
Privacy-Preserving Access Control in Cloud Federations

Shorouq Alansari, Federica Paci, Andrea Margheri, Vladimiro Sassone
University of Southampton

{sa3n13; f.m.paci;a.margheri;vsassone}@soton.ac.uk

Abstract—A Cloud federation is a collaboration of organiza-
tions sharing data hosted on their private cloud infrastructures
in order to exploit a common business opportunity. However,
the adoption of cloud federations is hindered by member
organizations’ concerns on sharing their data with potentially
competing organizations. For cloud federations to be viable,
federated organizations’ privacy concerns should be alleviated
by providing mechanisms that allow organizations to control
which users from other federated organizations can access
which data. We propose the architecture of a novel identity
and access management system part of FaaS, a cloud federation
service developed by the H2020 SUNFISH project. Our sys-
tem allows federated organizations to enforce attribute-based
access control policies on their data in a privacy-preserving
fashion. Users are granted access to federated data when their
identity attributes match the policies, but without revealing
their attributes in clear. The architecture relies on two novel
technologies, blockchain and Intel SGX hardware platform to
guarantee integrity of the policy evaluation process.

Index Terms—Blockchain, Access control, Anonymous identi-
ties, Cloud federation.

1. Introduction

A Cloud federation is a collaboration of different or-
ganizations in which organizations can gain access to data
hosted on other federation members’ cloud platforms in or-
der to solve a specific problem or exploit a specific business
opportunity. However, for cloud federations to be viable it is
important to adopt solutions that enable secure data sharing
among the participating organizations. In particular, it is
necessary to have identity and access management systems
that allow federated organizations to authenticate users from
other joining organizations and determine the permissions
that these have on shared data.

The research community has proposed few identity and
access management systems for federated clouds [1], [2],
[3]. However, these systems have several limitations.

First, they require trust agreements among the federated
organizations to verify users identities and to map their
access control policies on shared data. These solutions are
not suitable for cloud federations, where collaborations are
dynamic and managed on-the-fly. Most of all, partner or-
ganizations should be able to verify users’ identities and
enforce access control policies on shared data without es-
tablishing trust agreements among them.

Second, the proposed solutions provide fine-grained ac-
cess control policies based on users’ identity attributes.
However, they do not protect the privacy of the attributes,
which may convey sensitive information that organizations
are not willing to share with potentially competing organi-
zations [3].

Last, the distribute enforcement architecture of access
controls policies: different components evaluate policies
and, consequently, enforce the calculated decisions. How-
ever, malicious users can corrupt the access control policies
or their evaluation engine to gain unauthorized access to the
data shared within a federation.

In this paper we propose the architecture of a novel iden-
tity and access management system for cloud federations
that resolve by design all these limitations. This system
is here presented in the context of FaaS (Federation-as-a-
Service) [4], a cloud federation service recently proposed
by the H2020 project SUNFISH [5]. Specifically, FaaS is
implemented by the SUNFISH software platform, whose
identity and access management will amount to our system.

The proposed system has many new and innovative
features. First, it uses a cryptographic protocol to allow
federated organizations to enforce attribute-based access
control policies, while preserving the privacy of users iden-
tity attributes. Indeed, any federated organization accessing
shared data will not learn any user identity attributes nor
whether a policy is satisfied. Second, it requires no estab-
lishment of trust agreements among organizations in order to
authenticate users and enforce access control policies. Third,
it ensures integrity of access control components responsible
for evaluating and enforcing access control policies.

This system permits trustworthy enforcement of access
control policies within a trustless setting, while ensuring the
integrity of access control policies and components. To this
aim, we leverage on two novel technologies: blockchain and
Intel SGX trusted execution environment.

Paper Structure. Section 2 outlines the main system fea-
tures. Section 3 presents the system architecture and the
access control enforcement protocol. Section 4 concludes
and discusses future research directions.

2. System Overview

In this section we provide an overview of the proposed
identity and access control system for cloud federation. As
this system is intended to be part of the SUNFISH software
platform, we first introduce FaaS and its platform.



Figure 1. FaaS software platform

FaaS amounts to a service for clouds that enables the
secure creation and management of cloud federations. To
this aim, it is supported by the SUNFISH software plat-
form, whose graphical description is reported in Figure 1.
The platform permits federating cloud data and services,
and ensuring their secure provisioning and access via reli-
able identity management and access control functionality.
Specifically, the platform components reported in the fig-
ure can be logically identified as Federation Monitoring,
Federation Management and Identity and Access Control
Manager. Here, we only focus on the latter, i.e. the green
one, but we briefly overview anyway the rest.

