A Micromechanical Model for Predicting Biaxial Tensile Moduli of Plain Weave Fabric Composites
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Abstract: This paper presents a new micromechanical model to predict biaxial tensile moduli of plain weave fabric (PWF) composites by considering the interaction between the orthogonal interlacing strands. The two orthogonal yarns in micromechanical unit cell (UC) were idealized as curved beams with a path depicted by using sinusoidal shape functions. The biaxial tensile moduli of PWF composites were derived by means of the minimum total complementary potential energy principle founded on micromechanics. Biaxial tensile tests were conducted on the RTM-made EW220/5284 PWF composites at five biaxial loading ratios of 0, 1, 2, 3 and ∞ to validate the new model. Predictions from the new model were compared with experimental data. Good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed model. Using the new model, the biaxial tensile moduli of plain weave fabric (PWF) composites can be predicted based only on the properties of basic woven fabric.
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NOMENCLATURE

A        cross-section area of yarn, mm2
A1        cross-section area of warp yarn, mm2
A2        cross-section area of weft yarn, mm2
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        transformation variable
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        transformation variable
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        elastic modulus of yarn in longitudinal direction, MPa
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        warp elastic modulus of plain weave fabric composites under biaxial loadings, MPa
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        weft elastic modulus of plain weave fabric composites under biaxial loadings, MPa
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        elastic modulus of fibre, MPa
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        elastic modulus of resin, MPa
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        warp elastic modulus of plain weave fabric under biaxial loadings, MPa
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E

        weft elastic modulus of plain weave fabric under biaxial loadings, MPa
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        internal force of yarn along axial direction, N
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        thickness of yarn, mm
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        thickness of warp yarn, mm
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h

        thickness of warp yarn, mm
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        thickness of ply, mm
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        inertia moment of yarn along transverse direction, mm4
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        inertia moment of warp yarn along transverse direction, mm4
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I

        inertia moment of weft yarn along transverse direction, mm4
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        quarter undulation length of yarn, mm
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        quarter undulation length of warp yarn, mm
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        quarter undulation length of weft yarn, mm
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        internal bending moment, 
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        internal bending moment on warp yarn, 
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        internal bending moment on weft yarns, 
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        external biaxial tensile force in warp direction, N
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        external biaxial tensile force in weft direction, N
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        internal interaction force at the centre of interlacing interface between warp yarn and weft yarn along through-thickness direction, N
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U

        complementary potential energy of warp yarn in the UC
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U

        complementary potential energy of weft yarn in the UC
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V

        fibre volume fraction in yarn
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V

        fibre volume fraction in the UC
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        yarn volume fraction in the UC
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        width of yarn, mm


[image: image36.wmf]1

w

        width of warp yarn, mm
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w

        width of weft yarn, mm
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        total complementary potential energy of the UC
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        loading ratio of tensile force in warp direction to tensile force in weft direction
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        off-axial angle of yarn, rad
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       relative shift of UC in the direction of external warp force 
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       relative shift of UC in the direction of external weft force 
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FE        finite element

