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Railway Station Choice Modelling: A Review of Methods and 
Evidence 

Since the first railway station choice studies of the 1970s, a substan-
tial body of research on the topic has been completed, primarily in 
North America, the UK and the Netherlands. With many countries 
seeing sustained growth in rail passenger numbers, which is forecast 
to continue, station choice models have an important role to play in 
assessing proposals for new stations or service changes. This paper 
reviews the modelling approaches adopted, the factors found to in-
fluence station choice, and the application of models to real-world 
demand forecasting scenarios. A consensus has formed around using 
the closed-form multinomial logit and nested logit models, with lim-
ited use of more advanced simulation-based models, and the direc-
tion effects of a range of factors have been consistently reported. 
However, there are questions over the validity of applying non-spa-
tial discrete choice models to a context where spatial correlation will 
be present, in particular with regard to the models’ ability to ade-
quately represent the abstraction behaviours resulting from compe-
tition between stations. Furthermore, there has been limited pro-
gress towards developing a methodology to integrate a station 
choice element into the aggregate models typically used to forecast 
passenger demand for new stations. 
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1. Introduction 

The continued and substantial growth in passenger rail travel in many countries 
(Amadeus, 2013) means that rail service planning remains an important issue for 
transport planners and policy-makers. In order to predict the full impacts of open-
ing or closing railway stations, or substantially modifying services, it is necessary to 
understand the mechanisms behind passengers’ station choice decisions. The extent 
to which station and service changes lead to passengers switching from one station 
to another can have a crucial impact on the business case for these changes. It is not 
sufficient to simply forecast the number of passengers who would use a new station 
or service, as traffic abstracted from another station will usually contribute much 
less additional revenue to the operator (and generate lower levels of societal ben-
efits) than traffic newly generated or abstracted from a competing transport mode. 
In order to make a significant contribution to the wider transport planning process, 
station choice models therefore need the ability to forecast the impacts on travel de-
mand of changes to stations and service patterns, and not be limited to identifying 
how a range of factors influence choice and explain current travel behaviour. 

The need to understand and predict station choice decisions has resulted 
in a substantial body of research on this topic, but there has been little progress 
towards synthesising the results to establish a consensus on the most appropriate 
modelling method. This paper aims to fill this gap by conducting a comprehensive re-



 

view of previous research, comparing methods used and factors included in the mod-
els. It also considers how station choice models have been incorporated into more 
general passenger demand forecasting methods, as well as identifying priorities for 
future research aimed at developing a transferable and integrated approach which 
can be used to inform planning decisions in a range of contexts. 

2. A Brief History of Station Choice Modelling 

The earliest station choice research dates back to the mid-1970s in North America. 
Liou and Talvitie (1974) modelled access mode and station choice on the Illinois 
Central Railroad using a sequential multinomial logit approach which pre-dated the 
formal definition of the nested logit (NL) model, and Desfor (1975) used binary pro-
bit to explore choice between station pairs on a commuter line into Philadelphia. 

No further work has been found until Harata & Ohta (1986) modelled main 
travel mode, access mode and station choice before and after the opening of a new 
station near Tokyo. This appears to be the first study to implement the NL model, 
which was adopted in several subsequent joint access mode and station choice 
studies (Davidson & Yang, 1999; Debrezion, Pels, & Rietveld, 2009; Fan, Miller, & 
Badoe, 1993; Givoni & Rietveld, 2014), while the multinomial logit (MNL) model has 
been used to model station choice alone (Adcock, 1997; Blainey & Evens, 2011; De-
brezion, Pels, & Rietveld, 2007a; Kastrenakes, 1988; Mahmoud, Eng, & Shalaby, 
2014). 

Lythgoe and Wardman (2002) extended a direct-demand model for park-
way stations to include a station choice element using NL and later enhanced this 
using cross-nested logit (Lythgoe, Wardman, & Toner, 2004). More recently a latent 
segmentation approach has been used to model access mode and station choice 
(Chakour & Eluru, 2014), and station choice under parking search time uncertainty 
has been modelled using mixed logit (ML) (Chen et al., 2015). 

In addition to academic research, models have been developed for use in 
central or local government transport models and as part of specific rail develop-
ment proposals. Examples in the UK include: a binary logit model for West Coast 
Main Line track access assessment (MVA Consultancy, 2011); an MNL model to as-
sess the demand for HS2 (Atkins Limited, 2011); and incorporating a station choice 
element into regional transport models (Fox, 2005; Fox, Daly, Patruni & Milthorpe, 
2011). A summary of prior station choice research is given in Table 1. 

3. Application of Discrete Choice Models 

The station choice studies above share a common approach: they utilise discrete 
choice models based on random utility theory. In these models an individual is as-
sumed to choose the one alternative, from a group of alternatives known as the 
choice set, that maximises their utility. The researcher attempts to measure utility 
by identifying attributes of the alternatives and/or the individual. That part of utility 
that the researcher cannot measure, the unobserved utility, is treated as a random 
component. The utility that an individual derives from an alternative can be ex-
pressed using the following formula: 

𝑈𝑛𝑖 = 𝑉𝑛𝑖 + 𝜀𝑛𝑖 (1) 



 

where Uni is the utility for individual n of alternative i, Vni is the utility measured by 
the researcher, and εni is unobserved utility. In practice V, which is known as repre-
sentative utility, will be a function (usually linear additive in form) consisting of the 
selected attributes and their respective parameters. The parameters, if unknown, 
are obtained statistically, for example by maximum likelihood estimation. As part 
of utility is unobserved it is not possible to say for certain what alternative an indi-
vidual will choose, it is not deterministic. Instead, the probability of an alternative 
being chosen is calculated. 

