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Abstract: We study to what extent upcoming precision neutrino oscillation experiments

will be able to exclude one of the most predictive models of neutrino mass and mixing:

the Littlest Seesaw. We show that this model provides a good fit to current data, pre-

dicting eight observables from two input parameters, and provide new assessments of its

predictions and their correlations. We then assess the ability to exclude this model using

simulations of upcoming neutrino oscillation experiments including the medium-distance

reactor experiments JUNO and RENO-50 and the long-baseline accelerator experiments

DUNE and T2HK. We find that an accurate determination of the currently least well mea-

sured parameters, namely the atmospheric and solar angles and the CP phase δ, provide

crucial independent tests of the model. For θ13 and the two mass-squared differences,

however, the model’s exclusion requires a combination of measurements coming from a

varied experimental programme. Our results show that the synergy and complementarity

of future experiments will play a vital role in efficiently discriminating between predictive

models of neutrino flavour, and hence, towards advancing our understanding of neutrino

oscillations in the context of the flavour puzzle of the Standard Model.
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1 Introduction

The framework of neutrino masses and mixing for explaining neutrino oscillations — the

first direct experimental evidence for physics beyond the Standard Model — is now firmly

established [1]. All three mixing angles together with the size of the two mass-squared

differences have been measured, with experimental efforts now focused on determining the

final few unknowns: the ordering and scale of the neutrino masses; the value of the Dirac

phase δ; and a precision measurement of the angle θ23 including, if non-maximal, its octant.

Although there is some as yet inconclusive evidence for δ in the third or fourth quadrant,

as well as for normal ordering (NO) and non-maximal atmospheric mixing, we rely on the

next generation of oscillation experiments to set these issues to rest.

On the theoretical side, however, the origin of neutrino masses and mixing remains

unknown with many possible models considered viable (for reviews see e.g. [2, 3]). A

large proportion of these models are based on the classic seesaw mechanism, involving

heavy right-handed Majorana neutrinos [4], providing both a mechanism for generating

the neutrino masses and a natural explanation for their smallness. However, in order

to make predictions that can be probed experimentally, seesaw models require additional

assumptions or constraints [5].

To accommodate the three distinct light neutrino masses which drive the oscillation

phenomenon, the seesaw mechanism requires at least two right-handed neutrinos [6]. In
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order to reduce the number of free parameters still further to the smallest number possi-

ble, and hence increase predictivity, various approaches to the two right-handed neutrino

seesaw model have been suggested1, such as postulating one [7] or two [8] texture zeroes

in the Dirac mass matrix in the flavour basis (i.e. the basis of diagonal charged lep-

ton and right-handed neutrino masses). However, such two texture zero models are now

phenomenologically excluded [9] for the case of a normal neutrino mass hierarchy. The

minimal two right-handed neutrino model with normal hierarchy which can accommodate

the known data of neutrino mixing involves a Dirac mass matrix with one texture zero and

a characteristic form known as the Littlest Seesaw model [10]. The Littlest Seesaw model

may be embedded in unified models of quarks and leptons in [11]. It leads to successful

leptogenesis where the sign of baryon asymmetry is determined by the ordering of the

heavy right-handed neutrinos, and the only seesaw phase η is identified as the leptogenesis

phase, linking violation of charge parity symmetry (CP) in the laboratory with that in the

early universe [12].

The Littlest Seesaw model can be understood as an example of sequential dominance

(SD) [13] in which one right-handed neutrino provides the dominant contribution to the

atmospheric neutrino mass2, leading to approximately maximal atmospheric mixing, while

the other right-handed neutrino gives the solar neutrino mass and controls the solar and

reactor mixing as well as the magnitude of CP violating effects via δ. SD generally leads

to normal ordering and a reactor angle which is bounded by θ13 . m2/m3 [7], proposed

a decade before the reactor angle was measured [1]. Precise predictions for the reactor

(and solar) angles result from applying further constraints to the Dirac mass matrix, an

approach known as constrained sequential dominance (CSD) [14]. For example, keeping the

first column of the Dirac mass matrix proportional to (0, 1, 1)T , a class of CSD(n) models

has emerged [10, 14–17] corresponding to the second column proportional to (1, n, (n−2))T ,

with a reactor angle approximately given by [18] θ13 ∼ (n− 1)
√

2
3
m2
m3

. The Littlest Seesaw

model corresponds to n = 3 with a fixed seesaw phase η = 2π/3.

It was recently realised that the alternative form of the Littlest Seesaw model with

second column (1, 1, 3)T and seesaw phase η = −2π/3 (also proposed in [10]) may be

enforced by an S4 × U(1) symmetry, putting this version of the Littlest Seesaw model on

a firm theoretical foundation [19] in which the required vacuum alignment emerges from

symmetry as a semi-direct model [20]. In general the Littlest Seesaw model is an example

of trimaximal TM1 mixing [21, 22], in which the first column of the tri-bimaximal mixing

matrix [23] is preserved, similar to the semi-direct model of trimaximal TM1 mixing that

was developed in [24]. To fix the seesaw phase, one imposes a CP symmetry in the original

theory which is spontaneously broken, where, unlike [25], there is no residual CP symmetry

in either the charged lepton or neutrino sectors, but instead the phase η in the neutrino

mass matrix is fixed to be one of the cube roots of unity due to a Z3 family symmetry,

1In seesaw models with two right-handed neutrinos, including those discussed in this paper, a hierarchical

spectrum of left-handed neutrino masses is obtained where the lightest left-handed neutrino is massless.
2With the lightest neutrino massless, m1 = 0, we refer to the two non-zero masses as the solar neutrino

mass and the atmospheric neutrino mass, corresponding to the square roots of the experimentally measured

solar and atmospheric neutrino mass splittings m2 =
√

∆m2
21 and m3 =

√
∆m2

31 respectively.
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using the mechanism proposed in [26].