The Federation Monitoring consists of a set of dis-
tributed probes that enable the runtime monitoring of all in-
teractions among federated clouds; interactions are also fur-
ther audited offline. The Federation Management supports
the creation and management of cloud federations. Indeed,
the IWM and FAM components are in charge of computing
optimized workload strategies based on the requests to be
executed on the member cloud systems. Notably, via the RI
component, all the governance data of a federation, e.g SLA
and access control policies, are stored on a registry.

The Identity and Access Control Manager corresponds
to our identity and access control management system. The
system provides the following features:

Anonymous Identities. The system allows users of federated
organizations to gain access to shared data while protecting
their identity attributes, even to the Access Control Man-
ager. The (pseudo-)anonymity of user identities is achieved
by relying on identity tokens, rather than identity attribute
submitted in clear. Identity tokens are issued to users by
the Identity Manager and consist of structured information.

Indeed, each of them contains the pseudonym of the user, the
identity attribute name, and the semantically secure Pedersen
commitment [6] of the user’s identity attribute value, signed
by the Identity Manager and by the user itself.
Fine-grained Access Control. The system supports the spec-
ification of access control policies in terms of conditions on
users’ identity attributes. The policy enforcement is based
on a cryptographic approach [7] which ensures privacy-
preserving document broadcast and efficient key manage-
ment. Based on this approach, the Access Control Manager
encrypts shared data using symmetric encryption and deliv-
ers only a secret to reconstruct the key to user (according
to the authorizations) in an oblivious fashion using OCBE
protocols [8]. Users will use the secret to reconstruct the
key from the encrypted data and, hence, access the data.
Integrity of Policy Evaluation. The system ensures the in-
tegrity of the Identity and Access Control Manager com-
ponents by proposing an innovative interaction between
blockchain and Intel SGX technologies.

Specifically, blockchain is a distributed ledger of trans-
actions that cannot be modified. Transactions can represent
either data or computation on data; the latter corresponds
to execution of smart contracts, like in Ethereum [9]. The
integrity of data and smart contract code stored on the
blockchain is guaranteed by so-called miners via adequate
consensus mechanisms. However, blockchain data are pub-
licly visible to anyone, even attackers. Instead, Intel SGX is
a trusted execution environment that protects the execution
of secure-sensitive code from malicious software. This is
achieved by running the code within the SGX enclave and
by attesting to a remote application that is interacting with
a legitimate code.

Therefore, to ensure the integrity of policy evaluation,
our system exploits, on the one hand, blockchain to store
identity tokens and access control policies, and, on the other
hand, Intel SGX to deploy the Identity and Access Control
Manager. The usage of the Intel SGX to place and run the
code of the Manager is fundamental because data and code
are public once stored on the blockchain; an attacker could
learn from the Manager code how to gain unauthorized
access to federated data. Additionally, running the Pedersen
commitment scheme and OCBE protocols would be too
computationally expensive for blockchain smart contracts.

3. System Architecture

The system architecture is designed with the goal of ef-
ficiently storing data and executing code and to preserve the
integrity of both. The identity attributes and the access con-
trol policies are stored via smart contracts on a blockchain,
while encrypted federated data are stored off-chain. The
private and computationally intensive cryptographic policy
enforcement protocol is also executed off-chain. To preserve
its integrity it is implemented by means of Intel SGX-
based applications [10]. These applications consists of two
parts: an untrusted part that starts the SGX enclave and
interacts with remote applications and the blockchain, and



Figure 2. System architecture

a trusted part running within the enclave that implements
the cryptographic operations used in the protocol [11]. In
what follows we describe the main entities of the system
architecture and the interactions among them.

3.1. Entities

Data Owner is a federated organization who is willing to
share data.
Data Requester is a user in the cloud federation who is
willing to access the shared data.
Data Owner Program (O) is a simple web-based appli-
cation which provides an interface for the Data Owner to
share data and define the access control policies that govern
access to such data.
Identity Provider Application (IdP) is an SGX-based
application which consists of three components (as shown
in Figure 2):

• EnclIdP is a program running within the SGX
enclave which receives identity attributes from Data
Requester and then generates identity tokens.

