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Abstract

This paper provides a novel mechanism for identifying and estimating latent group structures in panel

data using penalized techniques. We consider both linear and nonlinear models where the regression

coefficients are heterogeneous across groups but homogeneous within a group and the group membership

is unknown. Two approaches are considered — penalized profile likelihood (PPL) estimation for the

general nonlinear models without endogenous regressors, and penalized GMM (PGMM) estimation for

linear models with endogeneity. In both cases we develop a new variant of Lasso called classifier-Lasso

(C-Lasso) that serves to shrink individual coefficients to the unknown group-specific coefficients. C-

Lasso achieves simultaneous classification and consistent estimation in a single step and the classification

exhibits the desirable property of uniform consistency. For PPL estimation C-Lasso also achieves the

oracle property so that group-specific parameter estimators are asymptotically equivalent to infeasible

estimators that use individual group identity information. For PGMM estimation the oracle property of

C-Lasso is preserved in some special cases. Simulations demonstrate good finite-sample performance of

the approach both in classification and estimation. Empirical applications to both linear and nonlinear

models are presented.
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1 Introduction

Panel data are widely used in empirical analysis in many disciplines across the social and medical sciences.

Such data usually cover individual units sampled from different backgrounds and with different individual

characteristics so that an abiding feature of the data is its heterogeneity, much of which is simply unobserved.

Neglecting latent heterogeneity in the data can lead to many difficulties, including inconsistent estimation

and misleading inference, as is well explained in the literature (e.g., Hsiao 2014, ch. 6). It is therefore widely

acknowledged that an important feature of good empirical modeling is to control for heterogeneity in the

data as well as for potential heterogeneity in the response mechanisms that figure within the model. Since

heterogeneity is a latent feature of the data and its extent is unknown a priori, respecting the potential

influence of heterogeneity on model specification is a serious challenge in empirical research. Even in the

simplest linear panel data models the challenge is manifest and clearly stated: do we allow for heterogeneous

slope coefficients in regression as well as heterogeneous error variances?

While it may be clearly stated, this challenge to the empirical researcher is by no means easily addressed.

While allowing for cross-sectional slope heterogeneity in regression may help to avert misspecification bias,

it also sacrifices the power of cross section averaging in the estimation of response patterns that may be

common across individuals, or more subtly, certain groups of individuals in the panel. In the absence of

prior information on such grouping and with data where every new individual to the panel may bring new

idiosyncratic elements to be explained, the challenge is demanding and almost universally relevant.

Traditional panel data models frequently deal with this challenge by avoidance. Complete slope ho-

mogeneity is assumed for certain specified common parameters in the panel. Under this assumption, the

regression parameters are the same across individuals and unobserved heterogeneity is modeled through

individual-specific effects which typically enter the model additively. This approach is an exemplar of a

convenient assumption that facilitates estimation and inference. Nevertheless, this assumption has been

frequently questioned and rejected in empirical studies; see Hsiao and Tahmiscioglu (1997), Lee, Pesaran,

and Smith (1997), Durlauf, Kourtellos, and Minkin (2001), Phillips and Sul (2007a), Browning and Carro

(2007, 2010, 2014), and Su and Chen (2013), among others.

Despite general agreement that slope heterogeneity is endemic in empirical work with panels, few methods

are available to allow for heterogeneity in the slopes when the extent of the heterogeneity is unknown. Some

researchers assume complete slope heterogeneity where regression coefficients are completely different for

different individuals; see the survey by Baltagi, Bresson, and Pirotte (2008) and Hsiao and Pesaran (2008).

Others consider panel structure models where individuals belong to a number of homogeneous groups within

a broadly heterogeneous population, and the regression parameters are the same within each group but differ

across groups. Two essential questions remain: how to determine the unknown number of groups (dubbed

convergence clubs in the economic growth literature); and how to identify the membership of each individual.

These are longstanding questions of statistical classification in panel data. No completely satisfactory solution

has yet been found, although various approaches have been adopted in empirical research. For instance,

Bester and Hansen (2016) consider a panel structure model where individuals are grouped according to

some external classification, geographic location, or observable explanatory variables; Ando and Bai (2014)

consider a multifactor asset-pricing model with group-specific pervasive factors where the group membership

is known. Here the group structure is assumed to be completely known to the researcher, an approach

that is common in practical work because of its convenience. In spite of its convenience, this approach to
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panel inference is inevitably misleading when the number of groups and individual identities are incorrectly

classified.

Several approaches have been proposed to determine an unknown group structure in modeling unobserved

slope heterogeneity in panels. The first approach applies finite mixture models. For example, Sun (2005)

considers a parametric finite mixture linear panel data model, and Kasahara and Shimotsu (2009) and

Browning and Carro (2011) study identification in discrete choice panel data models for a fixed number of

groups using nonparametric discrete mixture distributions. The second approach is based on the K-means

algorithm in statistical cluster analysis. Lin and Ng (2012) and Sarafidis and Weber (2015) consider linear

panel data models where the slope coefficients have latent group structure. They modify the K-means

algorithm to estimate the models but do not provide any inference theory. Bonhomme and Manresa (2015,

BM hereafter) consider a linear panel data model where the additive fixed effects have group structure and

apply the K-means algorithm to estimate the model and study its asymptotic properties. Ando and Bai

(2015) extend BM’s approach to allow for group structure among the interactive fixed effects. In addition,

Phillips and Sul (2007a) develop an algorithm for determining group clusters that relies on the estimation

of evaporating trend functions to determine convergence clusters. Hahn and Moon (2010) argue that the

group structure has sound foundations in game theory or macroeconomic models where multiplicity of Nash

equilibria is expected and they consider nonlinear panel data models where the parameter of interest is

common to individuals whereas the fixed effects have finite support.

The present paper proposes a new method for econometric estimation and inference in panel models

when the regression parameters are heterogenous across groups, individual group membership is unknown,

and classification is to be determined empirically. It is an automated data-determined procedure and does

not require the specification of any modeling mechanism for the unknown group structure. The methods

proposed here have several novel aspects in relation to earlier research and they contribute to both the Lasso

and econometric classification literatures in various ways, which we outline in the following paragraphs.

First, our approach is motivated by a key advantage of Lasso technology in coping with parameter

sparsity. This advantage is particularly useful when the set of unknown parameters is potentially large

but may also embody certain sparse features. In a typical panel structure model, the effective number of

unknown regression parameters {  = 1 } is not of order  () as it would be if these parameters
were all incidental, but rather of some order  (0)  where 0 denotes the number of unknown groups

within which the parameters are homogeneous. Hence, in many empirical applications the set of unknown

parameters in a panel structure model surely exhibits the desirable sparsity feature, making the use of Lasso

technology highly appealing.

Second, the procedures developed in the present paper contribute to the fused Lasso literature in which

sparsity arises because some parameters take the same value. The fused Lasso was proposed by Tibshirani,

Saunders, Rosset, Zhu, and Knight (2005) and was designed for problems with features that can be ordered

in some meaningful way. It has been used to detect multiple structural changes in the time series setting;

see, e.g., Harchaoui and Lévy-Leduc (2010), Chan, Yau, and Zhang (2014), and Qian and Su (2015). The

method cannot be used to classify individuals into different groups because there is no natural ordering

across individuals and so a different algorithm to locate common individuals is required. The present paper

develops a new variant of the Lasso method that does not rely on the order of individuals in the data and

which therefore contributes to the fused Lasso technology.

Third, standard Lasso technology involves an additive penalty term to the least-squares, GMM, or log-
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likelihood objective function and when multiple penalty terms are used they enter the objective function

additively. To achieve simultaneous group classification and estimation in a single step our variant of Lasso

involves additive penalty terms, each of which takes amultiplicative form as a product of0 penalty terms.

To the best of our knowledge, this paper is the first to propose a mixed additive-multiplicative penalty form

that can serve as an engine for simultaneous classification and estimation. The method works by using each

of the 0 penalty terms in the multiplicative expression to shrink the individual-level regression parameter

vectors to a particular unknown group-level parameter vector, thereby producing a joint shrinkage process to

unknown quantities. This process is distinct from the prototypical Lasso method that shrinks an individual

parameter to the known value zero and the group Lasso method that shrinks a parameter vector to a known

vector of zeros (see Yuan and Lin, 2006). To emphasize its role as a classifier and for future reference, we

describe our new Lasso method as the classifier-Lasso or C-Lasso.

Fourth, we develop a double asymptotic limit theory for the C-Lasso that demonstrates its capacity

to achieve simultaneous classification and estimation in a single step. As mentioned in the Abstract, the

paper develops two classes of estimators for panel structure models — penalized profile likelihood (PPL)

and penalized GMM (PGMM). The former is applicable to both linear and nonlinear panel models without

endogeneity and with or without dynamic structures, while the latter is applicable to linear panel models

with endogeneity or dynamic structures. Both broaden the scope of applicability of our method as early

literature only considers linear panels without endogeneity. In either case, we show uniform classification

consistency in the sense that all individuals belonging to a certain group can be classified into the same group

correctly uniformly over both individuals and group identities with probability approaching one (w.p.a.1).

Conversely, all individuals that are classified into a certain group belong to the same group uniformly

over both individuals and group identities w.p.a.1. Such a uniform result allows us to establish an oracle

property of the PPL estimator that, like the BM K-means estimator, is asymptotically equivalent to the

corresponding infeasible estimator of the group-specific parameter that is obtained by knowing all individual

group identities. Unfortunately, our PGMM estimator generally does not have the oracle property. But the

uniform classification consistency property allows us to develop a limit theory for post-C-Lasso estimators

that are obtained by pooling all individuals in an estimated group to estimate the group-specific parameters

and these estimators are asymptotically as efficient as the oracle ones in both the PPL and PGMM contexts.

Fifth, C-Lasso enables empirical researchers to study panel structures without a priori knowledge of the

number of groups, without the need to specify any ancillary regression models to model individual group

identities, and with no need to make any distributional assumptions. When the number 0 of groups is

unknown, a BIC-type information criterion is proposed to determine the number of groups for both PPL and

PGMM estimation and it is shown that this procedure selects the correct number of groups consistently.

The rest of the paper is organized as follows. We study C-Lasso PPL estimation and inference of panel

structure models in Section 2. PGMM estimation and inference is addressed in Section 3. Section 4 reports

Monte Carlo simulation findings. Section 5 contains two empirical applications. Section 6 concludes. Proofs

of the main results in the paper are given in Appendices A and B. Additional materials may be found in the

Supplemental Material.

For any real matrix  we write the transpose 0 the Frobenius norm kk  and the Moore-Penrose
inverse as + When  is symmetric, we use max () and min () to denote the largest and smallest

eigenvalues, respectively.  and 0×1 denote the ×  identity matrix and × 1 vector of zeros, and 1{·} is
the indicator function. The operator

→ denotes convergence in probability,
→ convergence in distribution,
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and plim probability limit. We use ( )→∞ to signify that  and  pass jointly to infinity.

2 Penalized Profile Likelihood Estimation

This section considers panel structure models without endogeneity. It is convenient to assume first that the

number of groups is known and later consider the determination of the number of unknown groups.

2.1 Panel Structure Models

Given a panel data set {( )} for  = 1   and  = 1   it is proposed to use fixed effects quasi

maximum likelihood to estimate the unknown parameters by solving the minimization problem

min
{}

1



X
=1

X
=1

 (; )  (2.1)

Here − (; ) denotes the logarithm of the pseudo-true conditional density function of  given  the

history of ( ), and ( ), where  are scalar individual effects and  are × 1 vectors of parameters
of interest. Traditionally, econometric work has assumed that the  are common for all cross sectional

units, leading to a homogeneous panel with individual heterogeneity modeled through  alone. At the other

extreme, the  are assumed to differ across individuals and each is estimated at a slow rate without pooling

across section. The present paper allows the true values of  denoted 0  to follow a group pattern of the

general form

0 =

0X
=1

01
©
 ∈ 0

ª
 (2.2)

Here 0 6= 0 for any  6= , ∪0

=1
0
 = {1 2  }  and 0 ∩ 0 = ∅ for any  6=  Let  = #0

denote the cardinality of the set 0 In the economic growth literature (e.g., Phillips and Sul, 2007a), 0

corresponds to the number of convergence clubs and countries (indexed by ) within the same th club share

the same (slope) parameter vector 0 In the market entry-exit example (e.g., Hahn and Moon, 2010), 0

denotes the number of pure Nash equilibria and markets (indexed by ) selecting the same equilibrium over

time exhibit the same parameter vector.

For now, we assume that the number of groups, 0, is known and fixed but that each individual’s group

membership is unknown. In addition, following Sun (2005), Lin and Ng (2012), and BM, we implicitly assume

that individual group membership does not vary over time. Let α ≡ (1  0
) and β ≡ (1   )  We

denote the true values of    α and β as 
0
  

0
 

0
  α

0 and β0 respectively. The econometric task

is to infer each individual’s group identity and to estimate the group-specific parameters 0 Some examples

of models that fall within this framework and the scope of our methodology are as follows.

EXAMPLE 1 (Linear panel) The linear panel structure model is generated according to

 = 00  + 0 +  (2.3)

where  is a  × 1 vector of exogenous or predetermined variables,  is an individual fixed effect,  is a
 × 1 vector of slope parameters, and  is the idiosyncratic error term with mean zero. Gaussian quasi-

maximum likelihood estimation (QMLE) of  and  is achieved by minimizing (2.1) with  (; ) =
1
2

¡
 − 0 − 

¢2
and  = ( 

0
)
0
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EXAMPLE 2 (Linear panel with quantile restrictions) Consider the model in (2.3) with the quantile

restriction: 
¡
 ≤ 0| 0  0

¢
=  ; see, e.g., Kato, Galvo, and Montes-Rojas (2012). We can estimate 

and  by minimizing (2.1) with  (; ) = 
¡
 − 0 − 

¢
where  () = { − (−)} is a

smoothed version of the usual check function with  being a CDF-type kernel function and  a bandwidth

parameter.

EXAMPLE 3 (Binary choice panel) The dynamic binary choice panel data model is characterized by  =

1
©
00  + 0 −  ≥ 0

ª
 where   and  are as defined in Example 1. In this case, − (; ) =

 ln
¡
 − 0 − 

¢
+ (1− ) ln

£
1− 

¡
 − 0 − 

¢¤
 where  = ( 

0
)
0
 and  (·) denotes

the conditional CDF (standard logistic or normal) of  given  and the history of ( ) 

EXAMPLE 4 (Tobit panel) The Tobit panel is characterized by  = max
¡
0 00  + 0 + 

¢
 where

  and  are defined as in the above examples. For clarity, assume that ’s are independent and

identically distributed (IID)
¡
0 2

¢
given  and the history of ( )  In this case, −

¡
;  

2


¢
=

1 { = 0} ln
¡¡
 − 0 − 

¢
2

¢
+1 {  0} ln[

¡¡
 − 0 − 

¢
2

¢
] where  = ( 

0
)
0


 and  denotes the standard normal PDF and CDF, respectively. The presence of the common parameter

2 can be addressed by extending the asymptotic analysis below.

2.2 Penalized Profile Likelihood Estimation of α and β

Following Hahn and Newey (2004) and Hahn and Kuersteiner (2011), the profile log-likelihood function is

1 (β) =
1



X
=1

X
=1

 (; ̂ ())  (2.4)

where ̂ () = argmin
1


P
=1  (; )  Motivated by the literature on group Lasso (e.g., Yuan and

Lin 2006), we propose to estimate β and α by minimizing the following PPL criterion function


(0)

11
(βα) = 1 (β) +

1



X
=1

Π0

=1 k − k  (2.5)

where 1 = 1 is a tuning parameter. Minimizing the above criterion function produces classifier-Lasso

(C-Lasso) estimates β̂ and α̂ of β and α respectively. Let ̂ and ̂ denote the 
th and th columns of β̂

and α̂, respectively, i.e., α̂ ≡ (̂1  ̂) and β̂ ≡(̂1  ̂ )
The penalty term in (2.5) takes a novel mixed additive-multiplicative form that does not appear in the

literature. Traditional Lasso includes additive penalty terms to an objective function by differentiating

zeros from non-zero-valued parameters to select relevant regressors. In contrast, the C-Lasso has  additive

terms, each of which takes a multiplicative form as the product of 0 separate penalties. The multiplicative

component is needed because for each  0 can take any one of the 0 unknown values, 
0
1  

0
0

 We do

not know a priori to which point  should shrink, and all 0 possibilities must be allowed. Each of the

0 penalty terms in the multiplicative expression permits  to shrink to a particular unknown group-level

parameter vector  The summation component is needed because we need to pull information from all 

cross sectional units in order to identify
©
0
ª
and

©
0
ª
jointly. Our approach differs from the prototypical

Lasso method of Tibshirani (1996) that shrinks a parameter to zero as well as the group Lasso method of

Yuan and Lin (2006) that shrinks a parameter vector to a zero vector. The main purpose in the latter papers
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is to select relevant variables while C-Lasso is designed to determine group membership for each individual.

As emphasized in the Introduction, both problems enjoy the same motivation of parameter sparsity despite

their different nature. C-Lasso has the additional motivation of classification of unknown parameters into a

priori unknown groups each with their own unknown parameters.

Note that the objective function in (2.5) is not convex in β even though it is (conditionally) convex in

 when one fixes  for  6=  The supplement provides an iterative algorithm to obtain the estimates α̂

and β̂

2.3 Assumptions

Let  () ≡ argmin Ψ ( ) where Ψ ( ) ≡ 1


P
=1 E [ (; )]  Note that 

0
 = 

¡
0
¢
 Let

 (; ) ≡  (; )  and  (; ) ≡  (; )  Let 

 and 


 denote

the first and second derivatives of  with respect to  Define 

  


  


  and 


 similarly. For

notational simplicity, denote  ≡ 
¡
;

0
  

0


¢
 and similarly for 


  


   


 and 


  Define

 ≡ 1



X
=1

E
¡




¢
  ≡ 1



X
=1

E
¡




¢
 2 ≡ 1



X
=1

E
¡




¢
  2 ≡ 1



X
=1

E
¡




¢


U ≡  − 



 U ≡ 

 −






0
  and U ≡ 


 −







 

Let Ω ≡ 1


P
=1

P
=1 E (UU

0
)  H ≡ 1



P
=1 E[U


 ] and H ≡ 1



P
∈0


H  Define the two

expected Hessian matrices for cross sectional unit :

 () ≡
1



X
=1

E
£


 (;  ())

¤
and  () ≡

1



X
=1

E
∙


 () + 


 ()

 ()

0

¸


where 

 () = 


 (;  ())  and similarly for 


 ()  Let min denote min1≤≤  and similarly

for max  We make the following assumptions

ASSUMPTION A1. (i) For each  { :  = 1 2 } is stationary strong mixing with mixing coefficients
 (·).  (·) ≡ max  (·) satisfies  () ≤ 

 for some   0 and  ∈ (0 1). { :  = 1 2 } are
independent across 

(ii) For each   0 min[inf():k()−(0 0 )k Ψ ( )−Ψ
¡
0  

0


¢
]  0

(iii) Let Θ denote the parameter space for  = (
0
 )

0 Θ is a compact and convex subset of R+1 such

that 0 = (
00
  

0
 )
0 lies in the interior of Θ for each 

(iv) Let || ≡ P+1
=1  and  (; ) ≡ || (; ) ((1) · · · (+1)) where  = (1 · · ·  +1) is

a vector of nonnegative integers and () denotes the th element of . There exists a function  (·) such
that sup∈Θ k (; )k ≤  () 

°° (; )−
¡
; ̄

¢°° ≤  ()
°° − ̄

°° for any  ̄ ∈ Θ
and || ≤ 3 and max E | ()|   for some  ∞ and  ≥ 6
(v) There exists a constant   0 such that min inf∈B () ≥  and min min

¡


¡
0
¢¢ ≥  

(vi) There exists a constant   0 such that min1≤≤0

°°0 − 0
°° ≥ 

(vii) 0 is fixed and  →  ∈ (0 1) for each  = 1 0 as  →∞

ASSUMPTION A2. (i) 21(ln )
6+2 →∞ and 1(ln )

 → 0 for some   0 as ( )→∞

(ii) 12−1(ln )9 → 0 and 2 1−2 →  ∈ [0∞) as ( )→∞.
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ASSUMPTION A3. (i) For each  = 1 0 Ω ≡ lim( )→∞
1


P
∈0


Ω exists and Ω  0

(ii) For each  = 1 0, H ≡ lim( )→∞H exists and H  0

Assumption A1(i) imposes conditions on {}  which are commonly assumed for dynamic nonlinear panel
data model; see, e.g., Hahn and Kuersteiner (2011) and Lee and Phillips (2015). With more complicated

notation, we can relax the stationarity assumption along the time dimension. A1(ii) imposes an identification

condition for the joint identification of ( ) for each A1(iii) restricts the parameter space and it is possible

to allow Θ to be -dependent. A1(iv) specifies the smoothness and moment conditions on  or objects asso-

ciated with it. A1(v), in conjunction with A1(ii) and (iv), implies that min[inf:|−()| Ψ ( ) −
Ψ (  ())]  0 and min[inf:k−0k Ψ (  ())−Ψ

¡
0  

¡
0
¢¢
]  0 A1(vi) specifies that the

group-specific parameters are separated from each other, similar to the separation requirement in Hahn and

Moon (2010). A1(vii) implies that each group has an asymptotically non-negligible membership number

of individuals as  → ∞ This assumption can also be relaxed at the cost of more lengthy arguments.

Assumption A2(i) imposes conditions on 1 all of which hold if

1 ∝ − for any  ∈ (0 12) (2.6)

A2(ii) is needed to ensure some higher order terms are asymptotically negligible. A3 is used to derive the

asymptotic bias and variance of the C-Lasso estimator. The theory developed below under these conditions

does not require correct specification of the likelihood function and the C-Lasso asymptotics apply under

the general QMLE setup.

2.4 Asymptotic Properties of the PPL C-Lasso Estimators

2.4.1 Preliminary Rates of Convergence for Coefficient Estimates

The following theorem establishes the consistency of the PPL estimates {̂} and {̂} 

Theorem 2.1 Suppose that Assumption A1 holds and 1 =  (1). Then (i) ̂ − 0 = 

¡
−12 + 1

¢
for

 = 1 2  (ii) 1


P
=1

°°°̂ − 0

°°°2 = 

¡
−1

¢
 and (iii)

¡
̂(1)  ̂(0)

¢− (01  00
) = 

¡
−12

¢


where (̂(1)  ̂(0)) is a suitable permutation of (̂1  ̂0
)

REMARK 1. Theorem 2.1(i)-(ii) establish the pointwise and mean-square convergence of ̂. Theorem

2.1(iii) indicates that the group-specific parameters 01  
0
 can be estimated consistently by ̂1  ̂0

subject to permutation. As expected and consonant with other Lasso limit theory, the pointwise convergence

rate of ̂ depends on the rate at which the tuning parameter 1 converges to zero. Somewhat unexpectedly,

this requirement is not the case either for mean-square convergence of ̂ or convergence of ̂. For notational

simplicity, hereafter we simply write ̂ for ̂() as the consistent estimator of 
0
, and define

̂ =
n
 ∈ {1 2  } : ̂ = ̂

o
for  = 1 0 (2.7)

2.4.2 Classification Consistency

Roughly speaking, a classification method is consistent if it classifies each individual to the correct group

w.p.a.1. For a rigorous statement of this property we define

̂ ≡
n
 ∈ ̂ |  ∈ 0

o
and ̂ ≡

n
 ∈ 0 |  ∈ ̂

o
 (2.8)
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where  = 1  and  = 1 0 Let ̂ = ∪∈0

̂ and ̂ = ∪∈̂

̂ ̂ and ̂

mimic Type I and II errors in statistical tests: ̂ denotes the error event of not classifying an element of

0 into the estimated group ̂; and ̂ denotes the error event of classifying an element that does not

belong to 0 into the estimated group ̂ Both types of errors must be controlled. We use the following

definition.

