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ABSTRACT
A robust approach for adjoint-based sensitivity analysis of

chaotic dynamics based on unstable periodic orbits is proposed. We
show that a careful reformulation of established variational tech-
niques to such trajectories enables the sensitivity of time averages
with respect to design parameters to be calculated exactly, regard-
less of the stability characteristics and length of the orbit. This
holds the promise of bringing recent advances in the study of the
dynamics and role of exact solutions of the Navier-Stokes equations
to bear in design and optimisation problems for turbulent flows.

In this paper, we derive the adjoint technique and discuss,
as a proof of concept, a feedback control design problem for
the Kuramoto-Sivashinsky equation, i.e. a prototypical one-
dimensional partial differential equation with rich dynamical be-
haviour. Key challenges and opportunities associated to the appli-
cation of this method to fluid turbulence, left as future work, are
also discussed.

INTRODUCTION
Significant advances in understanding transitional and fully-

developed turbulent shear flows at moderate Reynolds numbers
have been obtained in the last fifteen years by tackling the prob-
lem from a dynamical systems perspective (Kawahara et al., 2011).
Research in this area has been initiated by the numerical discovery
of three-dimensional, nonlinear, steady (Nagata, 1990) and time-
periodic (Kawahara & Kida, 2001) unstable solutions of the equa-
tions in plane Couette flow. The interest is primarily driven by the
fact that these solutions often reproduce the dynamics and the recur-
rent coherent structure observed in turbulent flows, which justifies
names under which they are collectively referred to, i.e., exact co-
herent structures (Waleffe, 2001), or recurrent flows (Chandler &
Kerswell, 2013). The established picture is that these flows form
the constitutive elements of a robust skeleton, a web that organ-
ises and supports the temporal evolution of turbulence (Willis et al.,
2013). These flows have thus become in recent years a prominent
basis to analyse, describe and understand turbulence. The promise,
rooted in the machinery offered by Periodic Orbit Theory (Auer-
bach et al., 1987), is that a handful of these flows is “enough” to
obtain a complete picture of a turbulent flow (Cvitanović, 2013).

However, a question that remains open in the community is
whether and how these flows will prove fruitful for purposes such as
design and control. In this paper, we offer a possible answer to such
a question and propose to use a particular class of such flows, i.e.
unstable periodic orbits (UPOs), as a basis for parametric sensi-
tivity analysis of turbulence. Sensitivity analysis provides the gra-
dient of output quantities of interest, e.g. the mean turbulent skin-
friction drag, with respect to the design parameters of the problem,
e.g. the geometry of the surface bounded by the flow. It provides
fundamental insight into complex dynamical behaviour and enables
gradient-based optimisation, control and design.

The key enabler is that a careful application of adjoint tech-

niques to a time periodic trajectory enables the gradient of the pe-
riod average to be calculated exactly, regardless of the stability
characteristics and length of the orbit. In stark contrast, application
of adjoint techniques to unstable open trajectories fails to provide
the correct gradient (Lea et al., 2000). The fundamental reason is
that in the latter case the adjoint problem is an initial value problem
marched backwards in time from an homogeneous terminal con-
dition and the adjoint solution grows unbounded exponentially in
time, due to the positive Lyapunov exponents of the system, result-
ing in wrong gradients. By contrast, for a periodic orbit the adjoint
problem is a two-point boundary value problem and admits time pe-
riodic solutions that remains bounded regardless of the instability.

It is worth noting that there is a clear distinction between our
aims and that of previous chaos control studies, where the idea is
to stabilise by feedback a particular unstable orbit with desirable
period-averaged properties (e.g. Shinbrot et al. (1993)). Here, we
aim to exploit UPOs to understand how the “turbulent attractor” and
its statistics change at first order when the parameters of the prob-
lems are varied. In theory, strange attractors with dissipative dy-
namics posses an infinity of UPOs and appropriate weighted sums
can be introduced to express ergodic statistics of the system (Auer-
bach et al., 1987). In this paper, we leave such consideration of
more fundamental nature apart and focus exclusively on the devel-
opment and analysis of the adjoint sensitivity technique.

