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Expensive Control of Long-Time Averages Using
Sum of Squares and Its Application to

A Laminar Wake Flow
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Abstract— This paper presents a nonlinear state-feedback
control design approach for long-time average cost control, where
the control effort is assumed to be expensive. The approach is
based on sum-of-squares and semidefinite programming tech-
niques. It is applicable to dynamical systems whose right-hand
side is a polynomial function in the state variables and the
controls. The key idea, first described but not implemented by
Chernyshenko et al., is that the difficult problem of optimizing
a cost function involving long-time averages is replaced by an
optimization of the upper bound of the same average. As such,
a controller design requires the simultaneous optimization of both
the control law and a tunable function, similar to a Lyapunov
function. This paper introduces a method resolving the well-
known inherent nonconvexity of this kind of optimization. The
method is based on the formal assumption that the control is
expensive, from which it follows that the optimal control is small.
The resulting asymptotic optimization problems are convex. The
derivation of all the polynomial coefficients in the controller is
given in terms of the solvability conditions of state-dependent
linear and bilinear inequalities. The proposed approach is applied
to the problem of designing a full-information feedback controller
that mitigates vortex shedding in the wake of a circular cylinder
in the laminar regime via rotary oscillations. Control results
on a reduced-order model of the actuated wake and in direct
numerical simulation are reported.

Index Terms— Cylinder wake flow, expensive control, flow
control, long-time average cost, small-feedback, sum of
squares (SOS) of polynomials.
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I. INTRODUCTION

GLOBAL stabilization of dynamical systems is of impor-
tance in system theory and engineering [1], [2], but it

is sometimes difficult or impossible to synthesize a global
stabilizing controller [3]. The reasons could be the poor
controllability of the system [4]–[6], the input/output con-
straints in practice [7], time delay [8], [9], and/or the involved
large disturbances [10]. Moreover, in many applications, full
stabilization, while possible, carries too high penalties due to
the cost of the control.

Instead, reducing the long-time average of the cost, even by
a small amount, might be more realistic, especially when the
control is expensive [11]. Long-time-average cost analysis and
control is often considered in irrigation, flood control, navi-
gation, water supply, hydroelectric power, computer commu-
nication networks, and many other cases [12], [14]. Systems
including stochastic factors are often controlled in the sense of
long-time averages. In [15], a summary of long-time-average
cost problems for continuous-time Markov processes is given.
In [16], the long-time-average control of a class of problems
that arises in the modeling of semiactive suspension systems
was considered. However, in certain cases, the computational
complexity of direct calculation of converged averages may be
prohibitive. To overcome this difficulty, we adopt the perspec-
tive first described in [17], where instead of considering the
long-time average as the cost for system analysis and control
design, we use as the cost the upper bound of the long-time
average. For bounds tight enough the control, reducing the
upper bound will also reduce the long-time average itself.
In this paper, we describe a numerically tractable approach
for long-time average cost control (LTACC) for a class of
nonlinear dynamical systems with the right-hand side given
by polynomials in the state variables and in the control inputs.
For such systems, the sum-of-squares (SOS) decomposition
of polynomials and semidefinite programming (SDP) tech-
niques are used to estimate and optimize bounds on long-time
averages.

The SOS methods apply to systems defined by a polyno-
mial vector field. Recent results on SOS decomposition have
transformed the verification of non-negativity of polynomials
into SDP, hence providing promising algorithmic procedures
for stability analysis of polynomial systems. However, using
SOS techniques for optimal control, as for example
in [18]–[20], is subject to a generic difficulty: while the prob-
lem of optimizing the candidate Lyapunov function certifying
the stability for a closed-loop system for a given controller
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and the problem of optimizing the controller for a given
candidate Lyapunov function are reducible to an SDP and
thus, are tractable, the problem of simultaneously optimizing
both the control and the Lyapunov function is nonconvex.
Iterative procedures were proposed to overcome this diffi-
culty [19], [21], [22], where the performance of optimization is
highly dependent on the initial guess for the tuning variables.

While designing a controller that reduces an upper bound
does not involve a Lyapunov function, it does involve a
similar tunable function, and it shares the same difficulty of
nonconvexity. In this paper, this difficulty is overcome by
making use of the idea of expensive control [23]. We propose
a polynomial-type state-feedback controller design scheme
for the long-time average upper bound control, where there
is a small-amplitude parameter characterizing the expensive
controller. Expanding the tunable function and the bound
in the small parameter leads to convex problems. All the
coefficients of the polynomial-type controller are given in
terms of the solvability conditions of state-dependent linear
and bilinear inequalities. Notice the significant conceptual
difference between our approach and the studies of control
by small perturbations, often referred to as tiny feedback [24].

As an illustrative example, the proposed control design
scheme is applied to the problem of mitigating developed
vortex shedding in the 2-D incompressible flow past a circular
cylinder in the laminar regime at Reynolds number equal
to 100. The flow is controlled by rotary motions of the
cylinder. This configuration is often used as a benchmark
problem to test modeling/control algorithms and strategies for
fluid flows. The control perspective is to reduce the long-time
average of a drag-related cost function, the energy of the veloc-
ity fluctuations in the wake of the cylinder. Before designing
the control, the governing partial differential equations are
projected on a finite-dimensional subspace obtained from
proper orthogonal decomposition [42] to obtain a compact set
of ordinary differential equations. Since the reduced system
has a quadratic polynomial nonlinearity in the state variables,
the proposed SOS-based control design can be applied. The
performance of the proposed controller is assessed by closed-
loop simulations of the reduced-order model (ROM) as well
as via direct numerical simulation (DNS).

This paper is organized as follows. Section II presents an
introduction to SOS and its application to bound estimation
of long-time average cost for uncontrolled systems. Bound
optimization for controlled polynomial systems is considered
in Section III. Section IV extends the result obtained in
Section III to more general scenarios. Then, a feedback control
design for the wake flow is addressed in Section V. Section VI
concludes this work.

II. BACKGROUND

In this section, SOS of polynomials and a recently proposed
method of obtaining rigorous bounds of long-time average cost
for uncontrolled polynomial systems are introduced.

A. SOS of Polynomials
SOS techniques have been frequently used in the stability

analysis and controller design for many kinds of systems,
e.g., constrained ordinary differential equation systems [2],

hybrid systems [25], time-delay systems [26], and partial
differential equation systems [27]–[29]. These techniques help
to overcome the common drawback of approaches based on
Lyapunov functions: before [18], there were no coherent and
tractable computational methods for constructing Lyapunov
functions.

A multivariate polynomial f (x), x ∈ R
n is an SOS, if there

exist polynomials f1(x), . . . , fm(x) such that

f (x) =
m∑

i=1

f 2
i (x).

If f (x) is an SOS, then f (x) ≥ 0,∀x. In the general
multivariate case, however, f (x) ≥ 0 ∀x does not necessarily
imply that f (x) is an SOS. While being stricter, the condition
that f (x) is SOS is much more computationally tractable than
nonnegativity [30]. At the same time, practical experience
indicates that in many cases, replacing nonnegativity with
the SOS property leads to satisfactory results. In this paper,
we will utilize the existence of efficient numerical methods and
software for solving SOS optimization problems [31], [32].