Definition 1. (Consistent classification) The classification is individually consistent if  (̂)→ 0 as

( )→∞ ∀  ∈ 0 and  ∈ {1 0} and  (̂)→ 0 as ( )→∞ ∀  ∈ ̂ and  ∈ {1 0}
It is uniformly consistent if  (∪0

=1̂ )→ 0 and  (∪0

=1̂ )→ 0 as ( )→∞

The following theorem establishes uniform consistency for the PPL classifier.

Theorem 2.2 Suppose that Assumptions A1-A2 hold. Then (i)  (∪0

=1̂ ) ≤
P0

=1  (̂ ) → 0 as

( )→∞ and (ii)  (∪0

=1̂ ) ≤
P0

=1  (̂ )→ 0 as ( )→∞

REMARK 2. Theorem 2.2 implies that all individuals within a group, say 0 can be simultaneously

correctly classified into the same group (denoted ̂) w.p.a.1. Conversely, all individuals that are classi-

fied into the same group, say ̂ simultaneously correctly belong to the same group (
0
) w.p.a.1. Let

̂0 ≡ {1 2  } \(∪0

=1̂) and ̂ ≡ { ∈ ̂0} Theorem 2.2(i) implies that  (∪1≤≤̂ ) ≤P0

=1  (̂ ) → 0 That is, all individuals can be classified into one of the 0 groups w.p.a.1. Never-

theless, when  is not large, a small percentage of individuals could be left unclassified if we stick with the

classification rule in (2.7). To ensure that all individuals are classified into one of the 0 groups in finite

samples, we can modify the classifier. In particular, we classify  ∈ ̂ if ̂ = ̂ for some  = 1 0

and  ∈ ̂ for some  = 1 0 if ||̂ − ̂|| = min{||̂ − ̂1||  ||̂ − ̂0
||} and P0

=1 1{̂ = ̂} = 0
Since the event

P0

=1 1{̂ = ̂} = 0 occurs w.p.a.1 uniformly in  we can ignore it in large samples in

subsequent theoretical analysis and restrict our attention to the classification rule in (2.7) to avoid confusion.

Let ̂ ≡
P

=1 1{ ∈ ̂} The following corollary studies the consistency of ̂.

Corollary 2.3 Suppose that Assumptions A1-A2 hold. Then ̂ − =  (1) for  = 1 0

2.4.3 The Oracle Property and Asymptotic Properties of Post-Lasso Estimators

The following theorem reports the oracle property of the Lasso estimator {̂}.

Theorem 2.4 Suppose Assumptions A1-A3 hold. Then
√


¡
̂ − 0

¢−H−1B
→ 

¡
0H−1 Ω(H

−1
 )0

¢


where B = B1−B2  B1 =
1√
 3

P
∈0


−1

P
=1

P
=1 U


  and B2 =

1

2
√


P
∈0



−2 (2−  2


 )(

1√


P
=1 )

2for  = 1 0

REMARK 3. B is written as the difference between two terms that are derived from the first and

second order Taylor expansions of the PPL estimating equation, respectively. Comparing the above result

with HK, we find that the quantities Ω H and B coincide with the corresponding terms in HK; see the

remark after Lemma S1.12 for details. Then we can use the formula in HK to estimate the asymptotic bias

and variance with obvious modifications. Alternatively, we can use the jackknife to correct bias; see Hahn

and Newey (2004) and Dhaene and Jachmans (2015) for static and dynamic models, respectively.
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If group membership is known, the oracle estimator of  is given by ̂0

≡ argmin

1


P
∈0

P
=1 (; ̂ ()) Then following our asymptotic analysis or that of HK, we can readily show that√
 (̂0


− 0)−H−1B

→ 
¡
0H−1 Ω(H

−1
 )0

¢
under Assumptions A1 and A3. Theorem 2.4 indi-

cates that the PPL estimator ̂ achieves the same limit distribution as this oracle estimator. In this sense,

we say that the PPL estimators {̂} enjoy the asymptotic oracle property. In addition, given the estimated
groups ̂ we can obtain the post-Lasso estimator of  by ̂̂

≡ argmin 1


P
∈̂

P
=1 (;

̂ ()) The following theorem reports the asymptotic distribution of ̂̂

Theorem 2.5 Suppose Assumptions A1-A3 hold. Then
√
 (̂̂

−0)−H−1B
→ 

¡
0H−1 Ω(H

−1
 )0

¢
for  = 1 0 where B is as defined in Theorem 2.4.

REMARK 4. Theorems 2.4 and 2.5 indicate that ̂ and ̂̂
are asymptotically equivalent. In a totally

different framework, Belloni and Chernozhukov (2013) study post-Lasso estimators which apply OLS to the

model selected by first-step penalized estimators and show that the post-Lasso estimators perform at least

as well as Lasso in terms of rate of convergence and have the advantage of smaller bias. Correspondingly, it

would be interesting to compare the higher-order asymptotic properties of ̂ and ̂̂
in future work.

REMARK 5. Note that our asymptotic results are “pointwise” in the sense that the unknown parameters

are treated as fixed. The implication is that in finite samples, the distributions of our estimators can be

quite different from normal, as discussed in Leeb and Pötscher (2008, 2009). This is a well-known challenge

for shrinkage estimators. Despite its importance, developing a thorough theory on uniform inference in this

context is beyond the scope of the present work.

2.5 Determination of the Number of Groups

In practice, the exact number of groups is typically unknown. We assume that 0 is bounded from above by

a finite integer max and study the determination of the number of groups via some information criterion

(IC). By minimizing (2.5) with0 replaced by we obtain the C-Lasso estimates {̂ (1)  ̂ (1)} of
{ }  where we make the dependence of ̂ and ̂ on (1) explicit. As above, we classify individual 

into group ̂ (1) if and only if ̂ (1) = ̂ (1), i.e., ̂ (1) ≡ { ∈ {1 2  } : ̂ (1) =

̂ (1)} for  = 1  Let ̂ (1) ≡ {̂1 (1)   ̂ (1)} The post-Lasso estimator of 0 is
denoted as ̂̂(1)

 We propose to select  to minimize

1 (1) ≡ 2



X
=1

X
∈̂(1)

X
=1


³
; ̂̂(1)

 ̂(̂̂(1)
)
´
+ 1  (2.9)

where 1 is a tuning parameter. Let ̂ (1) ≡ argmin1≤≤max
1 (1)  See Wang, Li, and Tsai

(2007), Liao (2013), and Lu and Su (2016) for the use of a similar IC in various contexts.

Let () ≡ (1  ) be any -partition of {1 2  } and G a collection of all such partitions.
Let ̂2() ≡ 2



P
=1

P
∈

P
=1 

¡
; ̂

 ̂(̂
)
¢
 where ̂

≡ argmin 1


P
∈

P
=1

 (; ̂ ()). We add the following two assumptions.

ASSUMPTION A4. As ( ) → ∞ min1≤0
inf()∈G ̂2()

→ 2  20 where 20 ≡ lim( )→∞
2


P0

=1

P
∈0



P
=1 E[

¡
;

0
 

0


¢
]
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ASSUMPTION A5. As ( )→∞ 1 → 0 and 1 →∞.
Assumption A4 is intuitively clear and applies under primitive conditions in a variety of models, such as

panel autoregressions. It requires that all under-fitted models yield asymptotic mean square errors that are

larger than 20, which is delivered by the true model. A5 reflects the usual conditions for the consistency of

model selection: 1 cannot shrink to zero either too fast or too slowly.

The following theorem justifies the use of (2.9) as a selector criterion for 

Theorem 2.6 Suppose Assumptions A1-A5 hold. Then  (̂ (1) = 0)→ 1 as ( )→∞

REMARK 6. As Theorem 2.6 indicates, as long as 1 satisfies Assumption A2(i), we can ensure that the

correct number of groups is chosen w.p.a.1. In practice, we can fine-tune this parameter over a finite set,

e.g., Λ1 ≡ {1 = 
−13  = 0

 for  = 1  } for some 0  0 and   1 That is, we pick up 1 ∈ Λ1
such that 1(̂ (1)  1) is minimized. We can show that with such a choice of 1 Theorem 2.6 continues

to hold. Alternatively, we can consider a data-driven cross-validation procedure.

2.6 The Special Case of Linear Models

For the linear model in (2.3) with E
¡
| 0

¢
= 0, we have  (; ) =

1
2

¡
 − 0 − 

¢2
 ̂ () =

̄· − 0̄· and 1 (β) =
1


P
=1

P
=1

¡
̃ − 0̃

¢2
 where ̄· = 1



P
=1  ̃ = − ̄· and ̄·

and ̃ are analogously defined. So the PPL problem becomes the penalized least squares (PLS) problem

considered in Su, Shi, and Phillips (2014, SSP hereafter). In addition, we can verify that  () = E(̄·)−
0E(̄·)  (; ) = −

¡
 − 0 − 

¢
  (; ) = −

¡
 − 0 − 

¢
 


 (; ) =

 = 

 (; )  


 (; ) = 1 


 (; ) = 

0
 U = − [ − E (̄·)]  U =

[ − E (̄·)]0 U =  − E (̄·)   () = 1  () =
1


P
=1 E{[(−E(̄·)] [−E(̄·)]0}

Ω =
1



X
=1

X
=1

E{ [ − E (̄·)] [ − E (̄·)]0} and

H =
1



X
=1

E{[ − E (̄·)] [ − E (̄·)]0}

With the above calculations, we can readily verify that Assumptions A1(ii), (iv)-(v) and A3 hold under weak

conditions. In addition, we can show that

B1 =
−1√
 3

X
∈0



X
=1

X
=1

 [ − E (̄·)] = B1 +  (1) and B2 = 0

where B1 = −1√
 3

P
∈0



P
=1

P
=1 E () When  is strictly exogenous so that E() = 0 for all

  and  B1 =  (1) and there is no need to make bias correction. When  is predetermined, various

bias correction formulae have been proposed; see Kiviet (1995), Hahn and Kuersteiner (2002), Phillips and

Sul (2007b), and Lee (2012), among others. Jackknife methods can also be applied to correct for bias.

The post-Lasso and oracle estimators of 0 become ̂̂
= (

P
∈̂

P
=1 ̃̃

0
)
−1P

∈̂

P
=1 ̃̃

and ̂0

= (
P

∈0


P
=1 ̃̃

0
)
−1P

∈0


P
=1 ̃̃ The IC formula in (2.9) now reduces to 1 (1) =

̂2
̂(1)

+1  where ̂2
̂(1)

= 1


P
=1

P
∈̂(1)

P
=1(̃−̂0̂(1)

̃)
2 with ̂̂(1)

being
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analogously defined as ̂̂
 In practice, ̂2

̂(1)
is frequently replaced by its natural logarithm as in standard

BIC to obtain

1 (1) = ln
h
̂2
̂(1)

i
+ 1  (2.10)

which will be used in our simulations and applications. But because the fixed effects are eliminated in the

within-group transformed model, the
√
 -convergence rates of their estimates won’t play a role to ensure

the selection consistency of 1 SSP show that the requirement on 1 can be relaxed with Assumption

A5 replaced by:

ASSUMPTION A5∗. As ( ) → ∞ 1 → 0 and 1 
2
 → ∞ where  = 12 12 if  is

strictly exogenous and min(12 12  ) otherwise.

2.7 Extension to the Mixed Panel Structure Models

In some applications, certain parameters of interest may be common across all individuals whereas others

are group-specific. For instance, Pesaran, Shin, and Smith (1999) constrain the long-run coefficients to be

identical across individuals while assuming the short-run coefficients to be heterogenous, or in our case,

group-specific. Example 4 above is another instance. To keep up with the early notation, we write the

negative log-likelihood function as  (;  ) where  is the common parameter and the  have

a group structure as before. The negative profile log-likelihood function now becomes 1 (β) =
1


P
=1

P
=1  (;  ̂ ( ))  where ̂ ( ) = argmin

1


P
=1  (;  )  Then we can

estimate β and α by minimizing the following PPL criterion function


(0)

11
(βα ) = 1 (β) +

1



X
=1

Π0

=1 k − k  (2.11)

Our previous analysis can be followed to establish uniform consistency for the classifier and the oracle

property for the resulting estimators of the group-specific parameters  and the common parameter .

When we have time effects {}  we generally cannot eliminate them through transformation even in

a linear panel structure model because of the slope heterogeneity. In this case, we need to estimate  =

(1   )
0
jointly with β and α in (2.11). A formal asymptotic analysis of this case is left for future work.

3 Penalized GMM Estimation of Panel Structure Models

This section considers penalized GMM estimation of linear panel structure models when some regressors are

lagged dependent variables or endogenous.

3.1 Penalized GMM Estimation of α and β

To stay focused, we restrict attention to the linear panel structure model in (2.3).1 We consider the first

differenced system

∆ = 00 ∆ +∆ (3.1)

1Extension to general nonlinear panel data models with endogeneity and nonadditive fixed effects (e.g., Fernández-Val and

Lee 2013) is possible but rigorous analysis raises additional statistical challenges and is left for future research.
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where, e.g., ∆ = − −1 for  = 1   and  = 1   and we assume that 0 and 0 are observed.

Let  be a  × 1 vector of instruments for ∆ with  ≥  Define ∆ = (∆1 ∆ )
0
 with similar

definitions for ∆ and ∆ We propose to estimate β and α by minimizing the following penalized GMM

(PGMM) criterion function2


(0)

22
(βα) = 2 (β) +

2



X
=1

Π0

=1 k − k  (3.2)

where 2 (β) =
1


P
=1

h
1


P
=1 

¡
∆ − 0∆

¢i0


h
1


P
=1 

¡
∆ − 0∆

¢i
  is a

× symmetric matrix that is asymptotically nonsingular and 2 = 2 is a tuning parameter. Minimizing

(3.2) produces the PGMM estimates α̃ and β̃ where α̃ ≡ (̃1  ̃0
) and β̃ ≡(̃1  ̃ )

3.2 Basic Assumptions

Let ̃∆ ≡ 1


P
=1 (∆)

0 and ̄∆ ≡ E[̃∆] Let  ≡ (∆ (∆)0 0)0   ( ) ≡ (∆−
0∆) and ̄ () ≡ 1√



P
=1{ ( ) − E [ ( )]} Let B denote the parameter space for  We

make the following assumptions.

ASSUMPTION B1. (i) E
£

¡
 

0


¢¤
= 0 for each  = 1   and  = 1  

(ii) sup∈B
°°̄ ()°° =  (1) 

1


P
=1

°°̄ ()°°2 =  (1) where  ∈ B and  (max
°°̄ ()°° ≥

(ln )3+) = 
¡
−1

¢
for any   0 and   0

(iii) 
³
max

°°°̃∆ − ̄∆

°°° ≥ 
´
= 

¡
−1

¢
for any   0 and lim inf( )→∞min min(̄

0
∆̄∆)

= 2
̄
 0

(iv) There exist nonrandom matrices  such that  (max k −k ≥ ) = 
¡
−1

¢
for any   0

and lim inf→∞ min min () =   0

(v) There exists a constant   0 such that min1≤≤0

°°0 − 0
°° ≥ 

(vi) 0 is fixed and  →  ∈ (0 1) for each  = 1 0 as  →∞

ASSUMPTION B2. (i) 22(ln )
6+2 →∞ and 2(ln )

 → 0 for some   0 as ( )→∞

(ii) For any given   0  max 
³°°°−1P

=1 ∆

°°° ≥ 2

´
→ 0 as ( )→∞

ASSUMPTION B3. (i) For each  = 1 0, ̄ ≡ 1


P
∈0


̄0∆̄∆ →   0 as ( )→∞

(ii) For each  = 1 0,
1√


P
∈0


̃0∆

P
=1 ∆−

→  (0 ) as ( )→∞

Assumption B1(i) specifies moment conditions to identify 0  B1(ii) is a high level condition. Its first

part can be verified by applying Donsker’s theorem. For example, if there exists F a -field, such that

{F} is a stationary ergodic adapted mixingale with size −1 (e.g., White 2001, pp. 124-125), and

Var
¡
0̄ ()

¢ → 0Σ ∈ (0∞) as  → ∞ for some Σ  0 and any nonrandom  ∈ R with kk = 1
then ̄ ()

→  (0Σ) and the first part of B1(ii) follows. The second and third parts of B1(ii) can be

verified by the Markov inequality and the application of Lemma S1.2(iii) in the supplement under strong

2We were unable to establish asymptotic theory for the case where the criterion 2 () is replaced by the fully pooled

criterion ̃2 () = [
1



=1


=1  (∆ − 0∆)]

0 [
1



=1


=1  (∆ − 0∆)] where  is asymp-

totically nonsingular. We also found that Arellano and Bond (1991) GMM estimation is not applicable to handle unobserved

slope heterogeneity. Noticing this, Fernández-Val and Lee (2013) used a criterion similar to 2 () in the nonlinear panel

setup. As we shall see, the use of 2 () means that the PGMM estimator generally does not have the oracle property.
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mixing conditions. B1(iii) provides a rank condition to identify 0  B1(iv) is automatically satisfied for

 =  the  ×  identity matrix. B1(v)-(vi) and B2(i) parallel A1(vi)-(vii) and A2(i). B2(ii) holds

true by Lemma S1.2 in the supplement if {(∆)  ≥ 1} is strong mixing with geometric decay rate and
∆ has six plus moments.

B3(i)-(ii) can be verified under various primitive conditions. For example, if (a) E k(∆)0k2+  0

for some   0 (b) {(∆ ∆)   ≥ 1} is strong mixing for each  with mixing coefficients  () that

satisfy 1


P
∈0



P∞
=1  ()

(2+)
∞ (c) {(∆ )} is stationary along the time dimension and IID

along the individual dimension for all  ∈ 0, and (d)  =  ∀  ∈ 0 then B3(i) is satisfied with

 = {E [(∆)0]}0E [(∆)0] ∀  ∈ 0 To verify B3(ii), for simplicity we assume that  = 

and make the following decomposition

1√


X
∈0



̃0∆

X
=1

∆

=
1


12

  32

X
∈0



X
=1

X
=1

E (∆0∆) +
1


12

  32

X
∈0



X
=1

X
=1

E (∆0) ∆

+
1


12

  32

X
∈0



X
=1

X
=1

{[∆0 − E (∆0)] ∆ − E (∆0∆)}

≡  +  +  say, (3.3)

where  and  contribute to the asymptotic bias and variance, respectively, and  is a term

that is asymptotically negligible under suitable conditions. Then B3(ii) is satisfied with  =  if

 =
1


12


12

P
∈0



P
=1 ̄

0
∆∆

→  (0 ) and  =  (1)  both of which can be verified

by strengthening the conditions given in (a)-(c) above. Note that ̄−1  signifies the asymptotic bias of

̃ which may not vanish asymptotically but can be corrected; see Section S2.2 in the supplement.
3

3.3 Asymptotic Properties of the PGMM Estimators

3.3.1 Preliminary Rates of Convergence

We first establish the preliminary consistency rate of (β̃, α̃).

Theorem 3.1 Suppose Assumption B1 holds and 2 =  (1)  Then (i) ̃ − 0 = 

¡
−12 + 2

¢
for

 = 1  (ii) 1


P
=1

°°°̃ − 0

°°°2 = 

¡
−1

¢
 and (iii)

¡
̃(1)  ̃(0)

¢ − (01  00
) = 

¡
−12

¢


where (̃(1)  ̃(0)) is a suitable permutation of (̃1  ̃0
)

REMARK 7. Remark 1 applies here with obvious modifications. As before, hereafter we simply write ̃

for ̃() as the consistent estimator of 
0
 and define ̃ ≡ { ∈ {1 2  } : ̃ = ̃} for  = 1 0

3 If Conditions (a)-(b) are satisfied and  k∆k2+  0 by the Davydov inequality, we have k k ≤
1


√



∈0




=1


=1

 ∆
0
∆

 = 

( )12


 which is (1) if  À  and usually asymptotically non-

negligible otherwise.
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3.3.2 Classification Consistency

Let ̃ ≡ { ∈ ̃ |  ∈ 0} and ̃ ≡ { ∈ 0 |  ∈ ̃} for  = 1  and  = 1 0 Let

̃ ≡ ∪∈0

̃ and ̃ ≡ ∪∈̃

̃ We establish uniform classification consistency in the next

theorem.

Theorem 3.2 Suppose that Assumptions B1-B2 hold. Then (i)  (∪0

=1̃ ) ≤
P0

=1  (̃ ) → 0 as

( )→∞ and (ii)  (∪0

=1̃ ) ≤
P0

=1  (̃ )→ 0 as ( )→∞

REMARK 8. Remark 2 also holds for the above theorem with obvious modifications. Let ̃0 ≡
{1 2  } \(∪0

=1̃) and ̃ = { ∈ ̃0} Theorem 3.2(i) implies that  (∪1≤≤̃ ) ≤
P0

=1  (̃ )

→ 0 meaning that all individuals are classified into one of the 0 groups w.p.a.1.

Let ̃ ≡
P

=1 1{ ∈ ̃} The following corollary parallels Corollary 2.3.

Corollary 3.3 Suppose that Assumptions B1-B2 hold. Then ̃ − =  (1) 

3.3.3 Improved Convergence and Asymptotic Properties of Post-Lasso

The following theorem establishes the asymptotic distribution of the C-Lasso estimators {̃}.

Theorem 3.4 Suppose Assumptions B1-B3 hold. Then
√


¡
̃ − 0

¢− ̄−1 
→ (0 −1 

−1
 )

for  = 1 0

REMARK 9. In contrast to the PPL case, the PGMM estimators {̃} may fail to possess the oracle

property. If the group identities were known in advance, one could obtain the GMM estimate ̃0

of 0 by

minimizing the following objective function

̃ () =

⎡⎣ 1



X
∈0



X
=1

 (∆ − 0∆)

⎤⎦0 ()



⎡⎣ 1



X
∈0



X
=1

 (∆ − 0∆)

⎤⎦  (3.4)

where 
()

 is a ×  symmetric positive definite matrix. Let 
()

∆ =
1



P
∈0



P
=1  (∆)

0
and


()

∆ =
1


P
∈0



P
=1 ∆ Then ̃0


= [

()0
∆

()


()

∆ ]
−1 

()0
∆

()


()

∆  We

can readily show that the asymptotic distribution of ̃0

is typically different from that of ̃. See also the

remark after Theorem 3.5 below.

When the individuals have group identities that are unknown, we can replace 0 by its C-Lasso es-

timate ̃ in the GMM objective function (3.4) and obtain the post-Lasso GMM estimator of 0 given

by ̃̃
= [̃

()0
∆

()

 ̃
()

∆]
−1̃()0∆

()

 ̃
()

∆ where ̃
()

∆ =
1



P
∈̃

P
=1  (∆)

0
and ̃

()

∆ =
1


P
∈̃

P
=1 ∆ To study the asymptotic normality of ̃̃

 we add the following assumption.