As explained in more detail later on, the Littlest Seesaw model predicts all neutrino

masses and mixing parameters in terms of two or three parameters, and it has been shown

that the model is in agreement with all existing data, for a suitable range of its internal

parameters [17]. The model makes some key predictions about the neutrino mass spectrum,

that the lightest neutrino is massless m1 = 0 and that normal ordering obtains ∆m2
31 > 0,

which offer a means to exclude it via the observation of neutrinoless double beta decay,

the measurement of the beta-decay end-point, or from cosmological measurements, as well

as any measurement of NO from neutrino oscillation searches. However, it also provides

a rich set of predictions and correlations for the mixing angles and phases. In this paper,

we assume Normal Hierarchy (m1 = 0 and NO), and study how the future long- and

medium-baseline oscillation programme will be able to test this model through the precision

measurement of the oscillation parameters.

The layout of the paper is as follows: in Section 2 we define the Littlest Seesaw models

discussed above, and express some of the predictions in terms of exact sum rules of the

neutrino oscillation parameters. In Section 3 the Littlest Seesaw models are confronted with

existing oscillation data and we show the precise predictions made once this data is taken

into account. Section 4 then covers how the predictions of the models could be probed

at future experimental facilities, showing the sensitivities of experiments to exclude the

models and the combined measurements required to do so. We end with some concluding

remarks in Section 5.

2 Littlest Seesaw models of neutrinos

Sequential dominance models of neutrinos arise from the proposal that, via the type-I see-

saw mechanism, a dominant heavy right-handed (RH) neutrino is mainly responsible for

the atmospheric neutrino mass, a heavier subdominant RH neutrino for the solar neutrino

mass, and a possible third largely decoupled RH neutrino for the lightest neutrino mass [13].

This leads to the prediction of normal neutrino mass ordering and, in the minimal case

containing just the dominant and subdominant right-handed neutrinos, the lightest neu-

trino must be massless. Constrained sequential dominance (CSD) constrains these models

further through the introduction of flavour symmetry, with the indirect approach used to

fix the mass matrix from vacuum alignments of flavon fields [14]. A family of such mod-

els, parameterized by n, either integer or real using the flavour symmetry groups S4 or

A4 respectively, predicts the CSD(n) mass matrix for left-handed neutrinos [10, 18]. This

model is also known as the Littlest Seesaw (LS) model since it provides a physically viable

seesaw model with the fewest number of free parameters. After integrating out the heavy

neutrinos, the resulting left-handed light effective Majorana neutrino mass matrix3 in the

3We follow the Majorana mass Lagrangian convention − 1
2
νLm

ννcL.
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charged-lepton flavour basis is given by

mν = ma

0 0 0

0 1 1

0 1 1

+mbe
iη

 1 n (n− 2)

n n2 n(n− 2)

(n− 2) n(n− 2) (n− 2)2

 , (2.1)

where in addition to n there are three free real parameters: two parameters with the

dimension of mass ma and mb which are proportional to the reciprocal of the masses of

the dominant and subdominant right-handed neutrinos, and a relative phase η. A second

version of this model has also been proposed, based on an S4 ×U(1) symmetry, where the

second and third rows and columns of the mass matrix are swapped [19]. In this paper, we

discuss both these versions for the case where n = 3, with the two versions of the model

denoted as LSA and LSB;

mν
LSA = ma

0 0 0

0 1 1

0 1 1

+mbe
iη

1 3 1

3 9 3

1 3 1

 , (2.2)

mν
LSB = ma

0 0 0

0 1 1

0 1 1

+mbe
iη

1 1 3

1 1 3

3 3 9

 . (2.3)

Although, in the most minimal set-up, the relative phase η is a free parameter, it has

been shown that in some models the presence of additional Z3 symmetries can fix the

phase eiη to a cube root of unity [25], with η = 2π/3 the preferred value for LSA and

η = −2π/3 for LSB as determined by current data [17]. This restriction gives the model

greater predictivity by reducing the number of free parameters to two, and we will give

these cases special attention while also showing some results for the case with η left free.

Diagonalizing the mass matrices above leads to predictions for the neutrino masses as

well as the angles and phases of the unitary PMNS matrix, UPMNS, which describes the

mixing between the three left-handed neutrinos

UTPMNSm
νUPMNS =

m1 0 0

0 m2 0

0 0 m3

 , (2.4)

where UPMNS is defined by

UPMNS =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12s13c23e
iδ −c12s23 − s12s13c23e

iδ c13c23


ei

β1
2 0 0

0 ei
β2
2 0

0 0 1

 (2.5)

with sij = sin θij and cij = cos θij . All of the parameters in this decomposition are therefore

predicted in terms of the 2 (or 3) real parameters in Eqs. (2.2) and (2.3). Due to the minimal

assumption of only two right-handed neutrinos, the lightest neutrino is massless m1 = 0

and the mass-squared differences, which are the only combinations of masses accessible to
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neutrino oscillation experiments, are predicted to be ∆m2
21 = m2

2 and ∆m2
31 = m2

3. Of the

remaining mixing parameters, θ12, θ13, θ23 and δ, are also experimentally accessible via

neutrino oscillation, while the Majorana phases β1 and β2 are not.