Lemma 1 provides a sufficient condition to test inclusions
of sets defined by polynomials and is frequently used for feed-
back controller design in Section III. It is a particular case of
Positivstellensatz [33] and is a generalized S-procedure [34].

Lemma 1: Let

S1
�= {x ∈ R

n | h(x) = 0, f1(x) ≥ 0, . . . , fr (x) ≥ 0}
S2

�= {x ∈ R
n | f0(x) ≥ 0}

where fi (x), i = 0, . . . , r and h(x) are scalar polynomial func-
tions. The set inclusion S1 ⊆ S2 holds if there exist a poly-
nomial function S0(x) and SOS polynomial functions Si (x),
i = 1, . . . , r such that

f0(x) + S0(x)h(x) −
r∑

i=1

Si (x) fi (x) is an SOS.

B. Bound Estimation of Long-Time Average
Cost for Uncontrolled Systems

For the convenience of the reader, we outline the method
of obtaining bounds for long-time averages proposed in [17].
Consider a dynamical system

ẋ = f(x), x ∈ R
n (1)

where ẋ
�= dx/dt and assume that the trajectories x(t) are

uniformly bounded as t → ∞ regardless of the initial
condition x0. Let �(x) be the cost function. Suppose there
exist a constant C and a differentiable function V (x) such
that

V̇ + � − C ≤ 0. (2)

Due to the uniform boundedness of x(t), V is also bounded
as t → ∞, so time averaging (2) gives

�̄ ≤ C

where �̄ refers to the long-time average of �, namely

�̄ = lim
T →∞

1

T

∫ T

0
�(x(t)) dt .
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Hence, an upper bound of �̄ can be obtained by minimizing C
over V under the constraint (2), or equivalently

f · ∇xV + � − C ≤ 0 ∀x

where ∇xV denotes the gradient of V with respect to x, so that
V̇ = f ·∇xV . When the vector field f , the cost function � and
the tunable function V are restricted to polynomials, it suffices
to solve the following SOS optimization problem:

min
V , C

C

s.t. − (f · ∇xV + � − C) is SOS. (3)

A better bound might be obtained by removing the require-
ment for V to be a polynomial and replacing (3) with the
requirement of nonnegativeness. However, the resulting prob-
lem could be difficult, since the classical algebraic-geometry
problem of verifying positive definiteness of a general multi-
variate polynomial is NP-hard [2], [25]. Notice that while V is
similar to a Lyapunov function in stability analysis, it is
not required to be positive-definite. Notice also that a lower
bound of any long-time average cost of the system (1) can
be analyzed in a similar way, by reversing the sign of the
inequality.

Remark 1: For many systems, the boundedness of the sys-
tem state immediately follows from energy consideration.
In general, if the system state is bounded, this can often
be proven using the SOS approach. As an example, let
D = {x | 0.5xT x ≤ β < ∞}. Then, D is a global attractor
provided that

xT ẋ = xT f(x) ≤ −(0.5xT x − β) ∀x. (4)

Introducing a tunable polynomial S(x) satisfying S(x) ≥ 0
∀x ∈ R

n , by Lemma 1, (4) can be relaxed to
{−(xT f(x) + S(x)(0.5xT x − β))is SOS,

S(x)is SOS.

Minimization of upper bound of long-time average cost for
systems that have unbounded global attractors is usually
meaningless, since the cost itself could be infinitely large.

III. EXPENSIVE CONTROL OF LONG-TIME

AVERAGES OF POLYNOMIAL SYSTEMS

In this section, the LTACC of polynomial systems is for-
mulated first. Such systems may describe a wide variety
of dynamics [37] or approximate a system defined by an
analytical vector field [3]. A polynomial system can therefore
yield a reliable model of a dynamical system globally or in
larger regions than the linear approximation in the state
space [38]. Finite-dimensional representations of incompress-
ible fluid flows, as the example discussed in Section V, can
be recast precisely in this form.

Then, the idea of the expensive controller design is pre-
sented to resolve the nonconvexity in SOS optimization.

A. Problem Formulation

Consider the system

ẋ = f(x) + G(x)u (5)

where f(x) : R
n → R

n and G(x) : R
n → R

n×m are
polynomial functions of the system state x. The control
u ∈ R

m is assumed to be a polynomial vector function of
the system state x.

The cost function is a time average

�̄ = lim
T →∞

1

T

∫ T

0
�(x(t), u(x(t))) dt

where x is the closed-loop solution of the system (5) associated
with the control u, and the continuous function � is a given
polynomial in x and u.

Here, the existence of the upper bound of �̄ is assumed.
This assumption holds true for many systems, for which the
long-term behavior is determined by attractors. Note that even
if the uncontrolled system has a global attractor, the closed-
loop system can become unbounded, that is some of its
trajectories can escape to infinity. In that case, imposing
additional constraints of the type (4) on the controlled system
might resolve the issue.

In [17], it was proposed to seek the control u minimizing
upper bound C of the cost �̄. Similar to (3), this reduces to
the following SOS optimization problem:

min
u,V , C

C

s.t. − ((f(x) + G(x)u(x)) · ∇xV (x)

+ �(x, u(x)) − C) is SOS. (6)

In (6), u, V , and C are all tuning variables. The control input u
and the decision function V enter the term −G(x)u(x)·∇xV (x)
of the SOS constraint in (6) bi-linearly. Because of this, (6) is
not convex.

If the control is expensive, the optimal solution u should
be small. This suggests a Taylor expansion of �(x, u) with
respect to u. In many cases, it is natural to assume that any
nonzero control is more expensive than no control, namely,
�(x, u(x)) has a minimum at u = 0 for any fixed x. In this
case, the Taylor expansion has a zero linear term. Neglecting
the cubic and the higher order terms then leads to considering
the cost function of the form

�(x, u) = �0(x) + uT �(x)u
ε

(7)

where � is a symmetric positive-definite matrix of polynomi-
als of x, and ε is a small parameter, which makes the resulting
problem fall in the class of expensive control [23].

We are seeking to find the main terms of the asymptotic
expansions of C and uopt(x) as ε → 0.

B. Design of Small-Feedback Controller

We look for a controller in the form

u(x, ε) = εu1(x) + O(ε2). (8)

We expand V and C in ε

V (x, ε) = V0(x) + εV1(x) + O(ε2), (9)

C(ε) = C0 + εC1 + O(ε2). (10)

Define

F(V , u, C)
�= (f(x) + G(x)u) · ∇xV + �(x, u) − C (11)
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so that the constraint in the optimization problem (6) is
F(V , u, C) ≤ 0 ∀x. Substituting (7)–(10) into (11), we have

F(V , u, C) = F0(V0, C0) + εF1(V0, V1, u1, C1) + O(ε2)

where

F0 = f · ∇xV0 + �0 − C0
F1 = f · ∇xV1 + Gu1 · ∇xV0 + uT

1 �(x)u1 − C1.