ASSUMPTION B4. (i) For each  = 1 0, 
()



→ ()  0 as ( )→∞

(ii) 
()

∆

→ 
()

∆ where 
()

∆ has rank 

(iii) 1√


P
∈0



P
=1 ∆

→  (0 ) 

Assumption B4 is standard in GMM estimation and it can be verified under various primitive conditions

that allow for both conditional heteroskedasticity and serial correlation in {∆}. The following theorem
establishes the asymptotic normality of {̃̃

}
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Theorem 3.5 Suppose Assumptions B1-B4 hold. Then
√
 (̃̃

− 0)
→  (0Ω)  where Ω =h


()0
∆

()
()

∆

i−1

()0
∆

()
()

()

∆

h

()0
∆

()
()

∆

i−1
and  = 1 0

REMARK 10. To prove the above theorem, we first apply Theorem 3.2 and show that
√


¡
̃̃
− 0

¢
=√

 (̃0

−0)+  (1)  That is, the post-Lasso GMM estimator ̃̃

is asymptotically equivalent to the

oracle estimator ̃0

. To obtain the most efficient estimator among the class of GMM estimators based on

the moment conditions specified in Assumption B1(i), one can set 
()

 to be a consistent estimator of 
−1
 

Alternatively, we can consider Arellano and Bond (1991) GMM estimation based on the estimated groups.

The procedure is standard and details are omitted.

REMARK 11. If  =
()

  ̄∆ = 
()

∆ for each  ∈ 0 in Assumption B3(i) (which is unrealistic

before knowing the group identity), and  = 0 in Assumption B3(ii), then  = 
()0
∆

()
()

∆,

 = 
()0
∆

()Ω
()

()

∆ and
√


¡
̃ − 0

¢ →  (0Ω)  Thus in this special case the C-Lasso

estimator ̃ has the oracle property. But  = 0 typically requires  À  a condition that we do not

usually want to impose. For this reason we recommend the post-Lasso estimator ̃̃
in practice.

3.4 Determination of the Number of Groups

When 0 is unknown, we minimize the PGMM criterion function in (3.2) with 0 replaced by  to

obtain the C-Lasso estimates {̃ (2)  ̃ (2)} of { }. As above, we classify individual  into
group ̃ (2) if and only if ̃ (2) = ̃ (2). Let ̃ (2) ≡ {̃1 (2)   ̃ (2)} The
post-Lasso GMM estimate of 0 is given by ̃̃(2)

≡ [̃
()0
∆ 

()

 ̃
()

∆ ]
+̃

()0
∆ 

()

 ̃
()

∆  where

̃
()

∆ = 1


P
∈̃(2)

P
=1  (∆)

0
 ̃

()

∆ = 1


P
∈̃(2)

P
=1 ∆ and 

()

 is defined

as before but with  = 1 2  Let ̃2
̃(2)

= 1


P
=1

P
∈̃(2)

P
=1[∆ − ̃0

̃(1)
∆]

2 We

propose to select  to minimize the following IC:

2 (2) = ln
h
̃2
̃(2)

i
+ 2  (3.5)

where 2 is a tuning parameter. Let ̃ (2) ≡ argmin1≤≤max
2 (2)  As before, for any () =

(1  ) ∈ G , define ̃2() =
1


P
=1

P
∈

P
=1[∆ − ̃0

∆]
2 where ̃

is analo-

gously defined as ̃̃(2)
with ̃ (2) being replaced by 

To proceed, we add the following two assumptions, which parallel earlier Assumptions A4-A5.

ASSUMPTION B5. As ( )→∞ min1≤0
inf()∈G ̃2()

→ 2∆  2∆ where 
2
∆ =plim( )→∞

1


P
=1

P
=1 (∆)

2


ASSUMPTION B6. As ( )→∞ 2 → 0 and 2 →∞

The following theorem proves consistency of ̃ (2) 

Theorem 3.6 Suppose Assumptions B1-B2 and B4-B6 hold. Then  (̃ (2) = 0)→ 1 as ( )→∞

4 Simulations

To evaluate the finite-sample performance of the classification and estimation procedure, we consider three

data generating processes (DGPs) that cover linear and non-linear panels of static and dynamic models. The
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observations in each DGP are drawn from three groups with the proportion 1 : 2 : 3 = 03 : 03 : 04.

We use sample sizes  = 100 200 and time spans  = 15 25 50. Throughout these DGPs, the fixed effect 0

and the idiosyncratic error  are standard normal, independent across  and , and mutually independent.

 is also independent of all regressors.

DGP 1 (Linear static panel) The observations ( ) are generated from the linear panel structure model

as in Example 1. The exogenous regressor  = (020 + 1 02
0
 + 2)

0, where 1 2 ∼
IID  (0 1)  are mutually independent, and independent of 0 . The true coefficients are (04 16)

(1 1) (16 04) for the three groups, respectively. PLS will be applied in this DGP.

DGP 2 (Linear panel AR(1)) The dependent variable is determined by its lag term and two exogenous re-

gressors 2 and 3 in  = 01−1+022+033+0 (1−01)+ . The exogenous variables

are standard normal and mutually independent. For each , the initial value is specified to guaran-

tee that the time series (0      ) is strictly stationary. The true coefficients are (04 16 16)

(06 1 1) and (08 04 04). The AR(1) coefficients represent weak, moderate, and strong persis-

tence, respectively. PGMM will be used to estimate the first-differenced model with the instruments

(−2 −3∆2∆3). In the Supplementary Material, the same DGP is also estimated by PLS.

DGP 3 (Probit panel AR(1)) As in Example 3, the binary dependent variable  = 1{01−1 + 02 +

03 + 0 −   0}. The exogenous regressor  = 010 + , where  ∼ IID (0 1) and is

independent of all other variables. The true coefficients are (1−1 05) (05 0−025) and (0 1 0).
01 and 02 are identifiable in this model, whereas 

0
3 is unidentifiable as it is absorbed into the

individual heterogeneity. PPL will be implemented in this DGP.

Since both classification consistency and the oracle property hinge on the correct number of groups,

our first simulation exercise is designed to assess how well the proposed IC selects the number of groups.

Asymptotically, all sequences 1 work if they satisfy Assumption A5 or A5*, and so do the sequences 2

if these satisfy Assumption B6. In practice, the choice of  ,  = 1 2, can be crucial. We experimented

with many alternatives, and found that  =
2
3
( )−12,  = 1 2, work fairly well in the linear models

and so does 1 =
1
4
(ln ln ) in the Probit model. They are used throughout the simulations as well as

the empirical applications.

Regarding the C-Lasso tuning parameter, we specify  = 
2
 
−13 for  = 1 2 in the linear models,

where 2 is the sample variance of ̃ for PLS or the sample variance of ∆ for PGMM, and  ∈
{0125 025 05 1 2} ( = 1 2) a geometrically increasing sequence. In the Probit model, we also specify
1 = 1

2
 
−13, but the constant 1 ∈ {00125 0025 005 01 02}, as this criterion function is at a

different magnitude from the linear models. Following Remark 6, we pick up from the set of candidate

values the 1 that minimizes 1(̂(1) 1) and similarly the 2 that minimizes 2(̃(2) 2). We run

500 replications for each DGP. Table 1 displays the empirical probability that a particular group size from

1 to 5 is selected according to the IC when the true number of groups is 3. In the linear models, the

IC achieves almost perfect selection of the true group number when  = 25. In the Probit model, the

correct determination rate is also close to 100% when  = 50, although the rate is lower than that of the

linear models when  = 25, due to the presence of incidental parameters. These statistics demonstrate the

usefulness of the IC.
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Table 1: Frequency of selecting  = 1     5 groups when 0 = 3

  DGP 1 DGP 2 DGP 3

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

100 15 0 0 0.994 0.004 0.002 0 0.232 0.762 0.004 0.002

100 25 0 0 1 0 0 0 0.016 0.984 0 0 0 0.096 0.646 0.242 0.016

100 50 0 0 1 0 0 0 0 1 0 0 0 0 0.986 0.014 0

200 15 0 0 0.890 0.106 0.004 0 0.022 0.970 0.008 0

200 25 0 0 1 0 0 0 0 1 0 0 0 0.106 0.668 0.226 0

200 50 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

Next, given the true number of groups, we focus on the classification of individual units and the point

estimation of post-Lasso.4 Due to space limitation, all tabulated results are produced under  = 05

 = 1 2, for the linear models, and 1 = 005 for the Probit model. The outcomes are found robust

over the specified range of constants. Column 4 of Tables 2 shows the percentage of correct classification

of the  units, calculated as 1


P0

=1

P
∈̂

1{0 = 0}, averaged over the Monte Carlo replications.
Columns 5—7 summarize the post-Lasso estimator’s root-mean-squared error (RMSE), bias, and the coverage

probability of the two-sided nominal 95% confidence interval. To save space, we report the results for the

first coefficient α1 = (1)
0

=1 in each model. As α1 is a 0 × 1 vector, we averaged over the statistics
by their weight   = 1    0. For example, in DGP 1 and 3 the coverage probability is computed

as
P0

=1



1
n
̂̂1

− 196̂1 ≤ 01 ≤ ̂̂1
+ 196̂1

o
, where ̂1 is the estimated standard deviation

of ̂̂1
; in DGP 2, ̃̃1

and ̃1 replace their counterparts ̂̂1
and ̂1, respectively. For comparison

purpose, Columns 8—10 show the corresponding statistics of the oracle estimator ̂0

1 or ̃0


1. The only

difference between the oracle estimator and the post-Lasso estimator is that the former utilizes the true

group identity 0, which is infeasible in practice, while the latter is based on the data-determined group ̂

or ̃.

As expected, the correct classification percentage approaches 100% as  increases, and the oracle estima-

tor’s RMSE and bias are typically smaller than those of post-Lasso. When  = 50, post-Lasso and the oracle

perform almost identically in DGP 1. In DGP 2, the PGMM confidence interval covers the true parameter

slightly more often than the oracle, since the estimated standard deviation is inflated by a few misclassified

units, which hide as outliers against the majority of the group members. The same reason explains the mild

discrepancy of RMSE in DGPs 2 and 3. However, the confidence interval in DGP 3 under-covers due to

the extra complexity of the bias caused by incidental parameters. Here the bias in post-Lasso is effectively

reduced by the half-panel jackknife (Dhaene and Jochmans, 2015), but it cannot be completely eliminated

in finite samples.

5 Empirical Applications

In this section we illustrate the use of C-Lasso in two cross-country studies. We explore the determinants of

savings rates via a linear dynamic panel model and the relationship between civil war incidence and poverty

4Here we report the results for post-Lasso under 0. In Table S3 of the Supplementary Material, we also compare the RMSE

and bias of post-Lasso and C-Lasso under 0 and the IC-determined group number ̂ or ̃.
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Table 2: Classification and Point Estimation of α1
% of correct Post-Lasso Oracle

  classification RMSE Bias Coverage RMSE Bias Coverage

DGP 1 100 15 0.8935 0.0594 0.0105 0.8758 0.0463 0.0012 0.9336

100 25 0.9674 0.0384 0.0018 0.9344 0.0353 0.0001 0.9362

100 50 0.9964 0.0249 0.0000 0.9528 0.0245 -0.0002 0.9348

200 15 0.8987 0.0432 0.0077 0.8650 0.0324 -0.0013 0.9410

200 25 0.9661 0.0272 0.0015 0.9228 0.0250 -0.0006 0.9394

200 50 0.9966 0.0174 -0.0001 0.9496 0.0171 -0.0002 0.9424

DGP 2 100 15 0.8063 0.0711 -0.0123 0.9562 0.0502 -0.0037 0.9090

100 25 0.8974 0.0461 -0.0060 0.9760 0.0351 0.0011 0.9336

100 50 0.9689 0.0278 -0.0011 0.9860 0.0242 -0.0010 0.9320

200 15 0.8151 0.0557 -0.0159 0.9436 0.0352 -0.0017 0.9308

200 25 0.9037 0.0328 -0.0047 0.9664 0.0252 -0.0006 0.9442

200 50 0.9711 0.0193 -0.0014 0.9842 0.0164 0.0000 0.9304

DGP 3 100 25 0.7941 0.1701 0.0805 0.7856 0.1077 0.0114 0.9376

100 50 0.9456 0.0859 0.0231 0.8970 0.0752 0.0090 0.9504

200 25 0.8277 0.1325 0.0777 0.7214 0.0821 0.0116 0.9104

200 50 0.9527 0.0635 0.0223 0.8818 0.0573 0.0121 0.9280

via a dynamic Probit model. Due to space limitation, we only report the estimated coefficients in the main

text. Summary statistics, group membership, and additional details of implementation can be found in the

Supplementary Material.

5.1 Savings Rate Dynamic Panel Modeling and Classification

Understanding the disparate savings behavior across countries is a longstanding research interest in de-

velopment economics. Theoretical advances and empirical studies have accumulated over many years; see

Feldstein (1980), Deaton (1990), Edwards (1996) Bosworth, Collins, and Reinhart (1999), Rodrik (2000),

and Li, Zhang, and Zhang (2007), among many others. Empirical research in this area typically employs

standard panel data methods to handle heterogeneity or relies on prior information to categorize countries

into groups. Classification criteria vary from geographic locations to the notion of developed countries ver-

sus developing countries (Loayza, Schmidt-Hebbel and Servén, 2000). This section applies the methodology

developed in the present paper to revisit this empirical problem.

Following Edwards (1996), we consider the simple regression model

 = 1−1 + 2 + 3 + 4 +  +  (5.1)

where  is the ratio of savings to GDP,  is the CPI-based inflation rate,  is the real interest rate,

 is the per capita GDP growth rate,  is a fixed effect, and  is an idiosyncratic error term. Inflation

characterizes the degree of the macroeconomic stability and the real interest rate reflects the price of money.

The relationship between the savings rate and GDP growth rate is well documented, with the latter being

found to Granger-cause the former (Carroll and Weil, 1994). The first-order lagged savings rate is added to

the specification to capture persistence of the savings rate.
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Data are obtained from the widely used World Development Indicators, a comprehensive dataset compiled

by the World Bank. For many countries the time series of real interest rates are often short in comparison

with the other variables. Using the time span 1995—2010, we were able to construct a balanced panel of

56 countries. Substantial heterogeneity across countries was observed in all these major macroeconomic

indicators. Evidence of within group homogeneity is therefore particularly important in supporting panel

data pooling techniques.

This dynamic panel model can be estimated by either PLS or PGMM. We first try PLS, which has

higher correct classification ratio in our simulation when  = 15. Following the simulation, 1 is set as
2
3
( )−12, and the IC picks two groups and the tuning parameter constant 1 = 155 over all combinations

of  = 1     5 and 1 in a geometrically increasing sequence of 10 points in (02     2). Based on this

choice of tuning parameter, the data determine the group identities. Interestingly, some geographic features

remain salient in the classification. For example, we observe a strong collection of Asian countries in Group

1. In particular, except for South Korea and the city state Singapore, Group 1 includes all Eastern Asian

and Southeastern Asian countries in our sample, namely, China, Japan, Indonesia, Malaysia, Philippines,

and Thailand.

Table 3: PLS and PGMM estimation results

Variables PLS PGMM

Pooled FE Group1 Group2 Pooled GMM Group1 Group2

Lagged savings 07609∗∗∗ 06952∗∗∗ 06939∗∗∗ 05854 04026 06373∗∗

(00322) (00433) (00449) (04588) (03095) (03197)

Inflation −00145 −01601∗∗∗ 01967∗∗∗ 00350 −01647∗∗ 04128∗∗∗

(00324) (00388) (00435) (00621) (00733) (00758)

Interest rate −00346 −01490∗∗∗ 01226∗∗∗ −00333 −01580∗∗ 01395∗

(00313) (00397) (00408) (00598) (00729) (00775)

GDP growth 02027∗∗∗ 02892∗∗∗ 01127∗∗ 02081∗∗∗ 01853∗∗∗ 02061∗∗

(00353) (00413) (00517) (00541) (00627) (00908)

Note: *** 1% significant, ** 5% significant, * 10% significant

Columns 3—4 in Table 3 report the results for the PLS-based post-Lasso estimation, in comparison with

those for the pooled FE estimation in Column 2. The estimates are bias-corrected by the half-panel jackknife

(Dhaene and Jochmans, 2015), and the standard errors (in parentheses) are clustered at the country level.

Compared with Edwards (1996), the FE results re-confirm the significance of lagged savings and GDP growth

rate as well as the insignificance of inflation and interest rates in the determination of savings rate. This

result also lends support to the conventional wisdom that across countries higher saving rates tend to go

hand in hand with higher income growth (e.g., Loayza, Schmidt-Hebbel and Servén, 2000). The post-Lasso

estimates deliver some interesting findings. First, the coefficients of the inflation rate and the real interest

rate become significant in both groups but have opposite signs, which lead to insignificant effects in pooled

FE estimation. Second, the coefficient of the GDP growth rate is significant at the 5% level, which suggests

that conventional wisdom is universally relevant and applies both within and across groups.

To check the robustness of PLS, we compare it with PGMM on the same data. The IC with 2 =
2
3
( )−12 is minimized at  = 2 and 2 = 072 among the same combinations of  and 2 for PLS. The
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estimated group identities reveal 84% overlap with the PLS classified membership, and the coefficients in

columns 6—7 of Table 3 are comparable to those from PLS.

5.2 Dynamic Probit Panel Modeling of Civil War Conflict

According to a conservative estimate, direct casualties from civil conflicts were at least 16.2 million in the

second half of the twentieth century, a figure five times as large as the inter-state toll (Fearon and Laitin,

2003). Civil war damage to national development has attracted interest among economists and political

scientists, looking at both causes and consequences, and leading to an explosion of research output (Miguel,

Satyanath, and Sergenti, 2004; Besley and Persson, 2010; Nunn and Qian, 2014). A comprehensive overview

was given in Blattman and Miguel (2010).

This section revisits the connection between civil wars and poverty, a topic of enduring research interest.5

Cross-country empirical work mostly follows Fearon and Laitin (2003) and Collier and Hoeffler (2004) in

regressing war onset or incidence against posited causes of civil conflict. Country-specific heterogeneity is

handled either by control variables or fixed effects. In view of the measurement error in many macro variables

and the difficulty in exhausting all relevant factors, Djankov and Reynal-Querol (2010) explored the fixed

effect approach in linear regressions. Group-specific heterogeneity was also investigated after identifying

groups using observed information relating to former colonial families (Djankov and Reynal-Querol, 2010)

or continental regions (Esteban, Mayoral, and Ray, 2012). Without such information, PPL can deal with

unobservable country- and group-specific heterogeneity simultaneously in a nonlinear model.

We use the replication data in Fearon and Laitin (2003). Since most of the variables in the dataset are

time-invariant country characteristics, we collect civil war incidence, GDP per capita and log population to

generate a balanced panel of 38 countries and 39 years spanning from 1960 to 1998.6 We specify a panel

AR(1) Probit model as in DGP 3 to capture the high persistence of civil war incidence, and we transform

GDP per capita and log population into growth rates to avoid non-stationarity.

The IC with 1 =
1
4
(ln ln ) selects two groups and the tuning parameter constant 1 = 0046

from all the combinations of  = 1     5 and 1 from 10 points in the geometrically increasing sequence

(001     01). C-Lasso classifies 23 countries into a “high-occurrence” group (with mean civil war incidence

0.4302), and the other 15 countries into a “low-occurrence” group (with mean incidence 0.2263). In terms of

geographic features, Iran and Jordan are separated from all the other 12 Asian countries, most of which are

plagued by civil wars; the four included European countries (Cyprus, Russia, UK, Yugoslavia) all fall into

the low-occurrence group.

Table 4 displays the estimated PPL coefficients along with those for standard Probit and FE Probit

regressions. Again, the estimates are bias-corrected by the half-panel jackknife, and the standard errors

are clustered at the country level. Obviously, civil war incidence is highly persistent, and its association

with GDP per capita growth remains robust in Probit and FE Probit regressions. However, the effects

are distinguished in the two groups: the negative coefficient is statistically significant in the low-occurrence

5 It was taken as a stylized fact in pooled regressions that “civil wars are more likely to occur in countries that are poor”

(Blattman and Miguel, 2010), but Djankov and Reynal-Querol (2010) found “the statistical association between poverty and

civil wars disappears once we include country fixed effects [into a linear panel model].”
6Between 1960—1998, there are 102 countries with data on all the three variables available. However, 61 of them had no civil

war in the sample period and 3 had on-going civil wars throughout the time. These countries are dropped from the data, since

they are associated with infinite (−∞ or ∞) fixed effects in a FE Probit model.
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group, but no such relationship is found in the high-occurrence group.

Table 4: Probit, FE Probit and PPL estimation results

Variables Probit FE Probit Post-Lasso PPL

high-occurrence low-occurrence

coef. s.e. coef. s.e. coef. s.e. coef. s.e.

Lagged civil war 31955∗∗∗ 0.1156 32649∗∗∗ 0.1140 33012∗∗∗ 0.1363 29630∗∗∗ 0.2707

GDP per capita growth −04359∗∗∗ 0.1155 −03854∗∗∗ 0.1389 01591 0.1193 −12072∗∗∗ 0.2220

population growth −00125 0.1107 00162 0.1284 −00448 0.1429 02811 0.1736

Note: *** 1% significant, ** 5% significant, * 10% significant

6 Conclusion

We propose a novel and systematic approach to identify and estimate latent group structures in panel data,

developing panel penalized profile likelihood (PPL) and panel GMM (PGMM) methods for classification and

estimation, and providing asymptotic properties for use in inference. The PPL method enjoys the oracle

property but PGMM typically does not. Post-Lasso estimates are also studied and a BIC-type information

criterion is proposed to determine the number of groups. These techniques combine to provide a general

approach to classifying and estimating panel models with unknown homogeneous groups, heterogeneity across

groups, and an unknown number of groups. Simulations show that the approach has good finite sample

performance and can be readily implemented in practical work. Two applications reveal the advantages of

data-determined identification of latent group structures in empirical panel modeling.

The present work raises interesting issues for further research. First, it may be appealing to consider

a more general framework that allows the number (0) of groups to grow with the sample size. Close

examination of the theory provided in this paper suggests that it is possible to permit 0 to increases with

 but at a very slow rate. Second, both the linear and nonlinear models may be extended to include time

effects or interactive fixed effects (IFE). In linear models with IFE but without endogeneity, we remark that

the present approach can be used in conjunction with principal component analysis to address cross sectional

dependence modeled through IFE. Extension to nonlinear models or to models with endogeneity will raise

new statistical and computational challenges. Third, our method can be extended to nonstationary panels

where panel unit and cointegrating relationships may possess latent group structures. Some of these topics

will be explored in future work.
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APPENDIX

A Proofs of the Results in Section 2

Proof of Theorem 2.1. (i) Let 1 () =
1
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(ii) Let β =β0 + −12v where v =(1   ) is a × matrix. We want to show that for any given
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of the property of α̂ By (A.1) and the Cauchy-Schwarz inequality
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Proof of Theorem 2.2. (i) First, we fix  ∈ {1 0}  By the consistency of ̂ and ̂ in Theorem 2.1
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envelope theorem, the first order condition (with respect to ) for the minimization problem in (2.5) yields

that

0×1 =
1√


X
=1

(; ̂ ̂(̂)) +
√
1

0X
=1

̂Π
0

=1 6=
°°°̂ − ̂

°°°
=

1√


X
=1

 +

⎛⎝ 1̂°°°̂ − ̂

°°° + ̄

⎞⎠√ ³̂ − ̂

´
+

1√


X
=1

£

¡
;

0
  ̂

¡
0
¢¢− 

¤

+̄

√

¡
̂ − 0

¢
+
√
1

0X
=1 6=

̂Π
0

=1 6=
°°°̂ − ̂

°°°
≡ ̂1 + ̂2 + ̂3 + ̂4 + ̂5 (A.9)

where ̂ =
̂−̂
k̂−̂k if ||̂ − ̂ || 6= 0 and k̂k ≤ 1 otherwise, the second equality follows from the first

order Taylor expansion and rearrangement of terms, ̄ ≡ ̂

¡
̄
¢
 ̂ (·) is defined in (A.2), ̄ lies

between ̂ and 0 elementwise.