Problem settings are first presented. The adjoint problem for
an UPO is then derived and appropriate numerical techniques for its
solution are discussed. The method is then demonstrated on a model
problem relevant to applications, i.e. the design of a feedback con-
troller for the Kuramoto-Sivashinsky equation (KSEq). The KSEq
is a prototypical one dimensional partial differential equation ex-
hibiting chaotic behaviour and arising in a variety of physically rel-
evant contexts, e.g., reaction-diffusion systems (Kuramoto, 1978)
and the dynamics of liquid films falling along a wall (Sivashinsky
& Michelson, 1980). It is considered here primarily because the
modest size of the discretisation makes it a convenient playground
to test ideas and develop algorithms before delving into more chal-
lenging three dimensional turbulence problems, left as future work.
Specifically, UPOs of the KSEq are used to extract the sensitivity of
an observable of the system with respect to the gains of a controller
driving in-domain actuation. Statistics over the UPOs found are
analysed, and key features arising from the problem symmetries are
elucidated. Finally, the sensitivity information is used to construct
a controller that mitigates the dynamics. The concluding section
discusses key challenges and implications for turbulent flows.

PRELIMINARIES
For convenience, the methodology is outlined here in finite di-

mensional settings, i.e. the system is assumed to be described by
a set of ordinary differential equations (ODEs). Formally the same
methodology applies to partial differential equations (PDEs), e.g.
the Navier-Stokes and continuity equations for an incompressible
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flow. Let thus the system be defined as

xdt(t) = f(x(t);p) (1)

where x(t) is the state vector in the state space RNx , t is time
and subscript (·)d· denote total differentiation. The subscript (·)

∂ ·
will denote in what follows partial differentiation. The vector field
f : RNx ×RNp → RNx is a smooth vector function of x and depends
additionally on a vector p ∈ RNp , the design/control parameters, or
variables, of the problem. These variables parametrise the system,
its dynamics and its “performance” measured by some observable
K(t) = K(x(t)) : RNx →R. For a turbulent flow problem, the design
variables might represent the geometry, boundary conditions, feed-
back control parameters, surface roughness features, properties of a
compliant material, etc. and the observable could be, for instance,
the spatially averaged instantaneous skin friction drag.

For turbulent systems, it is typical to consider the time average
of the instantaneous cost

K =
1
T

∫ T

0
K(x(t))dt (2)

over some chaotic trajectory x(t), with a sufficiently large horizons
T to reach adequate convergence. The sensitivity Kdp, i.e. the gra-
dient of the time average with respect to the parameters p, is the
quantity of interest that enables optimisation and can provide phys-
ical insight on the system dynamics. As discussed in the introduc-
tion, for chaotic systems it is not possible to obtain such a gradient
using standard adjoint techniques.

The main idea of this paper is to replace the average over a
chaotic trajectory with the average over a periodic one. A periodic
orbit xo(t) of period T is a trajectory of (1) such that xo(t +T ) =
xo(t), ∀t, for the minimum T . The superscript (·)o denotes a quan-
tity on a periodic trajectory. For convenience, the Linstedt-Poincaré
transformation s = 2πt/T = ωt, with ω being the frequency of the
orbit, is introduced to transform time t ∈ [0,T ] into the loop param-
eter s ∈ [0,2π], where the origin s = 0 is arbitrary. This transfor-
mation makes the initially unknown period become explicit in the
evolution equation on the orbit, i.e,

ωxo
ds(s) = f(xo(s);p), (3)

and simplifies the differentiation of integrals pertaining to period
averages, denoted by bracket as

〈K〉= 1
2π

∫ 2π

0
K(xo(s))ds, (4)

whose upper bound will not depend explicitly on the period T . The
key enabler is that an adjoint sensitivity method that is well-behaved
can be formulated over such trajectories, to calculate exactly the
gradient of the period average 〈K〉dp, regardless of the stability and
length of the orbit.

ADJOINT SENSITIVITY FOR UPOs
Previous works on adjoint sensitivity techniques for stable

periodic orbits include Giannetti et al. (2010) for sensitivity and
control of vortex shedding past a circular cylinder and Hwang
(2014) for sensitivity and control of nonlinear global modes of the
Ginzburg-Landau equation. Here, we follow similar formalisms
and then discuss appropriate numerical methods for unstable orbits.

