations with no propagation and dXL

and iXL (testcase: 64 H2O molecules). SCF convergence threshold was set to 10−4 (loose), as this

is what would be used in practical simulations. The dashed lines are meant as a guide to the eye

and correspond to energy drifts expressed as system cooling/heating rates in K/ps.

and for tighter SCF thresholds. The results are summarized in Table III. For all system sizes,

regardless of how and if the initial guesses are propagated, we observe drifts of several K/ps.

No correlation is apparent between the magnitude of the drift and the SCF convergence

threshold, which indicates that the threshold is not excessively loose, and that no accuracy

gains can be achieved by using tighter thresholds. Neither of the extended Lagrangian

methods is seen to discernibly outperform the other, and the drifts are comparable to the

case with no propagation. This confirms that the observed drifts are a result of inherent

noise in LS-DFT forces, and are hardly affected by the properties of an extended Lagrangian

scheme.

Of course, the use of an extended Lagrangian approach is expected to yield a performance

improvement by reducing the number of SCF steps needed to converge to a given threshold.

We report that number in Table IV for all systems and methods under study. Both dXL

and iXL offer a performance gain of 30%–60%, depending on the convergence thresholds,
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TABLE III. Comparison of the energy drift (K/ps) between calculations with no propagation,

and calculations using the dXL and iXL schemes – for four different system sizes (16, 32, 64 and

128 H2O molecules) and three different SCF(LNV) convergence thresholds. Large uncertainties of

computed drifts reflect necessarily short simulation times.a NSCF is the average number of SCF

steps for a combination of method and threshold (detailed breakdown in Tab. IV).

SCF Propagation System size

threshold scheme 16 H2O 32 H2O 64 H2O 128 H2O NSCF[
Ha a

−3/2
0

]
drift (K/ps [×100 ])

10−4
no prop. 4.8± 0.4 4.2± 1.9 8.5± 0.9 3.3± 1.1 7.8

dXL 3.5± 1.8 6.6± 0.5 −1.5± 0.3 0.2± 0.2 3.3

(loose) iXL 1.5± 0.8 −3.9± 2.1 2.8± 2.1 −2.4± 0.4 4.0

10−5
no prop. 3.8± 5.3 2.3± 2.1 5.6± 3.2 3.0± 0.5 13.5

dXL 2.9± 0.8 0.2± 3.0 1.9± 2.9 3.4± 0.2 5.7

(moderate) iXL 4.8± 0.7 3.8± 1.5 0.9± 0.8 2.6± 0.3 7.7

10−6
no prop. 3.2± 2.7 5.7± 1.6 5.8± 2.2 2.5± 0.9 19.3

dXL 2.2± 1.4 4.6± 1.9 1.5± 0.4 3.1± 0.7 10.2

(tight) iXL 2.8± 2.5 7.1± 1.5 5.4± 0.7 2.8± 0.4 13.5

a The drifts and their uncertainties were calculated as follows. We assume the drift to be approximately

linear. In a simulation with a length of t (t = 10 ps), we can use a subset of data, viz. the interval [0, t0]

to evaluate the linear coefficient in the drift, a (t0), over this interval. The final drift estimate is a (t).

The uncertainty is taken as the largest difference between a (t0) and a (t) calculated over t0 ≥ t/2.

TABLE IV. A comparison of the number of SCF iterations between calculations with no propaga-

tion, and calculations using the dXL and iXL schemes – for four different system sizes (16, 32, 64

and 128 H2O molecules) and three different SCF thresholds.

SCF threshold Propagation System size[
Ha a

−3/2
0

]
scheme 16 32 64 128

10−4
no prop. 9.0 8.0 7.1 7.0

dXL 3.8 3.4 3.1 3.0

(loose) iXL 4.0 4.0 3.0 5.0

10−5
no prop. 14.0 14.0 13.0 13.0

dXL 6.3 6.0 5.5 5.0

(moderate) iXL 9.0 8.0 7.0 7.0

10−6
no prop. 20.0 20.0 19.1 18.0

dXL 11.0 10.8 10.0 9.0

(tight) iXL 14.4 13.9 13.7 12.0

with looser thresholds offering larger gains. Except for an isolated case (64 H2O molecules,
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loose convergence threshold), the use of the dissipative scheme leads to slightly faster con-