 

3.1 Binomial and Multinomial Logit 

The simplest discrete choice model, used when there are only two alternatives, is 
binomial logit. It was applied in a British study carried out for the Office of Rail Reg-
ulation to assess applications made by open access operators to provide ‘second-
ary’ stations with new direct services to major destinations such as London, poten-
tially competing with ‘primary’ stations already offering direct services. Pairs of pri-
mary and secondary stations were identified and binomial logit models used to 
forecast the proportion of passengers choosing each station under different fare 
structures (MVA Consultancy, 2011). 

However, most station choice studies have used larger choice sets, with 
many applying the MNL model which is suitable for any number of alternatives.  The 
earliest was Kastrenakes (1988) who developed a model for New Jersey Transit that 
forecast the proportion of travellers from each minor civil division using each sta-
tion in that division’s observed choice set. The most ambitious study in terms of 
dataset size, with some 230,000 trip observations from the UK mainline network 
and London Underground, sought to develop a station choice model to incorporate 
into the UK rail industry demand model, MOIRA, although no progress beyond this 
preliminary work has been publicly reported (Adcock, 1997). In the Netherlands, 
Debrezion et al. (2007a) developed three models based on different approaches to 
defining the utility function (see Section 4.2); and in Canada the station choice of 
park and ride commuters taking cross-regional trips in the Greater Toronto and 
Hamilton area was investigated, with separate models calibrated for three market 
segments (Mahmoud et al., 2014). 

The key assumptions that underlie the MNL model are that the unobserved 
components of utility of the alternatives are independent of each other and have 
an identical (Gumbel) distribution (IIGD). As a consequence, it exhibits the inde-
pendence from irrelevant alternatives (IIA) property which means that the ratio of 
probabilities for any two alternatives, and therefore the odds of choosing one al-
ternative over another, remain the same irrespective of other alternatives or their 
attributes (Train, 2009). This results in proportional substitution behaviour where, 
for example, the addition of a new alternative to a choice set will reduce the prob-
abilities of all the existing alternatives by the same percentage.  This is a key weak-
ness of MNL models, as such behaviour is unlikely to be exhibited in reality, where 
new alternatives are more likely to abstract users from alternatives which are sim-
ilar to them. 

 



 

3.2 Nested Logit 

The NL model relaxes these assumptions by grouping together alternatives 
that are a-priori thought to have unobserved factors of utility that are correlated, 
into sets known as nests. The theoretical basis of the model is that each pair of 
alternatives in a nest has the same correlation of unobserved factors, but there is 
no correlation between pairs of alternatives in different nests. Each nest exhibits 
IIA, but IIA is relaxed between nests (Train, 2009). The NL model can be thought of 
as two modelling steps1. At the upper level, the model predicts the marginal prob-
ability of an individual choosing a particular nest, and at the lower level the model 
predicts the probability of choosing an alternative within a nest, conditional on that 
nest being chosen.  

Station choice studies have predominantly chosen a two-level model with 
access mode at the upper level and station choice at the lower level (Davidson & 
Yang, 1999; Debrezion et al., 2009; Fan et al., 1993; Givoni & Rietveld, 2014). Mod-
els with station choice at the upper level have either not been consistent with ran-
dom utility theory (Debrezion, Pels, & Rietveld, 2007b; Fan et al., 1993) or collapsed 
to the standard MNL model (Wardman & Whelan, 1999). Nesting by access mode 
results in improved models compared with MNL, presumably as correlations be-
tween unobserved factors common to each mode can be accounted for, resulting 
in better fitting models and less biased coefficients. This is confirmed by studies 
which have reported inclusive value (IV) parameters2 that lie between 0 and 1, in-
dicating that correlation exists and the nest structure is consistent with RUM. As 
shown in Table 2, the correlations are in the moderate to low range.  

It should be noted that the NL model does not impose any behavioural as-
sumptions about the decision order, it is merely a mathematical construct to relax 
assumptions in a specific manner (see, for example, Hensher, Rose, and Greene 
(2005); Koppelman and Bhat (2006); Preston (1991)). It is not uncommon for re-
searchers to misunderstand this. For example, Chakour and Eluru (2014) state that 
the NL model “imposes a hierarchy that is very hard to validate in the dataset” and 
seek to overcome this by developing a latent segmentation model where there are 
assumed to be two decision sequences (or segments) - either station choice first or 
access mode choice first - and observations are split between the segments using a 
binary logit model. The implicit assumption is that individuals make a choice, based 
on utility maximization, of the order in which they are going to make a choice of 
access mode and station choice. The authors describe this as “behaviourally repre-
sentative”, but do not present any evidence that this reflects actual behaviour. They 
adopted a model that considered whether household residence is decided before 
or after choice of workplace (Waddell et al., 2007). It is clearer in this instance that 
an individual may weigh-up the utility arising from the order in which these two 
decisions are made, whereas in the station choice context individuals might be ex-
pected to consider choice of station and access mode simultaneously (and indeed 
to treat them as a single choice decision). 

                                                           

1 Assuming a two-level NL. 
2 The IV parameter represents the degree to which unobserved factors are correlated and alterna-
tives in a nest are substitutes for one another. 



 

3.3 The Spatial Choice Problem 

Consider a scenario where there is a choice between three stations as shown in 
Figure 1(a), where the probability of an individual from origin O choosing one of 
two nearby stations A or B is 0.4 and of choosing more distant station C is 0.2. As-
suming that A and B are near perfect substitutes for each other, if B was closed the 
probability of choosing A would be expected to increase to 0.8, with the probability 
of choosing C unchanged, as shown in Figure 1(b). However, an MNL model would 
allocate station B’s probability proportionately between stations A and C resulting 
in the probability of choosing C rising from 0.2 to 0.33, as shown in Figure 1(c). In 
this example, the unobserved utilities of A and B are highly correlated due to their 
location in space; they exhibit spatial autocorrelation (SAC). If an NL model was 
constructed to limit the impact of IIA, a spatially-based grouping might be consid-
ered, with A and B in one nest and C in another, as shown in Figure 2. 