Substituting these expansions into (6) and taking the limit
as ε → 0 leads to the problem of finding the best bound for
the uncontrolled case

O0 : min
V0,C0

C0, s.t. − F0(V0, C0) is SOS

which we will call O0 problem.
Denote the optimal C0 by C0,SOS and the associated V0

by V0,SOS.
Let V0 = V0,SOS in F1, and then consider the following

optimization problem:
O1 : min

V1,u1,S0,C1
C1,

s.t. − F1(V0,SOS, V1, u1, C1)
+ S0(x)F0(V0,SOS, C0,SOS) is SOS

where S0 is a tunable polynomial function of x of fixed
degree corresponding to the S-procedure. Here, the nonneg-
ativity requirement of S0 is not imposed. By Lemma 1,
this can be understood as that the nonnegativity constraint
−F1(V0,SOS, V1, u1, C1) ≥ 0 is imposed only for x, such that
F0(V0,SOS, C0,SOS) = 0. Denote the optimal C1 by C1,SOS and
the associated V1 and u1 by V1,SOS and u1,SOS, respectively.

Note that since F1 includes a quadratic term in u1, the con-
straint of the optimization problem O1 is not linear in the
decision variables, which include the coefficients of u1. This
can be overcome using the idea of the Schur complement.
In the current setting, it amounts to introducing an additional
variable z and replacing F1 with F ′

1 = F1 − (u1 − z)T �(x)
(u1 − z). The quadratic term then cancels out. Since �
is positive-definite, the constraint −F1 + S0 F0 > 0 ∀x is
equivalent to the constraint −F ′

1 + S0 F0 > 0 ∀x, z. This
reduces O1 to an optimization problem that is linear in the
decision variables.

The solution of O1 always gives C1 ≤ 0, since C1 = 0
for u1 = 0. If the optimal C1 < 0, then as it follows
from (10), the solution gives a controller reducing the bound
of the time-averaged cost in an asymptotic, as ε → 0, sense.
The following theorem shows that in fact the controller εu1
reduces the bound for a sufficiently small but finite ε too.

Theorem 1: Assume that C1,SOS < 0, obtained by solv-
ing O1. Then, for any κ ∈ (0, 1), there exists εκ > 0 such that
applying the following first-order small-feedback controller to
the system (5):

uSOS = εu1,SOS, 0 < ε < εκ (12)

will yield an upper bound of the long-time average cost �̄

Cκ,SOS
�= C0,SOS + εκC1,SOS.

Clearly, Cκ,SOS < C0,SOS.
Proof: See Appendix A.

Remark 2: Once the controller has been specified as in (12),
with ε and u1,SOS given, the upper bound C and the corre-
sponding V can be obtained by solving a smaller optimization
problem

Oε : min
V ,ε,C

C,

s.t. − F(V , εu1,SOS, C) is SOS.

The smaller size of the problem will allow searching over
polynomial V of higher order. The problem can be further
relaxed by utilizing the knowledge that −F0 and −F1 + S0 F0
are SOSs. This might allow getting a better bound. The effect
of the value of ε on the upper bound of �̄ can be investigated
by trial and error. We will follow this route in Section V.

IV. MORE GENERAL CASE

In practice, some dynamical systems (as the one dis-
cussed in Section V) might have more complicated dynamics
described by the following form:

ẋ = f(x) + G(x)u + H(x)u̇ (13)

where the time rate of change of the control input u̇
also enters the dynamics via the polynomial gain function
H(x) : R

n → R
n×m .

With a minor modification, the small-feedback controller
design scheme is still applicable for (13). Similar to (11),
define

F(V , u, C)
�= (f(x) + G(x)u + H(x)u̇) · ∇xV

+ �(x, u) − C. (14)

Noticing the structure of the controller (8), it is easy to see
that

u̇ = du
dx

ẋ = du
dx

(f(x) + G(x)u + H(x)u̇)

= ε
du1

dx
f(x) + O(ε2). (15)

Then, substituting (8)–(10) and (15) into (14) renders to

F = F0(V0, C0) + εF1(V0, V1, u1, C1) + O(ε2)

where

F0 = f · ∇xV0 + �0 − C0,

F1 = f · ∇xV1 + (Gu1 + H
du1

dx
f) · ∇xV0 + uT

1 �(x)u1 − C1.

The corresponding SDP problems may be solved via
SOS optimization to obtain the controller that minimizes
the bound of the long-time average cost of the controlled
system (13).

V. ILLUSTRATIVE EXAMPLE

As an illustrative example of the methodology proposed
in this paper, we consider the problem of synthesizing a
state-feedback controller to manipulate the motion of a fluid
flow. Fluids are a prominent example where stabilization
of the laminar flow (usually associated with low drag, low
unsteadiness, and low aerodynamic-induced vibrations), might
not be possible in practice, extremely difficult to achieve or not
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worth the additional complexity and cost of the required
flow sensing/actuation system. In addition, as fluid flows are
often turbulent, exhibiting chaotic fluctuations over a disparate
range of time and spatial scales, long-time averages of key
engineering quantities are often of interest. Hence, nonlinear
design techniques aiming at reducing, even by a small amount,
such averages are attractive and relevant. For instance, a few
percent reduction of the mean drag of an aircraft, associated
with the control of the turbulent flow over its surface, would
entail significant economic benefits and would have a large
impact on its environmental footprint [13].

The problem of mitigating vortex shedding in the 2-D flow
past a circular cylinder via a controlled rotary motion of the
cylinder is often adopted as a benchmark to test strategies
and algorithms of flow control, as it is a relevant paradigm
of separated flows past bluff bodies. Complete suppression of
vortex shedding, i.e., the stabilization of the unstable, steady,
laminar solution of the equations, has been achieved only
at low Reynolds numbers. For instance, [49], [57], and [58]
have used linear design methods and have shown that these
become increasingly ineffective when the Reynolds number
increases, as nonlinear mechanisms in the wake become more
important. Nonlinear optimal control, in the receding-horizon
setting, is considered in [18] and more recently in [52]. In this
setting, the control in the form of the angular velocity of the
cylinder over a finite horizon is found in real time from an
expensive optimization procedure, involving repeated solutions
of the governing partial differential equations and of their
adjoints [53], [54]. In [52], stabilization of the flow was
achieved at higher Reynolds numbers than in previous works,
although the method is computationally expensive and the
controllability of the system will worsen at larger Reynolds
number.

In this section, we will test the method proposed in
Section IV on this benchmark problem.

A. Problem Formulation

The flow of the viscous incompressible fluid past the cylin-
der is described by the Navier–Stokes and continuity equations

∂v
∂ t

+ v · ∇v = −∇ p + 1

Re
∇2v, ∇ · v = 0 (16)

where v(x, t) is the velocity vector field defined on the
2-D Cartesian space x = (x, y), and p is the pressure.
The Reynolds number is Re = u∞ D/ν, where D is the
cylinder diameter, u∞ is the free stream velocity, and ν is the
kinematic viscosity of the fluid. Velocities, pressure, lengths,
and times have been made nondimensional using u∞ and D,
or combinations thereof. All numerical results of this section
were obtained for Re = 100. The problem domain is shown
in Fig. 1.