Assuming a periodic orbit is available, the Lagrangian

L (p) = 〈Ko +λ
′ · (ωxo

ds− fo)〉 (5)

is constructed using the governing equation on the orbit (3) and the
adjoint variables λ (s) ∈RNx . In (5), the prime denotes vector trans-
position, (·) is the standard inner product between vectors, and the
notation Ko is a shorthand for K(xo(s)) (and similarly for other in-
stances). Integrating by parts with respect to time the term λ ′ · xo

ds
leads to

L (p) =
〈
Ko−ωλ

′
ds ·xo−λ

′ · fo〉+λ
′ ·xo∣∣2π

0 , (6)

where the boundary term is key and will be used in what follows
to derive appropriate temporal boundary conditions for the adjoint
equation. The Lagrangian is then differentiated with respect to the
parameters, to obtain the gradient 〈K〉dp = Ldp, where we follow
the notation that gradients are row vectors. Gathering terms multi-
plying the state sensitivity xo

∂p(s) ∈ RNx×Np yields

Ldp =
〈 =0︷ ︸︸ ︷
(Ko

∂x−ωλ
′
ds−λ

′ · fo
∂x) ·xo

∂p−λ
′ · fo

∂p− (λ ′ ·xo
ds)ωdp

〉
+

+λ
′ ·xo

∂p
∣∣2π

0︸ ︷︷ ︸
=0

(7)

where the Jacobian matrices fo
∂x and fo

∂p have size RNx×Nx and

RNx×Np , respectively. The state sensitivity obeys a linear differen-
tial equation obtained by differentiating the governing equation (3)
with respect to the parameters (Wilkins et al., 2009). It expresses,
at first order, the effects of parameters perturbations on the “shape
and location” of the UPO in phase space. In the formulation of the
sensitivity equations it is implicitly assumed that the perturbed orbit
remains periodic and that the orbit does not bifurcate. It can be an
expensive quantity to compute (and thus preferred to adjoint tech-
niques), as the cost grows linearly with the number of parameters.
The gradient of the frequency with respect to the parameters ωdp
appearing in (7) is not not known a priori. In principle, it can be
obtained as part of the solution of the sensitivity equations, but can
be also obtained more economically as discussed later.

The adjoint variables are then selected such that the two terms
indicated by braces in (7) vanish identically, circumventing the ex-
pensive calculation of xo

∂p(s). This results in the adjoint problem


ωλ ds(s) =−fo′

∂x(s) ·λ (s)+Ko′
∂x(s)

λ (0) = λ (2π)

0 = λ
′(0) · fo(0)

(8a)

(8b)

(8c)

where the constraint (8c) breaks the translational invariance of the
orbit1. The key observation is that periodic boundary conditions
(8b) are enforced in the adjoint problem. These arise from requiring

0 = λ
′ ·x∂p

∣∣2π

0 =λ
′(2π) ·x∂p(2π)−λ

′(0) ·x∂p(0) =

=[λ (2π)−λ (0)]′ · c (9)

1Without this condition, problem (8) has a one-parameter family of so-
lutions: if λ (s) is a solution, λ (s+∆) is a solution too, for any ∆ ∈ R. The
phase locking constraint selects one of such solutions and eliminates the
degeneracy arising at discretisation.
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in (7) and noting that the state sensitivity is 2π-periodic for an UPO,
x∂p(0) = x∂p(2π) = c for some unknown c, because it is assumed
that under a perturbation of the parameters the orbit moves globally
in phase space but remains periodic. In stark contrast, in classical
approaches where the adjoint method is used to optimize the con-
trols over a future horizon, e.g. Bewley et al. (2001), the initial con-
dition is assumed not to change with the parameters, hence x∂p(0)
and an homogeneous terminal condition λ (t f ) = 0 is assumed at
some final time t f to make an analogous expression of (9) vanish.