With the exception of Lythgoe et al. (2004) who developed a cross-nested 
logit model to allow the number of journeys abstracted from competing stations, 
expressed as a proportion of predicted new journeys, to vary depending on the 
proximity of a station to its competitors, the issue of SAC has been ignored in the 
station choice literature.  The previous studies using NL have placed the same sta-
tions in each access mode nest. Rather than creating distinctive groupings of alter-
natives, this creates multiple groupings of the same alternatives, and if proportional 
substitution is an issue for one nest it is likely to be an issue for all nests. The inabil-
ity of the models, as applied, to deal with inappropriate substitution behaviour sug-
gests that an alternative approach might be warranted, especially when the ability 
to predict abstraction from existing stations is required.  

While the NL model has been applied to spatial choice problems in a variety 
of research fields, it requires the researcher to divide continuous space into discrete 
clusters of space, which is difficult to do in a manner that is justifiable and not arbi-
trary, particularly if the model is to be transferred to a different area from the one 
on which it was calibrated. An alternative approach that has been applied in other 
research fields is to include an accessibility term within the MNL model. This term 
is a measure of the accessibility of an alternative to all other alternatives within a 
choice set and can take a variety of forms. It is often a Hansen-type measure, where 
the distance between alternatives is weighted by a size-based attraction variable 
(e.g. population). As the term includes information from other alternatives the IIA 
property no longer holds and the model is able to capture competition (or agglom-
eration) effects. Examples include the competing destinations model (CDM) pro-
posed by Fotheringham (see Pellegrini & Fotheringham (2002) for a review), and 
recent work by Ho and Hensher (2016) who used accessibility terms to account for 
spatial competition in workplace choice models. Other researchers have created 
new GEV models using McFadden’s generator function (Train, 2009). One example 
is the Generalised Spatially Correlated Logit (GSCL) model developed by Sener, Pen-
dyala, and Bhat (2011), in which the degree of spatial correlation is represented by 
a function of a vector of attributes that defines the spatial relationship between all 
pairs of alternatives. 

3.4 More Complex Models 

Alternative discrete choice models are available that, by making different 
assumptions about the distribution of unobserved utility, can represent any pattern 



 

of substitution and, unlike MNL and NL, account for random variation in taste. How-
ever, this increased flexibility comes at a cost. The models are more complex to 
implement and interpret and the choice probabilities usually have to be approxi-
mated by simulation. Examples include the probit model, which assumes unob-
served utility follows a multivariate normal distribution, and the ML model, where 
unobserved utility is represented by two components – one that is assumed to be 
IIGD and another that can follow any specified distribution. There has been only 
limited application of these models in station choice modelling. 

Desfor (1975) used a probit model but made the simplifying assumption 
that commuters only considered the two lowest cost stations for the census block 
where they resided, based on a non-stochastic trip cost function consisting of dis-
tance, fare and parking cost. This allowed binary probit models to be estimated for 
the pair of lowest cost stations for each census block, with the difference in trip 
cost the only explanatory variable. While the models were reported to correctly 
predict the choices made by 88% of commuters, only those who chose one of the 
two highest utility stations could be included in the validation. This is likely to have 
enhanced model performance as the 20% of cases removed were arguably the 
more difficult ones to predict, and their exclusion limits the model’s usefulness for 
forecasting, as it is impossible to make an a-priori assessment of which travellers 
will choose one of the two lowest cost stations. 

Chen et al. (2014) proposed a framework for modelling station choice of 
park and ride passengers under conditions of uncertainty, where the utility function 
is based on Prospect Theory (Kahneman & Tversky, 1979). They suggest that as well 
as assessing the factors (outcomes) of each alternative, an individual considers the 
likelihood of these outcomes occurring, and their choice will depend on their atti-
tude to risk. This framework was used to develop an ML model to estimate station 
choice under parking search time uncertainty (Chen et al., 2015). In a comparator 
MNL model parameters for variation in parking search time and availability of park-
ing bays were found to be significant at the 1% level. However, in the ML model 
where these were treated as random parameters they were not significant and ap-
parently not random.  The ML model did indicate that survey respondents were risk 
averse to variation in parking search time, and this model had a lower AIC than the 
MNL model, but its validity is questionable. 

 

3.5 Model Validation and Testing 

The performance of discrete choice models is often assessed using a likelihood ratio 
index, usually adjusted McFadden’s (adjR2) which penalises for the number of pre-
dictor variables. It is, however, only valid to compare models on the basis of their 
adjR2 if they have been estimated using identical samples and the same set of al-
ternatives (Train, 2009). Another commonly used measure of model performance, 
adopted in several station choice studies (Blainey & Evens, 2011; Desfor, 1975; Fan 
et al., 1993; Harata & Ohta, 1986; Liou & Talvitie, 1974; Mahmoud et al., 2014) is 
predictive accuracy. For each individual, the alternative with the highest probability 
is compared with the choice actually made. Across all individuals, the percentage 
where these match is called the ‘percent correctly predicted’, and might be used to 
compare model performance. However, this approach is fundamentally flawed as 
the researcher cannot say which alternative an individual will choose, as the true 



 

utility of each alternative is unknown. By definition, the choice with the highest 
probability will not always be chosen, it is just more likely to be chosen (Train, 
2009). A better measure is to compare the number of times an alternative was cho-
sen with the sum of the predicted probabilities for that alternative across the sam-
ple, and then derive a performance measure for the whole model (Hensher, Rose, 
and Greene, 2015). This approach enables the predictive performance of models es-
timated on different samples to be compared. 

Validating a predictive model against the sample used to calibrate it can 
lead to optimistic performance estimates. Additional validation can include testing 
the model on similar but independent data, for example by splitting the data into 
two parts and using one to develop the model and the other (the hold-out sample) 
to measure its performance, or by using advanced techniques such as cross-valida-
tion or bootstrapping (Steyerberg et al., 2001). The validation and testing methods 
used in station choice research are summarised in Table 3, and it is apparent how 
little testing has been carried out. The two earliest studies tested models against 
data from a new location (Liou & Talvitie, 1974) and an additional survey (Desfor, 
1975), and the ‘percent correctly predicted’ measure suggested they performed 
well. Lythgoe and Wardman (2002, 2004) estimated demand for two new parkway 
stations, and found that the model substantially under-predicted demand. 

