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ABSTRACT 
Bone is a heterogeneous material and its mechanical properties vary within the body. 

Variations in the mechanical response of different bone samples in the body cannot be 

fully explained by only looking at local compositional information at the tissue level. Due 

to different states of the stress along the bone, one might expect that mechanical 

properties change over the length of the bone; this has not been a matter of systematic 

research in previous studies. In this study, the distribution of the tissue elastic modulus 

along the bovine femur is investigated using three-point bending tests. Two bovine 

femora were split to seven and eight blocks from proximal to distal metaphysis, 

respectively and twenty beam shaped bone samples were extracted and tested from 

each block. Based on our findings, the longitudinal elastic modulus follows a gradient 

pattern along the bovine femur as it increases along the bone from the proximal 
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metaphysis to mid-diaphysis and then decreases toward the distal metaphysis again. 

Considering the long bones to be subjected to bending loads, this mechanism alters the 

bone structure in a way to support more load in the regions where it is needed; similar 

as outlined by Wolff’s law. In another part of this study, micro-computed tomography 

was found unable to predict the same trend of changes for the elastic modulus via 

image-based or density-based elastic moduli calculations. This is insofar important as 

conventional finite element models of bone are often directly shaped from micro-

computed tomography data. Based on our findings, it seems that current computed 

tomography based finite element models generated in this manner may not adequately 

capture the local variation of material behavior of bone tissue, but this may be 

improved by considering the changes of the elastic modulus along the femur. 

 
 

Keywords: cortical bone mechanics, micro-computed tomography, micro-CT gray-level 

to elastic modulus conversion 

 

1. INTRODUCTION 
 

Bone is a smart structure/material, which is capable of adapting to applied forces [1], 

while achieving an optimum and minimal-weighted structure with high load bearing 

capacity. In general, bone is not subjected to one loading case but to various loading 

conditions. Considering long bones for instance, human femur experiences complex 

bending, torsion and compression loading regimes during a gait cycle [2], [3]. As bone 
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adapts to mechanical loads throughout life [1], it is expected that stronger or weaker 

regions form in mature skeleton due to habitual loading, and are optimized for the loads 

experienced. While several previous studies have reported differences in stiffness, 

ultimate strength and apparent density for various anatomical locations within the long 

bones [4]–[8],  a systematic approach to characterize the degree of heterogeneity of 

micro-level mechanical properties along the bone seems to be missing in literature. 

From a structural point of view, bone is thicker where it has to withstand higher 

stresses. We hypothesize that the bone material also adapts to the condition of high 

stress in those regions and therefore, the elastic modulus is positively correlated to 

cortical bone thickness in bovine femur. As thickness varies in long bones, we 

hypothesize that there is a correlation between the elastic modulus and position along 

the bovine femur, with elevated moduli at mid-shaft.  

The heterogeneity of the elastic modulus in bone is a key feature and many 

models try to take that into account in finite element (FE) analysis of bone tissue. FE 

models are extensively used in the study of the mechanics of bone and artificial 

implants e.g. ([3], [9]–[11]). In conventional FE modeling of the bone however, the 

regional dependency of mechanical properties is neglected and bone is assumed to be a 

homogeneous isotropic material [9], [10]. A more sophisticated approach in FE 

modelling is to extract the mechanical properties of bone from computed tomography 

(CT) data, converting local grey level numbers to bone mineral density (BMD) and 

subsequently to a local elastic modulus [11]-[14]. Whether the elastic modulus is 

positively related to bone mineral density in micro-CT measurements is still not clear. It 
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has been previously shown in some studies that bone becomes stiffer with an increase 

in the degree of mineralization [15], [16]. Some other studies, however, reported only a 

weak correlation between the bone mineral density and the elastic modulus (Rho et al., 

[17]). In this paper, we compared the bone mineral density to the elastic modulus to 

search for the validity of their relation in bovine bone. We hypothesize that the elastic 

modulus is not correlated to bone mineral density in bovine femur. 

As an alternative to bone mineral density, we propose that complementary 

approaches to CT-based calculations can be developed based on location dependency of 

the elastic modulus in long bones, to precisely map the local elastic properties of the 

bone in finite element models. After proper calibration of the method for each case, an 

accurate estimation of the elastic modulus can be found for long bones. In this study, 

we report results from miniature three-point bending experiments on samples taken at 

regular intervals along the long axis of two bovine femora. Through comparison with 

µCT data, we can compare CT predicted longitudinal elastic modulus with the actual 

measurements. From the findings of our experiments, we propose that complementary 

empiric laws to the current CT-based approaches can more accurately predict the local 

longitudinal elastic modulus along the bovine femur. 