• RelayIdP is a user-space application which pro-
vides network connectivity from the EnclIdP to
the CIdP and the Data Requester Application. The
interface to the Data Requester Application allows
the application to verify the attestation for EnclIdP
and forwards to the EnclIdP the Data Requester’s
identity attributes and its request for issuance of
identity tokens. The blockchain interface consists of
an Ethereum client Geth and a wallet WIdP , that
allow to send a transaction to the contract CIdP to
store the identity tokens generated by EnclIdP .

• CIdP is the smart contract storing the identity tokens
generated by EnclIdP .

Access Control Manager Application (ACM). Similarly to
the Identity Provider Application, ACM is a SGX-enabled
application which includes the following components:

• EnclACM is the program running in the SGX en-
clave responsible for encrypting the federate data
using symmetric key encryption. It also generates

for each attribute condition in the access control pol-
icy a special secret called Conditional Subscription
Secret (CSS), which is used to reconstruct the key
to decrypt the federated data. EnclACM obliviously
delivers the CSSs to Data Requester running an
OCBE protocol with the Data Requester Applica-
tion’s EnclR via RelayACM . It also keeps a record
of all the delivered CSSs.

• CACM is a smart contract that stores the access
control policies defined by the Data Owner and the
reference to the encrypted data stored off-chain.

• RelayACM provides an interface from EnclACM

to CACM . The interface consists of an Ethereum
client Geth and a wallet WACM to execute CACM

and store the access control policies and references
to encrypted data on-chain. It also offers network
connectivity to EnclACM to forward the encrypted
data to the off-chain storage and to securely deliver
CSSs to Data Requester Application.

Data Requester Application (R) is an SGX-based appli-
cation. It consists of:

• EnclR program running in the enclave that supports
different steps of the enforcement protocol. First,
it securely signs the identity tokens issued by the
Identity Provider (IdP) Application. It engages in a
OCBE protocol with ACM to receive the CCSs, and
reconstructs the key based on the received CSSs.
Last, it retrieves the federate data from the off-chain
storage and decrypts them with the reconstructed
key.

• RelayR provides an interface from the Data Re-
quester to EnclACM via RelayACM and an in-
terface from the EnclR to the off-chain storage.
The former interface allows a Data Requester to
request access to federated data to EnclACM via
RelayACM and provide the network connectivity to
run the OCBE protocols with EnclACM . The latter
interface allows the Data Requester to retrieve the
encrypted data from the off-chain storage and pass
them to EnclR for decryption.

Off-chain Storage is a decentralized distributed hash-table
(or DHT) that stores the data encrypted by EnclACM . Data
is accessible through a reference stored on the blockchain.

3.2. The Proposed Protocol

Here we provide an overview on the main phases of the
privacy-preserving access control protocol. In what follows,
to improve readability we denote with Identity Provider, Ac-
cess Control Manager, and Data Requester the applications
introduced in the previous section.
Setup. A Data Owner defines a set of access control policies
ACPs that specify which data Di, users in the federation
are authorized to access based on their identity attributes.
The Data Owner sends these policies along with data Di to
the Access Control Manager. The Access Control Manager



encrypts Di with a symmetric key K and stores it in the
off-chain storage. Then, it stores the access control policy
applying to Di and the reference to the encrypted data
EK [Di] on the blockchain by executing the smart contract
CACM .
Identity Token Issuance. A Data Requester provides its
identity attributes to Identity Provider, which issues an
identity token IT for each identity attribute. IT consists of a
pseudonym for uniquely identifying the user in the system,
the name of the identity attribute, and the Pedersen com-
mitment for the identity attribute value. Each identity token
is digitally signed by the Identity Provider and the Data
Requester and then stored on chain via the smart contract
CIdP . The signature of the Identity Provider allows to certify
the validity of the identity token. While the signature of
the Data Requester is necessary because once stored on
the blockchain, the identity tokens are publicly available.
Without the signature, another user could present the identity
tokens to the Access Control Manager and gain unauthorized
access to federated data.
Identity Token Registration. Once obtained the identity
tokens from the Identity Provider, the Data Requester can
request access to federated data to the Access Control
Manager. Then, in order to retrieve the key to decrypt
the data, the Data Requester has to present to the Access
Control Manager the identity tokens whose name matches
the attribute conditions in the access control policy govern-
ing access to the data. Then, the Access Control Manager
sends to the Data Requester a conditional subscription secret
(CSS) for each identity attribute name in the federated
organization’s access control policy condition matching the
user’s identity token name. CSSs are used by the user to
derive the keys to decrypt the shared data for which they
satisfy the access control policy. The Access Control Man-
ager delivers the CSSs to the user running OCBE protocols
[8] with the user. OCBE protocols ensure that a user can
obtain a CSS if and only if the user’s committed identity
attribute value contained in the identity token satisfies the
matching condition in the federated organization’s access
control policy, and without the Access Control Manager
learning the identity attribute value.
Data Access. Data Requester uses Ref(EK [Di]) to retrieve
the encrypted data from off-chain storage. Then, it uses the
CSSs to reconstruct the key K as in [7]. Once reconstructed
the key K, the Data Requester decrypts the data.