3.6 Conclusions 

A consensus has formed around using closed-form models to predict station choice, 
with MNL used to model station choice alone and NL used to model combined ac-
cess mode and station choice. A significant weakness of these models is their ina-
bility to account for spatial correlation between stations (unless a suitable nested 
structured is defined) or to allow patterns of substitution that adequately represent 
competition between stations. Solutions applied in other fields, such as including 
an accessibility term or applying a specialist GEV model, should be explored in the 
station choice context. Researchers are beginning to apply more complex models 
but these have not yet been used to account for individual taste variation or to 
represent specific substitution patterns, despite this flexibility being their key ben-
efit. Before developing ever more complex explanatory models it is important that 
the predictive performance of the simpler approaches is more rigorously assessed 
using measures consistent with probabilistic choice models. When more complex 
models are developed, it is essential that their predictive performance is compared 
with simpler models so that an informed assessment of the trade-off between com-
plexity and performance can be made. 

4. Measuring Representative Utility 

The factors that influence observed utility can be grouped into attributes of the 
alternatives and characteristics of the decision makers (Ortúzar & Willumsen, 
2011). In terms of station choice, the attributes of the alternatives can be split into 
those relating to accessibility and those relating to railway service (Givoni & 
Rietveld, 2007). Choices also depend upon the prejudices and tastes of individuals, 
and it may be possible to represent some of these by introducing socioeconomic 
variables (Ortúzar & Willumsen, 2011). The interplay of the factor types is illus-
trated in Figure 3. 



 

4.1 Accessibility Attributes 

4.1.1 Access and Egress 

A common variable included in previous research is access distance from trip origin 
to departure station, with increasing distance expected to have a negative effect on 
choice. Most studies have used a straight line measure (Adcock, 1997; Debrezion et 
al., 2007b, 2009; Desfor, 1975; Mahmoud et al., 2014), which is unlikely to reflect 
the true distance travelled. This can be improved by measuring distance via the 
road network (Blainey & Evens, 2011; Fan et al., 1993; Givoni & Rietveld, 2014). 
Distance is normally included as a continuous variable, although Debrezion et al. 
(2007a) entered a series of distance bands as dummy variables, allowing a coeffi-
cient to be estimated for each band. The coefficient was positive for all bands, but 
higher for lower distances, declining smoothly as distance increased. 

An alternative is estimated travel time or in-vehicle time for the access trip, 
which again is expected to have a negative effect. This may simply be distance con-
verted into time (Kastrenakes, 1988), or a more accurate reflection of journey time 
by access mode, for example public transport (Debrezion et al., 2009; Givoni & 
Rietveld, 2014) or car (Fox, 2005). Travel time is intuitively more appropriate, as the 
time taken to get to a station is likely to be more important than the distance trav-
elled (which may be unknown). 
 Previous studies using the MNL model typically estimate a single parameter 
for access distance or time. This represents an average effect on utility across all 
access modes. In the case of NL models, a separate access parameter is usually 
specified for each access mode nest (Debrezion et al., 2009; Givoni & Rietveld, 
2014). MNL models might be improved if separate dummy variables representing 
each access mode interacted with access distance or time were defined.  

In some studies, factors relating to the access journey are incorporated into 
a composite measure of generalised cost or generalised journey time (GJT) (Lythgoe 
& Wardman, 2004; MVA Consultancy, 2011), and less common variables include 
the cost of the access journey, such as car cost or bus fare (Fox, 2005; Liou & Talvi-
tie, 1974; Wardman & Whelan, 1999), and public transport frequency (Debrezion 
et al., 2009; Wardman & Whelan, 1999). 

Little attention has been given to the egress journey, although Adcock 
(1997) considered the entire trip from ultimate origin to final destination, with ac-
cess and egress distance included as factors. He found that passengers were willing 
to accept longer access journeys than egress journeys, perhaps due to the availa-
bility of a car or better knowledge of public transport at the “home” end. 

Kastrenakes (1988) used a variable to indicate whether a station was con-
sidered to be the local station to the residents choosing it. Interestingly, this was 
not correlated with access time and Kastrenakes suggests it could be capturing “in-
tangibles” such as a greater awareness of services and parking within a passenger’s 
home town. The aggregate nature of the study could be masking correlation at the 
individual level, although similar “nearest station used” variables have improved 
disaggregate models (Adcock, 1997; Fan et al., 1993). 



 

4.1.2 Facilities 

Car parking is the dominant station facility attribute considered in prior studies, and 
has taken several forms, such as presence of a car park (Debrezion et al., 2007a, 
2009; Liou & Talvitie, 1974), number of parking spaces (Blainey & Evens, 2011; 
Chakour & Eluru, 2014; Fan et al., 1993; Fox, 2005; Mahmoud et al., 2014), availa-
bility of spaces (Kastrenakes, 1988), and parking cost (Desfor, 1975; Kastrenakes, 
1988; Mahmoud et al., 2014; MVA Consultancy, 2011). In most cases the presence 
of a car park and number of parking spaces has a positive effect, although there 
have been conflicting results and counter-intuitive coefficient signs in some cases, 
possibly due to endogeneity issues. A positive coefficient for parking fee and a neg-
ative coefficient for availability, whilst counter-intuitive, may indicate that a station 
is very popular (Kastrenakes, 1988), and a positive coefficient for parking spaces 
may not indicate that more spaces attract passengers but that more passengers 
lead operators to provide more spaces (Chakour & Eluru, 2014). 
 