vergence compared to the inertial scheme. This is a consequence of manually setting the

auxiliary temperature for iXL to a slightly more conservative value than the exact average

auxiliary temperature of dXL (cf. Sec. VI). With more aggressive settings we would expect

the performance of iXL to be indistinguishable from that of dXL, but with the caveat that

iXL immediately starts to drift appreciably when T ∗ is set to an excessively low value, ne-

cessitating care in the choice of this parameter. The drift in this case is a consequence of

the thermostat’s persistent scaling of velocities, with the time average of γn (eq. 28) being

excessively lower than 1.

Apart from not impairing energy conservation and improving performance, a natural

requirement for a propagation scheme is for it not to visibly affect the calculated properties of

the system. In this study we examine the basic structural characteristic of water, the oxygen-

oxygen pair correlation function gOO (r), shown in Fig. 12. The reference (unpropagated)

calculation was run with a tight threshold, to provide a robust baseline that we assume is the

correct result. The calculations with dXL and iXL were performed with a loose threshold,

as this is what would be used in practice. The differences between the predictions of the two

integration schemes are minuscule, and the differences between the propagated calculations

and the reference are also very modest – the first peak is described practically identically,

and for larger distances the introduction of propagation (in particular with the iXL scheme)

appears to introduce a very slight over-structuring, which we find perfectly acceptable given

the timescale of the simulations. We do not include experimental results in the comparison,

knowing full well that the DFT model of water significantly over-structures for reasons that

we do not expect the propagation schemes to compensate for. The same over-structuring

exacerbates the problem (the system takes longer to fully equilibrate). We thus attribute

the small differences to the noise stemming from the limited timescale.
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FIG. 12. Oxygen-oxygen pair correlation function gOO (r) obtained in the absence of a propagation

scheme, and with the dXL and iXL schemes. Testcase: 64 H2O molecule system. For calculations

with propagation, the SCF convergence threshold was set to 10−4 Ha a−3/2
0 (loose), as this is what

would be used in practical simulations. The reference (unpropagated) calculation uses a tight

threshold (10−6 Ha a−3/2
0 ). The differences between the predictions obtained with dXL and iXL

and in the absence of propagation are seen to be minor.

VIII. CONCLUSIONS

In this work we assessed the performance of two integrators for the extended Lagrangian

introduced by Niklasson et al.36 – a dissipative formulation (dXL),36 and an inertial formu-

lation (iXL),37 in two distinct regimes, by employing them in classical and in LS-DFT NV E

MD calculations on condensed water systems. We confirmed the previously reported37,38,66

necessity of counteracting the unbounded increase in the kinetic energy of the auxiliary

degrees of freedom through some form of energy leaching, to which the two schemes take

different approaches.

In the classical polarizable force field regime we reproduced the observations of Albaugh et

al.,37 showing that over long (∼ns) timescales, for maximally loose SCF thresholds, where

an unpropagated scheme drifts catastrophically, iXL offers better energy conservation com-
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pared to dXL. This advantage is a consequence of a different approach to “energy leaching”

taken by the iXL method, which strictly preserves time reversibility. However, at this loose

SCF threshold dXL has the advantage of needing substantially fewer SCF steps (1 vs. 3) to

converge, and thus offers an efficiency gain over iXL. As the SCF threshold is made progres-

sively tighter, the performance of the two schemes begins to converge, with the drift of dXL

improving considerably, and the almost constant absolute efficiency advantage of 2-3 SCF

steps that dXL maintains over iXL becoming relatively less important.

In the LS-DFT MD regime the picture is substantially different due to the high intrinsic

noise of LS-DFT forces, which leads to energy drifts that are much larger than the additional

drift due to energy leaching from the extended Lagrangian approach. As such the dXL and

iXL propagation schemes can be used with the loosest of LNV-SCF threshold investigated

(10−4 Ha a
−3/2
0 ) beyond which an additional drift of an extended Lagrangian scheme starts

to become apparent. Although there is no discernible difference in practice between the dXL

and iXL schemes at the loose convergence threshold, the dXL would currently be the mildly

preferred choice for LS-DFT MD calculations due to its parameter-free nature.