The adoption of periodic boundary conditions has two con-
sequences. Firstly the adjoint solution is time periodic, hence it
will remain bounded at all times, regardless of the stability and
length of the orbit. The exponential growth observed on chaotic
systems using the adjoint approach on an open trajectory (Lea et al.,
2000) is prevented, enabling the correct sensitivity to be calcu-
lated. Secondly, to enforce such boundary conditions an ad-hoc
approach for the numerical solution is required. Methods that have
been traditionally used to solve two point boundary value problems
have to be used. For low dimensional systems, Fourier-Galerkin or
finite-difference approaches are computationally feasible and lead
to structured matrix problems whose solution provides directly the
entire adjoint trajectory. The latter is the approach we have used for
the Kuramoto-Sivashinky problem. For PDEs, with a large number
of degrees of freedom, shooting techniques can be used, leveraging
matrix-free techniques to solve the large linear systems that arise by
imposing periodicity.

To obtain the still unknown gradient ωdp, Fredholm’s alter-
native is used (Hale (1969), pg. 146). Fredholm’s alternative ex-
presses a compatibility constraint for the solution of the sensitivity
equations. For these equations to have time periodic solutions, the
condition

〈
y′(s) ·

[
fo
∂p(s)−ωdpxo

∂ s(s)
]〉

= 0 must hold for all 2π-

periodic solutions y(s) ∈ RNx of the homogeneous adjoint equation
ωyds(s) = −fo

∂x(s) · y(s). One solution of this equation can be ob-
tained by using a numerical method analogous to that used for (8),
with the third constraint replaced by y′(0) · fo′(0) = 1. The gradient
of the frequency is then ωdp = 〈y′(s) · fo

∂p(s)〉/〈y′(s) ·xo
∂ s(s)〉.

When the adjoint solution and the gradient of the frequency
have been calculated, the gradient of the period average can be then
computed as 〈K〉dp = Ldp =

〈
−λ

′ · fo
∂p− (λ ′ ·xo

ds)ωdp
〉
.

DEMONSTRATION ON THE KS EQUATION
The adjoint method is now demonstrated in a sensitivity/design

problem for the Kuramoto-Sivashinsky equation (KSEq). The par-
ticular form of the KSEq considered here is

v∂ t(x, t) = (v2)∂x(x, t)− v∂ 2x(x, t)−κv∂ 4x(x, t)+h(x, t) (10)

where v(x, t) is the scalar field variable, x ∈ [0,2π] denotes space
and t is time. The right hand side is composed of a nonlinear con-
vective term, a second order reaction term and a fourth order diffu-
sion term. The term h is a distributed actuation that is used to control
the system. The energy density K(v(x, t)) = (4π)−1 ∫ 2π

0 v(x, t)2 dx
is selected as the observable of the system we wish to target for
control. The equation is parametrised by the diffusivity κ . Here, we
investigate a “weakly turbulent” regime at κ = (2π/39)2.

We consider 2π-periodic odd solutions, satisfying
v(−x) =−v(x), v(x+2π) = v(x), ∀x, similar to, for instance,
Christiansen et al. (1997). Considering odd solutions reduces the
continuous translational symmetry τ∆ : v(x, t)→ v(x+∆, t), ∆ ∈ R
to a discrete shift symmetry S : v(x, t)→ v(x+nπ, t), n ∈ Z. From
a practical point of view, this reduction eliminates relative periodic
orbits - a slightly different adjoint formulation that includes the rel-
ative speed would be necessary and is left to future investigations.

A short spatio-temporal sequence of the solution, starting from
small random perturbations of the unstable equilibrium v(x, ·) = 0,
is shown in figure 1.

0 4 8 12
t

0

π/2

π

x

−9 −4 0 4 9

v(x, t)

Figure 1. Chaotic realisation of the KSEq at κ = (2π/39)2.