4.1.3 Land-use 

Only Chakour and Eluru (2014) have considered the effect of land-use. They identi-
fied six characteristics of Montreal traffic analysis zones using principal component 
analysis, such as high density/high walkability, commercial, or government/institu-
tional. The variables were found to be inelastic, with a 15% uplift resulting in a 
change in mode share and station choice of less than 1%, leading them to conclude 
that access mode and station choice “do not react to land-use changes.” However, 
research in related areas suggests that land-use may play an important role in sta-
tion choice. For example, Cervero et al. (1995) found that residential density and 
land-use mix influence how passengers access stations and the size of access catch-
ments.  

4.2 Railway Service Attributes 

Attributes used to represent railway service quality include measures of train fre-
quency, such as trains per hour, per day or at peak periods (Blainey & Evens, 2011; 
Debrezion et al., 2007a; Fan et al., 1993; Kastrenakes, 1988); rail journey time (Fox, 
2005; Givoni & Rietveld, 2014; Harata & Ohta, 1986; Liou & Talvitie, 1974); journey 
distance (Blainey & Evens, 2011); fare (Adcock, 1997; Fox, 2005; Harata & Ohta, 
1986); and number of transfers (Fox, 2005; Harata & Ohta, 1986). In some cases a 
single measure of GJT, derived from several railway service attributes, has been 
used (Kastrenakes, 1988; Adcock, 1997; Lythgoe & Wardman, 2004; MVA Consul-
tancy, 2011; Atkins, 2011). The aforementioned measures have the intuitively ex-
pected effect on utility in all studies, with the exception of Blainey and Evens (2011), 
where a positive coefficient for journey distance was obtained for South Wales. 
Distance may not be a good proxy for time, as a longer route could be faster de-
pending on the line running speed, stopping patterns and whether the service is 
direct, and this may have resulted in a misspecified model. 

To explore the effect of train frequency on utility, Debrezion et al. (2007b) 
used two alternative utility function forms. A cross-effect function, where access 



 

distance categorical dummy variables were cross multiplied with frequency of ser-
vice, revealed that the positive effect of frequency on utility is greater for passen-
gers living closer to a station; while a translog function showed that utility declines 
smoothly as access distance increases for all frequency levels, but with a flatter 
curve for stations with higher service frequency, indicating that a station’s catch-
ment is larger when frequency is higher. 

An alternative approach to individual rail service attributes was developed 
by Debrezion et al. (2009), primarily because they used aggregate data and did not 
have individual trip information. They combined three determinants of rail service 
quality - waiting time; transfer time; and in-vehicle time - into a single Rail Service 
Quality Index (RSQI). Coefficients estimated using a doubly-constrained flow 
model3 based on ticket data for stations in the Netherlands were used to calculate 
multiple RSQIs for each departure station, one for each destination station. These 
were aggregated to obtain an overall RSQI for each station that was entered into 
the model and found to have a significant and positive effect on station choice. 

4.3 Socioeconomic Attributes 

Some studies have included socioeconomic attributes, mostly relating to age 
(Chakour & Eluru, 2014; Fan et al., 1993; Fox, 2005), sex (Chakour & Eluru, 2014; 
Fan et al., 1993; Fox, 2005), income (Fan et al., 1993; Liou & Talvitie, 1974) and car 
ownership (Chakour & Eluru, 2014; Debrezion et al., 2009; Fox, 2005). Research 
shows that a passenger’s propensity to use a station other than their nearest in-
creases as the number of cars per household increases, with the effect most marked 
in moving from a one to two car household (Adcock, 1997). This suggests that car 
ownership may influence station choice. 

4.4 Conclusions 

The direction effect of a range of access and rail service factors has been consist-
ently reported. The evidence indicates that station utility decreases as the access 
journey becomes further or longer, as the rail leg journey time increases, when the 
journey involves more transfers or has a higher fare, and when service frequency is 
reduced. Establishing the effect of station facilities, such as car parking, is more 
problematic, potentially due to endogeneity issues. While a number of important 
explanatory variables have been established there is still potential to identify new 
ones. For example, researchers have paid scant attention to the impact of land-use 
factors, and spatially detailed land-use datasets, such as the Ordnance Survey’s 
‘Points of Interest’ data in Britain, are an untapped resource. There may also be 
gains in predictive performance with improved measurement of the variables that 
have greatest explanatory power, such as access journey and rail service factors. 
This could be through better measurement of access journey time by mode using 
route planning software, incorporating road speed information that could identify 
congestion prone stations, or better alignment of survey trip data with train sched-

                                                           

3 A “flow model” is a spatial interaction model that estimates passenger flows between all origin-
destination station pairs based on attributes of the origin, destination, and their separation. 



 

ule information so that the service available to each individual is better repre-
sented. 

5. Data Considerations 

5.1 Data Sources 

The data required for station choice modelling is usually obtained from revealed 
preference (RP) origin-destination passenger surveys carried out at stations or on-
board trains. Wardman and Whelan (1999) combined data from an RP and stated 
preference (SP) survey, and Chen et al. (2015) solely used SP data. The surveys may 
be at the national level, for example Blainey and Evens (2011) and MVA Consultancy 
(2011) used data from the National Rail Travel Survey carried out in Britain during 
2004-2005, or at the local or regional level, such as the survey of commuter rail 
lines carried out by New Jersey transit (Kastrenakes, 1988). An alternative approach 
was adopted by Desfor (1975) who collected licence plate numbers from cars that 
were parked or dropping off passengers and used the registered addresses of the 
vehicle owners as a proxy for trip origin.  

The models developed to assess demand for stations on the planned high 
speed rail line between London and the West Midlands in the UK (HS2) were not 
based on any observed station choice data. Rather than calibrating a model to esti-
mate parameters, GJTs were calculated using established elasticities from an exist-
ing multi-modal model of travel in Britain and the (dis)utility of each alternative was 
entered into MNL probability equations (Atkins Limited, 2011). This approach is 
fairly simplistic as it assumes that GJT (which excluded fare) is the only factor im-
pacting station choice and it uses standard elasticities. 