As it is now, we believe that in practical and sufficiently long (many-ps) LS-DFT MD

calculations a gentle thermostatting would currently be necessary to counteract the excessive

increase/decrease in temperature that is a consequence of intrinsic drift, and which is as large

as several K/ps. Further work is desirable in the area of linear-scaling DFT to improve the

accuracy of forces in the presence of artifacts that result from localization constraints and

the approximate treatment of Pulay-like terms in the forces. We feel obliged to point out

that the energy drifts in LS-DFT would likely change noticeably were the localized orbitals

to be optimized (not studied in this work). This is because on the one hand the in situ

optimization significantly reduces the magnitude of Pulay-like terms, while on the other hand

it introduces a further approximation into their calculation.83 It is possible that the change

that the optimization of localized orbitals would introduce to the “noise background” of LS-

DFT forces, and the ensuing change in intrinsic energy drift, would uncover differences in the

behavior of the two extended Lagrangian integration schemes that are currently obscured in

ab initio MD. We intend to study this behavior in the future.

We highlighted the non-triviality of correctly evolving the auxiliary degrees of freedom

over a curved manifold in ab initio calculations, a fact that is not always appreciated in the

literature. We presented and tested a viable scheme for propagating the density kernel in this
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scenario, using a fixed, non-orthogonal generalized Wannier function basis. Further work is

necessary to develop a scheme where the localized orbitals could be similarly propagated.

Finally, we showed that both dXL and iXL consistently enable significant, and usually

similar, increases in performance over calculations not employing propagation, both for

classical MD and LS-DFT MD. Thus, both of these schemes constitute important algorithmic

improvements that markedly extend the timescales accessible to classical and LS-DFT MD

simulations alike.
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Appendix A: Stability of velocity Verlet with weak coupling

In section V, we have derived the equations of motion for the auxiliary degrees of freedom

{ζ}, starting from the extended Lagrangian (10) and coupling the {ζ} to an external bath:

ζ̇n+ 1
2 = ζ̇n +

∆t

2
ζ̈n = ζ̇n +

ω2∆t

2
[χnSCF − ζn] (A1)

ζn+1 = ζn + ζ̇n+ 1
2 ∆t (A2)

SCF→ ENERGY AND FORCES

˙̃
ζn+1 = ζ̇n+ 1

2 +
∆t

2
ζ̈n+1 = ζ̇n+ 1

2 +
ω2∆t

2
[χn+1

SCF − ζn+1]

(A3)

ζ̇n+1 = αn+1 ˙̃
ζn+1, (A4)

where ζ, ζ̇ and ζ̈ represent the auxiliary generalized coordinates, velocities and accelerations,

respectively, whereas χSCF is the converged SCF solution (real degrees of freedom). The

coupling strength with the external bath is given by α. In deriving (A1)-(A4) we have

adopted the velocity Verlet integrator with a timestep ∆t. A possible choice for α is given

by the Berendsen thermostat:

αn =

√
1.0 +

∆t

τ

(
T ∗

T n
− 1.0

)
, (A5)

where τ represents the characteristic time scale of the thermostat. T ∗ is the target temper-

ature. The instantaneous temperature T n is generally a quadratic function of the auxiliary

generalized velocities

T ∝ f(ζ̇2). (A6)

The discretized equations of motion (A1)-(A4) can be cast in matrix form as

ζn+1

ζ̇n+1

 = T(α, χSCF,∆t)

ζn
ζ̇n

 . (A7)

Following a change of variable ζ̇∆t→ ζ̇, the propagation matrix T takes the form
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T =

 1 0

αω2∆t2

2
[χn+1

SCF (ζ−1) n+1 − 1] α

×
1 + ω2∆t2

2
[χnSCF (ζ−1) n − 1] 1

0 1

+

 0 0

αω2∆t2

2
[χnSCF (ζ−1) n − 1] 0


=

 1 + ω2∆t2

2
Qn 1

αω2∆t2

2
Qn+1 + αω4∆t4

4
Qn+1Qn + αω2∆t2

2
Qn αω2∆t2

2
Qn+1 + α


=

 1 + κQn 1

ακ{Qn+1 +Qn + κQn+1Qn} α(κQn+1 + 1)