A feedback controller is introduced to drive actuation as

h(x, t) = G (v(x, t)), (11)

where we assume that G is linear in v(x, t). The linearity of the feed-
back does not imply that we seek to find a particular G that locally
stabilises a particular unstable equilibrium or an UPO with desir-
able period averaged characteristics (Shinbrot et al., 1993). Rather,
the aim is to calculate the sensitivity of period averages of the en-
ergy density K with respect to the feedback G , i.e. the gradient
〈K〉dG . Loosely speaking, the idea is that analysis of the gradient,
in particular over a large set of UPOs, can reveal key control mecha-
nisms that would be otherwise impossible to obtain. The geometric
interpretation of this gradient is that, for a given UPO, varying the
controller G in the direction −ε〈K〉dG , for some small finite ε has
the effect of “moving and reshaping” the UPO in phase space in a
way that is optimal for the reduction of 〈K〉, at least for small ε and
excluding structural bifurcations. If most orbits display the same
sensitivity, i.e., the same control mechanisms are extracted, varying
the controller in the direction of the average gradient results in an
overall favourable “displacement” of the attractor. The controlled
dynamics will still be chaotic and turbulent but would be mitigated
by the actuation, resulting in a reduction of the averaged cost.

A Fourier-Galerkin technique is used for spatial discreti-
sation, i.e. the solution is represented by the expansion
v(x, t) = ∑

N
k=−N iwk(t)eikx, where N = 32, i =

√
−1, k is the inte-

ger wave number and the conjugate symmetry w−k = −wk applies
as v(x, t) is real. Note that imposing odd solutions to (10) results
in the Fourier expansion coefficients being purely imaginary, hence
wk ∈ R and w0 = 0. Application of the Galerkin procedure results
in the set of ODEs

(wk)dt = (k2−κk4)wk− k
N

∑
m=−N

wmwk−m +hk, k = 1, . . . ,N,

(12)
where the coefficients hk arise from a discretisation of the actuation
similar to that of the field variable. Spatial discretisation makes the
linear functional form of G explicit, i.e.

hk =
N

∑
m=1

Gkmwm, k = 1, . . . ,N, (13)

session.paper



where the entries of the matrix G ∈ RNx×Nx , the control gains, are
now the variables of the problem parametrising (12). Sensitivity
results will be thus reported in matrix form with the gradient 〈K〉dG.

Finally, the finite-dimensional equivalent of the discrete shift-
by-π symmetry for the PDE is the map

S : w2m→ w2m,w2m+1→−w2m+1, m ∈ Z (14)

that flips the sign of Fourier coefficients with odd wave number.

Results
A database of No ≈ 20000 unique periodic orbits has been gen-

erated using the search algorithm described in Lan & Cvitanović
(2004). An integer topological length n is associated to each orbit
by counting the number of ‘up‘ intersections with the Poincaré sec-
tion w1 = 0,w1ds(s)> 0. Figure 2 shows the search results. On the
left axis, the number of UPOs found as function of n is shown. An
exponential fit for orbits with 4≤ n≤ 8 provides an estimate of the
topological entropy (Auerbach et al., 1987) equal to 1.23. The fact
that the data follows closely the exponential fit, at least up to n = 8,
suggests that the vast majority of UPOs of topological length in this
range has been found. This provides confidence in the statistics on
the available UPOs. On the right axis of the plot, the expectation
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Figure 2. Left axis, open circles (◦): number of orbits found as a
function of the length n, and exponential fit. Right axis, closed dia-
monds ( ): expectation of the period average of the energy density,
as a function of n, normalised by the long-time average K.

E[〈K〉] = 1/No ∑
No
i=1〈K〉i of the period average of the energy density

is reported as a function of n, normalised by the long-time average
K obtained from simulation. The vertical bars show the span of the
standard deviation among period averages, for each n. Even short
UPOs give remarkably accurate predictions of the average energy
density. Longer orbits yield more accurate predictions and the scat-
ter amongst orbits decreases with n. The average spatial structure of
long chaotic realisations is also well explained by UPOs, as shown
in figure 3-(a), where the time averaged solution v(x, t) for a long
chaotic realisation (T = 1000) is compared to the period averaged
solutions for short (n = 1, dashed blue lines) and a random subset
of longer (n = 9, solid pink lines) orbits. The instantaneous spatio-
temporal features of chaotic solutions displayed in figure 1, e.g. the
two “boundary layers” at the domain boundaries and the more in-
tense chaotic activity in the domain centre, are also well explained
by UPOs, e.g. in 3-(b).