As will be seen in more detail in the next section, due to their similar forms, LSA

and LSB make similar predictions. However, the process of diagonalization reveals that

the octant of θ23 is reversed, along with the sign of δ, while all other parameters are

unchanged. Changing the sign of η, however, also reverses the sign of δ with no other

effect, and so with the sign of η not fixed by the model the only physical difference between

LSA and LSB is the octant of θ23.

2.1 Sum rules of LS

It has already been shown that, since the first column of the LS mixing matrix UPMNS is

equal to that of the tri-bimaximal mixing matrix, LS (both LSA and LSB for all values of

η) obeys the TM1 sum rules [18, 19]

tan θ12 =
1√
2

√
1− 3s2

13, sin θ12 =
1√
3

√
1− 3s2

13

c13
, cos θ12 =

√
2

3

1

c13
, (2.6)

cos δ =− cot 2θ23(1− 5s2
13)

2
√

2s13

√
1− 3s2

13

, (2.7)

where sij = sin θij and cij = cos θij , and the forms in Eq. (2.6) are equivalent.

For LSA with η = 2π
3 or LSB with η = −2π

3 , there are several additional sum rules,

which we discuss here for the first time. A set of these additional sum rules can be derived

using the fact that the only two remaining input parameters ma and mb have dimensions

of mass, so all the mixing angles and phases must depend only on the ratio r ≡ mb
ma

.

Exact expressions for the mixing angles and Dirac phase as a function of r can be found

in Appendix A, along with new exact sum rules derived using these expressions. These

results make clear the difference between predictions of LSA and LSB; while θ13 and θ12

remain unchanged, cos 2θ23 and cos δ differ by a change of sign.

An exact expression for the Jarlskog invariant J was given as [18, 19]

J = s12c12s13c
2
13s23c23 sin δ = ∓

24m3
am

3
b(n− 1) sin η

m2
3m

2
2∆m2

32

. (2.8)

with negative sign taken for LSA and positive for LSB. For both LSA with η = 2π
3 , and

LSB with η = −2π
3 we find the new relation

m2m3 = 6mamb. (2.9)

Using this relation and inserting n = 3 into Eq. (2.8) leads to the new relation for the

Jarlskog invariant J

J = −
√

∆m2
21∆m2

31

3
√

3∆m2
32

(2.10)

and hence the sum rule,

sin δ = −
√

∆m2
21∆m2

31

3
√

3∆m2
32s12c12s13c2

13s23c23

, (2.11)
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which is valid for both LSA with η = 2π
3 and LSB with η = −2π

3 .

3 Probing LS with existing data

Existing measurements of the neutrino mixing parameters have been shown to be in good

agreement for CSD(n) for the n = 3 case [17]. The best-fit value of η is found to be close

to ±2π
3 , with the positive sign for LSA and the negative sign for LSB, which has been

theoretically motivated as one of the cube roots of unity required due to an additional Z3

symmetry as part of a larger GUT model [18]. In this section, we study both the case

where η is fixed by symmetry and the case where it is left as a free parameter of the theory.

3.1 Predictions of oscillation parameters with fixed η = ±2π/3

In the n = 3 case of LSA with η = 2π
3 (or LSB with η = −2π

3 ), all neutrino masses, mixing

angles and phases are fully determined from the two remaining parameters ma and mb and

the three most precisely measured of these parameters, θ13, ∆m2
31 and ∆m2

21, currently

provide the strongest test of the LS model. Figure 1 shows how these parameters vary

in the ma −mb plane, along with the regions corresponding to the 1σ and 3σ ranges for

these parameters from the NuFit 3.0 (2016) global fit [28], assuming normal mass ordering

and a lightest neutrino mass of m1 = 0. The SD proposal requires ma to be significantly

larger than mb and for this portion of the parameter space the approximate proportionality

relations of m2 ∼ mb and m3 ∼ ma can be seen, verifying the approximations previously

derived in [18].

Even at 1σ the three allowed regions coincide at a single point, as can be seen in Fig. 2,

and so this benchmark point can be used to make predictions of the remaining angles θ12

and θ23 and the Dirac phase δ. As described in Section 2 these parameters, along with

θ13, depend only on the ratio r = mb/ma; this dependence, given by the relations in

Eq. (A.1), is shown in Fig. 3, with the 1σ and 3σ NuFIT 3.0 ranges and reference point

at mb/ma = 0.1. For θ23 and δ, the predictions of both LSA and LSB are shown. At this

point it can be seen that while both θ13 and θ12 lie within their 1σ ranges, θ23 lies just

outside its 1σ range, and a prediction on the value of the Dirac phase is made of δ ' −90◦.