The approach adopted by Lythgoe and Wardman (2002, 2004) does not re-
quire data on ultimate trip origins or destinations as the dependent variable is not 
observed station choice but the number of rail trips on particular flows derived 
from ticket sales data.  

Table 1 includes information on the survey size and data type used in station 
choice studies. 

5.2 Disaggregate vs. Aggregate 

Discrete choice models are often thought of as disaggregate-only models which are 
estimated using data at the individual level. However, the dependent variable can 
also be the observed share of each alternative at some unit of aggregation, and this 
approach has been adopted in some studies. For example, Debrezion et al. (2007a) 
used the observed proportion of the three most frequently chosen stations at post-
code area level as the dependent variable in an MNL model, and Debrezion et al. 
(2009) estimated an NL model with the proportion of joint access mode and station 
choice for each postcode area as the dependent variable. However, there are con-
sequences of aggregating data prior to model estimation: it is statistically inefficient 
as data from a large number of individual observations is grouped into a relatively 
small number of zone-based observations; the model cannot account for intra-
zonal variability (for example, station access distance is the same for an entire 



 

zone); and there is the potential for statistical bias (for example, caused by the is-
sues of ‘ecological fallacy’ (Ortúzar, 1980) and the ‘modifiable area unit problem’ 
(MAUP) (Openshaw, 1984)). 

5.3 Defining Choice Sets 

A choice set must meet three conditions to be consistent with the discrete choice 
framework. First, the alternatives must be mutually exclusive; second, the number 
of alternatives must be finite; and third, the choice set should include all possible 
alternatives (Train, 2009). A passenger can only depart from and arrive at a single 
railway station, and there are clearly a finite number of stations in any choice set, 
so the first two requirements are met. The third is more problematic, as the re-
searcher usually only knows what choice was ultimately made (unless data is from 
an SP survey). The choice set will depend on the stations which are feasibly availa-
ble based on a passenger’s origin and destination, but will also vary on an individual 
basis, influenced by sociodemographic characteristics, level of knowledge, atti-
tudes and perceptions (Basar & Bhat, 2004). The choice set might also be con-
strained in certain circumstances. For example, if an individual can only walk to a 
station, then there must be a cut-off distance at which a station is no longer con-
sidered feasible. A feature of logit models is that an alternative can never have a 
probability of zero, and if an alternative has no realistic prospect of being chosen it 
can be excluded from the choice set (Train, 2009). However, setting a threshold is 
fraught with difficulties, and often a fuzzy concept. How, for example, can the ap-
propriate cut-off distance for walk access to a station be set, when it will surely vary 
on an individual basis? 

Castro, Martinez, and Munizaga (2009) highlight the potential for “serious 
problems” with model predictions if the choice set is poorly specified and argue 
that while in some circumstances it might be plausible to exogenously define feasi-
ble alternatives, for example in the case of travel mode choice, in other situations, 
such as when modelling spatial alternatives, it becomes very complex or arbitrary. 
A potential solution is to use a probability-based approach, for example the two-
stage MNL model developed by Basar and Bhat (2004) to study airport choice, 
where the probability of an alternative being in an individual’s choice set is mod-
elled first. 

The methods used in prior research to define choice sets can be split into 
three groups, based on distance, observed choice, and catchments. In the distance-
based method each individual has their own choice set determined by the closest x 
stations to their origin, with the aim of maximising the number of observed choices 
accounted for, while keeping the number of alternatives to a reasonable number 
(Blainey & Evens, 2011; Fan et al., 1993; Mahmoud et al., 2014). In the observed 
choice method, the choice set is defined at the area level, for example the stations 
chosen by passengers living in a particular locality (Kastrenakes, 1988) or the most 
frequently chosen stations in a postcode area (Debrezion et al., 2009). The catch-
ment-based method assigns a catchment of a certain radius to each station, and 
this determines whether an alternative is within either an individual or area-based 
choice set (Adcock, 1997; Lythgoe & Wardman, 2004). Unusually, Adcock (1997) 
used alternative rail legs from trip origin to destination as the choices, rather than 
stations, reflecting that the entire door-to-door trip was modelled. Chakour and 
Eluru (2014) defined individual-level choice sets using a ratio based on the concept 



 

of the maximum distance passengers are willing to travel relative to their nearest 
station. 

5.4 Conclusions 

While aggregate data has been used to model station choice, this has been dictated 
by limitations of available data, rather than modelling needs. The preferred option 
for future research is individual trip data where the ultimate origin (and destination 
if required) is at a spatial resolution sufficient for the variability in explanatory fac-
tors between decision makers to be revealed. For example, in the UK the unit post-
code area boundary is probably the maximum spatial unit of address aggregation 
appropriate4. A definitive mechanism for defining choice sets has not been estab-
lished, and the methods adopted have been fairly simplistic and not evidence-
based. It is not clear, for example, what the implications are of seeking to maximise 
the number of observed choices that are accounted for, when this may add alter-
natives to the choice set that would never realistically be considered. Research is 
needed to evaluate the different methods for generating choice sets for station 
choice models, including an assessment of their impact on predictive performance. 

6. Station Choice Models in Station Demand Forecasting 

While from a transport planning point of view it might be expected that a key aim 
of station choice modelling would be to predict the impact of changes to station 
and service provision, few of the studies discussed in this paper have addressed this 
issue, instead focussing on developing models to better understand the factors that 
influence station choice. There are several examples of local applications, for exam-
ple Harata and Ohta (1986) used their model to estimate aggregate passenger flows 
at their study station, and Kastrenakes (1988) examined the effect of introducing a 
hypothetical commuter line by using predicted station shares to weight variables in 
a mode choice model. However, there has been limited progress toward integrating 
a station choice element into the aggregate models, such as trip end and flow mod-
els, that are typically used to predict demand for new stations or services. This is a 
concern given that trip end models were used to forecast demand for around two-
thirds of recently opened stations/lines in the UK (where information was available) 
while four-stage type models were rarely adopted (Steer Davies Gleave, 2010). 