Flow actuation is performed via the boundary, via controlled
rotary motions of the cylinder. The scalar time-dependent
control input u(t) ∈ R is the tangential velocity normalized
with the free stream speed. To close the feedback loop,
we assume that full information on the velocity vector field is
available, as the focus of this paper is on the control design
method.

Fig. 1. Geometry of the problem.

DNS of the flow is performed using the OpenFoam
package [41], on an unstructured triangular mesh. The com-
putational domain 	 is the rectangle extending 10 and
20 diameters upstream and downstream the cylinder, respec-
tively, and 20 diameters wide in the cross-stream direction.
Free-slip boundary conditions are imposed on the upper
and lower horizontal boundaries. On the inlet, the Dirichlet
condition v = (1, 0) is imposed, whereas the Neumann
condition ∂p/∂x = 0 is used for pressure. At the outlet, good
numerical results have been obtained by using the condition
∂v/∂x = (0, 0), whereas the Dirichlet condition p = 0
was set to fix uniquely the pressure field. On the cylinder
surface, the velocity component normal to the cylinder is
set to zero, the tangential velocity is specified by the time-
dependent control input u(t), and a standard zero normal
pressure gradient condition is specified for the pressure. The
nondimensional time step was set to 
t = 0.005, to limit
the maximum value of the Courant–Friedrichs–Lewy number
below one. Validation and grid convergence studies have been
performed but are not reported in this paper as the numerical
method and the flow problem are rather standard.

In what follows, the inner product between two vector
fields v and w, defined as

〈v, w〉 =
∫

	
v · w d	

will be used. Such a definition implies that the norm of a
vector field is ‖v‖ = 〈v, v〉1/2.

B. Low-Order Modeling

A finite-dimensional description of the dynamics, in the
form of a set of first-order ordinary differential equations
with right-hand side that is a polynomial function in the state
variables and in the control, as in (13), is required for control
design. However, the system (16) is a partial differential
equation or, after discretization, a high-dimensional system
that will also be referred to as the full-order system in the
following. In this paper, the proper orthogonal decomposition
and the Galerkin projection [42] are adopted to obtain a
reduced-order description, an ROM that compactly describes
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the actuated dynamics of the wake and that can be used for
control design. In what follows, we report for the sake of
completeness the modeling strategy adopted in this paper,
which follows the works [35], [40]. The interested reader
is referred to these works and references therein for a more
detailed description of this strategy.

A truncated Galerkin expansion of the velocity field defined
by the ansatz

vN (x, t) = v(x) + u(t)vc(x) +
N∑

i=1

ai (t)vi (x) (17)

is first introduced. Here, the velocity field vN is decom-
posed into a sum of a mean flow v satisfying homogeneous
boundary conditions on the cylinder, a “control function”
u(t)vc(x) [35], [43] used to lift the time-dependent inhomoge-
neous boundary conditions on the oscillating cylinder surface
and to include control via the boundary in the dynamic model,
and a weighted sum of N basis functions vi (x) forming an
orthonormal set. A radially symmetric control function vc(x),
with circumferential velocity decaying as e−8(r−0.5), was used.

The snapshot variant of POD [44] is used to derive the
basis functions vi (x). Following the procedure described
in [40], the first set of snapshots of the velocity vector field,
V = {v(x, tk)}M

k=1, is sampled from a DNS in which the
angular motion of the cylinder is driven by a random actuation
signal, with the idea of exciting transient flow structures and
obtaining a richer snapshot set. The signal is obtained from
samples of a zero-mean Gaussian distribution, and it is then fil-
tered, such that its power spectrum has zero energy outside the
band of reduced frequency f D/u∞ = [0.1, 0.25], by setting
to zero the appropriate entries of its Fourier transform, before
transforming back to the real space. The frequency content
of the actuation signal is chosen to lie around the natural
shedding frequency fsh D/u∞ ≈ 0.17, as the controlled
dynamics are expected to remain near the natural design
point in the paradigm discussed here. The amplitude of the
filtered signal is then modulated by a mode with reduced
frequency f D/u∞ = 0.005, in order to actuate the flow at
different intensities, and it is then normalized to have unitary
maximum magnitude, resulting in a standard deviation equal to
about 0.25. The total duration of this simulation is T = 1000,
about 150 oscillation cycles of the uncontrolled flow, and a
total of M = 900 snapshots is sampled, from t ≥ 100,
at intervals of 1 nondimensional time unit.

The time-dependent, inhomogeneous boundary conditions
on the cylinder are then removed from the snapshots by
subtracting, with appropriate amplitude, the control function,
obtaining the set

V ′ = {vh(x, tk) = v(x, tk) − u(tk)vc(x)}M
k=1.

The arithmetic average is then computed

v(x) = 1

M

M∑

k=1

vh(x, tk)

and it is used as the mean flow for the ansatz (17). Finally,
the snapshot set

V ′′ = {vh(x, tk) − v(x)}M
k=1

is used for the POD algorithm, yielding the basis functions
vi (x), i = 1, . . . , M .

We selected the first N = 9 POD modes for the Galerkin
projection, capturing about 92% of the energy contained in
the snapshots, as a compromise between the accuracy of the
model to resolve the actuated dynamics of the wake and
the computational costs of the solution of the SOS problems
described in the previous sections. Furthermore, a shift mode
is added to improve transient dynamics over changes in the
base flow [45]. The shift mode is a basis function spanning
the direction from the mean flow v(x) to the unstable, steady,
and symmetric solution v0(x) of (16), obtained numerically as
the steady solution on the upper half domain, with free-slip
boundary condition on the symmetry plane. The shift mode is
constructed as

v
(x) = v − v0

‖v − v0‖
and it is made orthogonal to the remaining nine POD modes
using a Gram–Schmidt procedure.

Galerkin projection is performed by inserting the expan-
sion (17) into (16), and setting the inner product with each of
the modes in turn to zero. Neglecting the small contribution
arising from the projection onto the pressure gradient field,
as commonly done for this fluid flow [40], [45], results in the
nonlinear ROM

ȧi = ci +
N∑

j=1

Li j a j +
N∑

j=1

N∑

k= j

Ni jk a j ak

+ mi u̇ + ei u + biu
2 +

N∑

j=1

Fij a j u, i = 1, . . . , N

(18)

The definitions of the coefficients ci , Li j , Nijk , mi , ei , bi , Fij

arising from the projection are given in Appendix B. Because
of the particular choice of the function vc, the coefficients
of the quadratic term bi vanish identically. The matrices Li j ,
Nijk , and Fij are dense, which makes it difficult to include
them in the present text. In the vector form, the system (18)
is

ȧ = c + La + N(a)a + eu + Fau + mu̇

which is in the form given by equation (13), discussed in
Section IV. We assume that the full information on the system
state is available. In the DNS, the state vector is obtained from
projection of the POD basis functions on the solution, that is

ai (t) = 〈vi (x), v(x, t) − v(x)〉
In a physical experiment, the system state could be estimated
by designing a suitable state observer, based on wall or field
measurements [49]. The ROM (18) is integrated numerically
using a standard fourth-order Runge–Kutta method, with the
time step 
t = 0.001.