Combining these results for all parameters which have been experimentally measured,

displayed together in Fig. 4, it is seen that the prediction for θ12 lies just within current

bounds. However, there is tension at the 1σ level for θ23, due to the allowed regions of LS

parameter space requiring values close to maximal, while current data points towards larger

deviations from the maximal value. The experimental measurements of θ23 do not yet give

consistent indications of its value; while the latest results from NOνA disfavour maximal

mixing at 2.5σ [30], results from T2K remain fully compatible with maximal θ23 [29]. As

a result, while the combined fit for θ23 is in tension with the LS models at 1σ, the allowed

range at 2σ is far wider, crossing both octants and the maximal value of 45◦, including the

values preferred by the LS model4.

4For a more detailed discussion of the current status of experimental measurements of θ23, see [28]
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Figure 1: Predicted values from LSA with η = 2π
3 (or LSB with η = −2π

3 ) of oscillation

parameters depending on the input parameters ma and mb. Regions corresponding to the

experimentally determined 1σ (solid lines) and 3σ (dashed lines) ranges for each parameter

are also shown.
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Figure 2: Regions in the ma-mb plane with fixed η = 2π/3 (η = −2π/3) for LSA (LSB)

corresponding to the experimentally determined 1σ and 3σ ranges for θ13, ∆m2
21 and ∆m2

31.

3.2 Predictions of oscillation parameters with η as a free parameter

In the versions of the LS models with η as an additional free parameter, the mixing angles

and phases now depend on both the ratio r = mb/ma and η. The masses m3 and m2

depend on all three input parameters; however, their ratio m2/m3 (and therefore the ratio

∆m2
21/∆m

2
31) will depend only on r and η. As previously, the strongest contraints come

from the very precise measurements of θ13 and the mass-squared differences ∆m2
21 and
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Figure 3: Predicted values from LS with fixed η = 2π/3 (η = −2π/3) for LSA (LSB) of

the mixing angles and delta as a function of the ratio mb/ma. Horizontal bands show the

experimentally determined 1σ and 3σ ranges for each parameter. A reference point giving

a good prediction for all parameters is shown at r = mb/ma = 0.1.
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Figure 4: Regions in the ma-mb plane with fixed η = 2π/3 (η = −2π/3) for LSA (LSB)

corresponding to the experimentally determined 1σ ranges for solar and reactor mixing

angles and mass-squared differences. The θ23 regions shown are in tension with other

measurements, however, extending to 2σ these regions become far larger, covering the

entire parameter space shown in these plots.

∆m2
31. Figure 5 shows the regions corresponding to the 1σ ranges for all the mixing

angles, δ and m2/m3, where we see that all the five regions come close to overlapping
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around η = ±2π/3 for LSA and LSB, respectively. That two input parameters should

give a good description of five observables, within their one sigma errors, is ostensibly

a remarkable achievement, indeed perhaps better than might be expected on statistical

grounds. However, due to the very tight constraints on η from θ13 and m2/m3, we still find

some tension with the value of θ23 even when allowing η to vary. As with the case with η

fixed, this tension exists only at the 1σ level, where close to maximal θ23 is excluded.

★★

-1.0

-0.5

0.0

0.5

1.0

η
/π

0.025 0.050 0.075 0.100 0.125 0.150 0.175

mb/ma

★★

0.025 0.050 0.075 0.100 0.125 0.150 0.175

mb/ma

LSA LSB

θ12 θ13 θ23 m2/m3 δ

Figure 5: Regions in the mb/ma-η plane corresponding to the experimentally determined

1σ ranges for all mixing angles, δ and the ratio of neutrino masses m2/m3 for LSA (left

panel) and LSB (right panel).

3.3 Fitting LS models to global fit data

In order to provide a more concrete measure of the agreement between the predictions of

the model and existing data, as well as to make further predictions of the less well measured

parameters, we have performed a χ2 fit to the four cases discussed above: LSA and LSB

with η fixed and free. As a proxy for the full data sets of previous experiments, our fits use

the results of the NuFIT 3.0 global analysis [28]. This analysis combines the latest results

(as of fall 2016) of solar, atmospheric, long baseline accelerator, and long, medium and

short baseline reactor neutrino experiments, to obtain a combined fit to the six standard

neutrino oscillation parameters. We use the χ2 data provided by NuFIT, for the case

where normal mass ordering is assumed, combining both the 1D χ2 data for each mixing

parameter with the 2D χ2 data to include correlations between parameter measurements

χ2
Fit(Θ) =

∑
θi∈Θ

χ2
1D(θi) +

∑
θi 6=θj∈Θ

(
χ2

2D(θi, θj)− χ2
1D(θi)− χ2

1D(θj)
)
, (3.1)
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where the first sum in this expression combines each of the 1D χ2 data into a first approx-

imation of the full 6D χ2 while the second sum provides corrections to this coming from

the 2D correlations between each pair of parameters.

We then apply this result first to the standard mixing case, then to the LS model case

as follows:

• For the case of standard mixing Θ = ΘPMNS ≡
{
θ12, θ13, θ23,∆m

2
21,∆m

2
31, δ

}
and we

simply combine the NuFIT 3.0 results as shown above, in order to include correlations,

and use it to calculate χ2 (ΘPMNS) ≡ χ2
Fit(Θ) for this case.