UC        unit cell

PWF       plain weave fabric

1 INTRODUCTION

Textile composites are commonly used in engineering structures (especially in aerospace structures) owing to the superior specific stiffness and strength as well as excellent damage resistance and processing property[1-6]. Because of this, there is a growing interest in assessing mechanical properties and failure mechanism for PWF composites using experimental, theoretical and numerical methods[7-13]. Koohbor et al.[14] conducted an experimental investigation to examine the multi-scale deformation and failure mechanisms of PWF composites under uniaxial tension using digital image correlation. The full-field displacement and strain localization were effectively captured, and it was found that the mechanical response and failure modes of PWF composites depended on the off-axial degree of loading axis to principal axis. Koohbor et al.[15] further developed a systematic experimental-based method to determine the local deformation response and the length scales of the unit cell (UC) in PWF composites under on-axis and off-axis tensile loadings. It was found that the smallest UC sizes were depended on both strain and angle of loading. Boufaida et al.[16] experimentally investigated the damage development of PWF composites with ±45 off-axial degree subjected to uniaxial tensile loading using digital image correlation and X-ray microtomography. The experiments showed that PWF composites exhibited linear viscoelastic behaviour until a given stress threshold above which damage initiated and propagated in the materials. 
Various analytical models have also been presented to evaluate mechanical properties of PWF composites. Scida et al.[17] developed an analytical model to predict 3D elastic and failure properties of PWF composites based on the classical thin laminate theory. Stiffness and strength were computed and compared with the experimental data and with the predictions from other micromechanical models. Jiang et al.[18] presented a stress-strain averaging procedure for local/global analysis of PWF composites. Unit cell and subcells were used to obtain the constitutive equations and the effective stress-strain relations. The predictions were in good agreement with FE results. Naik et al.[19] proposed an analytical model to predict compressive behaviour of PWF composites under on-axis uniaxial loading based on a curved elastic beams foundation model. Effect of fabric geometry on the compressive behaviour of PWF composites was investigated. The predictions agreed well with experimental data. Wang et al.[20,21] conducted a theoretical investigation to characterize the influences of stochastic feature parameters of yarn on elastic properties of PWF composites. Volume averaging method was adopted to determine the elastic properties of PWF composites. It was found that the real stochastic physical phenomena of yarn can influence all of the elastic constants of PWF composites. In recent years, the FE method has been commonly used in assessing mechanical properties and failure mechanism of PWF composites. Karkkainen et al.[22] implemented a micromechanical analysis based on the FE analysis of the UC to investigate stress gradient effects and failure initiation of PWF composites and found that transverse failure of the yarn was the dominant mode of initial failure. Barbero et al.[23] developed FE models to determine mechanical properties of PWF composites. The geometric models needed for FE discretization of PWF composites were obtained from actual measurements of yarn geometry. Predictions had a good correlation with experiments. Bakar et al.[24] numerically determined geometric characteristics and elastic properties of PWF composites using FE models based on UC with periodic boundary conditions. An evolutionary algorithm was employed to optimize the elastic properties of PWF composites. In order to produce FE models, straight inclined segments or continuous mathematical functions have been used to depict in more detail the idealized PWF geometry including yarn path and cross-sectional shape. Thus, the one draw back of FE models is their complexity and computational intensity. This limits the application of FE models to some specific cases, e.g. optimization design. 
Although a large amount of research has been conducted on the mechanical properties and failure mechanism of PWF composites under uniaxial loading, the estimation for biaxial tensile moduli of PWF composites have been scarcely reported and the related mechanism has not been systematically studied. In reality, the biaxial tensile moduli are the important basic material properties in the design of engineering structures to depict the stiffness of PWF composites (e.g., the airship envelope made from PWF composites) under the biaxial tensile loadings. Therefore, this paper makes an effort to develop an analytical model to evaluate the biaxial tensile property of PWF composites by using the minimum complementary energy principle. Predictions using the analytical model are compared with experimental data.
2 GEOMETRICAL MODEL FOR PWF COMPOSITES

PWF composites are formed by orthogonal interlacing yarns in the directions of 0° and 90° (shown in Figure 1). The directions of 0° and 90° correspond to the warp and weft yarns in the PWF composites. The crimp or undulation of yarns due to the orthogonal interlacing between biaxial yarns has a significant influence on mechanical properties and strengths of PWF composites. The periodicity of the repeating pattern in PWFs can be characterized by the UC (unit cell). The UC in yarn interlacing pattern for the PWFs is indicated in Figure 1. In order to establish analytical models of the UC, fundamental assumptions made in this paper are as follows:

(1) The cross-section of yarns is regarded as the combination of a flat rectangle and two semicircles with the width of w and the thickness of h (shown in Figure 2).

(2) The yarns are idealized as the curved beams with an undulated neutral axis depicted by using a smooth and continuous sinusoidal curve function (shown in Figure 3). The yarns are simplified as being transversely isotropic, similar to the matrix.
Figure 3 illustrates the definitions of three directions of x y and z axis in local coordinate system. The coordinate axes x y and z respectively denote the longitudinal, transverse and through-thickness directions of the yarns to keep three directions in local coordinate system consistent with the three normal stresses. 
From assumption (1) and Figure 2, the area and inertia moments of idealized cross-section of biaxial yarns are respectively
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From assumption (2) and Figure 3, the undulated neutral axis of biaxial yarns can be expressed by a sinusoidal function.
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where 
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 is the thickness of yarn and 
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 is the quarter undulation length of yarn.