For this flow problem, we select the term �0 in (7) to be
the energy of the system

�0(a) = 1

2
aT a
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similarly to other works [40]. Physically, �0 represents the
domain integral of the kinetic energy of the velocity fluctu-
ations resolved by the ansatz (17). As a result, reduction of
this quantity will result in a reduction of the wake unsteadiness
associated with vortex shedding.

The ten-mode dynamical system obtained from projection
does not represent very accurately the dynamics of the full-
order system, that is the numerical solution of the discretized
governing equations (16). In particular, the long-term behavior,
the stable limit cycle associated with vortex shedding, is not
correctly represented. In fact, numerical integration of the
ROM with u(t) = 0 shows that trajectories converge to a
stable limit cycle with a long-time-averaged cost �0 about
three times higher than that obtained from the projections
of the basis functions on the long-term solution of the full-
order system. Because the long-time average cost of dynam-
ical systems is usually based on the structure and type of
the invariant sets of the system, it is desirable to have an
ROM whose long-term behavior is as similar as possible to
that of the full-order system. To this end, we apply a model
calibration scheme, which has become the standard practice
to correct the neglected effects of truncated modes on the
resolved modes [46], [47].

Following previous work [48], a linear calibration term Lc
i j ,

with nonzero elements on the main, first upper and first
lower diagonals is added to the linear term Li j in (18). This
calibration term is obtained as the solution of an optimization
problem in which the integral of the norm of the error between
the ROM trajectory and the projection of the trajectory of the
full-order system onto the selected subspace, obtained from a
numerical simulation of the uncontrolled flow, is minimized.
In more formal notation, we solve numerically

min
Lc

i j

∫ t1

t0
‖a(t; t0, Lc

i j ) − ã(t; t0)‖2dt

where ãi are the projections of the DNS solution onto the
POD basis functions, and the notation a(t; t0; Lc

i j ) denotes
that the calibrated ROM is integrated in time from an initial
condition a(t0) = ã(t0), with u(t) = 0. The final time t1 is
such that t1 − t0 amounts to 10 vortex shedding periods.

The calibrated ROM possesses a stable limit cycle closer to
that of the full-order system. However, poor controllability of
this ROM was observed, as opposed to larger models that did
not present this behavior, suggesting that the rotary actuation
of the cylinder affects via viscosity the large scale motion,
i.e., the resolved modes, through linear/nonlinear interaction
of the truncated modes. To mitigate this poor controllability,
we also calibrate part of the coefficients associated with
control in (18), in particular those associated with the term
ei and mi , against the numerical simulation used to obtain the
POD modes, using a similar procedure as for the term Lc

i j .
This resulted in the ROM suitable for control design for this
particular flow.

C. Calculation of the Upper Bound

In what follows, the maximum degrees of polynomials V , S,
and u are denoted by dV , dS , and du , respectively.

The SDP problem O0 is solved first, to provide an estimate of
the upper bound of the uncontrolled system. The least upper
bound found by straightforward application of the method is
C0,SOS = 167, for a degree dV0 of the polynomial function V
equal to 4. This value is considerably higher than the long-time
averaged cost �0 = 3.07 obtained from long-time numerical
integration of the ROM (18) and by discarding initial transients
before the trajectory has converged to the stable limit cycle
associated with vortex shedding.

The likely reason for this discrepancy is the existence of a
spurious invariant set (a fixed point, a periodic orbit, or another
set), far away from the origin in the 10-D phase space of
the ROM, which, by design, can be expected to approximate
the full Navier–Stokes system only in the vicinity of the
actual attractor. Such a spurious set, even if it were unstable,
would affect negatively the calculation of the bound. This
difficulty can be resolved by confining the volume of the
phase space where the polynomial inequalities involving the
bounds need to be satisfied. For this, we consider the set
described by the ball B = {a ∈ R

10 : 1/2aT a � 4} that
contains the periodic orbit associated with vortex shedding.
To satisfy the polynomial inequality associated with the esti-
mation of the bound in this ball rather than in the entire space,
the S-procedure is used: a polynomial function in the state
variables S0(a), of degree dS0 and with unknown coeffi-
cients as decision variables is introduced to modify the
problem O0 to

O ′
0 : min

V0,C0
C0

s.t.

{
−F0(V0, C0) − S0(a)(8 − aT a) is SOS

S0(a) is SOS.

For the case dV0 = 4 and dS0 = 4, the minimal upper bound
we achieve is C0,SOS = 3.07, which is close to the value
obtained from long-time integration of the ROM.

D. Design of Small-Feedback Controller

In many situations, the dependence of the cost function on
the control law is prescribed. However, in certain aeronautical
applications, the cost of implementing the control, that is the
cost of sensors, actuators, and the associated overheads, such
as for example the drag penalty due to the increased mass
of the aircraft, while significant, is independent of the control
law. At the same time, once the control device is installed,
its operational cost, that is for example the additional fuel
consumption needed to operate the controller, might be small
as compared with the potential gain. In this situation, the actual
cost is in fact independent of the control law. On the other
hand, in practice, the implementation cost would depend on
the required magnitude of control, so that it is desirable to keep
it small. With this situation in mind, an artificial penalty on
the control law, dependent on a parameter, can be added to the
cost function. The control law can then be designed, and the
parameter can be varied afterward to evaluate the usefulness of
control. With this in mind, we will select the particular form
of the penalty term to be simple. Namely, we will assume
that the cost function is � = �0 + ||u||2/ε, where ε is an
artificial expensive-control parameter, assumed to be small.
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A small-feedback controller u = εu1 is to be designed to
reduce the time-averaged cost �̄.

Similarly to O ′
0, an additional S-procedure is applied to the

problem O1 to enforce the polynomial inequalities only in the
ball B. This leads to the modified problem

O ′
1 : min

V1,u1,S0,S1,C1
C1

s.t.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−F1(V0,SOS, V1, u1, C1)

+S1(a)F0(V0,SOS, C0,SOS)

−S0(a)(8 − aT a) is SOS,

S0(a) is SOS.

To overcome the nonlinearity due to the term u2
1 in F1, we use

the Schur complement formula, i.e., F1 ≤ 0 is equivalent to
the nonnegativeness of the matrix

E1
�=

[ −W1 u1
u1 1

]

where W1 = f · ∇aV1 + (eu1 + Fau1 + m(du1/(daf))) ·
∇aV0 − C1. Thus, the problem O ′

1 can be transformed to

O ′′
1 : min

V1,u1,S0,S1,C1
C1

s.t.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

zT E1(V0,SOS, V1, u1, C1)z

+S1(a, z)F0(V0,SOS, C0,SOS)

−S0(a, z)(8 − aT a) is SOS

S0(a, z) is SOS.