• For the LS model we use instead Θ = ΘLS ≡ {ma,mb, η} (or ΘLS = {ma,mb} when

fitting with η fixed), which is then minimised over the LS parameter space using the

analytic relations to calculate standard mixing parameters from LS parameters, and

hence calculate χ2 (ΘLS) ≡ χ2
Fit(Θ) for this case.

Our test statistic for a particular LS model is then given by:√
∆χ2 =

√
min
ΘLS

[χ2 (ΘLS)]− min
ΘPMNS

[χ2 (ΘPMNS)]. (3.2)

We have verified through Monte-Carlo calculations that Wilk’s theorem holds for this

statistic, i.e. it is approximately distributed according to a chi-squared distribution.

The best fit LSA and LSB points for fits with η left free or with η fixed at 2π
3 are

given in Table 1. The number of degrees of freedom (d.o.f.) is either 3 or 4, which is just

the difference between the number of observables (which we take to be the parameters in

ΘPMNS) and the number of LS parameters (namely the parameters in ΘLS, which is either

3 or 2, depending on whether η is free or fixed). For LSA we find a best fit with ∆χ2 = 4.1

(3 degrees of freedom) with η free and ∆χ2 = 5.6 (4 degrees of freedom) fixing η = 2π
3 ,

while for LSB we find better fits, with ∆χ2 = 3.9 (3 degrees of freedom) and ∆χ2 = 4.5 (4

degrees of freedom) for η free and η = −2π
3 respectively.

Figure 6 shows the best fit points with 1σ and 3σ contours of the fits in the ma −mb

plane for fixed η and in the r− η plane for free η. The significance at which a LS model is

allowed is determined from the distribution of the ∆χ2 test statistic, where Nσ has been

calculated assuming the that Wilks’ theorem applies. Note that despite LSA predicting

values of θ23 which lie outside its individual 1σ range reported by NuFIT 3.0, there are

still regions not excluded at 1σ. This is due to the high predictivity of the model; by

predicting many parameters from few input parameters there is a greater chance that one

of these may lie outside its experimentally determined range. Statistically, this comes from

the increased number of degrees of freedom of the χ2-distribution which approximates our

test statistic ∆χ2.

Our fit can also be used to identify the regions of standard neutrino mixing parameter

space predicted by LS, once existing data has been taken into account. This corresponds

to mapping the regions of LS input parameter space allowed by our fit onto the standard

mixing parameter space. Figure 7 shows the predictions of LS (for the fixed η case) in

the planes made from each pair of mixing angles and δ. Since these values all depend
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LSA LSB NuFIT 3.0

η free η fixed η free η fixed global fit

ma [meV] 27.19 26.74 26.95 26.75

mb [meV] 2.654 2.682 2.668 2.684 —

η [rad] 0.680π 2π/3 −0.673π −2π/3

θ12 [◦] 34.36 34.33 34.35 34.33 33.72+0.79
−0.76

θ13 [◦] 8.46 8.60 8.54 8.60 8.46+0.14
−0.15

θ23 [◦] 45.03 45.71 44.64 44.28 41.5+1.3
−1.1

δ [◦] -89.9 -86.9 -91.6 -93.1 −71+38
−51

∆m2
21 [10−5eV2] 7.499 7.379 7.447 7.390 7.49+0.19

−0.17

∆m2
31 [10−3eV2] 2.500 2.510 2.500 2.512 2.526+0.039

−0.037

∆χ2 / d.o.f 4.1 / 3 5.6 / 4 3.9 / 3 4.5 / 4 —

Table 1: Results of our fit of existing data to LSA and LSB with η left free and for η = 2π
3

for LSA and η = −2π
3 for LSB. The results of the NuFIT 3.0 (2016) global fit to standard

neutrino mixing are shown for the normal ordering case for comparison.

only on the single parameter r, the predictions of LS form lines of allowed solutions in

each plane, corresponding to sum-rules between the oscillation parameters. For example,

Fig. 7a corresponds to the TM1 sum rule in Eq. (2.6), while Figs. 7b to 7f correspond to

those in Eq. (A.6) or to combinations of these sum rules. It can be seen that very strong

restrictions are placed on the allowed values of the less well measured parameters, θ12, θ23

and δ. For the remaining angle, θ13, around two thirds of the NuFIT 3.0 range remains

viable in LS.

Figure 8 shows the allowed regions of parameter space for pairs of variables including

the mass-squared differences. In these plots, as the mass-squared differences can depend on

both ma and mb independently, we see regions of allowed values instead of lines. For each

of these planes, any point will fully determine both input parameters ma and mb, and so

these contours correspond exactly to the equivalent regions shown in Fig. 6. In addition to

the tight constraints on θ12, θ23 and δ already mentioned, in Figs. 8b and 8e it can be seen

that the allowed range of θ13 is correlated with that of both ∆m2
21 and ∆m2

31, suggesting

that combining future measurements of these parameters could provide a better probe of

LS than the individual parameter measurements alone. The ability of future experiment to

exclude the model then depends on both the predictions of the model seen here, combined

with the sensitivity of experiments to measurements of the parameters in the region of

interest predicted by LS, which is the focus of the next section.