 

 

2. MATERIALS AND METHODS 

Two bovine femora were tested in this study. Femur-1 was tested to investigate the 

correlation of the elastic modulus with position along the long axis of the bone, cortical 
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bone thickness and for comparison with local elastic moduli predicted by µCT. Three-

point bending experiments were repeated on femur-2 to check if the relationship found 

for femur-1 can predict the elastic modulus for other bones. Bovine femora were 

obtained from local meat wholesalers and stored at -20 ˚C until scanning and sample 

preparation. 

 

2.1. Micro-Computed tomography 

µCT Imaging on femur-1 was performed at the University of Southampton μ-VIS X-Ray 

imaging center using a Custom 225 kVp Nikon/Metris HMX ST scanner (Nikon 

Metrology, Brighton, MI, US) equipped with a 2000 x 2000 pixel flat panel detector. To 

ensure sufficient flux a W target was selected, the voltage was set at 200 kV and no pre-

filtration was used. The current was set at 29 μA (5.8W), and the source to detector 

distance was 672.56 mm, resulting in an isotropic pixel resolution of 59.1 μm in x, y and 

z directions for the scan. The femur was placed upright in a shielded Perspex tube and 

positioned onto the rotation stage, so that the long axis of the bone coincided with the 

stage’s center of rotation (COR). The position of the specimen and the distance from the 

X-Ray source were such that ensured that the whole width and depth of the bone 

remained within the field of view during the full 360 degree rotation. To cover the 

whole specimen at the aforementioned resolution, we divided the imaging volume into 

three sub-volumes (i.e. bottom-, middle- and top-raster) and each raster was scanned 

separately keeping imaging conditions constant. In more detail: 3142 projections were 

taken over the 360-degree rotation (Angular Step=0.1146 deg), with 4 frames per 
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projection being averaged in order to improve the signal to noise ratio. Exposure time of 

each projection was 354 ms and the gain set to 30 dB. Once the scans were complete, 

the reconstructions parameters were defined using CTPro software (Nikon Metrology, 

Brighton, MI, US) and reconstructed in CTAgent (Nikon Metrology, Brighton, MI, US), 

reconstruction software, which uses a filtered back-projection algorithm. The output 

volume data were scaled to Hounsfield units using a known density phantom (in our 

case water), following Nikon’s recommendations. The three calibrated volumes were 

then concatenated into a single volume using Fiji/ImageJ (National Institute of Health, 

Bethesda, MD, US), and orthogonal central cross-sections along the XZ and YZ planes (Z 

being in line with bone’s long axis) were exported for further analysis. On each cross-

sections and at approximately the middle of the bone cortex, a line profile (width 10 

pixels) was measured using Fiji’s profile tool (Figure 1). This allowed averaging the 

measured gray value, over a larger bone area, reducing possible bias due to local pixel 

variations and beam hardening effects. 

Calibrated Hounsfield units (HU) along each profile were converted to the bone 

mineral density (BMD) using  eq. 2 [21] and consequently to the elastic modulus (E) 

using eq. 3 the empirical relationship proposed by Rho et al. [17]. 

 3/ 0.0007 0.3489BMD g cm HU    (2) 

  1.3269.11E GPa BMD  (3) 

2.2. Sample preparation 

Femur-1 was cut along its longitudinal and perpendicular axes using a bandsaw (BG 200, 

Medoc, Logrono, Spain). The bone was then divided into 8 blocks along its longitudinal 
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axis (block height= 2 cm), excluding the epiphyses. This configuration is shown in Figure 

2. Blocks 1 and 8 corresponded to the location of proximal and distal metaphyses, 

respectively. Femur-2 was divided into 7 blocks in a similar manner (block height= 3 cm). 

Anterior, posterior, medial and lateral sectors of every block were separated for each 

bone.  

The bone marrow in all the blocks was removed using a cold water jet, which 

was provided by connecting a plastic pipette tip to a plastic tube linked to a water tap. 