To reduce the complexity of the optimization, we choose
S0(a, z) = s0(a)zT z and S1(a, z) = s1(a)zT z.

When du1 = 1, ds1 = 2, and ds0 = dV1 = 4, solving O ′′
1

yields C1,SOS = −15.5, associated with a linear controller

u1,SOS = −0.0845x1 + 1.6704x2 + 0.9074x3 + 0.5520x4

− 2.8371x5 + 1.5102x6 − 2.2499x7 + 2.9690x8

− 0.1860x9 − 3.5105x10 (19)

Furthermore, solving O ′′
1 for du1 = 2 results in a quadratic

controller with C1,SOS = −18.49 and

u1,SOS = ka + aT Ma. (20)

The numerical values of k and M are given in Appendix C.
The quadratic controller results in a lower value of C1,SOS, as
it should be expected.

E. Closed-Loop Control Results for
the Reduced-Order Model

Once the state-feedback controller coefficients were identi-
fied, the actual time-averaged costs � and �0 were calculated
from numerical integration of the ordinary differential equation
of the closed-loop ROM (18), for a total integration time long
enough to provide converged values of the averages and for
several increasing values of the parameter ε. A point on the
periodic orbit of the ROM was selected as initial condition
and initial transients were discarded from the calculation of
the time average to improve the accuracy.

Results are summarized in Figs. 2 and 3, for the linear and
quadratic controllers (19) and (20), respectively. The linear

Fig. 2. Time-averaged costs �0 and � from closed-loop ROM simulation
using linear controllers, and the asymptotics C0,SOS + εC1,SOS of the upper
bound for �.

Fig. 3. Time-averaged costs �0 and � from closed-loop ROM simulation
using quadratic controllers, and the asymptotics C0,SOS + εC1,SOS of the
upper bound for �.

approximation of the bound CSOS, i.e., C0,SOS + εC1,SOS, is
also presented for comparison.

Numerical simulation of the closed-loop system shows that
the linear small-feedback controller u = εu1,SOS reduces the
actual long-time average cost to a minimum value equal to
� = 2.867, for ε = 0.025. At this value, the system’s
energy �0 is equal to 2.656. The system’s energy decreases
remarkably more if the parameter ε is increased further, as the
control effort becomes significant, as hinted by the increase
of the total cost �. We point out that the difference between
� and �0 is the time average of u2/ε. Hence, the penalization
factor 1/ε decreases monotonically as the magnitude of the
control is increased, whereas one might be interested in having
a constant penalization factor that has a physical, rather than
technical, meaning.

The two-term expansion C0,SOS + εC1,SOS is only a linear
approximation of CSOS. Thus, formally, it behaves correctly
as an upper bound of � only when ε is small, but the approx-
imation breaks down when ε is further increased. In fact,
the results of the numerical calculations suggest that at ε = 0,
the slope d�(ε)/dε < C1,SOS = −15.5.

The effect of ε on � can be seen more clearly by investigat-
ing the qualitative properties of the long-term behavior of the
closed-loop system. For ε = 0, the trajectories of the system
converge to a stable limit cycle, over which the long-time
average of � = �0 is 3.07. When ε is increased, the controller
reduces the “size” of this limit cycle, where the “size” is
measured by �0. The cost is reduced up to ε ≈ 0.4, after
which the cost grows dramatically as the controller induces
an internal bifurcation in the system.
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Fig. 4. Profile of the control input for the linear feedback controller
with ε = 0.025.

Fig. 5. Profile of the control input for the quadratic feedback controller with
ε = 0.02.

The quadratic small-feedback controller, Fig. 3, yields qual-
itatively similar results. Although the slope of �(ε) at ε = 0 is
larger than that associated with linear controllers, the minimum
value of � for a finite ε = 0.02 is 2.838 at which �0 = 2.613.
This minimal value of � is only marginally smaller than the
minimal value obtained with a linear controller. For ε > 0.08,
the cost increases significantly.

Figs. 4 and 5 show the control input profiles when
ε = 0.025 in the linear case and ε = 0.02 in the quadratic case,
respectively, the values at which the largest reduction of the
long-time averaged cost was obtained in numerical integration
of the closed-loop ROM.

In both situations, the control input is a periodic function
of time, with a period of oscillation approximately equal to
six nondimensional time units. This occurs because when the
system trajectory is on the limit cycle, the state variables
are periodic, and so is the control input. This also applies
when the system is controlled, and its trajectory is on a
different, controlled limit cycle. Interestingly, the effect of
the quadratic terms in the quadratic controller, which would
introduce frequency components in u at twice the fundamental
frequency, appears small, possibly justifying the similarity in
performance between linear and quadratic controllers.

In summary, the proposed small-feedback controller
designed to yield a reduced bound of the long-time averaged
cost for small ε also reduces the long-time average cost itself.

F. Closed-Loop Control Results for
Direct Numerical Simulation

The linear and quadratic controllers (19) and (20) were
also implemented in DNS of the fluid flow, to assess their

Fig. 6. Long-time averaged cost as a function of ε obtained by closed-
loop DNS. Results for linear (triangles) and quadratic (circles) controllers are
reported.

performance. Multiple simulations, for increasing values of ε,
have been run similar to the results shown in Figs. 2 and 3.
The initial condition is chosen to lie on the periodic limit
cycle of the full-order system associated with vortex shedding.
A total integration time sufficient to have converged long-time
averages, discarding the initial transient, was selected.

Fig. 6 summarizes the results for linear and quadratic
controllers in DNS, and it is the direct equivalent
of Figs. 2 and 3.

The solid curves refer to �0, whereas the dashed curves
refer to �, hence including the control penalization u2/ε. The
horizontal line for �

u
is the value of the long-time averaged

cost for the uncontrolled system.
It can be observed that the time-averaged system’s energy

�0 initially decreases as ε increases, up to ε = 5 × 10−3.
However, if the parameter ε is further increased, performance
worsens. This value is lower by a factor of 4 ∼ 5 than what
found in simulation of the ROM, in Figs. 2 and 3. As a
result, the minimum value of �0 is 2.922, and the percentage
reduction of the long-time averaged cost is lower than that
observed from application of the same controller on the ROM.
Note that without control, the time-averaged resolved energy
associated with the attractor of the full-order system, 2.947,
is slightly lower than that associated with the ROM, 3.07,
because the effects of truncation of high-order POD modes
have not been completely recovered by the calibration. Also
note that the slope of �0 as a function of ε evaluated at
ε = 0 (estimated from a linear fit of the first three data
points), is −10.0, for both the linear and quadratic controllers.
The value obtained from closed-loop simulation of the ROM,
deduced using a similar method, is −33.134 for the linear
controllers, and −38.322 for the quadratic controllers, hence
significantly lower.