4 Sensitivity of future experiments

In order to understand the potential for future experiments to exclude the LS models,

we have performed simulations of a combination of accelerator and reactor experiments,
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Figure 6: Results of the fits to LS of the NuFIT 3.0 (2016) global neutrino oscillation

data. Left: LS fit with fixed η = 2π/3 (η = −2π/3) for LSA (LSB). Right: LS fit with η

as a free parameter.

modelling the experimental data expected over the next two decades. We have used the

General Long Baseline Experiment Simulator (GLoBES) libraries [48, 49] to simulate future

experiments and to fit the simulated data to both standard mixing and the LS models. In

all our simulations we assume that the mass ordering is known to be normal ordering, as this

is a requirement of the LS models; a measurement of inverted ordering would immediately

exclude the models.

4.1 Future neutrino oscillation experiments

Our combination of experiments include detailed simulations of the T2HK and DUNE long-

baseline accelerator experiments, which aim to provide precision measurements of ∆m2
31,

θ23 and δ, together with basic constraints on θ13 from the Daya Bay short baseline reactor

experiment and on θ12 and ∆m2
21 from the JUNO and RENO-50 medium baseline reactor

experiments. We will now briefly recap the salient features of these experiments and our

treatment of them.

T2HK

The Tokai to Hyper-Kamiokande (T2HK) experiment is a proposed long-baseline acceler-

ator neutrino experiment using the Hyper-Kamiokande detector, a megatonne scale water

Cherenkov detector to be constructed near to the Super-Kamiokande detector in Kamioka,

Japan [41]. The standard design is for two tanks to be built, each with 258 kt (187 kt) of

total (fiducial) volume. The tanks are to be built in a staged process with the second tank

constructed and commissioned after the first, such that the second begins to take data
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Figure 7: Allowed values for LSA (red) and LSB (blue) with η = 2π/3 and η = −2π/3

respectively, showing all possible values (dotted) and the 1σ range (solid). These lines of

allowed solutions correspond to the sum rules in Eqs. (2.6) and (A.6), or combinations

thereof. Also shown are the 1σ (solid) and 3σ (dashed) regions from the NuFIT 3.0 2016

global fit (grey).

six years after the first. The water Cherenkov technique is capable of detecting the (anti-

)muons and electrons (positrons) produced in (anti-)neutrino interactions, with the ability

to distinguish the charged leptons’ flavours but not their charge. The detector would be

used to observe neutrinos from (amongst other sources) an upgraded version of the T2K

neutrino beam produced at J-PARC in Tokai, L = 295 km from the detector. The 1.3 MW

beam, produced from a 30 GeV protons, is directed 2.5◦ away from the detector in order to

provide a narrow energy spectrum at the far detector peaked around the first atmospheric

neutrino oscillation maximum for ∆m2
31 ∼ 2.5 × 10−3 eV2 and E = 0.6 GeV. Either νµ

or ν̄µ can be produced as the principle component of the beam, such that the oscillation

probabilities P (νµ → νe), P (ν̄µ → ν̄e), P (νµ → νµ) and P (ν̄µ → ν̄µ) can all be measured.

While the main goal of T2HK is to search for CP symmetry violation by observing a non-

CP conserving value of δ, precision measurements of θ23 and the magnitude of ∆m2
31 will

also be made [42].
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Figure 8: Allowed 1σ (solid) and 3σ (dashed) regions for LSA (red) and LSB (blue) with

η = 2π/3 and η = −2π/3 respectively. Also shown are the current allowed regions from

the NuFIT 3.0 2016 global fit (grey).

DUNE

The Deep Underground Neutrino Experiment [43] (DUNE) is a proposed long-baseline

accelerator experiment, which differs from the T2HK experiment through its longer baseline

and higher energy wide-band beam. The experiment will use a new neutrino beam sourced

at Fermilab, directed towards a large liquid argon detector in Sanford, L =1300 km from

the beam source. The 40 kt LArTPC detector is able to detect both the charged leptons

and the hadrons produced from muon and electron (anti-)neutrino interactions, with strong

particle identification and energy reconstruction capabilities. The standard design is for

a 1.07 MW νµ or ν̄µ beam produced from 80 GeV protons, with an on-axis design to

produce a wide energy spectrum spanning E =0.5 to 5 GeV, allowing observations of the

νe appearance spectrum around the first atmospheric neutrino oscillation maximum for

∆m2
31 ∼ 2.5 × 10−3 eV2. While measuring the same oscillation channels as T2HK, the

wider band beam with longer baseline provides complementary information on the value
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of δ as well as measurements of θ23 and, due to the matter effects from the longer baseline,

both the sign and the magnitude of ∆m2
31 [44].

Short baseline reactor experiments

By observing the oscillations of the ν̄e produced in nuclear reactors, short baseline reactor

neutrino experiments are able to measure the mixing angle θ13 with particularly high

accuracy. The Daya Bay experiment [45] currently has the most precise measurement of

this parameter with the aim to achieve a precision on sin2 θ13 of better than 3% [46]. The

experiment measures anti-neutrinos produced in six nuclear reactors in south China. A

total of eight 20 t liquid scintillator detectors are used; two are located at each of two

near detector sites and four at a far detector site L =1.5 to 1.9 km from the reactors near

the first atmospheric neutrino oscillation maximum for ∆m2
31 ∼ 2.5 × 10−3 eV2, given

the low nuclear energy of the neutrino beam E ∼ few MeV. Results of the Double Chooz

[52] and RENO [51, 53] short baseline reactor experiments also contribute to the precision

obtained on θ13 combined with the Daya Bay result. Although DUNE and T2HK will

also measure this parameter with high precision, the measurement of the short baseline

reactor programme by that time is expected to be at least as precise, and will provide a

measurement independent of the other parameters which influence the appearance channel

at long-baseline accelerator experiments.