Let κ1 = (
−12 (ln )3+1) (ln )


 Let  denote a generic constant that may vary across lines. By

(A.4) and Lemmas S1.6-S1.7 in the Supplement, we can readily show that


³
max


°°°̂ − 0

°°° ≥ κ1

´
= 

¡
−1

¢
for some   0 (A.10)

which in conjunction with the proof of Theorem 2.1(iii), implies that


³√


°°̂ − 0

°° ≥  (ln )

´
= 

¡
−1

¢
and 

µ
max
∈0



¯̄
̂ − 0

¯̄
≥ 02

¶
= 

¡
−1

¢
 (A.11)

By (A.10)-(A.11), 
³
max∈0



°°°̂5

°°° ≥ 
√
1κ1

´
= 

¡
−1

¢
 Combining these results with those in

Lemmas S1.6(v) and S1.11(i), we have  (Ξ ) = 1− 
¡
−1

¢
 where

Ξ ≡
½
max
∈0



¯̄
̂ − 0

¯̄
≤ 02

¾
∩
½
max
∈0



°°̄ −

¡
0
¢°° ≤ 2

¾
∩
½
max
∈0



°°°̂3

°°° ≤  (ln )
3+

¾
∩
½
max
∈0



°°°̂4

°°° ≤  (ln )


¾
∩
½
max
∈0



°°°̂5

°°° ≤ 
√
1κ1

¾


Then conditional on Ξ  we have uniformly in  ∈ 0°°°°³̂ − ̂

´0 ³
̂2 + ̂3 + ̂4 + ̂5

´°°°° ≥
°°°°³̂ − ̂

´0
̂2

°°°°− °°°°³̂ − ̂

´0 ³
̂3 + ̂4 + ̂5

´°°°°
≥
√
1̂

°°°̂ − ̂

°°°− 
°°°̂ − ̂

°°° h2 (ln )3+ +√1κ1

i
≥
√
1

0


°°°̂ − ̂

°°° 4 for sufficiently large ( ) 

where the last inequality follows because
√
1 À 2 (ln )

3+
+
√
1κ1 by Assumption A2(i). Then for

all  ∈ 0 we have

 (̂) = 
³
 ∈ ̂ |  ∈ 0

´
= 

³
−̂1 = ̂2 + ̂3 + ̂4 + ̂5

´
≤ 

µ¯̄̄̄³
̂ − ̂

´0
̂1

¯̄̄̄
≥
¯̄̄̄³
̂ − ̂

´0 ³
̂2 + ̂3 + ̂4 + ̂5

´¯̄̄̄¶
≤ 

³°°°̂1

°°° ≥ √104 Ξ

´
+  (Ξ )→ 0 as ( )→∞
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where Ξ denotes the complement of Ξ and the convergence follows by Lemma S1.6(iv) and Assump-

tion A2 . Consequently, we conclude that with probability 1− ¡−1¢ the difference ̂− ̂ must reach the
point where k − k is not differentiable with respect to  for any  ∈ 0. That is 

³°°°̂ − ̂

°°° = 0 |  ∈ 0

´
=

1− 
¡
−1

¢


For uniform consistency, we have:  (∪0

=1̂ ) ≤
P0

=1  (̂ ) ≤
P0

=1

P
∈0


 (̂) and by

Lemma S1.6(iv)

0X
=1

X
∈0




³
̂

´
≤

0X
=1

X
∈0



h

³°°°̂1

°°° ≥ √104 Ξ

´
+  (Ξ )

i

≤  max
1≤≤



Ã°°°°° 1
X
=1



°°°°° ≥ 1
0−1
 4

!
+  (1) =  (1)  (A.12)

This completes the proof of (i).

(ii) Pretending each individual’s membership is random, we have 
¡
 ∈ 0

¢
=  →  ∈ (0 1) for

 = 1 0 and can interpret previous results as conditional on the group membership assignment. By

Bayes theorem,

 (̂) = 1−  ( ∈ 0 |  ∈ ̂)

=

P0

=1 6=  ( ∈ ̂| ∈ 0 )
¡
 ∈ 0

¢
 ( ∈ ̂| ∈ 0) ( ∈ 0) +

P0

=16=  ( ∈ ̂| ∈ 0 ) ( ∈ 0 )
 (A.13)

For the numerator, we have by (A.12)

0X
=1 6=

X
∈̂


³
 ∈ ̂| ∈ 0

´

¡
 ∈ 0

¢ ≤ (0 − 1)
0X
=1

X
∈0




³
 ∈ ̂| ∈ 0

´
=  (1) 

In addition, noting that  ( ∈ ̂| ∈ 0) = 1 −  ( ∈ ̂| ∈ 0) = 1−  (1) uniformly in  and  by (i),

we have that  ( ∈ ̂| ∈ 0)
¡
 ∈ 0

¢
+
P0

=1 6=  ( ∈ ̂| ∈ 0 )
¡
 ∈ 0

¢ ≥ 
¡
 ∈ 0

¢
2 w.p.a.1.

It follows that


³
∪0

=1̂

´
≤

0X
=1

X
∈̂


³
̂

´
≤
P0

=16=
P

∈̂

³
 ∈ ̂| ∈ 0

´

¡
 ∈ 0

¢
min1≤≤ min1≤≤0

 ( ∈ 0) 2

=
 (1)

min1≤≤0
2

=  (1)  ¥

Proof of Corollary 2.3. Noting that ̂ =
P

=1 1{ ∈ ̂},  =
P

=1 1{ ∈ 0} and 1{ ∈ ̂}−1{ ∈
0} = 1{ ∈ ̂\0}− 1{ ∈ 0\̂} we have ̂ − =

P
=1[1{ ∈ ̂\0}− 1{ ∈ 0\̂}] Then by

the implication rule and the Markov inequality, for any   0


³¯̄̄
̂ −

¯̄̄
≥ 2

´
≤ 

Ã
X
=1

1{ ∈ ̂\0} ≥ 

!
+ 

Ã
X
=1

1{ ∈ 0\̂} ≥ 

!

=
1



X
=1


³
̂

´
+
1



X
=1


³
̂

´
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By (A.12),
P

=1  (̂) =
P0

=1

P
∈0


 (̂) =  (1)  By the proof of Theorem 2.2(i),

P
=1  (̂)

=
P0

=1

P
∈̂

 (̂) =  (1)  Consequently,  (|̂ −| ≥ 2) =  (1) and the conclusion follows. ¥

Proof of Theorem 2.4. To study the oracle property of the Lasso estimator, we utilize conditions from

subdifferential calculus (e.g., Bersekas (1995, Appendix B.5)). In particular, necessary and sufficient Karush—

Kuhn—Tucker (KKT) conditions for {̂} and {̂} to minimize the objective function in (2.5) are that for
each  = 1   (resp.  = 1 0), 0×1 belongs to the subdifferential of 

(0)

11
(βα) with respect to

 (resp. ) evaluated at {̂} and {̂} That is, for each  = 1   and  = 1 0 we have by the

envelope theorem,

0×1 =
1



X
=1



³
; ̂ ̂(̂)

´
+ 1

0X
=1

̂Π
0

=16=
°°°̂ − ̂

°°°  (A.14)

0×1 =
1



X
=1

̂Π
0

=1 6=
°°°̂ − ̂

°°°  (A.15)

where ̂ is defined after (A.9). Fix  ∈ {1 0}  Observe that (a)
°°°̂ − ̂

°°° = 0 for any  ∈ ̂ by the

definition of ̂ and (b) ̂ − ̂
→ 0 − 0 6= 0 for any  ∈ ̂ and  6= . It follows that k̂k ≤ 1 for any

 ∈ ̂ and ̂ =
̂−̂
k̂−̂k =

̂−̂
k̂−̂k for any  ∈ ̂ and  6=  Then by the fact that ̂ = ̂ ∀ ∈ ̂ and

(A.15),

X
∈̂

0X
=1 6=

̂Π
0

=1 6=
°°°̂ − ̂

°°° = X
∈̂

0X
=1 6=

̂ − ̂

k̂ − ̂kΠ
0

=1 6= k̂ − ̂k = 0×1 (A.16)

and

0×1 =

X
=1

̂Π
0

=16=
°°°̂ − ̂

°°°
=

X
∈̂

̂Π
0

=1 6= k̂ − ̂k+
X
∈̂0

̂Π
0

=16=
°°°̂ − ̂

°°°+ 0X
=1 6=

X
∈̂

̂Π
0

=1 6= k̂ − ̂k

=
X
∈̂

̂Π
0

=1 6= k̂ − ̂k+
X
∈̂0

̂Π
0

=16=
°°°̂ − ̂

°°°  (A.17)

where the last equality follows from the fact that
P0

=1 6=
P

∈̂
̂Π

0

=1 6= k̂ − ̂k =
P0

=1 6=
P

∈̂

̂−̂
k̂−̂kΠ

0

=16= k̂ − ̂k = 0 Then averaging both sides of (A.14) over  ∈ ̂ and using (A.16)-(A.17),

we have

0×1 =
1



X
∈̂

X
=1

 (; ̂ ̂(̂)) +
1



X
∈̂0

̂Π
0

=1 6=
°°°̂ − ̂

°°°  (A.18)

Using  (; ̂ ̂(̂)) = 
¡
;

0
 ̂(

0
)
¢
+ ̂()(̂ −0) with ̂() ≡ 1



P
∈̂

P
=1[


 (; ̆

̂(̆)) +

 (; ̆

0
 ̂(̆))

̂(̆)

0


] and ̆ lying between ̂ and 0 elementwise, and re-arranging terms

in (A.18) yield

̂ − 0 = −̂−1()
1



X
∈̂

X
=1


¡
;

0
 ̂(

0
)
¢
+ R̂
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where R̂ = ̂−1
()

1


P
∈̂0

̂Π
0

=1 6=
°°°̂ − ̂

°°°. In view of the fact that, ̂Π0

=1 6=
°°°̂ − ̂

°°° 6= 0 only if
 ∈ ̂0 we have for any   0


³√


°°°R̂

°°° ≥ 
´
≤

0X
=1

X
∈0




³
 ∈ ̂0| ∈ 0

´
≤

0X
=1

X
∈0




³
 ∈ ̂| ∈ 0

´
=  (1) by (A.6).

So
°°°R̂

°°° =  (( )
−12

) By Lemmas S1.11-S1.12, 1√


P
∈̂

P
=1 

¡
;

0
 ̂(

0
)
¢
+ B

→
 (0Ω) and ̂() = H +  ( ) where  = min(1

p
) These results in conjunction with

the fact that B =  (
p
 ) and Assumption A3(ii) imply that

√


¡
̂ − 0

¢ − H−1B
→


¡
0H−1 Ω(H

−1
 )0

¢
 ¥

Proof of Theorem 2.5. For the post-Lasso estimator, we have the following first order conditions:
1



P
∈̂

P
=1 (; ̂̂

 ̂(̂̂
)) = 0×1 Following the analyses of ̂() ̂ and ̂() in

Lemmas S1.5, S1.7, and S1.9, we can readily establish the consistency of ̂() ̂̂
 and ̂() in

the absence of the Lasso penalty term. By Taylor expansion, we have

̂̂
− 0 = −̂−1̂

1



X
∈̂

X
=1


¡
;

0
 ̂(

0
)
¢


where ̂̂
≡ 1



P
∈̂

P
=1[


 (; ̆̂

 ̂(̆̂
)) + 


 (; ̆

0
 ̂(̆̂

))̂(̆̂
)0] and ̆̂

lies

between ̂̂
and 0 elementwise. Following the analysis of ̂() in Lemma S1.13, we can also show that

̂̂
= H +  (1)  This result, in conjunction with Lemma S1.12, implies that

√
 (̂̂

− 0) −
H−1 B

→ 
¡
0H−1 Ω(H

−1
 )0

¢
 ¥

Proof of Theorem 2.6. Let K = {1 2 max}. We divide K into three subsets: K0 ≡ {0}  K− ≡
{ ∈ K :   0}  and K+ ≡ { ∈ K :   0}  in which the true, under-, and over-fitted models are
produced, respectively. Let ̂2

̂(1)
= 2



P
=1

P
∈̂(1)

P
=1 (; ̂̂(1)

 ̂(̂̂(1)
)) Using

Theorems 2.2 and 2.5 and Assumption A5, we can readily show that 1 (0 1) = ̂2
̂(01)

+1 0 =

2


P0

=1

P
∈̂(01)

P
=1 

¡
;

0
 

0


¢
+  (1)

→ ln
¡
20
¢
 We consider the cases of under- and over-

fitted models separately.

Case 1: Under-fitted model. In this case, we have   0 Noting that

̂2
̂(1)

≥ min
1≤0

inf
()∈G

2



X
=1

X
∈

X
=1


¡
; ̂

 ̂(̂
)
¢
= min
1≤0

inf
()∈G

̂2() 

we have by Assumptions A4-A5 that min1≤0
1 (1) ≥ min1≤0

inf()∈G ̂2() + 1
→

ln(2)  ln(20) It follows that 
¡
min∈Ω− 1 (1)  1 (0 1)

¢→ 1

Case 2: Over-fitted model. Let  ∈ Ω+. By Lemma S1.14 in the supplemental appendix and the fact
that 1 →∞ under Assumption A5, we have



µ
min
∈Ω+

1 (1)  1 (0 1)

¶
= 

µ
min
∈Ω+

h
 (̂2

̂(1)
− ̂2

̂(01)
) + 1 ( −0)

i
 0

¶
→ 1 as ( )→∞

It follows that  (̂(1) = 0)→ 1 as ( )→∞ ¥
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B Proofs of the Results in Section 3

We start by proving a useful technical result and then proceed to prove the main results. Let  () ≡
[ 1


P
=1  ( )]

0 [
1


P
=1  ( )] and ̄ () ≡ { 1

P
=1 E[ ( )]}0 

1


P
=1 E [ ( )] 

Let  () = [
1


P
=1{ ( )− E [ ( )]}]0 [

1


P
=1{ ( )− E [ ( )]}]

Lemma B.1 Suppose Assumption B1(iv) hold. Then  (
£
1
2
̄ ()− ()

¤ ≤  () ≤ ̄[2̄ ()

+2 ()]) = 1− 
¡
−1

¢
for all  ∈ B, where  and ̄ are some generic positive constants that do not

depend on  with 0    1  ̄ ∞

Proof. Let Λ ≡ {max k −k ≤  } for some  ∈ (0 1)  Then  (Λ ) = 1− 
¡
−1

¢
by

Assumption B1(iv). On the set Λ , we have



"
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X
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 ( )

#0


"
1



X
=1

 ( )

#
≤  () ≤ ̄

"
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X
=1

 ( )

#0


"
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X
=1

 ( )

#
(B.1)

for all  ∈ B By positive definiteness of  and simple manipulations, we can readily show that

(− )
0
 (− ) ≥ 1

2
0− 0 and (− )

0
 (− ) ≤ 20+ 2

0

for any conformable vectors  and  Taking  = 1


P
=1 E [ ( )] and  = 1



P
=1{ ( ) −

E [ ( )]} we have"
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X
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 ( )
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"
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X
=1

 ( )

#
≥ 1

2
̄ ()− ()  and (B.2)

"
1



X
=1

 ( )

#0


"
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X
=1

 ( )

#
≤ 2̄ () + 2 ()  (B.3)

Combining (B.1)-(B.3) yields the desired results.

Proof of Theorem 3.1. (i) Let 
(0)

22
(α) =  () + 2Π

0

=1 k − k  Then 
(0)

22
(βα) =

1


P
=1

(0)

22
(α)  By the definition of (β̃ α̃) we have
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¡
0  α̃

¢
=  (̃)− 

¡
0
¢
+ 2

n
Π=1

°°°̃ − ̃

°°°−Π=1 °°0 − ̃
°°o ≤ 0

By Lemma B.1 and Assumptions B1(i) and (iv), we have that  (̃) ≥ [1
2
̄(̃)−̃ ] and 

¡
0
¢ ≤

̄
£
2̄

¡
0
¢
+ 20

¤
= 2̄0 on the set Λ , where ̃ =  (̃) and 0 =  (

0
 ). It follows that

[1
2
̄(̃)− ̃ ]− 2̄0 + 2

n
Π=1

°°°̃ − ̃

°°°−Π=1 °°0 − ̃
°°o ≤ 0 which can be rewritten as

̄

³
̃

´
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2̄0 + ̃ − 2

³
Π=1

°°°̃ − ̃

°°°−Π=1 °°0 − ̃
°°´i  (B.4)

By the arguments used to obtain (A.3) and (A.6), we have¯̄̄
Π0

=1

°°°̃ − 

°°°−Π0

=1

°°0 − 
°°¯̄̄ ≤ 0

(α)

µ°°°̃ − 0

°°°+ 2°°°̃ − 0

°°°2¶  (B.5)

Noting that 1


P
=1 E [ ( )] = −̄∆

¡
 − 0

¢
 we have
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³
̃ − 0
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̄0∆̄∆

³
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´
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where 1 ≡ min1≤≤ min
¡
̄0∆̄∆

¢
satisfies that lim inf( )→∞ 1 ≥  2

̄
 0 by Assump-

tions B1(iii)-(iv). Combining (B.4)-(B.6) yields

1
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°°°2 ≤ 2


∙
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As in the proof of Theorem 2.1(ii), we can further demonstrate that 1


P
=1

°°°̃ − 0

°°°2 = 

¡
−1

¢


The proof of (iii) is completely analogous to that of Theorem 2.1(iii), now using the facts that | (β̃α)

−

¡
β0α

¢ | = 

¡
−12

¢
and that 0 ≥  (β̃ α̃)−  (β̃α

0) ¥

Proof of Theorem 3.2. (i) First, we fix  ∈ {1 0}  By the consistency of ̃ and ̃ in Theorem

3.1 and Assumptions B1(v)-(vi), we have ̃ − ̃
→ 0 − 0 6= 0 for all  ∈ 0 and  6=  and ̃ ≡

Π0

=16=||̃− ̃||
→ 0 ≡ Π0

=16=||0−0 || ≥ 0−1
  0 for any  ∈ 0 Now, suppose that
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°°° 6= 0
for some  ∈ 0 Then the first order condition (with respect to ) for the minimization problem in (3.2)

implies that
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where ̃ =
̃−̃
k̃−̃k if ||̃− ̃ || 6= 0 and k̃k ≤ 1 if ||̃− ̃ || = 0 Following the proof of Lemma S1.7, we

can show that 
³
max ||̃ − 0 || ≥ 

´
= 

¡
−1

¢
for any given   0With this, by (B.7) and Assumptions

B2(ii)-(iv), we can readily show that
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´
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¡
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where κ2 = (
−12 (ln )3 + 2) (ln )


 This, in conjunction with the proof of Theorem 3.1(iii), implies
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By (B.9)-(B.10),  (max∈0
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√
2κ2 ) = 

¡
−1

¢
 By Assumptions B1(iii)-(iv), we have
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Proof of Theorem 3.4. The proof follows closely from that of Theorem 2.4. Based on the subdifferential

calculus, the KKT conditions for the minimization of (3.2) are that for each  = 1  and  = 1 0

0×1 = −2̃0∆

1



X
=1



³
∆ − ̃

0
∆

´
+

2



0X
=1

̃Π
0

=1 6=
°°°̃ − ̃

°°°  and
0×1 =

1



X
=1

̃Π
0

=1 6=
°°°̃ − ̃

°°° 
30
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Proof of Theorem 3.6. The proof is analogous to that of Theorem 2.6 and is omitted. ¥
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This supplement is composed of four parts. Section S1 contains the proofs of some technical lemmas for

the proofs of the main results in Section 2. Section S2 gives bias correction formulae in linear panel data

models for both PPL and PGMM estimation. Sections S3 and S4 contain some additional simulation and

applications results, respectively.

S1 Some Technical Lemmas for the Proofs of the Main Results in

Section 2 of the Paper

In this appendix, we state and prove some technical lemmas that are used in the proofs of the main results

in Section 2. We first state an exponential inequality for strong mixing processes.

Lemma S1.1 Let {  = 1 2 } be a zero-mean strong mixing process, not necessarily stationary, with
the mixing coefficients satisfying  () ≤ 

 for some   0 and  ∈ (0 1)  If sup1≤≤ || ≤  then
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Proof. Merlevède, Peilgrad, and Rio (2009, Theorem 2) prove (i) under the condition  () ≤ exp (−2)
for some   0 If  = 1 we can take  = exp (−2) and apply the theorem to obtain the claim.

The above lemma is used in the proof of the following lemma.

Lemma S1.2 (i) Let  (;) be a R -valued function indexed by the parameter  ∈ Φ where Φ is a convex
compact set in R+1 and E [ (;)] = 0 for all   and  ∈ Φ Assume that there exists a function  ()

such that
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Proof. (i) Let  =  12 Let  be an arbitrary  × 1 nonrandom vector with kk = 1. Let
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Following the analysis of 1√


P
=1 3 (;) in (i2), we have

 max
1≤≤



Ã°°°°° 1
X
=1

2 (;)

°°°°° ≥ 

!
≤  max

1≤≤


µ
max
1≤≤

k (;)k  

¶
≤  max

1≤≤
max
1≤≤

 ( ()   )

= 
³
 1−2

´
=  (1) 

That is, (ii2) follows. For (ii1), the analysis is similar to that of max1≤≤
°°° 1√



P
=1 1 (;)

°°° in (i1)
with (ln )

3
replaced by  12 We now require  12 (ln )

3 → ∞ as ( ) → ∞ This completes the

proof of (ii).

(iii) Let 1 2 and 3 be as defined in (i). Noting that 3 is nonrandom, it suffices to show

that for any given   0 we have (iii1)  ·  (max1≤≤ || 1
P

=1 1 (;) || ≥ ) =  (1)  (iii2)

 ·  (max1≤≤ || 1
P

=1 2 (;) || ≥ ) =  (1)  and (iii3) max1≤≤
°°° 1 P

=1 3

°°° =  (). Fol-

lowing the analysis of 1√


P
=1 3 in (i), we have

max
1≤≤

°°°°° 1
X
=1

3

°°°°° ≤ 12
(2−)2 = ()

where we use the fact that  À −12(ln )3 and  ≥ 6 by the stated conditions. Thus, (iii3) follows.