Role of symmetries
The adjoint problem is solved for all UPOs to obtain the gradi-

ents 〈K〉dG. We show a few examples and discuss the role that the
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Figure 3. Panel (a): time and period averages of v(x, t) over a long
chaotic realisation and selected UPOs of varying length. Panel (b):
spatio-temporal dynamics of the shortest UPO, the minimal “build-
ing block” of the dynamics, with period T ≈ 0.64.

symmetries possessed by the equations have on the sensitivity.

Figure 4 shows results for the two shortest UPOs (n = 1). The
bottom panels show projections on the (w3, w4) subspace, whereas
the top panels display the entries of gradient 〈K〉dG. The entries of
the gradient matrix decay exponentially with m,k, hence only the
relevant part is shown. The left panels show the result for an UPO
(the same reported in figure 3-(b)) invariant under the symmetry
(14). The right panels shows results for an UPO (solid blue line)
that does not possess this invariance. The dashed red orbit in the
same panel is the symmetric counterpart, obtained by application of
(14). Note that only one of the two is counted in the database of
UPOs.

For the symmetric orbit the gradient with respect to gains
where k + m is odd, indicated by black dots, is identically zero.
The non-symmetric orbit does not have this property and all entries

Figure 4. Panels (a)-(b): sensitivity of the period average 〈K〉dG
for the two shortest UPOs (n = 1). Panels (c)-(d): projections on
the (w3,w4) subspace.
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are generally non zero. However, the sum of this gradient with that
obtained from its symmetric counterpart displays the same pattern.

The origin of this pattern is explained in figure (5), using the
symmetric orbit of figure 4-(c). In panel (a), we show the original
orbit (thick line), and the two orbits obtained from continuation by
perturbing the parameter G44 (G44 =+2/−2, solid red/dashed blue
lines, respectively), for which the sensitivity is non-zero. When
this parameter is varied, the UPO moves globally in state space
towards/away from the origin for positive/negative variations, the
period average changes (panel (c)), but the symmetry (14) is pre-
served (this can be shown from the equations). On the other hand,
any small perturbation in G43, panel (b), breaks such symmetry.
Depending on the sign of the perturbation the symmetry can be
broken in one direction or the other. Now, because the energy
density is symmetry-invariant (after discretisation it is defined as
K(t) = ∑

N
i=1 w2

k(t)), the period average of the perturbed orbit will
not depend on the sign of the perturbation. This implies that the
sensitivity must vanish at the origin and second order information
becomes important (panel (d)). Our result is similar in nature to
recent sensitivity analysis studies of steady laminar flows. For in-
stance, Hwang et al. (2013) show that at first order the sensitivity
with respect to symmetry-breaking perturbations is identically zero.

Figure 5. Panels (a-b): projections of the original (thick black
line) and perturbed UPOs, for G44 = ±2 and G43 = ±2, respec-
tively. Negative perturbations correspond to the dashed orbits. Pan-
els (c-d): period average of cost as a function of the perturbed pa-
rameter. Circles denote the value of the parameter at which projec-
tions are shown in the top panels.

This result has significant implications for sensitivity analysis
and optimisation of turbulent flows using, but not limited to, the
methods discussed here. The primary reason is that in many flow
configurations of practical interest, e.g. plane shear flows with ho-
mogeneous spatial directions, exact solutions and more importantly
the mean flow itself typically possess many of the possible symme-
tries. Hence, a first order sensitivity analysis might not be sufficient
and a second order analysis might be necessary for optimisation
over finite amplitude perturbations.

Statistics of gradients and control
The availability of a large number of UPOs enables statistics of

the sensitivity to be calculated. Figure 6-(a) shows the expectation
of the sensitivity. The same checker board pattern observed for in-

dividual orbits is observed. In panels (b) and (c), histograms of two

Figure 6. Panel (a): arithmetic average of gradients; Panel (d):
projections of the 20000 gradients onto the (G44,G66) subspace
(black dots). In red, iso-contours of the joint probability density
function of the two components. The contours are for joint density
1, the outer one, 10, and 100, the inner one. Panels (b-c): histograms
of the components of the gradient along G44 and G66, respectively.

example components, G44 and G66, are reported. Panel (d) shows
the scatter of these two components and the joint probability density
function obtained using a kernel density estimate technique with
bandwidth 0.005. The three contours denote density equal to 1, 10
and 100. Analysis of these distributions shows that the vast majority
of UPOs predicts approximately the same sensitivity, i.e. the gra-
dients are quite tightly aligned around the expectation of panel (a),
denoted by blue lines in the other panels. The average of the gradi-
ents might thus be physically relevant and meaningful for feedback
control of the chaotic dynamics as a whole.