Cut bone pieces were kept in the Hank’s Buffered Salt Solution (HBSS) of pH≈7.4 

throughout sample preparation and at temperature≈ 4 ˚C between individual 

preparation steps. Each block was then packed with gauze, soaked in HBSS and stored in 

sealed plastic bags at -20 ˚C. In order to prepare suitable cortical bone samples for 

three-point bending tests, a low speed saw (IsoMet, Buehler, 86 Lake Bluff, IL, USA) with 

a diamond wafering blade was used. Each bone block was cut in several steps to 

produce cortical beam shaped samples of approximate cross section 500 m × 500 m 

as sketched in Figure 2. Each beam shaped sample’s length was approximately 15 mm 

and 10 mm for femur-1 and femur-2 specimens, respectively. To make the beams, a 

sheet of bone (thickness ~ 500 m) was longitudinally cut (parallel to the bone 

longitudinal axis) in the endosteum-periosteum direction for each of the anatomical 

sector in every block and from that sheet, five longitudinal cortical beam shaped 

samples (width ~ 500 m) were collected such that samples were located beside each 

other in the main sheet of the bone and positioned approximately in the middle of the 
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bone cortex (Figure 2). 160 and 140 longitudinal cortical beam shaped samples were 

collected from femur-1 and femur-2, respectively. 

 

2.3. Three-point bending experiments 

Two three-point bending fixtures were used to test the samples extracted from each 

femur. Femur-1 specimens were tested in a three point bending fixture (span length 10 

mm and roller radius 0.75 mm). To test femur-2 samples, a similar three point bending 

setup was used, designed based on the standard of American Society of Agricultural and 

Biological Engineers (ASABE) ([18]). The span length for this fixture was 2 mm and the 

roller radius was 0.25 mm. A miniature load frame (ElectroForce3200, Bose, Eden 

Prairie, MN, USA) was used to perform the tests in displacement controlled mode with a 

displacement rate of 0.01 mm/s. A bath made of transparent plastic (polymethyl 

methacrylate) and glass, filled with HBSS, was used to ensure testing of bone samples in 

hydrated condition. 

 

2.4. Data Analysis 

Load-displacement data were recorded by mechanical testing system for every sample. 

To find the stiffness (load vs. displacement ratio), maximum slope of the linear region of 

each data set was computed using a custom MATLAB code (The Math Works, Natick, 

MA, US) consistently for every sample. Timoshenko beam theory was used to calculate 

the longitudinal elastic moduli of each samples. Based on Timoshenko beam 
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formulation, elastic modulus for each sample can be estimated from the stiffness and 

geometrical measures [19]: 

3

2

24(1 ).
1

48

P L v I
E

v I AkL

   
    
   

(1) 

In equation (1) E corresponds to elastic modulus, (P/v) is the stiffness, I is second 

moment of area, is Poisson’s ratio taken as 1/3, A is cross-sectional area of each 

samples, L is sample length between lower bending supports and k is shear coefficient 

taken as 0.850 for a rectangular cross-section [20]. Elastic moduli of all five samples 

tested from each region (anterior, posterior, medial and lateral) for every block were 

then averaged to estimate the longitudinal elastic modulus in the anatomical locations 

for individual blocks. To calculate the cross-section and second moment of area for each 

specimen, an average of width and height of the samples measured by a digital caliper 

at three different locations was used. 

 

2.5 Statistical analysis 

Mean and standard deviation of the elastic moduli were computed for three-point 

bending and µCT based calculations along the bone. Hypothesis testing and confidence 

intervals were used to compare the findings of the two different methods. A regression 

model was used to investigate the correlation of the elastic modulus with the position 

along the bone and cortical bone thickness. In the model, ANOVA and two-tailed 

student t-tests were employed to search for the significance of the findings in normally 
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distributed data with p<0.05 in Microsoft Excel 2013 (Microsoft, WA, US) and Minitab 17 

(Minitab Inc., PA, US) packages. 

 

 

3. Results 

3.1. Elastic modulus values computed from µCT are significantly different to ones 

obtained from three-point bending 

The variation of the elastic moduli within each quadrant (anterior, posterior, medial and 

lateral) with position along the femur was obtained from computed tomography data 

and compared to three-point bending results as shown in Figure 3 for femur-1 

specimens. Hypothesis testing and confidence intervals analysis showed that the elastic 

modulus computed from CT is significantly different (p<0.05) in every quadrant from the 

elastic modulus measurements in three-point bending tests, with lower values in three-

point bending (Figure 3). In more generalized approach, the effect of quadrant was 

neglected from the analysis and three-point bending results were compared to CT-based 

calculations for the same bone as shown in Figure 4. Only a very weak correlation 

(R2=0.03, p< 0.05) was found between the elastic modulus calculated from CT density 

and three-point bending. For a complete list of the data from each technique please 

refer to supplementary materials, Table-1. 