Following the analysis of 1√


P
=1 3 (;) in (i2), we have

 · 
Ã
max
1≤≤

°°°°° 1
X
=1

2 (;)

°°°°° ≥ 

!
≤  · 

µ
max
1≤≤

max
1≤≤

k (;)k  

¶
≤ 2 max

1≤≤
max
1≤≤

 ( ()   )

= 
³
2 1−2

´
=  (1) 

That is, (iii2) follows. For (iii1), the analysis is similar to that of max1≤≤
°°° 1√



P
=1 1 (;)

°°° in (i1)
with (ln )

3
replaced by  12 We now require  12 (ln )

3 → ∞ as ( ) → ∞ This completes the

proof of (ii).

Recall that Ψ̂ ( ) =
1


P
=1  (; ) and Ψ ( ) =

1


P
=1 E [ (; )]  Recall that ̂ () =

argmin
1


P
=1  (; )  The following three lemmas study the properties of Ψ̂ ( ) and ̂ () 

Lemma S1.3 For any   0 we have 
h
max1≤≤ sup()

¯̄̄
Ψ̂ ( )−Ψ ( )

¯̄̄
≥ 

i
= 

¡
−1

¢


Proof. The proof is analogous to that of Lemma S1.2(iii).

Lemma S1.4 For any   0 we have  [max1≤≤ |̂ ()−  ()| ≥ ] = 
¡
−1

¢


Proof. Let  = min
£
inf:|−()| Ψ ( )−Ψ (  ())

¤
 Then   0 by Assumptions A1(ii)

and (v). Then conditional on the event  ≡
n
max1≤≤ sup()

¯̄̄
Ψ̂ ( )−Ψ ( )

¯̄̄
≤ 1

3

o
 we have

inf
|−()|

Ψ̂ ( ) ≥ inf
|−()|

Ψ ( )−
1

3


≥ Ψ (  ()) +
2

3


≥ Ψ̂ (  ()) +
1

3


4



On the other hand, Ψ̂ ( ̂ ()) ≤ Ψ̂ (  ())  It follows that  (max1≤≤ |̂ ()−  ()| ≤ ) ≤
 () = 

¡
−1

¢
by Lemma S1.3.

Lemma S1.5 (i) ̂ ()−  () = 

¡
−12

¢
for each 

(ii) max1≤≤ |̂ ()−  ()| = 

³
−12 (ln )3

´


(iii) max1≤≤ |Ψ ( ̂ ())−Ψ (  ())| = 

³
−12 (ln )3

´


(iv) 
³
max1≤≤ |̂ ()−  ()| ≥ −12 (ln )3+

´
= 

¡
−1

¢
for any   0 and   0

(v) 
³
max1≤≤ |Ψ ( ̂ ())−Ψ (  ())| ≥ −12 (ln )3+

´
= 

¡
−1

¢
for any   0 and

  0

Proof. (i)-(ii) Noting that ̂ () = argmin
1


P
=1  (; )  we have

0 =
1



X
=1

 (; ̂ ())

=
1



X
=1

 (;  ()) +
1



X
=1



 (; ̆ ()) [̂ ()−  ()] 

where ̆ () lies between ̂ () and  () for each  It follows that

̂ ()−  () = −
"
1



X
=1



 (; ̆ ())

#−1
1



X
=1

 (;  ()) (S1)

provided 1


P
=1 


 (; ̆ ()) is asymptotically nonvanishing. Let  () =  (;  ()) 

Noting that E [ ()] = 0 and

Var

Ã
1



X
=1

 ()

!
=

1

 2

X
=1

X
=1

Cov ( ()   ())

≤ 8max


{E | ()|}2
1

 2

X
=1

X
=1

 (|− |)1−2

≤ 8max


{E | ()|}2
1



∞X
=1

 ()
1−2

= 

µ
1



¶

by the Davydov inequality (e.g., Corollary A.2 in Hall and Heyde (1980)), we have 1


P
=1  () =



¡
−12

¢
by the Chebyshev inequality. In addition, by a simple application of Lemma S1.2(i), we can

show that max1≤≤
¯̄̄
1


P
=1  ()

¯̄̄
=  (

−12 (ln )3)

For 1


P
=1 


 (; ̆ ()) we make the following decomposition:

1



X
=1



 (; ̆ ()) =

1



X
=1

E
£


 (;  ())

¤
+
1



X
=1

©


 (;  ())− E

£


 (;  ())

¤ª
+
1



X
=1

©


 (; ̆ ())− 


 (;  ())

ª
 (S2)
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By Assumption A1(v), 1


P
=1 E

£


 (;  ())

¤
=  () ≥   0 uniformly in  By a simple

application of Lemma S1.2(i), we have

max
1≤≤

¯̄̄̄
¯ 1

X
=1

©


 (;  ())− E

£


 (;  ())

¤ª¯̄̄̄¯ =  (1) 

Next, by Assumption A1, and Lemmas S1.2(i) and S1.4, we have

max
1≤≤

¯̄̄̄
¯ 1

X
=1

£


 (; ̆ ())− 


 (;  ())

¤¯̄̄̄¯
≤ max

1≤≤
1



X
=1

 () |̆ ()−  ()|

≤
(
max
1≤≤

1



X
=1

E [ ()] + max
1≤≤

¯̄̄̄
¯ 1

X
=1

{ ()− E [ ()]}
¯̄̄̄
¯
)
max
1≤≤

|̂ ()−  ()|

≤
h

1

 +  (1)
i
 (1) =  (1)  (S3)

It follows that 1


P
=1 


 (; ̆ ()) = ()+ (1) uniformly in  ̂ ()− () =  (

−12)
for each  and max1≤≤ |̂ ()−  () | =  (

−12 (ln )3)
(iii) In view of the definition that Ψ ( ) = E [ (; )]  we have max1≤≤ |Ψ ( ̂ ()) −

Ψ(  ())| = max E | ()| |̂ ()−  ()| =  (
−12 (ln )3)

(iv) We define the following events:

1 ≡
½
max
1≤≤

|̂ ()−  ()| ≤ (6
1

 )

¾


2 ≡
(
max
1≤≤

¯̄̄̄
¯ 1

X
=1

{ ()− E [ ()]}
¯̄̄̄
¯ ≤ 

1

 2

)


3 ≡
(
max
1≤≤

¯̄̄̄
¯ 1

X
=1

£


 (; ̆ ())− 


 (;  ())

¤¯̄̄̄¯ ≤ 4

)


4 ≡
(
min
1≤≤

¯̄̄̄
¯ 1

X
=1



 (;  ())

¯̄̄̄
¯ ≥ 2

)


5 ≡
(
min
1≤≤

¯̄̄̄
¯ 1

X
=1



 (; ̆ ())

¯̄̄̄
¯ ≥ 4

)


Let 
 denote the complement of  for  = 1 2 3 4 5 Let  = ̂ () −  ()  By Lemmas S1.4 and

S1.2(iii),  (
1) = 

¡
−1

¢
and  (

2) = 
¡
−1

¢
 Then by (S3)

 (
3)

≤ 

Ã(
max
1≤≤

1



X
=1

E [ ()] + max
1≤≤

¯̄̄̄
¯ 1

X
=1

{ ()− E [ ()]}
¯̄̄̄
¯
)
max
1≤≤

|| ≥ 4

!

≤ 

Ã(
max
1≤≤

1



X
=1

E [ ()] + max
1≤≤

¯̄̄̄
¯ 1

X
=1

{ ()− E [ ()]}
¯̄̄̄
¯
)
max
1≤≤

|| ≥ 4 2

!
+ (

2)

≤ 

µ
3
1

 max
1≤≤

|| ≥ 2

¶
+  (

2)

≤  (
1) +  (

2) = 
¡
−1

¢
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Let 

 () ≡ 


 (;  ())  Noting that

1


P
=1 


 () =

1


P
=1 E

£


 ()

¤
+ 1



P
=1{ 

 ()

−E £ 
 ()

¤} min1≤≤ 1


P
=1 E

£


 ()

¤ ≥  by Assumption A1(v) and



Ã
max
1≤≤

¯̄̄̄
¯ 1

X
=1

{ 
 ()− E

£


 ()

¤¯̄̄̄¯ ≥ 2

!
= 

¡
−1

¢
by Lemma S1.2(iii),

we have  (4) = 
³
min1≤≤

¯̄̄
1


P
=1 


 (;  ())

¯̄̄
≥ 2

´
= 1− 

¡
−1

¢
 It follows that

 (5) ≥  (3 ∩4) ≥ 1−  (
3)−  (

4) = 1− 
¡
−1

¢


Consequently, we have that by Lemma S1.2(iii),

 · 
µ
max
1≤≤

|̂ ()−  ()| ≥ −12 (ln )3+
¶

=  · 
Ã³

4

´−1
max
1≤≤

¯̄̄̄
¯ 1

X
=1

 (;  ())

¯̄̄̄
¯ ≥ −12 (ln )3+  5

!
+ ·  (

5)

≤  · 
Ã
max
1≤≤

¯̄̄̄
¯ 1

X
=1

 (;  ())

¯̄̄̄
¯ ≥ 

−12 (ln )3+ 4

!
+ ·  (

5)

=  (1) +  (1) =  (1) 

(v) Noting that |Ψ ( ̂ ())−Ψ (  ())| ≤ E [ ()] |̂ ()−  ()| ≤ 
1

 |̂ ()−  ()|
by Assumption A1(iv), the result follows directly from (iv).

Recall that ̂ ≡ 1


P
=1 

¡
;

0
  ̂

¡
0
¢¢
 Let  ≡ 1



P
=1 

¡
;

0
  

0


¢
 The next lemma studies

the asymptotic properties of ̂  and their difference.

Lemma S1.6 (i)  = 

¡
−12

¢
and ̂ −  = 

¡
−12

¢
for each 

(ii) max1≤≤ kk =  (
−12 (ln )3) and max1≤≤

°°°̂ − 

°°° =  (
−12 (ln )3)

(iii) 1


P
=1

°°°̂°°°2 = 

¡
−1

¢


(iv) max1≤≤  (kk ≥ 1) = 
¡
−1

¢
for any given constant   0

(v) 
³
max1≤≤

°°°̂ − 

°°° ≥ −12 (ln )3+
´
= 

¡
−1

¢
for any   0 and   0

Proof. (i) Let  be an arbitrary ×1 nonrandom vector with kk = 1 Recall that  = 
¡
;

0
  

0


¢


Note that E () = 0 and

Var
¡
0

¢
=

1

 2

X
=1

X
=1

Cov
¡
0 

0


¢ ≤ 8max


©
E
¯̄
0

¯̄ª2 1

 2

X
=1

X
=1

 (|− |)1−2

≤ 8max


©
E
¯̄
0

¯̄ª2 1


∞X
=1

 ()
1−2

= 

µ
1



¶
by the Davydov inequality (e.g., Corollary A.2 in Hall and Heyde (1980)). Then  =

1


P
=1 

¡
;

0
  

0


¢
=



¡
−12

¢
by the Chebyshev inequality. By second order Taylor expansion

̂ −  =
1



X
=1

£

¡
;

0
  ̂

¡
0
¢¢− 

¡
;

0
  

0


¢¤
=

1



X
=1





¡
;

0
  

¡
0
¢¢ £

̂
¡
0
¢− 

¡
0
¢¤

+
1

2

X
=1





¡
;

0
  ̆

¡
0
¢¢ £

̂
¡
0
¢− 

¡
0
¢¤2
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where ̆
¡
0
¢
lies between ̂

¡
0
¢
and 

¡
0
¢
 By Assumptions A1, Lemma S1.5, and the Markov inequality,

one can readily show that the first term is 

¡
−12

¢
and the second is 

¡
−1

¢
 It follows that ̂− =



¡
−12

¢


(ii) By a simple application of Lemma S1.2(i), max1≤≤ kk =  (
−12 (ln )3) Next,

max
1≤≤

°°°̂ − 

°°° ≤ max
1≤≤

1



X
=1

 ()
¯̄
̂
¡
0
¢− 

¡
0
¢¯̄

≤
(
max
1≤≤

1



X
=1

E [ ()] + max
1≤≤

¯̄̄̄
¯ 1

X
=1

{ ()− E [ ()]}
¯̄̄̄
¯
)

× max
1≤≤

¯̄
̂
¡
0
¢− 

¡
0
¢¯̄

= { (1) +  (1)} (
−12 (ln )3) =  (

−12 (ln )3)

(iii) By the Cauchy-Schwarz inequality, 1


P
=1

°°°̂°°°2 ≤ 2


P
=1 kk2 + 2



P
=1

°°°̂ − 

°°°2  The first
term in 

¡
−1

¢
by the Markov inequality and the calculation in (i). Using the decomposition of ̂ − 

in (i), we can readily show that the second term is 

¡
−1

¢
 Then 1



P
=1

°°°̂°°°2 = 

¡
−1

¢


(iv) The result follows by a simple application of Lemma S1.2(ii) and Assumption A2.

(v) The proof is similar to that of (ii) but we now apply Lemmas S1.2(iii) and S1.5(iv).

The next lemma establishes the uniform consistency of ̂

Lemma S1.7 For any   0 we have 
³
max1≤≤

°°°̂ − 0

°°°´  ) = 
¡
−1

¢


Proof. Recall that 
(0)

11
(βα) = 1 (β)+

1


P
=1Π

0

=1 k − k where 1 (β) =
1


P
=1P

=1  (; ̂ ()) =
1


P
=1 Ψ̂ ( ̂ ())  Noting that (β̂ α̂) = argmin() 

(0)

11
(βα)  we

have 
(0)

11
(β̂ α̂) ≤ 

(0)

11

¡
β0 α̂

¢
and

Ψ̂

³
̂ ̂(̂)

´
+ 1Π

0

=1

°°°̂ − ̂

°°° ≤ Ψ̂ ¡0  ̂ ¡0 ¢¢+ 1Π
0

=1

°°0 − ̂
°° for  = 1 

Let  = min

h
inf

:k−0k Ψ (  ())−Ψ
¡
0  

¡
0
¢¢i

 0Define three events1 ≡ {max1≤≤
sup() |Ψ̂ ( )−Ψ ( ) | ≤ 1

6
} and 2 ≡ {max1≤≤ sup |Ψ ( ̂ ())−Ψ (  ())| ≤ 1

6
} and

3 ≡ {1max:∈B Π0

=1 k − ̂k ≤ 1
6
} By Lemmas S1.3, S1.5(v) and Assumption A2(i),  (1 ∩2 ∩3)

≥ 1−  (
1)−  (

2)−  (
3) = 1− 

¡
−1

¢
 Then conditional on 1 ∩2 ∩3 we have uniformly in 

inf
:k−0k

Ψ̂ ( ̂ ()) + 1Π
0

=1 k − ̂k

≥ inf
:k−0k

Ψ ( ̂ ())−
1

6
+ 0 ≥ inf

:k−0k
Ψ (  ())−

1

6
− 1

6


≥ Ψ
¡
0  

¡
0
¢¢
+ − 1

6
− 1

6


≥ Ψ
¡
0  ̂

¡
0
¢¢− 1

6
+ − 1

6
− 1

6


≥ Ψ̂
¡
0  ̂

¡
0
¢¢− 1

6
− 1

6
+ − 1

6
− 1

6


= Ψ̂
¡
0  ̂

¡
0
¢¢
+
1

3


≥ Ψ̂
¡
0  ̂

¡
0
¢¢
+ 1Π

0

=1

°°0 − ̂
°°+ 1

6
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On the other hand, Ψ̂

³
̂ ̂(̂)

´
+ 1Π

0

=1

°°°̂ − ̂

°°° ≤ Ψ̂ ¡0  ̂ ¡0 ¢¢ + 1Π
0

=1

°°0 − ̂
°°  It follows

that 
³
max1≤≤

°°°̂ − 0

°°°´  ) = 
¡
−1

¢


To state and prove the next lemma, we follow Hahn and Newey (2004) and introduce some notation.

Let  and ̂ denote the cumulative and empirical distribution functions of  respectively. Let  () ≡
 + 

√
 (̂ − ) for  ∈

£
0 −12

¤
 For fixed  and  let  (  ()) ≡ argmin

R
 (·; )  () 

which is the solution to the estimating equation

0 =

Z
 (·;  (  ()))  ()  (S4)

Define 

 () =  (  ())  Apparently,  (0) =  

¡
−12

¢
= ̂

 () =  (  (0)) 

̂() = 

³
 

³
−12

´´


()


=

 (  (0))


= 


 (0)  and

̂()


=


¡
 

¡
−12

¢¢


= 



³
−12

´


We study the properties of  (  ()) and 

 () in the next two lemmas.

Lemma S1.8 (i) 
¡
max1≤≤ max0≤≤−12 | (  ())−  ()| ≥ 

¢
= 

¡
−1

¢
for any   0

(ii) max
1≤≤maxk−0k=(1)

¯̄
 ()− 

¡
0
¢¯̄
=  (1) 

(iii) 
³
max

1≤≤maxk−0k=(1)
¯̄
̂ ()− ̂

¡
0
¢¯̄ ≥ 

´
= 

¡
−1

¢
for any   0

Proof. (i) Let  = min
£
inf:|−()| Ψ ( )−Ψ (  ())

¤
 0 Noting thatZ

 (·; )  () =
³
1− 

√

´
Ψ ( ) + 

√
 Ψ̂ ( ) 

we have ¯̄̄̄Z
 (·; )  ()−Ψ ( )

¯̄̄̄
≤ 

√

¯̄̄
Ψ̂ ( )−Ψ ( )

¯̄̄
≤

¯̄̄
Ψ̂ ( )−Ψ ( )

¯̄̄


By Lemma S1.3, we have  [] = 
¡
−1

¢
where

 ≡
½

max
0≤≤−12

max
1≤≤

¯̄̄̄Z
 (·; )  ()−Ψ ( )

¯̄̄̄
≥ 3

¾


Therefore for every  ∈ £0 −12¤ and conditional on the event  we have
inf

:|−()|

Z
 (·; )  () ≥ inf

:|−()|
Ψ ( )−

1

3


≥ Ψ (  ()) +
2

3


≥
Z
Ψ (  ())  () +

1

3
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On the other hand, we have
R
 (·;  (  ()))  () ≤

R
 (·;  ())  () by the definition of

 (  ())  It follows that 
¡
max1≤≤ max0≤≤−12 | (  ())−  ()| ≥ 

¢
= 

¡
−1

¢


(ii) Let   0 be given. Let  = min

h
inf

:|−(0 )| Ψ ( )−Ψ
¡
0  

¡
0
¢¢i

 0 and ̄ =

max E [ ()] Note thatmax
¯̄R £


¡·;  ¡0 ¢¢− 

¡·;0   ¡0 ¢¢¤  ¯̄ ≤ ̄ max
°° − 0

°° =  (1) 

implying that
¯̄R £


¡·;  ¡0 ¢¢− 

¡·;0   ¡0 ¢¢¤ ¯̄ ≤ 3 when max
°° − 0

°° ≤ (3̄) Then for

all  with max
°° − 0

°° ≤ (3̄) we have

inf
:|−(0 )|

Z
 (·; )  ≥ Ψ

¡
0  

¡
0
¢¢
+ 

≥ Ψ
¡
 

¡
0
¢¢
+
2

3


=

Z

¡·;  ¡0 ¢¢  + 23

On the other hand, we have
R
 (·;  ())  ≤

R

¡·;  ¡0 ¢¢  by the definition of  ()  It

follows that max
1≤≤maxk−0k=(1)

¯̄
 ()− 

¡
0
¢¯̄
=  (1) 

(iii) By the triangle inequality,

max
1≤≤

¯̄
̂ ()− ̂

¡
0
¢¯̄ ≤ max

1≤≤
|̂ ()−  ()|+ max

1≤≤

¯̄
̂
¡
0
¢− 

¡
0
¢¯̄
+ max
1≤≤

¯̄
 ()− 

¡
0
¢¯̄


By Lemma S1.5(iv),  (max1≤≤ |̂ ()−  ()| ≥ 3) = 
¡
−1

¢
 The last term in the above displayed

equation is  (1) uniformly in the setmax
°° − 0

°° =  (1) by (ii). It follows that  (max
1≤≤maxk−0k=(1)¯̄

̂ ()− ̂
¡
0
¢¯̄ ≥ ) = 

¡
−1

¢
for any   0

Lemma S1.9 (i) 
³
max1≤≤ max0≤≤−12

°°°(())
− ()



°°° ≥ 
´
= 

¡
−1

¢
for any   0

(ii) max
1≤≤maxk−0k=(1)

°°°°()
− (

0
 )



°°°° =  (1) 

(iii) 

µ
max

1≤≤maxk−0k=(1)
°°°°̂()

− ̂(
0
)



°°°°¶ = 
¡
−1

¢
for any   0

Proof. (i) Differentiating both sides of (S4) with respect to  yields

0 =

Z


 (·;  (  ()))  () +

Z


 (·;  (  ()))  ()

 (  ())




It follows that



 () ≡

 (  ())


= −

R


 (·;  (  ()))  ()R



 (·;  (  ()))  ()

 (S5)

Noting that
R


 (·;  ())  =  ()    0 uniformly in  by Assumption A1(v), it suffices

to show that



µ
max
1≤≤

max
0≤≤−12

°°°°Z 

 (·;  (  ()))  ()−

Z


 (·;  ()) 

°°°° ≥ 2

¶
= 

¡
−1

¢


(S6)

and



µ
max
1≤≤

max
0≤≤−12

¯̄̄̄Z


 (·;  (  ()))  ()−

Z


 (·;  ()) 

¯̄̄̄
≥ 2

¶
= 

¡
−1

¢


(S7)
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By the triangle inequality,°°°°Z 

 (·;  (  ()))  ()−

Z


 (·;  ()) 

°°°°
≤

°°°°Z h


 (·;  (  ()))− 


 (·;  ())

i
 ()

°°°°+ °°°°Z 

 (·;  ())  [ ()− ]

°°°°
=

°°°°Z h


 (·;  (  ()))− 


 (·;  ())

i
 ()

°°°°+ 
√


°°°°Z 

 (·;  ()) 

h
̂ − 

i°°°° 
Using Lemma S1.2(iii), we have



µ
max
1≤≤

max
0≤≤−12


√


°°°°Z 

 (·;  ()) 

h
̂ − 

i°°°° ≥ 4

¶
= 

¡
−1

¢


In addition, by Lemma S1.8(i),



µ
max
1≤≤

max
0≤≤−12

°°°°Z h


 (·;  (  ()))− 


 (·;  ())

i
 ()

°°°° ≥ 4

¶
≤ 

µ
max
1≤≤

Z
 (·)  () max

1≤≤
max

0≤≤−12
| (  ())−  ()| ≥ 4

¶
= 

¡
−1

¢


Then (S6) follows. Analogously we can prove (S7).