 , (A8)

where in the last two steps we have set Q = χSCFζ
−1 − 1 and we have grouped together all

scalar parameters, but α, into κ = ω2∆t2/2. Following the analysis in Ref. 84, we can study

the stability of the propagation by linearizing the SCF optimization around an exact ground

state χ∗:

χSCF = SCF[ζ] ≈ χ∗ + Γ(ζ − χ∗), (A9)

where the linearized SCF optimization kernel is represented by Γ. Now we look at the

homogeneous equation, i.e. χ∗ ≡ 0, and replace Γ with its largest eigenvalue γ, and insert

this equation into the propagation matrix T, which reads

T =

 1 + κ(γn − 1) 1

ακ{(γn+1 − 1) + (γn − 1) + κ(γn+1 − 1)(γn − 1)} α[κ(γn+1 − 1) + 1]

 , (A10)

where we want to ensure the propagation to be stable for the entire range of convergence,

γ ∈ [−1, 1].

The stability of the integrator is determined by the largest eigenvalue |λmax| of the prop-

agation matrix in (A10), which is a measure of the loss of energy conservation. To simplify

the discussion, we can look at:

γn+1 ≈ γn = γ̃,

which is achieved when two subsequent SCF steps converge with the same accuracy. In this

case, the propagation matrix T simplifies to

T =

 1 + κ(γ̃ − 1) 1

ακ[2(γ̃ − 1) + κ(γ̃ − 1)2] α[κ(γ̃ − 1) + 1]

 . (A11)
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FIG. 13. Stability measured by the largest eigenvalue |λ|max of (A10) as a function of the degree

of SCF convergence measured by γ ∈ [−1, 1] for selected values of α for the velocity Verlet scheme.

This simplification captures most of the results for the stability as shown in Fig. 14a-14b,

where we let both γn and γn+1 to independently vary in the range [−1, 1], with no significant

impact on the stability. This implies that the stability of the integrator is mainly determined

by the coupling parameter α. In fact, the propagation matrix in (A11) shows the important

symplectic property

TTJT = αJ, (A12)

where J is the symplectic structure matrix

J =

 0 1

−1 0

 . (A13)

This is simply a re-statement of the fact that when α = 1 we recover the canonical velocity

Verlet scheme, which is of course symplectic. Our analysis is in line, at least qualitatively,

with the results obtained by Albaugh et al. for the simpler Verlet scheme.37 We also find

that any κ 6= 1 results in a suboptimal regime, cf. Tab. V, which means that the optimal

choice for ω ought to be
√

2/∆t.
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(a) α = 0.9

(b) α = 0.5

FIG. 14. Stability measured by the largest eigenvalue |λ|max of (A11) as a function of the degree of SCF

convergence when γn+1 6= γn and they are independently allowed to vary in the range [−1, 1] for α = 0.9

panel a), and α = 0.5 panel b) for the velocity Verlet scheme.
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TABLE V. Different values for the α parameter and the corresponding optimal values for κ and

maximal dissipation.

Method/coefficients α κopt |λ|max

velocity Verlet

1.0 1.0 1.0

0.99 1.0 0.995

0.95 1.0 0.975

0.9 1.0 0.949

1.01 1.0 1.005

1.05 1.0 1.025

1.1 1.0 1.049
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70M. J. Gillan, D. Alfé, and A. Michaelides, The Journal of Chemical Physics 144, 130901

(2016).

71I.-C. Lin, A. P. Seitsonen, I. Tavernelli, and U. Rothlisberger, Journal of Chemical Theory

and Computation 8, 3902 (2012).

72R. A. DiStasio, B. Santra, Z. Li, X. Wu, and R. Car, The Journal of Chemical Physics

141, 084502 (2014).

73C. J. Burnham and S. S. Xantheas, The Journal of Chemical Physics 116, 5115 (2002).

74B. Santra, R. A. D. Jr., F. Martelli, and R. Car, Molecular Physics 113, 2829 (2015).