Medium baseline reactor experiments

The Jiangmen Underground Neutrino Observatory [47] (JUNO) and the future plans of the

Reactor Experiment for Neutrino Oscillation (RENO-50) [51] are medium baseline reactor

neutrino experiments which, like the Daya Bay experiment, will observe the oscillations

of electron anti-neutrinos produced in nuclear reactors. The JUNO experiment will use

a 20 kt liquid scintillator detector approximately L =53 km from two planned nuclear

reactors in southern China, while RENO-50 will use an 18 kt liquid scintillator detector

approximately L =50 km from a nuclear reactor in South Korea. Given the low nuclear

energy of the neutrino beam E ∼ few MeV, these longer baselines correspond to the first

solar neutrino oscillation maximum for ∆m2
21 ∼ 7.5×10−5 eV2, where the higher frequency

atmospheric oscillations appear as wiggles. Thus the longer baseline than at Daya Bay

gives greatest sensitivity to a different set of oscillation parameters, in particular θ12 and

∆m2
21. The precision on the measurements of both sin2 θ12 and ∆m2

21 is expected to reach

0.5% [47, 51].

Details of experimental simulation

We have used complete simulations of the latest designs for both DUNE and T2HK where

we have assumed both experiments run for 10 years. Full details of the GLoBES imple-

mentations we have used can be found in [50]. For the short and medium baseline reactor

experiments, we have included basic constraints on the values of sin2 θ13, sin2 θ12 and ∆m2
21.

Since these measurements are expected to be approximately independent of other parame-

ters we have implemented these constraints as simple Gaussian measurements with a mean

of the true simulated value and error as given in Table 2.

– 15 –



Experiment Parameter Precision

Short baseline reactor sin2 θ13 3%

Medium baseline reactor sin2 θ12 0.5%

Medium baseline reactor ∆m2
21 0.5%

Table 2: Precision of oscillation parameter measurements made by reactor experiments

which we have used as constraints in our simulations.

4.2 Statistical method

To determine the statistical significance with which the LS model could be excluded based

on simulated data, we perform a minimum-χ2 fit to both standard three neutrino mixing

and to the LS model. As in section 3.3, for the case of standard mixing we use Θ =

ΘPMNS ≡
{
θ12, θ13, θ23,∆m

2
21,∆m

2
31, δ

}
, while for LS we use Θ = ΘLS ≡ {ma,mb, η} (or

ΘLS = {ma,mb} when fitting with η fixed). Our test statistic for the significance to exclude

the LS model is then given by√
∆χ2 =

√
min
ΘLS

[χ2 (ΘLS)]− min
ΘPMNS

[χ2 (ΘPMNS)]. (4.1)

The significance at which LS is excluded is then determined from the distribution of the

∆χ2 test statistic; where we give sensitivities in terms of Nσ, this quantity has been

calculated assuming the that Wilks’ theorem applies. Wilks’ theorem states that when

comparing nested models, the ∆χ2 test statistic is a random variable asymptotically dis-

tributed according to the χ2-distribution with the number of degrees of freedom equal to

the difference in number of free parameters in the models. In this case we treat the LS

models, with two or three free parameters, as sub-models of standard neutrino mixing with

six free parameters, leading to a χ2-distribution with 4 degrees of freedom when η is kept

fixed or 3 degrees of freedom when η is left as a free parameter. We have verified via Monte-

Carlo simulations that the distribution of our ∆χ2 test statistic is well approximated by

these distributions.

In applying the above formula, the χ2(Θ) is minimised over the parameters Θ in our

fits and is built from three parts;

χ2(Θ) = χ2
LB(Θ) + χ2

R(Θ) + P (Θ), (4.2)

with χ2
LB(Θ) for the full simulations of the long-baseline experiments DUNE and T2HK,

χ2
R(Θ) for the constraints from reactor experiments Daya Bay and JUNO, and P (Θ) for

a prior intended to include information from the results of existing experimental measure-

ments.

For the long-baseline experiments we use the statistical model of the GLoBES library

[48, 49], where the χ2
LB(Θ) is a sum of contributions from each of the experiments’ channels.

The individual contributions are constructed as

χ2
c(Θ) = min

ξ={ξs,ξb}

[
2
∑
i

(
ηi(Θ, ξ)− ni + ni ln

ni
ηi(Θ, ξ)

)
+ p(ξ, σ)

]
, (4.3)
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where χ2
c denotes the contribution from a given channel of a given experiment. The sum in

this expression is over the i energy bins of the experimental configuration, with simulated

true event rates of ni and simulated event rates ηi(Θ, ξ) for the hypothesis parameters Θ and

systematic error parameters ξ. The systematic errors of the experiments are treated using

the method of pulls, parameterized as ξs for the signal error and ξb for the background error.

These parameters are given Gaussian priors which form the term p(ξ, σ) = ξ2
s/σ

2
s + ξ2

b/σ
2
b ,

where σ = {σs, σb} are the sizes of the systematic errors given by the experiment.