(ii) Recall that

 ()


= −

R


 (·;  ()) R



 (·;  ()) 

 (S8)

To prove (ii), it suffices to show that

max
1≤≤maxk−0k=(1)

°°°°Z 

 (·;  ())  −

Z




¡·;0   ¡0 ¢¢ °°°° =  (1) 

and

max
1≤≤maxk−0k=(1)

°°°°Z 

 (·;  ())  −

Z




¡·;0   ¡0 ¢¢ °°°° =  (1) 

We only show the first result as the proof of the second one is similar. By Assumption A1(iv) and Lemma

S1.8(ii),

max
1≤≤maxk−0k=(1)

°°°°Z 

 (·;  ())  −

Z




¡·;0   ¡0 ¢¢ °°°°
≤ max


E [ ()] max

1≤≤maxk−0k=(1)
©°° − 0

°°+ ¯̄ ()− 
¡
0
¢¯̄ª

=  (1) 

(iii) By the triangle inequality,

max
1≤≤

°°°°°̂ ()
− ̂

¡
0
¢



°°°°° ≤ max
1≤≤

°°°°̂ ()
−  ()



°°°°+ max
1≤≤

°°°°°̂
¡
0
¢


− 

¡
0
¢



°°°°°
+ max
1≤≤

°°°°° ()
− 

¡
0
¢



°°°°° 
Noting that 

³
max1≤≤

°°°̂()
− ()



°°° ≥ 3
´
= 

¡
−1

¢
by (i) and the last term in the above dis-

played equation is  (1) uniformly in the setmax
°° − 0

°° =  (1) by (ii), we have 
³
max

1≤≤maxk−0k=(1)°°°°̂()
− ̂(

0
 )



°°°° ≥ 

¶
= 

¡
−1

¢
for any   0
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Recall from (A.2) that

̂ () =
1



X
=1

∙


 (; ̂ ()) + 


 (; ̂ ())

̂ ()

0

¸


Let ̌ () =
1


P
=1[


 (;  ())+


 (;  ())

()

0
]Note that () = E[̌ ()]

where  (·) is defined in Section 2.3. The next lemma study the asymptotics of ̂ () 

Lemma S1.10 (i) 
³
max1≤≤

°°°̂

³
̆

´
−

¡
0
¢°°° ≥ 

´
= 

¡
−1

¢


(ii) ̂ ≡ min1≤≤ min

³
̂(̆)

´
≥  −  (1) 

Proof. (i) By the triangle inequality,

max
1≤≤

°°°̂

³
̆

´
−

¡
0
¢°°°

≤ max
1≤≤

°°°̂

³
̆

´
− ̂

¡
0
¢°°°+ max

1≤≤

°°°̂

¡
0
¢− ̌

¡
0
¢°°°+ max

1≤≤

°°̌

¡
0
¢−

¡
0
¢°° 

We prove (i) by showing that (i1)  (max1≤≤ ||̂(̆)−̂

¡
0
¢ || ≥ 3) = 

¡
−1

¢
 (i2)  (max1≤≤

||̂

¡
0
¢ − ̌

¡
0
¢ || ≥ 3) = 

¡
−1

¢
 and (i3)  (max1≤≤ ||̌

¡
0
¢ − 

¡
0
¢ || ≥ 3) =


¡
−1

¢
 For (i1), we make the following decomposition:

̂

³
̆

´
− ̂

¡
0
¢
=

1



X
=1

h




³
; ̆ ̂

³
̆

´´
− 




¡
;

0
  ̂

¡
0
¢¢i

+
1



X
=1

⎡⎣


³
; ̆ ̂

³
̆

´´ ̂

³
̆

´
0

− 



¡
;

0
  ̂

¡
0
¢¢ ̂ ¡0 ¢

0

⎤⎦
≡ 11 +12 say

For 11 we have

max
1≤≤

k11k ≤ max
1≤≤

1



X
=1

 ()
n°°°̆ − 0

°°°+ °°°̂ ³̆´− ̂
¡
0
¢°°°o 

Using the arguments as used in the proof of Lemma S1.5(iv), we can show that



Ã
max
1≤≤

1



X
=1

 () ≤ 21

!
= 1− 

¡
−1

¢


Then by Lemmas S1.7 and S1.8(iii), we can readily show that  (max1≤≤ k11k ≥ 6) = 
¡
−1

¢
 For

12 we make the following decomposition:

12 =
1



X
=1

h




³
; ̆ ̂

³
̆

´´
− 




¡
;

0
  ̂

¡
0
¢¢i ̂ ³̆´

0

+
1



X
=1





¡
;

0
  ̂

¡
0
¢¢⎡⎣̂

³
̆

´
0

− ̂
¡
0
¢

0

⎤⎦
≡ 121 +122 say.
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Following the analysis of 11 and applying Lemmas S1.8(i) and (iii) and Lemmas S1.9(i) and (iii), we can

readily show that  (max1≤≤ k12k ≥ 12) = 
¡
−1

¢
for  = 1 2 Then  (max1≤≤ k12k ≥ 6) =


¡
−1

¢
 Consequently, we have 

³
max1≤≤ ||̂

³
̆

´
− ̂

¡
0
¢ || ≥ 3

´
= 

¡
−1

¢


To prove (i2), we make the following decomposition:

̂

¡
0
¢− ̌

¡
0
¢
=

1



X
=1

h




¡
;

0
  ̂

¡
0
¢¢− 




¡
;

0
  

¡
0
¢¢i

+
1



X
=1

"




¡
;

0
  ̂

¡
0
¢¢ ̂ ¡0 ¢

0
− 




¡
;

0
  

¡
0
¢¢  ¡0 ¢

0

#
≡ 21 +22

Following the analysis of max1≤≤ ||̂(̆) − ̂

¡
0
¢ || and using Lemmas S1.2, S1.7, S1.8, and S1.9

and Assumption A1, we can show  (max1≤≤ k2k ≥ 6) = 
¡
−1

¢
for  = 1 2. Then (i2) holds.

Next,

̌

¡
0
¢−

¡
0
¢
=

1



X
=1

n




¡
;

0
  

¡
0
¢¢− E h



¡
;

0
  

¡
0
¢¢io

+
1



X
=1

©




¡
;

0
  

¡
0
¢¢− E £



¡
;

0
  

¡
0
¢¢¤ª 

¡
0
¢

0
≡ 31 +32 say

Using Lemma S1.2, we can show  (max1≤≤ k3k ≥ 6) = 
¡
−1

¢
for  = 1 2. Then (i3) holds. This

completes the proof of (i).

(ii) By the Weyl inequality and the fact that |max ()| ≤ kk for any symmetric matrix  we have

min(̂(̆)) ≥ min(0

¡
0
¢
) − ||̂(̆) − 

¡
0
¢ || Then by (i) and Assumption A1(v), ̂ ≡

min1≤≤ min(̂(̆)) ≥ min1≤≤ min(

¡
0
¢
)−max1≤≤ ||̂(̆)−

¡
0
¢ || ≥  − (1) 

Lemma S1.11 Recall that ̄ ≡ ̂

¡
̄
¢
where ̄ lies between ̂ and 0 elementwise. Then

(i) 
¡
max1≤≤

°°̄ −

¡
0
¢°° ≥ 

¢
= 

¡
−1

¢
for any   0

(ii) max1≤≤
°°̄

°° =  (1) 

Proof. (i) The proof is identical to that of Lemma S1.10(i) with ̆ replaced by ̄

(ii) By (i) and the triangle inequality, max1≤≤
°°̄

°° ≤ max1≤≤ °°

¡
0
¢°°+max1≤≤ ||̄−



¡
0
¢ || =  (1) +  (1) =  (1) 

Recall that  = 
¡
;

0
  

0


¢
 


 = 




¡
;

0
  

0


¢
 


 = 




¡
;

0
  

0


¢
 and similarly

for  and 

  Recall that  =

1


P
=1 E

¡




¢
  =

1


P
=1 E

¡




¢
 2 =

1


P
=1 E

¡




¢


 2 =
1


P
=1 E

¡




¢
 and U =  − 


 The next two lemmas are essential to establish the

asymptotic distribution of the C-Lasso and post-Lasso estimators.

Lemma S1.12 Let ̂̂
≡ 1√



P
∈̂

P
=1 

¡
;

0
 ̂(

0
)
¢
 Then ̂̂

+ B
→  (0Ω) 

Proof. Let ̂0

≡ 1√



P
∈0



P
=1 

¡
;

0
 ̂(

0
)
¢
 Using the fact that 1{ ∈ ̂} = 1{ ∈

0}+ 1{ ∈ ̂\0}− 1{ ∈ 0\̂} we have

̂̂
− ̂0


=

1√


X
∈̂\0



X
=1


¡
;

0
 ̂(

0
)
¢− 1√



X
∈0


\̂

X
=1


¡
;

0
 ̂(

0
)
¢

≡ ̂1 − ̂2 say.
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Let   0 be an arbitrary constant. By Theorem 2.2, 
³°°°̂1°°° ≥ 

´
≤  (̂ )→ 0 and 

³°°°̂2°°° ≥ 
´
≤

 (̂ )→ 0 Thus ̂̂
= ̂0


+ (1) and it suffices to prove the lemma by showing that (i) ̂0


+B =

1√


P
∈0



P
=1U +  (1)  and (ii)

1√


P
∈0



P
=1 U

→  (0Ω) 

Part (i): We prove ̂0

+ B =

1√


P
∈0



P
=1U +  (1)  By second order Taylor expansion,

̂0

=

1√


X
∈0



X
=1

 +
1√


X
∈0



X
=1





£
̂(

0
)− 0

¤
+

1

2
√


X
∈0



X
=1





¡
;

0
 
∗


¢ £
̂(

0
)− 0

¤2
≡ 1 + 2 + 3 say, (S9)

where ∗ lies between ̂(
0
) and 0  We will show that 1 contributes to the asymptotic variance of

̂0

 3 contributes to the asymptotic bias, and 2 contributes to both. We analyze 3 first. Let

03 =
1

2
√


P
∈0



P
=1 




£
̂(

0
)− 0

¤2
 By Assumption A1, the Markov inequality, and Lemma

S1.5(ii), we have

°°3 − 03
°° =

1

2
√


X
∈0



X
=1

°°


¡
;

0
 
∗


¢− 



¡
;

0
 

0


¢°° £̂(0)− 0
¤2

≤
⎧⎨⎩ 1

2

X
∈0



X
=1

 ()

⎫⎬⎭p
¯̄
̂(

0
)− 0

¯̄3
=  (1)

p


³
−32 (ln )9

´
= 

³

12

 −1 (ln )9
´
=  (1) 

By (S1) in the proof of Lemma S1.5,

03 =
1

2
√


X
∈0



X
=1





Ã
1


P
=1 

1


P
=1 


 (;

0
 ̆ (

0
))

!2


As in the analysis of 3−03 by Lemmas S1.5(ii) and S1.2(i) and the fact that max1≤≤
¯̄̄
1


P
=1 

¯̄̄
=

 (
−12 (ln )3), we can readily show that 03 = 003 + (

12

 −1 (ln )9) = 003 +  (1)  where

003 ≡ 1

2
√


X
∈0



X
=1





Ã
1


P
=1 

1


P
=1 E

£




¤!2

=
1

2
√


X
∈0



2
−2


Ã
1√


X
=1



!2
+ (

12

 −1 (ln )9)

where we also use the fact that max1≤≤
°°° 1 P

=1 

 −2

°°° =  (
−12 (ln )3 by Lemma S1.2(i).

Thus, we have

3 =
1

2
√


X
∈0



2
−2


Ã
1√


X
=1



!2
+  (1)  (S10)
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Now, we study 2 By Lemma S1.5(ii), (S1) in its proof, and the fact that max1≤≤
¯̄̄
1


P
=1 

¯̄̄
=



³
−12 (ln )3

´
and max1≤≤

¯̄̄
1


P
=1 


 −

¯̄̄
= 

³
−12 (ln )3

´
 we have

̂(
0
)− 0 = −

1


P
=1 

1


P
=1 


 (;

0
 ̆ (

0
))

= −
1


P
=1 

1


P
=1 




+

³
−1 (ln )6

´
= −−1

1



X
=1

 +

³
−1 (ln )6

´
uniformly in  ∈ 0

But the above expansion is not sufficient to study 2 and we need to get better control on the remainder

term. Noting that ̂
¡
0
¢
= argmin

1


P
=1 

¡
;

0
  

¢
 we have

0 =
1



X
=1


¡
;

0
  ̂

¡
0
¢¢

=
1



X
=1

 +
1



X
=1





£
̂
¡
0
¢− 

¡
0
¢¤
+
1

2

X
=1





¡
;

0
  ̌

¡
0
¢¢ £

̂
¡
0
¢− 

¡
0
¢¤2



where ̌
¡
0
¢
lies between ̂

¡
0
¢
and 

¡
0
¢
for each  It follows that

̂
¡
0
¢− 0

¡
0
¢

= −
"
1



X
=1





#−1(
1



X
=1

 +
1

2

X
=1





¡
;

0
  ̌

¡
0
¢¢ £

̂
¡
0
¢− 

¡
0
¢¤2)

= −
"
1



X
=1





#−1(
1



X
=1

 +
1

2

X
=1





£
̂
¡
0
¢− 

¡
0
¢¤2)

+

³
−3 (ln )9

´

= −
"
1



X
=1





#−1⎧⎨⎩ 1
X
=1

 +
1

2
−2

1



X
=1





Ã
1



X
=1



!2⎫⎬⎭+

³
−3 (ln )9

´

= −
"
1



X
=1





#−1⎧⎨⎩ 1
X
=1

 +
1

2
−2  2

Ã
1



X
=1



!2⎫⎬⎭+

³
−3 (ln )9

´
 (S11)

where we use the fact max1≤≤
¯̄̄
1


P
=1

£




¡
; ̌

¡
0
¢¢− 




¤¯̄̄ ≤ max1≤≤ 1


P
=1 ()

×max1≤≤
¯̄
̌
¡
0
¢− 

¡
0
¢¯̄
=  (

−12 (ln )3) andmax1≤≤
¯̄̄
1


P
=1 


 − 2

¯̄̄
=  (

−12 (ln )3)

by Lemma S1.2(i). It follows that

2 =
−1√


X
∈0



X
=1





⎧⎨⎩
"
1



X
=1





#−1⎧⎨⎩ 1
X
=1

 +
1

2
−2  2

Ã
1



X
=1



!2⎫⎬⎭+ (
−3 (ln )9)

⎫⎬⎭
= − 1√



X
∈0



X
=1



1


P
=1 




1


P
=1 




− 1

2
√


X
∈0



X
=1





−2  2

³
1


P
=1 

´2
1


P
=1 




+  (1)

≡ −21 − 22 +  (1)  (S12)
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For 21 we make the following decomposition:

21 =
1√


X
∈0



X
=1






+
1√


X
∈0



X
=1



1


P
=1

¡


 −

¢


+
1√


X
∈0



X
=1



(
1

1


P
=1 




− 1



)

+
1√


X
∈0



X
=1


1



X
=1

¡


 −

¢( 1
1


P
=1 




− 1



)
≡ 21 + 21 + 21 + 21 (S13)

Apparently, 21 =
1√
3

P
∈0


−1

P
=1

P
=1 

£


 − E(

 )
¤
 For 21 we can use the fact that

max1≤≤
¯̄̄
1


P
=1 

¯̄̄
= 

³
−12 (ln )3

´
and max1≤≤

¯̄̄
1


P
=1 


 −

¯̄̄
= 

³
−12 (ln )3

´
to

show that

21 =
−1√


X
∈0



X
=1



1


P
=1

¡


 −

¢


1


P
=1 




=
−1√
 3

X
∈0




−2


X
=1

X
=1


¡


 −

¢
+  (1) 

It follows that

21 + 21 =
1√

 3

X
∈0



−1

X
=1

X
=1

U

 +  (1)  (S14)

where we use the definition of U (≡ 

 − 




 ) and the fact that E

£
U

¤
= 0 For 21 we can bound

it directly:

|21| ≤
p
 max

1≤≤

¯̄̄̄
¯ 1

X
=1



¯̄̄̄
¯ max1≤≤

°°°°° 1
X
=1

¡


 −

¢°°°°° max1≤≤

¯̄̄̄
¯ 1
1


P
=1 




− 1



¯̄̄̄
¯

=
p


³
−32 (ln )9

´
=  (1)  (S15)

Combining (S13)-(S15) yields

21 =
1√


X
∈0



X
=1






+
1√

 3

X
∈0



−1

X
=1

X
=1

U

 +  (1)  (S16)

In addition, for 22 we have

22 =
1

2
√


X
∈0



Ã
1



X
=1





!
−3  2

Ã
1√


X
=1



!2

=
1

2
√


X
∈0




−3
  2

Ã
1√


X
=1



!2
+  (1)  (S17)
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Combining (S12)-(S17) yields

2 = − 1√


X
∈0



X
=1






−
⎧⎨⎩ 1√

 3

X
∈0



−1

X
=1

X
=1

U

 +

1

2
√


X
∈0




−3
  2

Ã
1√


X
=1



!2⎫⎬⎭+ (1) (S18)
Then by (S9), (S10), and (S18)

̂0

=

1√


X
∈0



X
=1

µ
 − 





¶

−
⎧⎨⎩ 1√

 3

X
∈0



−1

X
=1

X
=1

U

 −

1

2
√


X
∈0



−2

∙
2 −  2





¸Ã
1√


X
=1



!2⎫⎬⎭
+ (1)

=
1√


X
∈0



X
=1

U − B +  (1) 

This completes the proof of (i).

Part (ii): We prove Z ≡ 1√


P
∈0



P
=1U

→  (0Ω)  Let  ≡ 1√


P
=1 

0
U where 

is an arbitrary × 1 nonrandom vector with kk = 1 Then 0Z =
P

∈0

  Noting that E (U) = 0

we have by Assumption A3(i)

Var (Z ) =
1



X
∈0



X
=1

X
=1

E (UU0) =
1



X
∈0



Ω → Ω  0

where Ω =
1


P
=1

P
=1 E (UU

0
)  By the Lindeberg-Feller central limit theorem (e.g., Theorem 5.6 in

White (2001)), it suffices to verify the Lindeberg condition:

 ≡
X
∈0



E
£
21 {| |  }¤→ 0 for any given   0

By the Cauchy-Schwarz and Markov inequalities,X
∈0



E
£
21 {| |  }¤ ≤ X

∈0


©
E
¡
4

¢ª12 { (| |  )}12 ≤ 1

2

X
∈0



E
¡
4

¢


By straightforward moment conditions and properties of strong mixing processes, we can readily show that

E
¡
4

¢
=

1

2


2

Ã
X
=1

0U

!4
= 

¡
−2

¢
uniformly in 

It follows that  → 0 for any   0 and Z ≡ 1√


P
∈0



P
=1U

→  (0Ω) 

REMARK. Note that U (; ) ≡  (; )−


 (; ) and U correspond to  (;  )

and  in Hahn and Kuersteiner (2011, HK hereafter), respectively. Let U

 and U denote the first and
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second derivatives of U with respect to  Let U

 = U

¡
;

0
  

0


¢
and U = U (;

0
  

0
 )

Following HK, the asymptotic bias term of ̂̂
takes the form:

B
 =

1√


X
∈0



"
−1

1√


X
=1



#"
1√


X
=1

µ
U −

U2

2



¶#


where U2 ≡ 1


P
=1 E

¡
U

¢
 Note that

B
 =

1√
 3

X
∈0



−1

X
=1

X
=1

U

 −

1

2
√


X
∈0



−2 U2

Ã
1√


X
=1



!2
≡ B

1 − B
2  say.

Let B1 and B2 be as defined in Theorem 2.4. Apparently, B
1 = B1  Noting that U2 =

1


P
=1 E(


 − 




 ) = 2 − 


 2 with 2 =

1


P
=1 E

¡




¢
 we have

B
2 =

1

2
√


X
∈0



−2

µ
2 − 



 2

¶Ã
1√


X
=1



!2
= B2 

It follows that B
 = B 

Lemma S1.13 Let ̂() ≡ 1


P
∈̂

P
=1[


 (; ̆ ̂(̆)) + 




¡
; ̆

0
 ̂(̆)

¢ ̂(̆)

0


] and ̆

lying between ̂ and 
0
 elementwise. Then ̂() = H +  ( ) where  = min(1

p
)

Proof. As in the proof of Lemma S1.12, we can readily show that ̂() = ̂0

+  (1) where

̂0

= 1



P
∈0



P
=1[


 (; ̆ ̂(̆)) + 




¡
; ̆

0
 ̂(̆)

¢ ̂(̆)

0


] For ̂0

We make the fol-

lowing decomposition

̂0

≡ 1



X
∈0



X
=1

∙




¡
;

0
 (

0
)
¢
+ 




¡
;

0
 (

0


¢ (0)
0

¸


+
1



X
∈0



X
=1

h


 (; ̆ ̂(̆))− 



¡
;

0
 (

0
)
¢i

+
1



X
∈̂

X
=1

∙




¡
;

0
 (

0


¢ (0)
0

− 



¡
; ̆

0
 ̂(̆)

¢ ̂(̆)
0

¸
≡ 0


1 +0


2 +0


3

Using the arguments in the proof of Lemma S1.10, we can readily show that 0

 =  ( ) for  = 2 3 In

addition, by the Chebyshev inequality we can show that0

1 = ̄0


1+ ( )  where ̄0


1 = E[̄0


1]

Then by (S5) with  = 0,

̄0

1 =

1



X
∈0



X
=1

E
∙




¡
;

0
 (

0
)
¢
+ 




¡
;

0
 (

0


¢ (0)
0

¸

=
1



X
∈0



X
=1

E

⎡⎢⎣
 − 




1


P
=1 E

³




´0


⎤⎥⎦
=

1



X
∈0



X
=1

E
∙


 −






0


¸
=

1



X
∈0



X
=1

E
h
U

i
= H 
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It follows that ̂() = H +  ( ) 

REMARK. When {U  ≥ 1} are serially uncorrelated, we have

Ω = lim
( )→∞

1



X
∈0



Ω = lim
( )→∞

1



X
∈0



1



X
=1

E (UU0) 

When the likelihood function is correctly specified, we can apply the second Bartlett identity (i.e., the

information matrix equality) to obtain

1



X
=1

E [ 0] = − 1


X
=1

E
h




i


1



X
=1

E [] = − 1


X
=1

E
£




¤
= − = − 1



X
=1

E
h




i


1



X
=1

E
£
 2


¤
= − 1



X
=1

E
£




¤
= − 

when  ∈ 0 Then

1



X
=1

E (UU0) =
1



X
=1

E

"µ
 − 





¶µ
 − 





¶0#

=
1



X
=1

E
∙


0
 +


0


2


 2
 − 

0




− 



 0

¸

=
1



X
=1

E
∙
−

 −


0




+


0




+


0




¸

= − 1



X
∈0



X
=1

E
∙


 −






0


¸


It follows that

Ω = − lim
( )→∞

1



X
∈0



1



X
=1

E (UU0) = −H

Lemma S1.14 Suppose the conditions in Theorem 2.6 hold. Recall that ̂2
̂(1)

= 2


P
=1

P
∈̂(1)

P
=1


³
; ̂̂(1)

 ̂(̂̂(1)
)
´
 Let ̄20 =

2


P
=1

P
=1 

¡
;

0
  

0


¢
 Then max0≤≤max

|̂2
̂(1)

−̄20 | = 

¡
−1

¢


Proof. When ≥ 0 following the proof of Theorem 2.1, we can show that
°°°̂ − 0

°°° =  (
−12+1)

for each  and

1



X
=1

Π=1
°°0 − ̂

°° = 1


Π=1

°°̂ − 01
°°+ · · ·+ 0


Π=1

°°̂ − 00

°° =  (
−12)

Then by Assumption A1(vii), Π=1
°°̂ − 0

°° =  (
−12) for  = 1 0 It follows that the collection

C ≡ {̂  = 1 } contains at least 0 distinct vectors, say, ̂1  ̂0
 possibly after relabeling the

vectors, such that °°̂ − 0
°°Π=0+1

°°̂ − 0
°° =  (

−12) for  = 1 0
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As before, we classify  ∈ ̂ (1) if
°°°̂ − ̂