 

3.2. Prediction of the elastic modulus by position along the femur  
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To test if the position of the bone specimens from the proximal / distal end of the femur 

correlates to the longitudinal elastic modulus, we fitted a second order polynomial to 

elastic modulus values plotted vs. position along the femur-1 for each quadrant. We 

found strong correlations between the position along the bone and longitudinal elastic 

modulus for the anterior (R2=0.79, p<0.05) and posterior (R2=0.92, p<0.05) quadrants 

however, for medial (R2=0.60, p<0.05) and lateral (R2=0.34, p=0.26) quadrants, these 

correlations were weaker or insignificant, respectively. In the next step, the elastic 

moduli data from all quadrants were pooled and the correlation of an average 

longitudinal elastic modulus of the samples within the block with regards to position 

along the bone was investigated. This was done to obtain overall insight into the 

variation of elastic modulus along the femur, despite the fact that there might be 

significant differences between some of the groups (58% when comparing elastic 

moduli values between various quadrants within each block, p<0.05). Figure 5 shows the 

correlation of normalized position along the femur and the averaged elastic modulus for 

each block. As shown, the longitudinal elastic modulus correlates with the positon along 

the femur (R2=0.95, p<0.05) with higher values at the mid-diaphysis compared to the 

metaphysis.  

 The empirical relation found for femur-1 was then applied to femur-2 data. In a 

regression analysis, elastic modulus of femur-2 was significantly correlated to the length 

along the bone (R2=0.61, P<0.05) using the formula found for femur-1. To find an exact 

correlation between the elastic modulus and position along the bone for femur-2, the 

same analysis as femur-1 was repeated. In this case, correlation of the elastic modulus 
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and normalized position of samples along the bone was only significant in the anterior 

quadrant (R2=0.93, p<0.05) when fitting a second order polynomial to data. For 

posterior (R2=0.35, p=0.32), medial (R2=0.50, p=0.16) and lateral (R2=0.21, p=0.63) 

quadrants however, position along the femur was not a good predictor for the elastic 

modulus. Similar to our approach for femur-1, correlation of the normalized position 

along the femur and the averaged elastic modulus of all quadrants in each block was 

investigated as shown in Figure 6. Again, this was done to  obtain overall insight into the 

variation of elastic modulus along the femur, despite the fact that there was significant 

differences between the elastic moduli of quadrants in some cases (36% when 

considering all combinations in each block, p<0.05), similar to femur-1, there is a 

gradient trend for the elastic modulus along the femur with elevated values at mid-

diaphysis which could be explained based on the normalized position of samples along 

the femur (R2=0.89, p<0.05).  

 

3.3. Cortical bone thickness is not a good predictor for the elastic modulus 

We further tested whether cortical bone thickness correlates to the longitudinal elastic 

modulus for different quadrants in femur-1 data. ANOVA regression analysis did not 

show any significant correlations between longitudinal elastic modulus and cortical 

bone thickness. We then performed a statistical analysis to see if the effect of quadrants 

could be neglected when reporting thickness and an averaged value for each block 

could be reported. In a two-tailed student t-test, 99% of p values were < 0.05 when 

considering the difference of cortex thickness in various quadrants of one block, 
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indicating that thickness data are significantly different between the quadrants and 

cannot be averaged within a block. We then investigated the correlation of averaged 

cortex thickness and the averaged elastic modulus for every anatomical location within 

each block. As shown in Figure 7, there is no significant correlation between the 

thickness and the elastic modulus (R2=0.03, p=0.35). 

 

  

4. Discussion 
 
Inferring bone tissue level properties in FE models correctly is important for achieving 

quantitative results and for the potential predictive character of such models. This study 

provides evidence that the longitudinal elastic modulus of cortical bovine bone varies 

along the femur. Our data suggest that the mid-diaphysis section of bovine femur is 

stiffer compared to other parts of the bone; this is in agreement with Les et al. [7] and 

Espinoza Orias et al. [8] who found similar trends in the equine third metacarpal bone 

and human femur, respectively. Based on our findings, it is likely that similar gradient 

patterns of the elastic modulus exist along the axis of other long bones, which are 

subjected to bending loads. Oh and Harris [22] studied the proximal human femur in a 

single limb stance phase of loading. They reported that tensile and compressive strains 

decrease from proximal to mid-diaphysis in all anatomical cortices of the bone 

transverse cross-sections. Bending loads on bovine femur might result in larger strain 

variation along the bone compared to human femur. The strain would then decrease 

along the same path as the bone due to translation of similar forces to areas with higher 
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cross section and higher elastic modulus in bovine bone. The femur in mammals is 

normally subjected to bending loads as suggested by Polgar et al. [10] and Shahar et al. 