75M. L. Laury, L.-P. Wang, V. S. Pande, T. Head-Gordon, and J. W. Ponder, The Journal

of Physical Chemistry B 119, 9423 (2015).

76G. J. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein, Molecular Physics 87,

46

http://stacks.iop.org/0953-8984/20/i=29/a=294207
http://stacks.iop.org/0953-8984/20/i=29/a=294207
http://dx.doi.org/10.1103/PhysRevB.83.195102
http://dx.doi.org/http://dx.doi.org/10.1063/1.439486
http://dx.doi.org/10.1080/00268970110089108
http://dx.doi.org/http://dx.doi.org/10.1063/1.328693
http://dx.doi.org/ http://dx.doi.org/10.1063/1.1372182
http://dx.doi.org/http://dx.doi.org/10.1063/1.1814934
http://dx.doi.org/ 10.1103/PhysRevLett.97.123001
http://dx.doi.org/ 10.1103/PhysRevLett.97.123001
http://dx.doi.org/ http://dx.doi.org/10.1063/1.4898803
http://dx.doi.org/ http://dx.doi.org/10.1063/1.4898803
http://dx.doi.org/10.1021/ct500847y
http://dx.doi.org/10.1021/ct500847y
http://dx.doi.org/10.1103/PhysRevB.64.195110
http://dx.doi.org/ http://dx.doi.org/10.1063/1.2709881
http://dx.doi.org/ http://dx.doi.org/10.1063/1.2709881
http://dx.doi.org/10.1098/rspa.2008.0398
http://dx.doi.org/10.1098/rspa.2008.0398
http://dx.doi.org/http://dx.doi.org/10.1063/1.4944633
http://dx.doi.org/http://dx.doi.org/10.1063/1.4944633
http://dx.doi.org/10.1021/ct3001848
http://dx.doi.org/10.1021/ct3001848
http://dx.doi.org/ http://dx.doi.org/10.1063/1.4893377
http://dx.doi.org/ http://dx.doi.org/10.1063/1.4893377
http://dx.doi.org/http://dx.doi.org/10.1063/1.1447904
http://dx.doi.org/ 10.1080/00268976.2015.1058432
http://dx.doi.org/ 10.1021/jp510896n
http://dx.doi.org/ 10.1021/jp510896n
http://dx.doi.org/10.1080/00268979600100761
http://dx.doi.org/10.1080/00268979600100761


1117 (1996).

77J. Kolafa and J. W. Perram, Molecular Simulation 9, 351 (1992).

78T. Darden, L. Perera, L. Li, and L. Pedersen, Structure 7, R55 (1999).

79W. G. Hoover, Phys. Rev. A 31, 1695 (1985).

80A. D. Becke, Phys. Rev. A 38, 3098 (1988).

81C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

82S. Grimme, Journal of Computational Chemistry 27, 1787 (2006).

83J. Dziedzic, V. Vitale, and C.-K. Skylaris, (2016), unpublished.

84A. Odell, A. Delin, B. Johansson, M. J. Cawkwell, and A. M. N. Niklasson, The Journal

of Chemical Physics 135, 224105 (2011).

47

http://dx.doi.org/10.1080/00268979600100761
http://dx.doi.org/10.1080/00268979600100761
http://dx.doi.org/10.1080/08927029208049126
http://dx.doi.org/ http://dx.doi.org/10.1016/S0969-2126(99)80033-1
http://dx.doi.org/10.1103/PhysRevA.31.1695
http://dx.doi.org/10.1103/PhysRevA.38.3098
http://dx.doi.org/10.1103/PhysRevB.37.785
http://dx.doi.org/10.1002/jcc.20495

	Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory
	Abstract
	Introduction and motivation
	Methods
	Classical polarizable force-field molecular dynamics
	Linear scaling ab initio molecular dynamics

	Extended Lagrangian formalism
	Adaptation to classical polarizable force-field methods
	Adaptation to linear-scaling DFT

	Extended Lagrangian with dissipative Verlet integrator (dXL)
	Extended Lagrangian with thermostat-control (iXL)
	Computational details
	Results
	Polarizable force fields
	Linear-scaling DFT

	Conclusions
	Acknowledgments
	Stability of velocity Verlet with weak coupling
	References