If the cost of the control is also included, no reduction
of the total cost is observed in DNS. However, it is worth
pointing out, as anticipated, that the formalism introduced to
force the smallness of the control, with the penalization on
the input as u2/ε, is artificial. A further important result is
that, in DNS, the effect of quadratic controllers is similar to
that of linear controllers, but requires a higher control input
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Fig. 7. Closed-loop control results for linear controllers with increasing ε.
(a) Time history of control input. (b) Time history of the system’s energy.
(c) Time history of drag coefficient.

and result in a higher total cost. However, for the ROM,
quadratic controllers resulted in slightly better performance.
This result seems to suggest that high-degree polynomial
controllers designed on approximate models might not have
better performance in DNS.

Fig. 7 shows time histories of the control input u(t),
panel (a), of the system’s energy �0(a), panel (b), and of the
drag coefficient CD(t), panel (c), obtained from DNS results
of linear controllers for four different values of ε selected from
Fig. 6. Control is activated at t = 10. The drag coefficient
is obtained from integration of the pressure and shear stress
distributions along the cylinder surface. The results for the
quadratic controllers are not reported, because they are quite
similar in character to those of the linear controllers.

The input u(t) is a periodic function of time. For
ε = 5 × 103, for which the long-time average of �0 is reduced
the most, its peak-to-peak variation is small, on the order
of 0.05, i.e., the cylinder oscillates only slightly. Time inte-
gration of u(t), yielding the cylinder angular rotation, shows
that the total oscillation is about 26° for this case. The control
input is periodic, because it is a linear function of the state
variables, some of which are close to sinusoids where the
system trajectory lies on the periodic limit cycle associated
with vortex shedding. This applies when the control is small
and the dynamics are not perturbed significantly. For larger
values of ε, a modulation of the control signal is observed
as the actuated dynamics of the full-order system change
significantly.

When control is activated, the system exhibits a transient
during which �0 and CD initially decrease. Their reduction
and the time rate at which they decrease is considerable for
larger ε. This result clearly shows that the small-feedback
controller has correctly identified the right physical mechanism

for control to mitigate vortex shedding when the system is near
the attractor.

However, after approximately 10 ∼ 20 time units, approx-
imately 2 ∼ 3 shedding cycles, when the system trajectory
departs from the neighborhood of the attractor, control effec-
tiveness is lost and the cost begins to increase, especially
for larger values of ε. For small values, i.e., small control
input, the cost eventually settles down to a time-averaged
value lower than that associated with the uncontrolled system,
indicated in panels (b) and (c) as a horizontal line. For larger
values of ε, e.g., 0.02, the cost increases significantly. This
occurs because the small-feedback controller is designed to
control the flow only in a narrow volume of the phase space
containing the attractor. For large ε, the controller drives the
fluid flow too far from the model design point and performance
worsen. From this perspective, the relatively good reduction
observed in Figs. 2 and 3 for large ε is artificial as the
ROM dynamics for such a large control input are not physi-
cally realistic.

The benefit of the applied control can appear rather modest
when compared to results of other linear and nonlinear control
methods applied on this flow problem. For instance, in [40],
a reduction of the wake unsteadiness of 69% is reported,
although at Re = 200 and using finite-horizon nonlinear
optimal control on a 20-mode POD-ROM. In Ref. [49],
an online model predictive control scheme is implemented,
using on a three-mode POD-ROM of the cylinder wake at
Re = 100, actuated using a vertical volume force instead
of using cylinder rotation. These authors obtained a reduc-
tion of the fluctuation kinetic energy of about 94%. Good
control performance on this flow problem has been obtained
using a variety of linear control methods (see [56], [57],
and references therein). For instance, in [58], a feedback
design method based on the linearized dynamics around the
unstable steady solution is proposed. These authors examined
the sensitivity of the linear stability problem with respect to
the controller parameters, in order to displace the eigenvalues
of the unstable and least stable modes to the left half of
the complex plane via control design. At Re = 100, for a
square cylinder, their control method was able to fully stabilize
vortex shedding, for simulations started from the nonlinear
saturated regime, but performance significantly worsened at
larger Reynolds number. This is a common factor to linear
design methods, as the dynamics are driven by increasingly
nonlinear mechanisms. Typically, there is also no rigorous
guarantee that the controller will actually perform well in
strongly nonlinear regimes and performance has to be verified
a posteriori.

Hence, in spite of the modest results presented in this paper,
we stress that the unique contribution of this paper is on a
theoretical level, and goes beyond the results obtained on this
particular application. The control paradigm we discussed is a
clear departure from well-established linear control methods;
it is rigorous and systematic and enables optimizing long-
time averages in fully nonlinear regimes. For turbulent flows,
the key necessity is not to change the growth rates, i.e., as
in linear control, but to change, even by a slight amount,
the statistics of the attractor.
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The fundamental origin of the discrepancy in performance
between the ROM and the full-order system is that the present
ten-mode ROM is constructed to model the dynamics of the
actuated flow only in a relatively small volume of the phase
space around the design point, i.e., around the unactuated
periodic limit cycle. Although the effect of actuation are in
part taken into account in the construction of the model, and
in particular in the generation of the POD subspace, when
the amplitude of the control is increased via ε, the separation
between actual and modeled dynamics increases consistently.
A larger ROM would give accurate prediction in a larger
volume of the phase space, that is for larger values of ε.
If this were the case, a better match of the actuated dynamics
near the attractor, i.e., a better match between the results
in Figs. 2, 3, and 6 would have been observed. Hence,
the relatively poor performance observed in DNS can be
attributed to the necessity to include only ten modes in the
Galerkin projection. We have derived ROMs for this flow
problem using 20 or 30 modes that could describe with
more accuracy the actuated dynamics of the flow. However,
the computational costs associated with the solution of the
SOS problems O ′

0, O ′′
1 , memory- and timewise, using these

larger models was too large. Further algorithmic and numerical
advances are required to enable the application of the present
methodology to larger systems. Finally, it might as well be
that, even using a larger, more accurate model, results would
not be much better. In the present paradigm, the controller
is designed for infinitesimally small perturbations around the
natural dynamics of the system. For finite values of ε, control
performance really depends on how much these dynamics
change as a result of the actuation, since the control structure
is fixed.

VI. CONCLUSION

Based on SOS decomposition of polynomials and SDP,
a numerically tractable approach is presented for expensive
control of the long-time average cost of polynomial dynamical
systems. The control law is restricted to polynomials of the
system state. The derivation of the controller is given in terms
of solvability conditions of state-dependent linear and bilinear
inequalities. The nonconvexity in SOS optimization is resolved
by making use of the smallness of the perturbation parameter
describing the (high) control cost without applying iterative
algorithms. The proposed control design scheme has been
applied to the problem of mitigating 2-D vortex shedding past
a circular cylinder at low Reynolds number, using controlled
rotary oscillations in a full-information controller setting.
Linear and nonlinear controllers, designed using an approx-
imate ROM of the actuated flow, have also been implemented
in DNS.

The proof of concept of the idea of using the upper bound
of long-time average cost control as the objective of the
control design, the method of overcoming the nonconvexity of
simultaneous optimization of the control law and the tunable
function under the structure of expensive control, as well as
the detailed implementation of the proposed control scheme
to a particular fluid flow are the three main contributions of
this paper.