From Figure 3 and Equation (3), for a differential segment 
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 on a warp or weft yarn, the tangent of the off-axial angle can be obtained as follows.
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The yarn volume fraction in the UC can be shown as
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where 
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 is the ply thickness of the PWF composites.
Thus, the fibre volume fraction in the yarn becomes
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where 
[image: image55.wmf]1

f

V

 is the fibre volume fraction in the UC.
3 ANALYTICAL SOLUTION FOR BIAXIAL TENSILE MODULI 

For biaxial tensile loadings (shown in Figures 1 and 3), the loading ratio of the warp tensile force to the weft tensile force is defined as

[image: image56.wmf]1

2

l

=

P

P

                                     (7)

where 
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 and 
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 are respectively the warp and weft tensile forces
The internal force and bending moment on any cross-section in the warp and weft yarns are respectively
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It is clear that there are three undetermined force and moments of 
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 and 
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 in Equations (8) to (11). Using the principle of minimum total complementary potential energy, it is possible to determine these. The complementary potential energies in warp and weft yarns in the UC are respectively
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where 
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 is the Young modulus of yarn in longitudinal direction, and can be deduced by the rule of mixtures as follows[25].
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Various available micromechanical approaches can yield elastic properties, but these methods should be justified before use, especially the rule of mixtures. The details can be seen in reference [25]. Substituting Equations (8) and (9) into Equation (12), it can be shown that
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Substituting Equations (3) and (4) into Equation (15), it can be deduced that 
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where 
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 are the transformation variables, and are defined in Appendix A.
Substituting Equations (10) and (11) into Equation (13), it is possible to have
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Substituting Equations (3) and (4) into Equation (17) results in 
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Total complementary potential energy in the UC is deduced as
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Minimizing the total complementary potential energy principle in the UC (or minimizing Equation (19)) leads to
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From Equation (20), it can be seen that
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Substituting Equation (7) into Equation (21) attains
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Solving Equation (22) by using Cramer's rule yields
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where 
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Again, according to the principle of minimum potential energy principle, the shifts 
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 of the UC in the direction of external warp and weft tensile forces are deduced as
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Substituting Equations (23) to (25) into Equations (26) and (27), it is possible to show
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Therefore, the warp and weft biaxial elastic moduli of PWFs under biaxial loadings are respectively
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According to the well-known rule of mixtures, the biaxial elastic moduli of PWF composites in warp and weft directions are obtained respectively
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Notably, if 
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), then the solutions in Equations (32) and (33), are degraded into the uniaxial tensile moduli of PWF composites. Obviously, by using Equations (32) and (33), the biaxial tensile moduli (or the stiffness of PWF composites under biaxial loading) can be evaluated for the design of the airship envelope made from PWF composites. 
4 COMPARISONS BETWEEN PREDICTIONS AND EXPERIMENTS

4.1 Biaxial tensile tests

The test specimens were made on 2D orthogonal glass fibre/epoxy resin reinforced composites (i.e. EW220/5284 PWF composites). EW220 is a glass fibre PWF and 5284 is an epoxy resin. The fabric specifications and mechanical properties of textile composites are listed in Table 1. Figure 4 details the geometry and dimensions of cross-type specimen for biaxial tensile test. In order to conveniently measure load-strain curve under biaxial tensile loading, a diamond-shaped thinner area was fabricated on the central tested region of the cross-type specimen using the RTM technique. The fibre volume fraction of all specimens is 55%. The ply thickness of EW220/5284 PWF composites is 0.167 mm.
Because the biaxial moduli at the loading ratios of 0 and 
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 corresponds to the uniaxial tensile moduli, they were measured through uniaxial tensile tests according to the ASTM standard[26]. As shown in Figure 5, a lever-type device was used for biaxial tensile test to obtain the biaxial tensile forces on the arms of specimen at a given loading ratio, by adjusting the lever lengths. Biaxial tensile tests were conducted on a QBS-100 servo-hydraulic machine in dry state at room temperature at three biaxial loading ratios of 1, 2 and 3 (shown in Figure 6), and at least three specimens were utilized for each biaxial loading ratio test. Because of the heteromorphic configuration of the biaxial tensile specimen, unlike uniaxial tensile test of the ASTM standard[26], it is almost impossible to directly obtain the experimental stress data using the formula based on simple specimen dimensions and the measured tensile force. Thus FE analysis was adopted to deal with the experimental data to obtain the stress. Strain gauges were employed to measure biaxial tensile deformation on the centrally diamond-shaped thinner area of the specimen. Tensile load versus strain curves of specimens under biaxial tensile loadings were measured. Afterwards, the FE models of the specimen under biaxial tensile loadings in the previously tests were established by ABAQUS code (shown in Figure 7). A layered solid element C3D8R was employed to model the composite layup and the total number of elements is 5984. The experimental tensile forces were used in the FE models. The FE analysis was adopted to calculate the biaxial tensile stress on centrally diamond-shaped thinner area of the specimen under biaxial tensile loadings. This calculated stress is used as the experimental stress. Thus, the simulated experimental stress versus strain curves at different loading ratios were obtained (shown in Figure 8). From Figure 8, the biaxial tensile moduli can be estimated (listed in Table 2). From Table 2, it is clear that under biaxial tensile loadings, the warp and weft moduli increase with the increasing loading ratio.
4.2 Comparisons and discussion