Trip end and flow models require a station catchment to be defined, which 
serves as the unit of aggregation for relevant data such as population. Two methods 
are commonly used: a buffer around a station, such as the 0.8km and 2km radial 
catchments proposed by Preston & Aldridge (1991); or dividing the population into 
zones and allocating each zone to its nearest station, for example Blainey (2010) 
assigned census output areas based on road travel time. Both methods produce 
deterministic catchments, where a particular trip origin falls within the catchment 
of a single station, and stations are implicitly assumed to not compete with one 
another. Research has shown that in reality station catchments are far more com-
plex than these simplistic catchment definitions allow (for example, see Blainey & 
Evens (2011)), suggesting that the aggregate models might be improved by defining 

                                                           

4 The unit postcode typically represents around 15 addresses. 



 

probabilistic catchments using a station choice model. Wardman and Whelan 
(1999) explored this by attempting to incorporate probabilistic station catchments 
into a direct demand model by apportioning population to one of five competing 
stations for each postal sector. However, due to time and computer resource con-
straints they had to use a subset of the data, which resulted in the model failing to 
converge. This approach does not appear to have been revisited since, despite the 
substantial advances in computational capability. In an alternative approach, devel-
oped by Lythgoe and Wardman (2002, 2004), station choice is an intrinsic compo-
nent of a flow model, with a station’s generation potential represented by the pop-
ulation within 40km allocated to a grid of zones, as formulated below: 

𝑉𝑎𝑖𝑗 = 𝑛 × 𝑃𝑎 × Pr⁡(𝑟𝑎𝑖𝑙𝑎𝑖𝑗) (5) 

where Vaij is the (unknown) number of trips from zone a to destination j via station 
i, n is the unknown average number of decisions to travel (by any mode or not at 
all) in one year, and Pa is the population of zone a. Pr(railaij), the probability of an 
individual in zone a choosing to travel to destination j using station i, is obtained 
from an NL model with a choice between rail and no rail at the upper level and 
choice of station at the lower level (Lythgoe and Wardman 2002, 2004). However, 
the methodology is limited to forecasting demand for inter-urban journeys in ex-
cess of 80km, although this was subsequently reduced to 40km (Lythgoe et al., 
2004). 

There are a few examples of a limited station choice element being intro-
duced into regional strategic (four-stage type) models. Fox (2005) developed a 
park-and-ride station choice model, where station choice is modelled for car access 
mode only, that was incorporated into the Policy Responsive Integrated Strategy 
Model (PRISM), a disaggregate demand model for the West Midlands region of the 
UK. A similar model was later developed for the Sydney Strategic Travel Model 
(STM) (Fox et al., 2011).  

6.1 Conclusions 

The lack of integration with demand forecasting is a significant limitation of previ-
ous research, and the absence of a choice-modelling methodology which can ade-
quately capture patterns of abstraction and competition between railway stations 
may have contributed to the limited accuracy of recent demand forecasts for new 
stations in the UK (for example, see: Smith (2011); Steer Davies Gleave (2010)). 
Given that trip end models are the predominant model type used to forecast de-
mand for new stations, future research should seek to improve these models by 
incorporating probabilistic catchments derived from station choice models. 
 

7. Discussion 

The station choice models reviewed in this paper appear to do a reasonable job of 
explaining observed station choice behaviour, but it is less clear how well they can 
predict station choice in real-world scenarios, or how they can be used to improve 
industry standard rail demand forecasting methods, such as those in the UK Pas-
senger Demand Forecasting Handbook (Association of Train Operating Companies 



 

(ATOC), 2013).  Station choice models have usually been treated as stand-alone en-
tities, but in practice they need to be linked into general travel demand models in 
order to reliably assess the impacts of transport schemes.  Only the work of Lythgoe 
and Wardman (2002, 2004) has really focussed on developing models for forecast-
ing applications, but this was limited to a specific context (parkway stations) and 
forecasting performance was not particularly good.    

The lack of real-world validation makes it difficult to determine whether 
the more complex models that have been proposed in recent research, for example 
ML, are justified in terms of producing better performing models.  From the point 
of view of practitioners, this lack of attention to validation is a key weakness of 
previous research, because the usefulness of these models in practice is predicated 
upon the extent to which they can accurately predict travel behaviour following the 
opening of a new station. This problem is exacerbated by a failure to demonstrate 
(or often even investigate) the spatial or temporal transferability of station choice 
models, making it impossible to apply them beyond the local context in which they 
were developed.  The effects of explanatory variables have tended to be viewed as 
specific to the local context in which models are calibrated, rather than local mani-
festations of more general traits of travel behaviour, but similarities in these effects 
in different settings suggests that there are more general phenomena at work. 

In order to advance the field of station choice modelling beyond its current 
ability to explain observed travel behaviour in particular circumstances, to a situa-
tion where it can provide a meaningful contribution to predicting future travel pat-
terns, further research is needed to develop a station choice model that can be 
used to define probability-based station catchments within models that forecast 
the effect of new stations or substantially changed services on demand. Ideally, 
such a model should be readily transferable, and not limited to modelling station 
choice in specific local contexts. Collecting sufficient data and calibrating a robust 
model on a case-by-case basis is expensive and time consuming, and this could be 
avoided if a single generalised model with wide applicability was developed. This 
requirement for a generalised choice model is of course not unique to station 
choice modelling, but there are also some more specific shortcomings of previous 
research that could be addressed by such a model.  In particular, it should recognise 
that stations are located in space and do not exist in isolation from one another, 
and be able to represent the effect of a new station, or significant service change 
at a station, on demand at nearby stations. By adopting a model specification that 
allows a flexible or more complex substitution pattern and making use of the in-
creasingly wide range of open source data on travel behaviour and transport service 
provision, it should be possible to develop a modelling framework that can provide 
planners with a robust evidence base for decision making on railway capacity pro-
vision and allocation. The continued temporal transferability of this framework 
would, of course, rely upon it being regularly updated to account for ongoing 
changes in modes used for station access and egress, such as ride-sharing services 
(in the short-term) and autonomous vehicles (in the longer term), but this update 
process would be more likely to occur if choice models were fully integrated into 
wider demand modelling methodologies rather than treated as stand-alone enti-
ties.   