Hence, using this direction, we construct a controller G defined
as G = −εE[〈K〉dG], where ε defines the strength of the control.
In other words, we vary the parameters in the direction where on
average the UPOs are the most sensitive to, with the idea of “dis-
placing/reshaping” the attractor to mitigate the chaotic dynamics.
For small ε , the variation of the period average of the i-th orbit is
the projection of the corresponding gradient onto the expectation
∆〈K〉i = vec(〈K〉idG)

T · vec(−εE[〈K〉dG]), where vec(·) constructs
a vector from the columns of a matrix. Its expectation, the average
reduction of the period average across UPOs, is thus

E[∆〈K〉] =−ε‖E[〈K〉dG]‖2, (15)

where the squared norm ‖·‖2 of a matrix is the sum of the squares of
its entries. This quantity is now compared with the reduction of the
time averaged energy density obtained from long (T=500) numeri-
cal simulations of the controlled PDE, as a function of ε . The results
are reported in figure 7, where the vertical axis has been normalised
by the long-time average of the uncontrolled system. The dashed
line is the slope associated to the UPO sensitivity in equation (15).
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Figure 7. Variation of the normalised long-time average as a func-
tion of ε , the strength of the control, from numerical simulation of
the controlled PDE (black dots). The dashed line is the average
reduction associated to the UPOs

Firstly, the slope associated to the expectation of the gradients gives
a good overall representation of the linear variation of the long-term
dynamics of chaotic solutions induced by the feedback control, over
a surprisingly large range of ε , especially for negative values. This
suggests that the spatio-temporal features that the sensitivity anal-
ysis has determined to be key for control, remain important and
prominent in the solution even in highly controlled conditions.

Secondly, the variation of the strength of the control induces
repeated structural bifurcations, with the time average K varying
non smoothly with ε . This phenomenon is particularly evident for
ε > 0. Analysis of the spatio-temporal features of the solution, not
reported here for the sake of brevity, reveals that the dynamics can
change abruptly, even for small variations of ε . This is an exam-
ple of structural instability, whereby small structural changes of the
equations can induce large variations of the global character of its
solutions. This can happen at well defined points for simple dynam-
ics, e.g. the bifurcation from a steady to a time-periodic flow. How-
ever, for chaotic dynamical systems, one should in general not ex-
pect statistics to be smooth functions of the parameters (Kuznetsov,
2012).

CONCLUSIONS
In this paper we have discussed a well-behaved adjoint tech-

nique for sensitivity analysis of chaotic systems. The main idea is to
use unstable periodic orbits of the system as a basis to extract sensi-
tivity information. The enabler is mainly that the periodicity of the
underlying trajectory entails that the adjoint problem has periodic
solutions. Fundamentally, this eliminates the need of a backward-
in-time integration and requires the use of appropriate numerical
techniques to enforce the periodicity. The key consequence, though,
is that the adjoint solution remains bounded regardless of the stabil-
ity characteristics of the orbit. As a result, the instability of the
adjoint solution typically observed on open chaotic trajectories is
prevented, enabling the correct sensitivity to be obtained.

This approach awaits application to a turbulent flow problem.
There are however several remarks to be made, many of which ap-
ply at a general level to all investigations on exact solutions of the
equations. For instance, periodic orbits need to be obtained in the
first place, which is an expensive task. It is also increasingly dif-
ficult to obtain such orbits at increasing Reynolds number and it is
still an open question whether such orbit exists, and what they mean,
in large extended domains. Furthermore, many periodic orbits exist
and it is thus questionable what the sensitivity information extracted
from the few that are available means, especially in situations where

dynamics are highly intermittent and complex. A statistical analysis
like the one provided here can indeed be helpful but very expensive
to obtain for a 3D turbulent flow. We wish to address these and
other practical issues in future work.
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