In order to validate the new analytical models presented in this paper, it is necessary to compare the predictions using the new models with the experiments. From the fabric specifications and mechanical properties listed in Table 1, by using Equations (32) and (33), the biaxial tensile moduli of PWF composites are predicted (shown in Table 2). From Table 2, it is evident that maximum relative deviations of predictions for warp and weft biaxial tensile moduli from experiments are respectively 6.33% and 8.22%, with an acceptable scatter. Also, the predictions of biaxial tensile moduli decrease with the increasing loading ratio. Thus, the proposed model has adequately and logically depicted the physical characteristics and the phenomenological quantitative laws in the variation of biaxial tensile moduli with changing loading ratios. Importantly, biaxial tensile moduli of PWF composites can be predicted using these models without any additional fabric level experimental investigation, i.e. only the input of basic properties of woven fabric yarns is needed to predict biaxial tensile moduli of PWF composites. As a result, it is argued that the new models presented in this paper are a valid and rational basis for biaxial tensile moduli of PWF composites. 
It is noteworthy that although the accuracy of the new model seems good, it does not mean that the model is perfect, since there are some approximations in the model. Probably, more experimental data or analytical results using other methods are needed to validate the model presented in this paper.
5 CONCLUSIONS

The focus of this paper has been to present a novel micromechanical curved beam model for predicting the biaxial tensile moduli of PWF composites by accounting for the interaction between orthogonal interlacing yarns. An analytical solution of the model was derived to calculate biaxial tensile moduli of PWF composites by means of the minimum total complementary potential energy principle founded on micromechanics. The applicability of the models for predicting biaxial tensile moduli of PWF composites from fabric specifications and mechanical properties of constituents has been proved successfully. Reasonable correlation was achieved between the predictions and actual experimental results. 
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Figure 1  Unit cell of PWFs 
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Figure 2  Local coordinate systems and idealized geometric configuration of yarns
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Figure 3  Internal forces and bending moments on warp and weft yarns in biaxial tensile state

[image: image103.jpg]130

. 0.83

Unit: mm

[ 2 2 7 . 7 7 7 7 7 . o~

(L4

&

re sttt o Il

Cross section





Figure 4  Geometry and dimensions of the biaxial tensile specimen
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Figure 5  Biaxial tensile test device
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Figure 6  Biaxial tensile test of PWF composites
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Figure 7  Stress analysis
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(a) Stress versus strain curves in warp direction at loading ratio 
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(b) Stress versus strain curves in warp direction at loading ratio 
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(c) Stress versus strain curves in warp direction at loading ratio 
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(d) Stress versus strain curves in weft direction at loading ratio 
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(e) Stress versus strain curves in weft direction at loading ratio 
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(f) Stress versus strain curves in weft direction at loading ratio 
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Figure 8  Experimental stress versus strain curves from biaxial tensile test of PWF composites
Table 1  Fabric specifications and mechanical properties of EW220/5284 PWF composites
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Table 2  Biaxial tensile moduli of EW220/5284 PWF composites

	Specimen No.
	Warp moduli (GPa)
	Weft moduli (GPa)
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	1
	19.22
	21.55
	18.96
	18.37
	18.22
	16.11
	15.41
	14.12

	2
	21.00
	19.39
	19.61
	20.23
	16.20
	15.17
	15.86
	13.62

	3
	23.53
	20.70
	20.04
	19.24
	17.41
	16.72
	16.11
	14.70

	Mean values of Experiments
	21.25
	20.55
	19.54
	19.28
	17.28
	16.00
	15.79
	14.14

	Predictions
	20.31
	19.25
	18.92
	18.30
	15.86
	14.83
	14.52
	13.94

	Relative deviation
	4.42%
	6.33%
	3.17%
	5.08%
	8.22%
	7.31%
	8.04%
	1.41%


APPENDIX A  Definitions for Transformation Variables 
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APPENDIX B  Definitions for Transformation Variables 
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