[9] and has a non-uniform strain distribution along the bone axis [3], [9], [10]. Based on 

these observations, variations of the elastic modulus along the longitudinal axis of 

bovine femur seems sensible; extreme strains predicted in or around the mid-diaphysis 

in isotropic finite element models of the femur [3], [9], [10] indicate that the elevated 

elastic modulus in that region would enhance the bone structural integrity by reducing 

the actual strains formed in everyday activities. Previous reports as well as our findings, 

support the idea that cortical bone in general has its highest stiffness in the areas 

subjected to major loads. As previously noted by Wolff’s law [1], bone apposition occurs 

in regions subjected to “higher” stresses and bone resorption happens in areas 

subjected to “lower” stresses. Based on our findings one may speculate that in addition 

to Wolff’s law for bone adaptation in a geometrical or bone mass sense, a similar 

argument may be formulated with regards to the bone structure and its local properties, 

i.e. local bone stiffness can adapt as a response to experienced stresses – locations 

experiencing elevated stress will not only form more bone, but also bone tissue with 

elevated elastic modulus and vice versa.   

   To date, probably the most common approach to assign heterogeneous material 

properties to finite element models of bone is the conversion of grey level numbers 

from computed tomography data into the elastic modulus values. This conversion is 

usually achieved via power law relationships between the elastic modulus and density 

via calibrated Hounsfield units [17] or calibration via density phantoms.  Such 
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approaches surely are an advancement compared to isotropic homogeneous models. 

However, as reported by Rho et al. [17] density alone in human femur leaves 30% of the 

variation of the elastic modulus unexplained in the longitudinal direction. Further, based 

on our findings, the power of micro-computed tomography to provide accurate 

estimation of variations of the elastic modulus in long bones (from eq. 2-3) for 

computational models is rather limited, which is in agreement with Cuppone et al. [23]. 

We tested if a different power law can be established between the three-point bending 

elastic modulus and CT density based on the data for femur-1 however, the correlation 

(E=11.256×BMD0.4133, R2=0.018) was very weak. This can be explained based on the fact 

that the elastic modulus is only predicted from the bone mineral density in µCT. In 

addition to the role of the local mineral concentration, mechanical properties of the 

bone at the tissue level are also affected by other microstructural and compositional 

features in the bone building.  

  In a similar study by Rohrbach et al. [6], tissue level mineral density was found by 

synchrotron radiation microcomputed tomography (SRCT) and compared with the 

longitudinal elastic modulus in bone. Rohrbach et al. recorded elevated values of 

mineral density at mid-diaphysis of human femur similar to what we found for the 

elastic modulus variations along the bovine femur. They have reported a positive 

correlation for the longitudinal elastic modulus with position along the femur such that 

the elastic modulus decreases when moving from the proximal to distal part of the 

bone, different to our findings for bovine bone. However, the mineral density variations 

along the bone was not reflected in the same manner as the elastic modulus in their 
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study [6]. In contrast to three-point bending used in this study, Rohrbach et al. [6] used 

scanning acoustic microscopy to measure stiffness in bone and due to very high 

frequency rates applied, their stiffness measurements might have been affected by 

viscoelastic nature of the bone tissue. Similar to our results, Rohrbach et al. concluded 

that the elastic modulus along the bone cannot be correlated to BMD, yet they did not 

provide a suitable approach for accurately incorporating the heterogeneous distribution 

of the longitudinal elastic modulus in computational models of bone. Based on our 

findings, we propose that a location-based approach may be developed to account for 

variations of tissue-level elastic modulus in long bones.  

  Considering the femur to be subjected to bending loads, variations of the elastic 

modulus along the bone axis and in transverse cross-section of the bone, form an 

optimized structure capable of bearing different loads in everyday activities. Here, we 

reported the difference between the highest and lowest values of the elastic modulus to 

be approximately 79% (4.84 GPa –23.34 GPa) for femur-1 and 94% (1.59 GPa –28.44 

GPa) for femur-2. We used two different bending fixtures to test each bone and part of 

the difference in the reported elastic moduli for the femurs can be explained in this way. 