This review has shown that there has been a tendency in the past for re-
search in this field to repeatedly cover the same ground, by seeking more sophisti-
cated ways to explain choice behaviour in a particular local context, even though 
the improvements in explanatory power given by more complex methods are often 



 

very limited.  There seems relatively little to be gained by continuing along this tra-
jectory and simply continuing to attempt to explain local choice behaviours in new 
contexts, when such explanatory models have very limited potential for forecast-
ing.  While there are undoubtedly still aspects of station choice behaviour which 
are poorly understood and modelled, at present it appears that there is more to be 
gained through the development of a generalised station choice modelling frame-
work which allows the findings from previous research to be used to assist in the 
development of transport schemes.  This should be a priority for future research, 
to ensure that the substantial body of evidence on this topic can be fully exploited 
by transport practitioners and therefore generate benefits for society. 
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Author Country Focus of study Main Statistical Approach Data type Survey size 

Liou and Talvitie (1974) USA AM/SC MNL Disaggregate 3,694 
Desfor (1975) USA SC Probit Disaggregate 150 

Harata and Ohta (1986) Japan AM/SC NL Disaggregate 1,358 

Kastrenakes (1988) USA SC MNL Aggregate 26,000 

Fan et al. (1993) Canada AM/SC NL Disaggregate 1,824 

Adcock (1997) UK SC MNL Disaggregate 230,000 

Wardman and Whelan (1999) UK AM/SC NL Disaggregate 32,525 

Davidson and Yang (1999) USA AM/SC NL Disaggregate 11,000 

Lythgoe and Wardman (2004) UK SC NL Aggregate n/a 

Lythgoe et al. (2004) UK SC Cross-nested logit Aggregate n/a 

Fox (2005) UK SC (PnR) NL Disaggregate 8,508 

Debrezion et al. (2007a) Netherlands SC MNL Aggregate unknown 

Debrezion et al. (2009) Netherlands AM/SC NL Aggregate unknown 

Blainey and Evens (2011) UK SC MNL Disaggregate 113,518 

Atkins Limited (2011) UK SC MNL n/a n/a 

Fox et al. (2011) Australia SC (PnR) NL Disaggregate unknown 

MVA Consultancy (2011) UK SC Binary logit Disaggregate 3,957 

Chakour and Eluru (2014) Canada AM/SC Latent segmentation Disaggregate 3,902 

Chen et al. (2014) Australia SC ML Disaggregate n/a 

Givoni and Rietveld (2014) Netherlands AM/SC NL Disaggregate 8,491 

Mahmoud et al. (2014) Canada SC MNL Disaggregate 2,297 

Chen et al. (2015) Australia SC ML Disaggregate 600 

SC = station choice      
AM = access mode      
PnR = Park and ride      
KnR = Kiss and ride      

Table. 1:  Summary of station choice research 



 

 
 
 

Paper IV Parameter Correlation Notes 

Harata and Ohta (1986) 0.641 0.359 before new station 

Harata and Ohta (1986) 0.740 0.260 after new station 

Fan et al. (1993) 0.414 0.586  

Debrezion et al. (2009) 0.614 0.386  

Givoni and Rietveld (2014) 0.546 0.454  

 

Table. 2: Reported IV parameters and calculated correlation for NL models 



 

Author(s) Validation Testing 

 Fit (adjR2 unless stated) Predictive accuracy (%) Method Predictive accuracy (%) 

Liou and Talvitie (1974)  SC: 79-82; MC: 92 Data from other railroads SC: 96-98 MC: 86 

Desfor (1975)  PnR: 91; KnR: 88 Additional survey PnR: 87; KnR: 90 

Harata and Ohta (1986)  SC: 88-90; MC: 85-89   

Kastrenakes (1988) 0.325    

Fan et al. (1993) 0.904 (SC); 0.656 (MC); 
0.614 (subway) 

92.3 (SC); 78.6 (MC); 67.9 (subway) 
 

  

Wardman and Whelan (1999) 0.0837 (with respect to 
constants) 

   

Lythgoe and Wardman (2002, 
2004) 

0.532  Demand forecast for new parkway 
stations. Warwick flows to London 
under-forecast by 28%. 

 

Lythgoe et al. (2004) 0.611    

Debrezion et al. (2007a) 0.377 (linear); 0.274 (cross-effect); 
0.410 (translog) 

   

Debrezion et al. (2009) 0.251    

Blainey and Evens (2011) 0.795 (NE); 0.632 (Wales)  83 (NE); 72.3 (Wales)   

Chakour and Eluru (2014) BIC (11288.90)  Hold-out sample (no results)  

Mahmoud et al. (2014) 0.53 (rail & subway); 0.24 (rail); 
0.32 (subway) 

76.42 (rail & subway); 75.23 (rail); 
79.18 (subway) 

  

Chen et al. (2015) AIC (MNL: 1873.6; ML: 1644.2)    

SC = station choice 

MC = mode choice 

PnR = Park and ride 

KnR = Kiss and ride 

BIC = Bayesian Information Criterion 

AIC = Akaike Information Criterion 
NE = North East England 

 

   

Table. 3:  Validation and testing of station choice models 



 

 
 
Figure 1. IIA substitution behaviour 
 
 

 
 
Figure 2. Nesting stations to address IIA. 
 
 

 
Figure 3. Factors that influence station choice. 