°°° = 0 for  = 1  and  ∈ ̂0 (1) otherwise. Suppose

that  ∈ ̂ (1) for  ∈ {0 + 1 } Then by the pointwise consistency of ̂ we know that the

probability limit of ̂ must be given by one of the columns in α0 =
¡
01  

0
0

¢
and it converges in

probability to the true value at the rate −12 + 1 Apparently, if C contains  elements with probability
limit given by 0 we can derive that

°°̂ − 0
°° =  (min(

−1(2) −12+1)) for  = 1 0Without

loss of generality, assume that if   1 for  ∈ {1 0}  ̂ (1) contains the maximum number of

elements among the subsets ̂ (1) with plim( )→∞̂ = 0

Using arguments like those in the proof of Theorem 2.2, we can show thatX
∈0




³
̂

´
=  (1) for  = 1 0 and

X
∈̂(1)


³
̂

´
=  (1) for  = 1 0 (S19)

The first part implies that
P

=1 
³
 ∈ ̂0 (1) ∪ ̂0+1 (1) ∪ · · · ∪ ̂ (1)

´
=  (1) 

Let ̂ () = 2
³
; ̂̂(1)

(1)  ̂(̂̂(1)
)
´
 Using the fact that 1{ ∈ ̂} = 1{ ∈ 0} +

1{ ∈ ̂\0}− 1{ ∈ 0\̂} we have

̂2
̂(1)

=
1



X
=1

X
∈̂(1)

X
=1

̂ () = 1 +2 −3 +4 

where

1 =
1



0X
=1

X
∈0



X
=1

̂ ()  2 =
1



0X
=1

X
∈̂(1)\0



X
=1

̂ () 

3 =
1



0X
=1

X
∈0


\̂(1)

X
=1

̂ ()  and 4 =
1



X
=0+1

X
∈̂(1)

X
=1

̂ () 

Let  = min(
√
  ) By (S19), we have that for any   0 

¡
2 ≥ −2 

¢ ≤P0

=1  (̂ ) → 0


¡
3 ≥ −2 

¢ ≤ P0

=1  (̂ ) → 0 and 
¡
4 ≥ −2 

¢ ≤ P
=1  ( ∈ ∪0+1≤≤̂ (1))

→ 0 It follows that ̂2
̂(1)

= 1 + 
¡
−2

¢
for all 0 ≤  ≤ max

Following the proof of Theorem 2.5, we can show that ̂̂(1)
−0 = 

¡
−1

¢
for  = 1 0 Then

by Taylor expansion, we can readily show that

1 =
2



0X
=1

X
∈0



X
=1


³
; ̂̂(1)

(1)  ̂(̂̂(1)
)
´

=
2



0X
=1

X
∈0



X
=1


¡
;

0
 ̂

¡
0
¢¢

+
2



0X
=1

X
∈0



X
=1


¡
;

0
 ̂

¡
0
¢¢ h

̂̂(1)
− 0

i

+
2



0X
=1

X
∈0



X
=1


¡
;

0
 ̂

¡
0
¢¢ ̂ ¡0¢



h
̂̂(1)

− 0

i
+

¡
−2

¢


≡ 11 +12 +13 +

¡
−2

¢
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By Lemma S1.12 and the fact that B = 

¡
( )12

¢
 we can show that 12 = 

¡
−2

¢
 Let

̄13 ≡ 1


P0

=1

P
∈0



P
=1 

¡
;

0
 ̂

¡
0
¢¢ ̂(

0
)


 Then

̄13 =
1



X
=1

X
=1




¡
0
¢


+

1



X
=1

X
=1



Ã
̂

¡
0
¢


− 

¡
0
¢



!

+
1



X
=1

X
=1





¡
̂
¡
0
¢− 0

¢ ̂ ¡0¢


+

¡
−1

¢
≡ ̄131 + ̄132 + ̄133 +

¡
−1

¢


By the Chebyshev and Davydov inequalities, we can readily show that ̄131 = 

¡
( )−12

¢
 By (S5),

̂
¡
0
¢


− 

¡
0
¢


=


¡
0  

¡
−12

¢¢


− 
¡
0   (0)

¢


=

R




¡·;0  0 ¢ R




¡·;0  0 ¢  −
R




¡·;0  ̂ ¡0 ¢¢ ̂R




¡·;0  ̂ ¡0 ¢¢ ̂
=





− ̂

̂

=
 ̂ − ̂ 

 ̂

=
 (̂ − ) + ( − ̂ )

 ̂

(S20)

where  ≡
R




¡·;0  0 ¢  ̂ ≡ R




¡·;0  ̂ ¡0 ¢¢ ̂ ̂ ≡
R




¡·;0  ̂ ¡0 ¢¢ ̂ and
recall  ≡

R




¡·;0  0 ¢  Then by (S11) and Lemma S1.2(i), we can show that
̄132 =

1



X
=1

X
=1


−2
  (̂ − )− 1



X
=1

X
=1


−1
 (̂ −  ) +

¡
−1

¢


1



X
=1

(̂ − )
2
=

1



X
=1

(
1



X
=1

£




¡
;

0
  ̂

¡
0
¢¢−

¤)2

≤ 2



X
=1

(
1



X
=1

£




¡
;

0
  ̂

¡
0
¢¢− 




¤)2
+
2



X
=1

(
1



X
=1

¡


 −

¢)2
= 

¡
−1

¢
+

¡
−1

¢
= 

¡
−1

¢


and similarly 1


P
=1 (̂ −  )

2
= 

¡
−1

¢
 Then

°°̄132

°° ≤
⎧⎨⎩ 1



X
=1

°°−2  °°
Ã
1



X
=1



!2⎫⎬⎭
12(

1



X
=1

(̂ − )
2

)12

+

⎧⎨⎩ 1



X
=1

¯̄
−1

¯̄ Ã 1


X
=1



!2⎫⎬⎭
12(

1



X
=1

k̂ −  k2
)12

+

¡
−1

¢
= 

¡
−1

¢
+

¡
−1

¢
+

¡
−1

¢
= 

¡
−1

¢
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For ̄133 using (S11), (S20), and Lemma S1.2(i), we can readily show that

̄133 =
1



X
=1

X
=1





¡
̂
¡
0
¢− 0

¢  ¡0¢


+

¡
−1

¢
=

1



X
=1

X
=1




¡
0
¢


+

¡
−1

¢
= 

³
( )

−12
´
+

¡
−1

¢
= 

¡
−1

¢


Then ̄13 = 

¡
−1

¢
and 13 = 

¡
−2

¢


By Taylor expansion,

11 − ̄20 =
2



X
=1

X
=1


¡
;

0
  ̂

¡
0
¢¢− ̄20

=
2



X
=1

X
=1


¡
;

0
  

0


¢ £
̂
¡
0
¢− 0

¤
+

2



X
=1

X
=1





¡
;

0
  ̆

¡
0
¢¢ £

̂
¡
0
¢− 0

¤2
≡ 111 +112

Using (S11), we can readily show that 111 = 

¡
−1

¢
and 112 = 

¡
−1

¢
 Then 1 =

̄20 +

¡
−1

¢
 It follows that ̂2

̂(1)
− ̄20 = 

¡
−1

¢
for each 0 ≤  ≤ max

S2 Bias Correction in Linear Panel Data Models

S2.1 Bias Correction for the PPL C-Lasso Estimator

For the linear models considered in Section 2.6, the bias of the Lasso and post-Lasso estimator takes the

form

 = H
−1
B = H

−1
B1 

whereH ≡ 1


P
∈0



P
=1E{ [ − E (̄·)] [ − E (̄·)]0} and B1 = − 1


12


 32

P
∈0



P
=1

P
=1

 [ − E (̄·)]  Let ̂ =  − 0̂̂
− ̂ and ̂ =

1


P
=1( − 0̂̂

) for all  ∈ ̂
2 We propose to

estimate  by

̂ = bH−1 B̂1

where bH = 1

̂

P
∈̂

P
=1 ̃̃

0
 and B̂ = − 1


12


 32

P
∈̂

P
=1

P
=1 

( )̂ Here


( ) = 0

(|− |) and 0
() denotes the Bartlett kernel:

0
() = (1− ||  )1 {|| ≤} 

Dynamic misspecification is permitted here. If the model is dynamically correctly specified in the sense

that E (|F−1) = 0 where F−1 = (−1 −2 ;  −1 ) a one-sided kernel can be used with


( ) = 1
(− )  where

1
() = (1−  )1 {0 ≤  ≤} 

2Observing that ̂−0

= 


( )

−12 + −1

and ̂

̂
−0


= 


( )

−12 + −1

 one can use either estimator

in the definition of the residuals. We recommend using the post-Lasso estimator ̂
̂

because of its better finite sample

performance.
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Other choices of kernels are possible. So the bias-corrected PLS C-Lasso estimator is given by

̂
()

 = ̂ − 1p
̂

bH−1 B̂1 

Similarly, we can obtain the bias-corrected estimator for the post-Lasso estimator ̂̂


Let  ≡ (1   )0 and  ≡ (1   )0  Let kk = {E kk}1 for any  ≥ 1 Let  denote a

generic positive constant that does not depend on  and  We add the following assumption.

ASSUMPTION D1. (i) For each  = 1   {( ) :  = 1 2 } is strong mixing with mixing coefficients
{ (·)} such that  () ≤ 

 for some  ∞ and  ∈ (0 1)  1


P
∈0



(2−1)
 =  (1) 

(ii) ( ) are independent across  ∈ 0 where  = 1 0

(iii) max E kk4   ∞ and max E kk4   ∞ for some  ≥ 1
(iv) As ( ) → ∞  → ∞ 2

 → 0 2


3 → 0 and 
−12
  12

P
∈0


 ( )

2−1
2 → 0

for each  = 1 0

Assumption D1(i) assumes the usual mixing condition. D1(ii) assumes cross sectional independence to

simplify the proof which can be relaxed at the cost of lengthy arguments. D1(iii) assumes moment conditions.

The last condition in D1(iv) can be easily ensured under D1(i) because for any À − 2
(2−1) ln  ln(

12 12)

(e.g.,  =
¡
ln(12 12)

¢1+
for some   0), we have


−12
  12

X
∈0



 ( )
(2−1)(2) ≤

⎛⎝−1

X
∈0




(2−1)(2)


⎞⎠
12

  12 (2−1)(2)

=  (1) exp

µ
ln
³

12

  12
´
+
(2 − 1)

2
ln 

¶
→ 0

The first three requirements in D1(iv) can be easily satisfied too. For example, if  ∝   for some   3

it suffices to set  ∝  1 for some   max{2 2 (3− )}

Proposition S2.1 Suppose Assumption D1 holds. Then bH−1 B̂1 −H−1B1 =  (1) 

Proof. Noting that bH−1 B̂1 − H−1B1 = (bH−1 − H−1 )B1 + (bH−1 − H−1 )(B̂1 −
B1 ) +H

−1
 (B̂1 − B1 ) H

−1
 = (1) and B1 =  (

p
 ) it suffices to show that (i)bH −H =  ( ) and (ii) B̂1 − B1 =  (1)  where  = min(1

p
)

We first prove (i). Let H̄ ≡ 1


P
∈0



P
=1 ̃̃

0
 It suffices to show that (i1)

bH − H̄ =

 ( ) and (i2) H̄ −H =  ( ) Note that

bH − H̄ =
1

̂

X
∈̂

X
=1

̃̃
0
 −

1



X
∈0



X
=1

̃̃
0


=
1

̂

⎛⎝X
∈̂

−
X
∈0



⎞⎠ X
=1

̃̃
0
 +

 − ̂

̂

X
∈0



X
=1

̃̃
0


≡ 1 +2

By Corollary 2.3, we can readily show that 2 =  (
−1
 ) =  ( )  For any   0 we have by the

proof of Theorem 2.2,  (k1k ≥  ) ≤  (̂ ) +  (̂ ) =  (1)  It follows that bH − H̄ =
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 ( )  Now,

H̄ −H =
1



X
∈0



X
=1

©
̃̃

0
 − E{ [ − E (̄·)] [ − E (̄·)]0}

ª
=

1



X
∈0



X
=1

©
[ − E (̄·)] [ − E (̄·)]− E{ [ − E (̄·)] [ − E (̄·)]0

ª
+

1



X
∈0



X
=1

{̃̃0 − [ − E (̄·)] [ − E (̄·)]}}

≡ 3 +4

Let 1 and 2 be arbitrary nonrandom × 1 vectors such that k1k = k2k = 1By Assumptions D1(i)-(ii)
and the Davydov inequality, we can readily show that

E
h
(0132)

2
i
= Var (0132) =

1

( )2

X
∈0



X
=1

X
=1

E
¡
11

¢
= 

¡
( )

−1¢ 
where 1 = 01 [ − E (̄·)] [ − E (̄·)] − E{ [ − E (̄·)] [ − E (̄·)]0}2 It follows that 3 =



¡
( )

−12¢  Note that
0142 =

1



X
∈0



X
=1

01 [E (̄·)− ̄·]
0
2 =

−1
 2

X
∈0



X
=1

X
=1

2

where 2 = 01[ − E ()] [ − E ()]0 2 By Assumptions D1(i)-(ii) and Lemma A.2(ii) in Gao
(2007), we have

E
h
(0142)

2
i
= Var (0142) =

1

2


4

X
∈0



E

⎡⎣Ã X
=1

X
=1

2

!2⎤⎦ = 
¡
−1 −2

¢


It follows that 3 =  (
−12
 −1) Consequently, H̄ − H = 

¡
( )

−12¢ =  ( )  This

completes the proof of (i).

We now prove (ii). Let B̄1 = E (B1 ) =
−1


12


32

P
∈0



P
=1

P
=1 E ()  We prove (ii) by

showing that (ii1) B1 − B̄1 =  (1)  and (ii2) B̂1 − B̄1 =  (1)  For (ii1), we have

01
¡
B1 − B̄1

¢
=

−1

12

  32

X
∈0



X
=1

X
=1

01 { [ − E (̄·)]− E ()}

=
−1


12

  32

X
∈0



X
=1

X
=1

3

where 3 = 01 { [ − E (̄·)]− E ()}  Then by Assumptions D1(i)-(ii) and Cauchy-Schwarz in-
equality,

E
£
01
¡
B1 − B̄1

¢¤2
= Var

¡
01
¡
B1 − B̄1

¢¢
=

1

 3

X
∈0



E

Ã
X
=1

X
=1

3

!2

≤ 2

 3

X
∈0



E

Ã
X
=1

X
=1

01 [ − E (̄·)]
!2
+

2

 3

X
∈0



Ã
X
=1

X
=1

01E ()

!2
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For the first term, we can apply Lemma A.2(ii) in Gao (2007) and show that it is 
¡
−1

¢
 For the second

term, we can apply the Davydov inequality directly to show that it is bounded from above by

2

 3

X
∈0



Ã
8 kk4 k01k4

X
=1

 ()
(2−1)(2)

!2
= 

¡
−1

¢


It follows that B1 − B̄1 = 
¡
−12

¢
=  (1) 

We now show (ii2), we first make the following decomposition:

B̄1 − B̂1 =
1

̂
12

  32

X
∈̂

X
=1

X
=1


( )̂ − 1


12

  32

X
∈0



X
=1

X
=1

E ()

=
1

̂
12

  32

X
∈0



X
=1

X
=1


( )̂ − 1


12

  32

X
∈0



X
=1

X
=1

E () +  (1)

=
1

̂
12

  32

X
∈0



X
=1

X
=1


( ) (̂ − )

+
1

̂
12

  32

X
∈0



X
=1

X
=1


( ) [ − E ()]

+

−12
 − ̂

−12


 32

X
∈0



X
=1

X
=1


( )E ()

+
1


12

  32

X
∈0



X
=1

X
=1

[1− 
( )]E () +  (1)

≡ ̂1 + ̂2 + ̂3 + ̂4 +  (1) 

where the  (1) term arises due to the replacement of ̂ by 0 and this can be easily justified by using

the uniform classification consistency result and arguments as used in the proof of Theorem 2.5. We prove

(ii) by demonstrating that ̂ =  (1) for  = 1 2 3 and 4

We first study ̂1 Noting that ̂ =  − 0̂̂
− ̂ =  − 0̂̂

− 1


P
=1( − 0̂̂

) and

 = 0
0
 +  +  for  ∈ 0 we have that for  ∈ 0

̂ −  =  − 0̂̂
− 1



X
=1

( − 0̂̂
)−  = ̃0(

0
 − ̂̂

)− ̄·

where ̄· = 1


P
=1  Then

̂1 =
1

̂
12

  32

X
∈0



X
=1

X
=1


( )̃

0
(

0
 − ̂̂

)− 1

̂
12

  32

X
∈0



X
=1

X
=1


( )̄·

≡ 1 (1)−1 (2)  say.
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In view of the fact that ̂̂
− 0 = 

¡
( )

−12 + −1
¢
and ̂ =  (1 +  (1))  we have

k1 (1)k =
1

̂
12

  32

°°°°°°
X
∈0



X
=1

X
=1


( )̃

0
(

0
 − ̂̂

)

°°°°°°
≤ 

12

̂
12



°°°0 − ̂̂

°°° 1

 2

X
∈0



X
|−|≤

k̃0k

= 
12

  12

³
( )

−12 + −1
´
 (  )

= 

³
1 +

12

 −12
´
 ( ) =  (1)

where we use the fact that 1
2

P
∈0



P
|−|≤

k̃0k =  (  ) by moment calculation and the

Markov inequality. Let ̄1 (2) ≡ 1


12


32

P
∈0



P
=1

P
=1 

( )0̄· where  is any  × 1
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Similarly, by Assumptions D1(i)-(iv),
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Consequently, ̄1 (2) =  (1)  This, in conjunction with Corollary 2.3, implies that 1 (2) =  (1)

as  is arbitrary. Thus we have shown that ̂1 =  (1) 
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Jensen inequality,
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where the last equality follows from the fact that kE (0)k ≤ max kk22 ≤ max kk24
×max kk24    ∞ by Assumption D1(iii). Then ̄2 =  (1) by the Chebyshev inequality and

thus ̂2 =  (1) 

By Corollary 2.3 and the Davydov inequality,
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This completes the proof of the proposition.
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That is,
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 − 0) has the desired limiting distribution centered on the origin.
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S2.2 Bias Correction for the PGMM C-Lasso Estimator

Bias correction for the PGMM C-Lasso estimator in dynamic panel data models can be done analogously.

For simplicity we focus on the case where  =  for all  Recall from Theorem 3.4 and the remark

regarding Assumption B3(iii) (see (3.3) in particular) thatp


¡
̃ − 0

¢− ̄−1 
→ (0 −1 

−1
 ) for  = 1 0

where ̄ ≡ 1


P
∈0
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(3.3), in order to verify Assumption B3(iii) we also need to show
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{[∆0 − E (∆0)] ∆ − E (∆0∆)} =  (1)  (S2)

The first part is assured by a version of the CLT. Below we first propose an estimate of the bias ̄−1 

and then demonstrate (S2).

To correct the bias, we propose to obtain consistent estimates of ̄ and  respectively by

̃ =
1

̃

X
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̃0∆̃∆ and ̃ =
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where ∆̃ = ∆ − ̃0
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∆ for all  ∈ ̃

3 
( ) is as defined above: 

( ) = 0
(|− |)

and 0
() denotes the Bartlett kernel: 0

() = (1− ||  )1 {|| ≤ }  Note that we also allow
dynamic misspecification here. If one is sure that the model is dynamically correctly specified in the sense that

E (∆|F−1) = 0 where F−1 = (∆−1 ∆−1 ;∆−2 ∆−2 −1; ) one can use the one-
sided kernel: 

( ) = 1
(− )  where 1

() = (1−  )1 {0 ≤  ≤ }  The bias-corrected
C-Lasso estimator of 0 would be

̃
()

 = ̃ − 1p
̃

̃−1 ̃ 

Note that Theorem 3.4 indicates that there is no need to consider bias correction for the post Lasso estimator

̃̃


Let  ≡ (1   )0 and  ≡ (1   )0  We add the following assumption.
ASSUMPTION D2. (i) For each  = 1   {(∆ ∆) :  = 1 2 } is strong mixing with mixing co-
efficients { (·)}. In addition,  () ≤ 
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(ii) ( ) are independent across  ∈ 0 where  = 1 0

(iii) max E k∆0k4   ∞ and max E k∆k4   ∞ for some   1
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 = 1 0

Assumptions D2(i)-(iv) parallel D1(i)-(iv). The major difference is that we do not need 2


3 → 0

in D2(iv) but require   1 in D2(iii).

3Observe that ̃ −0
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( )

−12 + −1

and ̃

̃
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−12  We recommend using the post-Lasso
estimator ̃

̃
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Proposition S2.2 Suppose that the conditions of Theorem 3.4 hold. Suppose Assumption D2 holds. Then

̃−1 ̃ − ̄−1  =  (1) 

Proof. Noting that ̃−1 ̃ − ̄−1  = (̃−1 − ̄−1 ) + (̃−1 − ̄−1 )(̃ −  )
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p
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where the  (1) term arises due to the replacement of ̃ by 0 and this can be easily justified by using

the uniform classification consistency result and arguments as used in the proof of Theorem 2.5. We prove

(ii) by demonstrating that  =  (1) for  = 1 2 3 4

First, noting that ∆̃ − ∆ = (0 − ̃̃
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1 +  (1) by Corollary 3.3, we have
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Let  be any ×1 nonrandom vector such that kk = 1 Then E (02) = 0 By Assumptions D2(ii)-(iv)

and Jensen inequality,
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By Assumptions D2(i)-(iii) and the Davydov inequality,
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This completes the proof of the proposition.
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That is,
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Now, we demonstrate (S2). Let  = ∆
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It is trivial to show that 1 = 
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by the Chebyshev and Davydov inequalities. For 2 we

have E (2) = 0 by construction, and by Assumption D2(ii) and Jensen inequality
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To bound   we can consider three subcases: (a) #{1 2 3 4} = 4 (b) #{1 2 3 4} = 3 and (c)

#{1 2 3 4} = 2 and use   and  to denote the last summation when the time indices

are restricted to these three cases in order. Apparently,  =  (1 ) under Assumption D2(iii). In

case (a), without loss of generality (wlog) assume that 1 ≤ 1  2  3  4 ≤  and denote 
(1)

 as
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 when the time indices are restricted to this subcase. [Note that the other subcases can be analyzed

analogously.] Let  be the -th largest difference among +1 −  for  = 1 2 3 Then
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Similarly, we can show that 
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So  = (−1) Consequently,  = (−1) and 2 =  (
−12) by the Chebyshev inequality.

By the same token, 3 =  (
−12) Thus we have shown that  =  (

−12) =  (1) 

S3 Numerical Algorithm and Additional Simulation Results

S3.1 Numerical Algorithm

In this section, we propose an iterative algorithm to obtain the PPL estimates α̂ and β̂ in Section 2. A

similar algorithm applies for PGMM estimation. Documented computer code is available online.