In should be noted that the use of various fixtures had the same effect on all the 

samples tested by that method and therefore, this is not a major limitation to our 

conclusion on variations of the elastic modulus along the bovine femur. Although the 

same polynomial trend was obtained for both of the bones, the relation found for 

femur-1 could only predict part of the variations of the elastic modulus along the length 

of femur-2 (R2=0.61, P<0.05). This is due to the fact that bones belonged to animals 



 

17 

 

which could have different ages (both relatively young). In general, Haversian structure 

is not fully developed in bovine femur and results can be vastly different case by case. In 

any condition, the heterogeneity of the elastic modulus may find its origin in variations 

of bone structure at several hierarchical levels, including microporosity, osteonal density 

and collagen fibril orientation, rather than changes in the bone matrix mineralization 

alone. It has been shown that microstructural features affect the tissue level mechanical 

properties of the bone in bovine samples [24]–[26]. Further research is required to fully 

characterize the behavior of microstructural features along the long bones; this is 

beyond the scopes of current study.  

To investigate the correlation of the elastic modulus with position along the bone, 

we used the mean of the data in each quadrant rather than applying all the data points 

to the analysis. This is justified due to the fact that the variability of measurements in 

each position is mainly coming from a size effect. The distribution of microstructures 

(osteons, pleixoform-lamellae) tends to be more homogeneous in larger samples and 

therefore, the standard deviation is lower in measuring their three-point bending elastic 

modulus. The small sample size was chosen such that multiple specimens could be 

harvested from each location with the trade-off of under-sampling the microstructures. 

From a statistical point of view and due to the existence of large number of data points, 

we have applied the k-means clustering technique [27] when doing the regression 

analysis. In this technique, objects belong to the same cluster if they are “close” 

according to a given measure. Each cluster of the points was then replaced by a single 

point, its mean value and the best-fit model was obtained between the elastic modulus 
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and position along the femur. Our proposed location-based approach for estimation of 

longitudinal elastic modulus might only be applicable to long bones which are mainly 

subjected to bending loads and for other bones in body, the density-modulus 

relationships might still be the only alternative to form the heterogeneous FE models of 

bone tissue. Two bovine bones were tested in this analysis and the trends were similar 

in both cases. For establishing a more comprehensive relationship which accurately 

describes the elastic modulus based on position along the bovine femur however, many 

more bones with various age/gender characteristics should be investigated. Whether 

the behavior that we detected along the long axis of the bovine femur is also 

characteristic for human femora remains to be shown. Application of µCT for an 

accurate approximation of the bone elastic modulus is restricted with this respect as 

µCT cannot predict the local variations of the bone microstructure. In this paper, we 

report a good correlation between the position along the bone and measured elastic 

modulus. Further investigation on a larger set of human samples is required to establish 

this link and to potentially define a “master” curve for cortical bone elastic modulus. 

Importantly, such an approach could in the future be used to improve heterogeneous 

property assignment of FE models based on µCT datasets, perhaps a general linear 

model including both local mineralization and position could improve the prediction of 

tissue level models. 
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Figure 1- Line profile used to extract the CT graylevel number and mineral density from 
the anterior section of femuer-1. 
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Figure 2- Left) femur-1 divided into 8 blocks of 2 cm height, Right) One sample block 
divided into four sections and representation of the bone plate extracted from each 

block. Five longitudinal beam shaped samples were made out of the bone plate for each 
quadrant in the block. Block height in femur-2 was 3 cm and each sample’s length was 

approximately 15 mm and 10 mm for femur-1 and femur-2 specimens, respectively. 
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Figure 3- Comparing the elastic modulus computed from three-point bending and 

computed tomography for different quadrants along the length of femur-1. As shown, 
three-point bending results are significantly lower than CT predictions. 
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Figure 4- Correlation of the elastic modulus calculated from CT mineral density and the 
elastic modulus found in three-point bending tests is very weak (R2=0.03, p< 0.05). 
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Figure 5- Elastic modulus of three point bending tests is strongly correlated to position 

along the axis of femur-1 (R2=0.95, p<0.05). 
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Figure 6- Elastic modulus of three point bending tests is strongly correlated to position 
along the axis of femur-2 (R2=0.89, p<0.05). 
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Figure 7- Correlation of cortical bone thickness and the elastic modulus for femur-1 is 
not significant (R2=0.03, p=0.35). 

 
 

 
 