4. Conclusion and Future Work

In this paper, we presented a novel identity and access
control system for federated clouds, which is part of FaaS,
a software service to create cloud federations. The system
enforces attributes-based access control policies by means of
a cryptographic protocol that preserves the privacy of users’
identity attributes. The system also guarantees the integrity
of the identity tokens issued to the users in the cloud
federation and the access control policies protecting access
to the federated data. The integrity is ensured by storing
them on the blockchain via smart contracts. Similarly, the

integrity of the cryptographic policy enforcement protocol is
guaranteed by running the protocol within the Intel SGX’s
enclave.

We are planning to extend the cryptographic access
control enforcement protocol with an approach that con-
siders the risk associated with a particular user accessing
a particular piece of information. The approach will rely
upon the cryptocurrency system of the blockchain to price
information accessed by users; the price will quantify the
risk for a federated organization to disclose the data with a
particular user. The price will be used to reward federated
organizations for sharing their personal data and to penalize
those users from other member organizations that misuse it.

We will also develop a proof-of-concept prototype using
Ethereum blockchain and Intel SGX trusted execution envi-
ronment and conduct an extensive evaluation of the protocol
with respect to performance and cost of execution.

Acknowledgment

This work has been supported by the EU H2020 Program
under the SUNFISH project, grant agreement N. 644666.

References

[1] A. Almutairi, M. Sarfraz, S. Basalamah, W. Aref, and A. Ghafoor,
“A distributed access control architecture for cloud computing,” IEEE
Softw., vol. 29, no. 2, pp. 36–44, Mar. 2012.

[2] B. Suzic, B. Prünster, D. Ziegler, A. Marsalek, and A. Reiter, “Balanc-
ing utility and security: Securing cloud federations of public entities,”
in OTM Confederated International Conferences" On the Move to
Meaningful Internet Systems". Springer, 2016, pp. 943–961.

[3] M. Singhal, S. Chandrasekhar, T. Ge, R. Sandhu, R. Krishnan, G. J.
Ahn, and E. Bertino, “Collaboration in multicloud computing envi-
ronments: Framework and security issues,” Computer, vol. 46, no. 2,
pp. 76–84, 2013.

[4] F. P. Schiavo, V. Sassone, L. Nicoletti, and A. Margheri (Eds.), “Faas:
Federation-as-a-service,” CoRR, vol. abs/1612.03937, 2016.

[5] “SecUre iNFormatIon SHaring in federated heterogeneous private
clouds (SUNFISH),” Accessed on 16 January, 2017, http://www.
sunfishproject.eu/.

[6] T. P. Pedersen, “Non-interactive and information-theoretic secure veri-
fiable secret sharing,” in Annual International Cryptology Conference.
Springer, 1991, pp. 129–140.

[7] N. Shang, M. Nabeel, F. Paci, and E. Bertino, “A privacy-preserving
approach to policy-based content dissemination,” in Data Engineering
(ICDE), 2010 IEEE 26th International Conference on. IEEE, 2010,
pp. 944–955.

[8] J. Li and N. Li, “OACerts: Oblivious Attribute Certificates,” Depend-
able and Secure Computing, IEEE Transactions on, vol. 3, no. 4, pp.
340–352, 2006.

[9] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger, 2014,” Ethereum Project Yellow Paper, 2014.

[10] IntelCorp., “Intel (r) software guard extensions enclave writer’s
guide,” Tech. Rep., 2015.

[11] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier:
An authenticated data feed for smart contracts,” Cryptology ePrint
Archive, Report 2016/168, 2016, http://eprint.iacr.org/2016/168.