Step 1 Start with an initial value α̂(0) = (̂
(0)
1   ̂

(0)

 ) and β̂
(0)
= (̂

(0)

1   ̂
(0)

 ) such that
P

=1 k̂
(0)

 −
̂
(0)

 k 6= 0 for each  = 2  Set the iteration index  = 1.
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(−1)
1   ̂

(−1)
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and obtain the updated estimate (β̂
(1)

 ̂
()
1 ) of (β 1)  Next we choose (β 2) to minimize
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to minimize


()

11
(β ) = 1 (β) +

1



X
=1

k − kΠ−1=1

°°°̂() − ̂
()



°°° 
and obtain the updated estimate (β̂

()
 ̂

()

 ) of (β )  Let α̂
() = (̂

()
1   ̂

()

 ) and Q̂()1 =P
=1

()

11
(β̂

()
 α̂

()

 ). Update the iteration index from  to  + 1.

Step 3 Repeat Step 2 until a convergence criterion is achieved, e.g., when

Q̂(−1)1 − Q̂()1  tol and

P
=1

°°°̂() − ̂
(−1)


°°°2P
=1

°°°̂(−1)

°°°2 + 00001  tol

where tol is some prescribed tolerance level (e.g., 0.0001). Define the final iterative estimate of α as

α̂ = (̂
()
1   ̂

()

 ) for a sufficiently large  such that the convergence criterion is met. Intuitively,

individual  is classified to group ̂ if ̂
()

 = ̂; otherwise, ̂ is assigned to be the 
()

 that is

closest to some ̂
()

 ,  = 1    . In either case, we can write the individual estimate as ̂ = ̂
()

∗ ,

where ∗ = argmin∈{1} k̂
(∗())
 − ̂

()

 k and ∗() = argmin∈{1} k̂
()

 − ̂
()

 k.

S3.2 Convexity, Choice of Initial Value, and Convergence of the Algorithm

The optimization of 
()

11
(β ) is conducted on the (+ )-dimensional parameter space for (β ).

When  is non-trivial, this is a high-dimensional optimization problem. Obviously, in the penalty term

1 · · ·   and  are jointly convex, given Π

=+1

°°°̂(−1) − ̂
(−1)


°°° and Π−1=1

°°°̂() − ̂
()



°°° for each  =

1      . If 1 (β) is convex in β, then 
()

11
(β )  as the summation of 1 (β) and the penalty,

is also convex in (β ). Convexity can substantially reduce the computational burden of high-dimensional

optimization.

A convex 1 (β) is common in panel data models. Convexity apparently holds in the linear models in

Examples 1 and 2. It also holds in the nonlinear models in Example 3 with  (·) as the standard logistic or
normal CDF, and in Example 4 after re-parameterizing the original parameter (  

2
) into (1 = 

2


2 = 
2
 3 = 1

2
). We utilize the convexity throughout our numerical works.

Given the convexity in each substep ( ), the proposed algorithm consists of a sequence of convex

problems implemented in an iterative manner. In particular, the only difference between the standard

Lasso and a single substep of PPL is that Lasso shrinks the coefficients to a known center (zero), while the

center of PPL is determined in the convex programming. Thus a PPL iteration has the same computational

complexity as Lasso, which is (3 ) in our context of panel linear regression (Efron, Hastie and Johnstone,

2004, p.443). The computational cost of a single iteration is minimal.

Since the additive-multiplicative penalty is not jointly convex in all the parameters (βα), we can take

advantage of convexity in each substep for (β ) but not simultaneously for (βα). As a consequence of
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the non-convexity, the sequence Q̂()1   = 1     , depends on the initial value (α̂(0) β̂
(0)
), and Q̂()1

might terminate at a local minimum but not a global minimum.

A natural initial value is to set (
(0)

 = 0)=1 and each 
(0)
 as the QMLE from the -th individual

time series (1      ). Denote this particular choice (β
initαinit), and we use it in all the simulations

as well as applications, if not explicitly stated otherwise. As we compare it with other possible choices, for

example (
(0)

 = 0)=1 and (
(0)
 = 1)=1, starting at (β

initαinit) often makes the algorithm converge in

fewer iterations.

Although a formal investigation of the algorithm’s computational complexity to attain the global optimum

is beyond the scope of the paper, we explore its numerical convergence and sensitivity to initial values through

a numerical example. We use the real data of savings rate in Section 5.1, and apply PLS and PGMM given

the number of groups and the tuning parameters selected according to the IC. The left subgraph in Figure

S1 shows the path of Q̂()1   = 1     , and the right subgraph displays its PGMM counterpart. Each

of the ten paths is associated with a different starting point. First, the bold black curve is the path that

starts at (βinitαinit). Next, we perturb the initial value to be ((init + )

=1α

init), where  is a vector

of  elements, each of which is randomly drawn from Uniform(−1 1) and is independent across . This is a
substantial perturbation, in view of the magnitude of the estimates in Table 3. We use the perturbed initial

values to generate the other nine curves.

Figure S1: PLS and PGMM paths starting at different initial values

Figure S1 illustrates the robustness of C-Lasso to initial values. We observe in each subgraph that the

criterion functions descend fast in the first few iterations, and then the paths turn almost flat until the

tolerance level is reached. All paths converge to the same value of the criterion function in this experiment.
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S3.3 Additional Simulation Results

In this section we carry out two more simulation exercises, one using PGMM to estimate a static panel

model with endogenous regressors as in DGP 4 below, and the other using PLS to estimate the linear panel

AR(1) in DGP2.

DGP 4 ( Linear static panel with endogeneity.) We maintain the linear panel structure model with two

explanatory variables as in DGP 1, but the first regressors is endogenous as it is generated from the

following underlying reduced-form equation: 1 = 02
0
 +051+052+05 where 1 and 2

are two excluded instrumental variables, and the reduced-form error  and the structural-equation

idiosyncratic shock  follow a bivariate normal distribution:Ã




!
∼ 

ÃÃ
0

0

!


Ã
1 03

03 1

!!


The second regressor 2 is exogenous, and (2 1 2) ∼ IID (0 3) is independent of ( ).

All variables are independent across  and . The econometrician observes ( 1 2 1 2). The

true coefficients of the three groups are (02 18), (1 1) and (18 02), respectively.

We report the statistics in Tables S1 and S2, which correspond to Tables 1 and 2, respectively, in the main

text. The choice of tuning parameters are exactly the same as described in Section 4. When we compare PLS

estimation with PGMM in DGP 2, we find that the PLS works better in determining the correct number

of groups and in classifying the individual units. The 95% coverage probabilities are comparable to those

of PGMM when  = 50, but are lower than PGMM when  is small. Similar to PPL in DGP 3, the lower

coverage probabilities is caused by the bias. The analytical bias correction removes the bias asymptotically,

but the effect is limited when  is small, as is shown in the oracle. The post-Lasso has larger coverage

probability than the oracle, as the estimated standard deviation is inflated by a few misclassified units.

Table S1: Frequency of selecting  = 1     5 groups when 0 = 3

  DGP 4 DGP 2 (PLS)

1 2 3 4 5 1 2 3 4 5

100 15 0 0.022 0.902 0.076 0 0 0.106 0.894 0 0

100 25 0 0 0.966 0.028 0.006 0 0 1 0 0

100 50 0 0 0.996 0.004 0 0 0 1 0 0

200 15 0 0 0.940 0.058 0.002 0 0 1 0 0

200 25 0 0 0.950 0.046 0.004 0 0 1 0 0

200 50 0 0 0.994 0.006 0 0 0 1 0 0

Table S3 reports the RMSE and bias of α1 from post-Lasso and C-Lasso under the true 0 and the

IC-determined ̂ (or ̃ for PGMM). These estimates are bias corrected whenever necessary in the DGPs.

For example, the RMSE of PPL under 0 is calculated as

µ
1


P
=1

P0

=1

̂
()





³
̂
()

1(0 1)− 01

´2¶12


where  and  are the index and the total number of simulation replications, respectively, and ̂
()

 =P
=1 1{ ∈ ̂

()

 (1)} is the estimated number of units in the -th group. This quantity differs from its

counterpart in Table 2 as each group-specific estimate is weighted by ̂
()

  , instead of  , to take into

account the uncertainty in classification. The bias is computed similarly. The post-Lasso’s RMSE and bias

under the known 0 are close to the oracle. The performance of C-Lasso is in general comparable to that
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Table S2: Classification and point estimation of α1 in additional simulations

% of correct Post-Lasso Oracle

  classification RMSE Bias Coverage RMSE Bias Coverage

DGP 4 100 15 0.8287 0.1583 0.0462 0.7850 0.0806 0.0018 0.9344

100 25 0.9281 0.0883 0.0195 0.8880 0.0617 0.0009 0.9380

100 50 0.9885 0.0517 0.0075 0.9406 0.0437 -0.0012 0.9422

200 15 0.8378 0.1155 0.0484 0.7860 0.0577 -0.0016 0.9454

200 25 0.9320 0.0643 0.0199 0.8742 0.0436 0.0001 0.9506

200 50 0.9881 0.0364 0.0074 0.9356 0.0311 -0.0005 0.9450

DGP 2 100 15 0.8907 0.0413 0.0061 0.9148 0.0352 0.0041 0.8524

(PLS) 100 25 0.9511 0.0261 0.0041 0.9710 0.0241 0.0028 0.9076

100 50 0.9908 0.0160 0.0015 0.9908 0.0156 0.0013 0.9334

200 15 0.8949 0.0294 0.0064 0.9154 0.0253 0.0052 0.8576

200 25 0.9520 0.0188 0.0037 0.9714 0.0178 0.0036 0.8808

200 50 0.9912 0.0113 0.0017 0.9934 0.0111 0.0015 0.9282

of post-Lasso, although C-Lasso appears to have larger RMSE in the PGMM estimation of DGP 2, where it

does not enjoy the oracle property.

When  6= 0, we generalize the definition of the set of true group-specific parameters. For   0,

we shrink α01 = (
0
11     

0
01

) into a -element subset α01(). For   0, we augment α
0
1 by adding

 − 0 elements choosing from 01     
0
01

so that the resulting α01() contains α
0
1. Elements are

eliminated or concatenated in each replication to fit α̂(̂() 1). In this scenario, the RMSE is calculated

as

µ
1


P
=1

P̂()

=1

̂
()





³
̂1(̂

() 1)− 01(̂
())
´2¶12

 According to the simulation, the effect of not

knowing 0 is noticeable when  = 15 in the linear models and  = 25 in the nonlinear model, but it

does not necessarily enlarges the RMSE, for the estimator under 0 is also noisy when  is small. The

discrepancy of the RMSE and bias between 0 and ̂ (or ̃) quickly vanishes when  grows.

S4 Additional Application Results

S4.1 More on Savings Rate Modeling and Classification

All data are downloaded from the World Bank.4 We extract all countries with all the variables in (5.1)

available. Using the time span 1995—2010, we were able to construct a balanced panel of 57 countries.

We remove one outlier Bulgaria, whose 1997 economic collapse produced hyperinflation in the CPI that

significantly distorted the overall mean and the standard deviation. In total we collect 56 countries. The

summary statistics are shown in Table S4.

In the implementation, we scale-normalize all the variables for each individual unit to guarantee that

the coefficients are comparable. Moreover, in PGMM we use ∆−2 and a constant as two excluded IVs.
Although the constant is uncorrelated with the endogenous variable, adding it here stabilizes the post-Lasso

estimation in finite samples.

Table S5 displays the group membership. The country names in bold are the 47 coincidences of PLS and

PGMM classification out of the total 56 countries.

4http://data.worldbank.org/data-catalog/world-development-indicators.
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Table S3: Estimation of α1 by post-lasso and C-Lasso under 0 and ̂ or ̃

Post-Lasso C-Lasso Oracle

 = 0  = ̂  = 0  = ̂

  RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias

DGP 1 100 15 0.0596 0.0108 0.0829 0.0092 0.0619 0.0133 0.0839 0.0120 0.0463 0.0012

100 25 0.0385 0.0019 0.0385 0.0019 0.0396 0.0040 0.0396 0.0040 0.0353 0.0001

100 50 0.0249 0.0000 0.0249 0.0000 0.0255 0.0011 0.0255 0.0011 0.0245 -0.0002

200 15 0.0434 0.0079 0.1373 0.0081 0.0457 0.0107 0.1353 0.0114 0.0324 -0.0013

200 25 0.0273 0.0015 0.0273 0.0015 0.0280 0.0040 0.0280 0.0040 0.0250 -0.0006

200 50 0.0174 -0.0001 0.0174 -0.0001 0.0181 0.0011 0.0181 0.0011 0.0171 -0.0002

DGP 2 100 15 0.0848 -0.0090 0.0787 -0.0016 0.1311 -0.0372 0.1188 -0.0250 0.0502 -0.0037

(PGMM) 100 25 0.0556 -0.0055 0.0561 -0.0051 0.1042 -0.0267 0.1045 -0.0255 0.0351 0.0011

100 50 0.0278 -0.0012 0.0278 -0.0012 0.0418 -0.0130 0.0418 -0.0130 0.0242 -0.0010

200 15 0.0712 -0.0141 0.0743 -0.0145 0.1491 -0.0399 0.1483 -0.0383 0.0352 -0.0017

200 25 0.0333 -0.0051 0.0333 -0.0051 0.0932 -0.0284 0.0932 -0.0284 0.0252 -0.0006

200 50 0.0193 -0.0014 0.0193 -0.0014 0.0277 -0.0134 0.0277 -0.0134 0.0164 0.0000

DGP 3 100 25 0.1722 0.0587 0.1516 0.0727 0.2154 0.0615 0.1641 0.0688 0.1077 0.0114

100 50 0.0853 0.0379 0.0878 0.0383 0.1178 0.0487 0.1191 0.0489 0.0752 0.0090

200 25 0.1342 0.0483 0.1401 0.0649 0.1826 0.0487 0.1441 0.0573 0.0821 0.0116

200 50 0.0632 0.0264 0.0632 0.0264 0.0948 0.0372 0.0948 0.0372 0.0573 0.0121

DGP 4 100 15 0.1691 0.0487 0.1803 0.0376 0.2148 0.1087 0.2102 0.0941 0.0806 0.0018

100 25 0.0724 0.0189 0.1217 0.0207 0.0882 0.0523 0.1323 0.0539 0.0617 0.0009

100 50 0.0450 0.0031 0.0645 0.0042 0.0532 0.0204 0.0707 0.0215 0.0437 -0.0012

200 15 0.1271 0.0512 0.1348 0.0466 0.1777 0.1128 0.1793 0.1074 0.0577 -0.0016

200 25 0.0513 0.0153 0.1392 0.0235 0.0720 0.0498 0.1485 0.0577 0.0436 0.0001

200 50 0.0314 0.0036 0.0549 0.0049 0.0399 0.0221 0.0602 0.0234 0.0311 -0.0005

DGP 2 100 15 0.0482 0.0081 0.0487 0.0065 0.0747 0.0297 0.0715 0.0254 0.0352 0.0041

(PLS) 100 25 0.0263 0.0043 0.0263 0.0043 0.0418 0.0189 0.0418 0.0189 0.0241 0.0028

100 50 0.0160 0.0016 0.0160 0.0016 0.0218 0.0085 0.0218 0.0085 0.0156 0.0013

200 15 0.0295 0.0064 0.0295 0.0064 0.0567 0.0293 0.0567 0.0293 0.0253 0.0052

200 25 0.0188 0.0037 0.0188 0.0037 0.0307 0.0174 0.0307 0.0174 0.0178 0.0036

200 50 0.0113 0.0017 0.0113 0.0017 0.0171 0.0084 0.0171 0.0084 0.0111 0.0015
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Table S4: Summary statistics for the savings dataset

mean median s.e. min max

Savings rate 22.099 20.790 8.833 -3.207 53.434

Inflation rate 7.724 4.853 15.342 -3.846 293.679

Real interest rate 7.422 5.927 10.062 -63.761 93.915

Per capita GDP growth rate 2.855 2.971 3.865 -17.545 14.060

Table S5: Estimated group membership

PLS PGMM

Group 1: (31 countries) Armenia, Australia,

Bahamas, Belarus, Bolivia, Botswana, Cape

Verde, China, Czech, Guatemala, Honduras,

Hungary, Indonesia, Israel, Italy, Japan, Jor-

dan, Latvia,Malawi,Malaysia,Mauritius,Mex-

ico, Mongolia, Panama, Paraguay, Philippines,

Romania, South Africa, Sri Lanka, Thailand,

Ukraine

Group 1: (36 countries) Armenia, Australia,

Bahamas, Belarus, Bolivia, Botswana, Cape

Verde, China, Czech, Egypt, Honduras, Hun-

gary, India, Indonesia, Israel, Italy, Japan, Jor-

dan, Kenya, Latvia, Malawi, Malaysia, Malta,

Mauritius, Mexico, Panama, Paraguay, Philip-

pines, Romania, South Africa, Sri Lanka, Swazi-

land, Switzerland, Thailand, Ukraine, United King-

dom

Group 2: (25 countries) Bangladesh, Canada,

Costa Rica, Dominican, Egypt, Guyana, Ice-

land, India, Kenya, Korea (Rep.), Lithuania,

Malta, Netherlands, Papua New Guinea, Peru,

Russian, Singapore, Swaziland, Switzerland, Syr-

ian, Tanzania, Uganda, United Kingdom, United

States, Uruguay

Group 2: (20 countries) Bangladesh, Canada,

Costa Rica, Dominican, Guatemala, Guyana,

Iceland, Korea (Rep.), Lithuania, Mongo-

lia, Netherlands, Papua New Guinea, Peru,

Russian, Singapore, Syrian, Tanzania, Uganda,

United States, Uruguay

S4.2 More on the Civil War Application

The replication data of Fearon and Laitin (2003) can be downloaded from Fearon’s personal web page.5

The data span from 1945—1998,6 but the panel is highly unbalanced. Following Collier and Hoeffler (2004),

Djankov and Reynal-Querol (2010) and Blattman and Miguel (2010), we choose 1960 as the staring year to

generate a balanced panel of  = 38, as many countries’ civil war incidence are always 0 or 1 between 1960

and 1998.

In the regression, the dependent variable is the civil war incidence, and the explanatory variables are the

lagged civil war incidence, the one-period difference of log GDP per capita and the one-period difference of log

population. Moreover, in views of the natural scaling of the binary variable, we keep the original dependent

variable and the lagged dependent variable. For the other two continuously distributed variables, we follow

the practice as in the savings rate application to scale-normalize each time series by the individual sample

standard deviation. To ensure that the estimated coefficients are comparable, we further multiply these two

scale-normalized variables by the overall standard deviation of the lagged dependent variable so that all the

explanatory regressors are of the same scale. Furthermore, the Probit regressions for the individual time

series are unstable in those countries with only 1 or 2 incidences. Therefore the C-Lasso initial values are

set as the pooled FE Probit coefficient estimates.

The summary statistics are displayed in Table S6. Membership is reported under “high-occurrence” and

5https://www.stanford.edu/group/fearon-research/cgi-bin/wordpress/wp-content/uploads/2013/10/apsr03repdata.zip
6The original data end at 1999, but no population information is provided for any country in the last year.
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Table S6: Summary statistics for the civil war dataset

mean median s.e. min max

Civil war incidence 0.352 0 0.478 0 1

GDP per capita growth 0.020 0.024 0.040 -0.811 0.306

Population growth 0.012 0.015 0.076 -0.507 0.661

“low-occurrence” groups with results as follows.

High-occurrence group (23 countries): Guatemala, Peru, Argentina, Mali, Senegal, Chad, Congo (Dem.),

Congo (Rep.), Somalia, Morocco, Sudan, Turkey, Iraq, Lebanon, Afghanistan, China, Pakistan, Sri

Lanka, Nepal, Cambodia, Laos, Philippines, Indonesia

Low-occurrence group (15 countries): Haiti, Dominican, El Salvador, Nicaragua, UK, Yugoslavia, Cyprus,

Russia, Liberia, Nigeria, Central African Republic, Ethiopia, South Africa, Iran, Jordan

S4.3 Linear Dynamic Modeling of Democracy

In this section, we use the data provided by Bonhomme and Manresa (2015) to revisit the link between income

growth and democracy across countries. Following BM’s Equation (22), we specify a linear dynamic model,

where the dependent variable is a country’s democracy index (measured by Freedom House indicator between

0 (the lowest) and 1 (the highest)), and the explanatory variables are the first-order lagged democracy index

and the income (measured by the logarithm of GDP per capita).

The dataset contains a balanced panel of 84 countries and 8 periods at a five year interval over 1965—2000.

We use PLS to estimate the model in this short panel. Many developed countries, such as the United States

or United Kingdom, kept their democracy index at the highest level throughout the time. Due to the lack of

within-group variation in these countries, we scale normalize each variable by its pooled standard deviation.

This standardization makes sure that the parameter −1 can still be interpreted as the autoregressive
coefficient, and the magnitude is comparable with the income coefficient.

Table S7: Summary statistics for the democracy dataset

mean median s.e. min max

Democracy index 0.5760 0.6667 0.3712 0 1

GDP per capita (in logarithm) 8.2981 8.3039 1.0685 6.0937 10.4450

Following practice in the simulation, the IC with 1 =
2
3
( )−12 picks out  = 3 and 1 = 120 in

all combinations of  = 1     5 and 1 in a geometrically increasing sequence of 10 points in (02     2).

Under  = 3 and 1 = 120, C-Lasso categorizes the 84 countries into the following groups:

Group 1 (30 countries): Belgium, Bolivia, Brazil, Canada, Dominican, Ecuador, El Salvador, Finland,

Guatemala, Guinea, Iceland, Indonesia, Italy, Japan, Jordan, Luxembourg, Mali, Morocco, Nepal,

Panama, Peru, Philippines, Portugal, Romania, South Africa, Thailand, Turkey, United Kingdom,

Uruguay, Venezuela

Group 2 (36 countries): Algeria, Argentina, Australia, Austria, Barbados, Burkina Faso, Burundi, Cameroon,

Chile, China, Colombia, Costa Rica, Cote d’Ivoire, Denmark, Egypt, France, Gabon, Ghana, Greece,

India, Iran, Israel, Jamaica, Kenya, Malawi, Malaysia, Mexico, Nigeria, Norway, Paraguay, Rwanda,

Spain, Sweden, Togo, Trinidad and Tobago, United States
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Group 3 (18 countries): Benin, Chad, Congo (Rep.), Honduras, Ireland, Korea (Rep.), Madagascar,

Netherlands, New Zealand, Nicaragua, Niger, Sri Lanka, Switzerland, Syrian, Tanzania, Tunisia,

Uganda, Zambia

The post-Lasso and pooled FE estimates are shown in Table S8. We focus on the coefficient for income.

The common FE coefficient is positive and significant. The positive effect is echoed by Groups 1 and 2, but

contrasts with Group 3, which consists mainly of low-income and low-democracy nations combined with a

few selected OECD countries. OECD countries such as Ireland, Netherlands, New Zealand and Switzerland

maintained their democracy index at 1 throughout the sample period. The lack of variation in the dependent

variable makes them uninformative about the income coefficient.

Table S8: PLS estimation results

Pooled FE PLS

Group 1 Group 2 Group 3

coef. s.e. coef. s.e. coef. s.e. coef. s.e.

Lagged democracy 04993∗∗∗ 0.0491 05141∗∗∗ 0.0643 00954 0.0733 −00543 0.0521

Income 02552∗∗∗ 0.0489 06545∗∗∗ 0.0930 01550∗∗∗ 0.0448 −05542∗∗∗ 0.0860

Note: ***1% significant, ** 5% significant, * 10% significant
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