APPENDIX A
PROOF OF THEOREM 1

Let VSOS = V0,SOS + εV1,SOS. By substituting V = VSOS,
C = Cκ,SOS, u = uSOS in the constraint function F(V , u, C)
that is defined in (11), the remaining task is to seek small
ε > 0 such that

F(VSOS, uSOS, Cκ,SOS) ≤ 0. (21)

Notice that

F(VSOS, uSOS, Cκ,SOS)

= F0(V0,SOS, C0,SOS)

+ εF1(V0,SOS, V1,SOS, u1,SOS, C1,SOS)

+ ε(1 − κ)C1,SOS + ε2w(x, ε) (22)

where

w(x, ε)

= Gu1 · ∇xV1,SOS

+ 1

ε2

(
�(x, εu1,SOS) − �(x, 0) − ε

∂�

∂u
(x, 0)u1,SOS

)

and F0, F1, being polynomial in x, possess all the continuity
properties implied by the proof. Let D ⊆ R

n be the phase
domain that interests us, where the closed-loop trajectories
are all bounded. Then

F1,max
�= max

x∈D
F1(V0,SOS, V1,SOS, u1,SOS, C1,SOS) < ∞

(23)

and w(x, ε) is bounded for any x ∈ D and any finite ε (the
latter following from the standard mean-value-theorem-based
formula for the Lagrange remainder). By (22) and (23)

F(VSOS, uSOS, Cκ,SOS)

≤ F0(V0,SOS, C0,SOS) + εF1,max

+ ε(1 − κ)C1,SOS + O(ε2). (24)

Consider the two inequality constraints obtained by solving O0
and O1

⎧
⎪⎨

⎪⎩

F0(V0,SOS, C0,SOS) ≤ 0

F1(V0,SOS, V1,SOS, u1,SOS, C1,SOS) ≤ 0

∀xsuch that F0(V0,SOS, C0,SOS) = 0.

(25)

Define Dδ
�= {

x ∈ D|δ ≤ F0(V0,SOS, C0,SOS) ≤ 0
}

for a
given constant δ ≤ 0. Clearly, Dδ → D0 as δ → 0. Further
define

F1,δ(δ)
�= max

x∈Dδ

F1(V0,SOS, V1,SOS, u1,SOS, C1,SOS).

By the second constraint in (25), limδ→0 F1,δ(δ) ≤ 0.
Therefore, by continuity and the fact C1,SOS < 0, for any
0 < κ < 1, there exists a constant δκ < 0 such that

F1(V0,SOS, V1,SOS, u1,SOS, C1,SOS)

≤ F1,δκ < −1

2
(1 − κ)C1,SOS∀x ∈ Dδκ . (26)
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k = [−0.0790 1.5406 1.0863 0.5558 − 2.4814 0.9818 − 2.4206 − 0.1333 0.3233 0.3959] (30)

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.2874 0.0285 −0.0194 −0.1038 −0.0775 0.0181 −0.1399 0.0369 0.0854 −0.0277
0.0285 −0.2981 −0.0784 0.0302 −0.0186 −0.1099 0.0560 0.0630 −0.1956 0.2916

−0.0194 −0.0784 −0.2135 0.0097 −0.0573 0.0516 −0.0578 0.1121 −0.6484 0.4140
−0.1038 0.0302 0.0097 −0.2520 0.0537 0.0476 −0.1767 −0.0604 −0.0824 0.0619
−0.0775 −0.0186 −0.0573 0.0537 −0.2072 −0.0730 −0.3547 −0.0262 0.4199 0.2580

0.0181 −0.1099 0.0516 0.0476 −0.0730 −0.1572 0.2190 0.3750 0.3342 −0.1550
−0.1399 0.0560 −0.0578 −0.1767 −0.3547 0.2190 −0.5368 −0.2473 −0.6232 0.2140

0.0369 0.0630 0.1121 −0.0604 −0.0262 0.3750 −0.2473 0.6261 −0.2342 0.2815
0.0854 −0.1956 −0.6484 −0.0824 0.4199 0.3342 −0.6232 −0.2342 0.2063 0.0571

−0.0277 0.2916 0.4140 0.0619 0.2580 −0.1550 0.2140 0.2815 0.0571 0.0221

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(31)

In consequence, (22), the first constraint in (25), and (26)
render to

F(VSOS, uSOS, Cκ,SOS)
≤ F0(V0,SOS, C0,SOS) + εF1,δκ

+ ε (1 − κ)C1,SOS + O(ε2)

≤ ε

2
(1 − κ)C1,SOS + O(ε2) ≤ 0, ∀x ∈ Dδκ (27)

for sufficiently small ε. Hence, (21) holds for any x ∈ Dδκ .
The remaining is to prove (21) for any x ∈ D \Dδκ . By the

definition of the set Dδκ , we have

F0(V0,SOS, C0,SOS) < δκ < 0 ∀x ∈ D \ Dδκ . (28)

Then, (24) and (28) yield

F(VSOS, uSOS, Cκ,SOS)

≤ δκ + εF1,max + ε (1 − κ)C1,SOS + O(ε2)

≤ δκ + O(ε) ≤ 0,∀x ∈ D \ Dδκ (29)

if ε is sufficiently small. Then, (27) and (29) imply that (21)
holds ∀x ∈ D. The proof is completed.

APPENDIX B
GALERKIN PROJECTION TERMS

With ωi (a) being the scalar vorticity field associated with
mode vi (a), and similarly for v and vc(a), Galerkin projection
results in the following coefficients:

ci = − 1

Re

∫

	
ωi∇2ωd	 −

∫

	
vi · (v · ∇v)d	

Li j = − 1

Re

∫

	
ωi∇2ω j d	 −

∫

	
vi · (v · ∇v j )d	

−
∫

	
vi · (v j · ∇v)d	

Nijk = −
∫

	
vi · (v j · ∇)vkd	

mi = −
∫

	
vi · vcd	

ei = −
∫

	
vi · (vc · ∇v + v · ∇vc), d	 − 1

Re

∫

	
ωiωcd	

bi = −
∫

	
vi · (vc · ∇vc)d	

Fij = −
∫

	
vi · (v j · ∇vc + vc · ∇v j )d	.

In the present case, all the coefficients bi are identically zero
because of the radial symmetry of the control function vc.
Domain integrals are evaluated numerically on the triangular
unstructured mesh by using a linear approximation of the
integrand function based on nodal values. All derivatives are
computed using a local quadratic interpolation scheme avail-
able in Algorithm 624 from [50]. Strictly, some of the above
definitions do not contain the line integrals on the boundary of
the domain arising from the use of vector calculus identities
to eliminate the Laplacian, as in [40, Appendix 2], as these
are found to be quite small and negligible in the present
case with respect to the domain integrals above. Appropriate
symmetries in the tensor Nijk are numerically enforced after
the computations of the integrals to ensure that the nonlinear
term is energy preserving [51] for a discussion on this topic
for the present case).

APPENDIX C
QUADRATIC CONTROLLER

The numerical values of k and M in (20) are given
in (30) and (31), as shown at the bottom of this page
respectively.
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