For the reactor experiments we simply assume independent Gaussian measurements

such that

χ2
R =

(
sin2 θ13 − sin2 θ13

)2
σ2
θ13

+

(
sin2 θ12 − sin2 θ12

)2
σ2
θ12

+

(
∆m2

21 −∆m2
21

)2

σ2
∆m2

21

, (4.4)

where θ13, θ12 and ∆m2
21 are the true parameter values and σθ13 , σθ12 and σ∆m2

21
the

corresponding experimental measurement uncertainties.

The prior P (Θ) provides information from existing experimental measurements and

is calculated using the results of the NuFIT 3.0 global fit in the same way as our fit in

Section 3.3, so that P (Θ) = χ2
Fit(Θ) as defined in Eq. (3.1).

In all our simulations, the true parameters are taken to be the best-fit values from the

appropriate LS fit results given in Table 1, except where stated otherwise.

4.3 Results

The sensitivity to exclude either version of the LS model is shown as a function of the

true value of each parameter in Fig. 9, for true values, with the range selected along the

horizontal axes to be that given by the currently allowed at 3σ by the latest NuFIT 3.0

global fit. In each case, the parameters not shown are assumed to take their best-fit values

from the fit to LS described in Section 3.3.

From the upper panels in Fig. 9, we see that θ12, θ23 and δ provide the strongest tests

of the model, with there only being a relatively small portion of the presently allowed true

parameter space where the model would not be excluded. This is due to the strong predic-

tions of these parameters by the LS models, as discussed in Section 3.1. Note that these

parameters are those that will be measured most precisely by the three next-generation

experiments used in our simulations, JUNO, DUNE and T2HK. For these three param-

eters, the effect of allowing η to vary does not much change the sensitivity, other than

the additional solution (currently disfavoured by experiment) with δ = +90◦ which occurs

when changing the sign of η. For θ12 in particular there is no effect of allowing η to vary.

This is due to the sum rule in Eq. (2.6) which relates θ12 with θ13 independently from the

value of η; the precise measurement of θ13 then fixes the value of θ12 to a narrow range such

that a measurement of θ12 outside of this would exclude the LS model regardless of the

LS parameter values. Similarly the precise measurements of θ13, ∆m2
21 and ∆m2

31 strongly

constrain the magnitude (but not sign) of η, so that the LS allowed regions of the other

variables are not significantly changed when η is allowed to vary, with the noted exception

that changing the sign of η allows the sign of δ to also change.
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Figure 9: The predicted sensitivity of future experiments to excluding LSA (red) and LSB

(blue), shown as a function of the true value of each parameter. Solid curves correspond

to the case with η fixed at η = 2π
3 for LSA or η = −2π

3 for LSB, while dashed curves

correspond to the case with η left free. The ranges of true parameters shown in the plots

corresponds to the current three sigma allowed NuFIT 3.0 regions.

From the lower panels in Fig. 9, we see that the sensitivity to exclude LS from mea-

surements of θ13, ∆m2
21 or ∆m2

31 is much less than for the other three parameters and the

sensitivity is also significantly reduced when allowing η to vary. By the converse argument

to that used above, this is due to these three parameter measurements driving the fit to

ma and mb (and η), and so a measurement of these parameters will tend to move the fitted

LS parameter values rather than exclude the model, particularly when fitting the extra

free parameter η. However, a particularly small measurement of θ13 or particularly large

measurement of ∆m2
21, relative to their current allowed range of values, may still exclude

the fixed η version of the models.

The results shown in Fig. 9 show only the dependence of the significance to exclude

LS on the true value of each variable individually. However, the sensitivity will generally
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have a strong dependence on the true values of the other parameters. The significance to

exclude the LS models depending on the true values of each pair of variables, for the cases

where η is kept fixed, is shown in Figures 10 and 12 for LSA and in Figs. 11 and 13 for

LSB.

Each panel of Figs. 10 and 11 includes two dimensionless variables (i.e. angle or phase)

which both depend only on the ratio of LS input parameters r = mb/ma, and so, in a LS

model, a measurement of any one of these parameters corresponds to a measurement of

r = mb/ma (see Fig. 3). Combining two of these parameter measurement therefore give two

measurements of r = mb/ma, with any conflict between them providing strong evidence to

exclude the model. For this reason the significance to exclude the models is close to being

simply the combined significance from individual measurements implied by Fig. 9.

By contrast, each panel of Figures 12 and 13 shows the results for the pairs of variables

including at least one dimensionful mass-squared difference. Here we can see in Figs. 12b,

12e and 12i for LSA, and in Figs. 13b, 13e and 13i for LSB, there is a strong correlation

between the measurements of θ13, ∆m2
21 and ∆m2

31. This shows clearly that, although

individual measurements of these parameters cannot exclude a LS model (since the pa-

rameters of the LS model could be adjusted to accommodate any of them individually)

a combined measurement of two of them could serve to exclude the model. This is the

reason for presenting these combined sensitivity plots. Of the three parameters for which

such combined measurements provide the strongest test of the model, each pair includes

measurements from different experiments, with θ13 coming mainly from the short-baseline

reactor measurement such as Daya Bay, ∆m2
21 from the medium-baseline reactor measure-

ment such as JUNO, and ∆m2
31 from the long-baseline accelerator measurement such as

DUNE and T2HK. This demonstrates a strong synergy between all these experiments in

attempts to exclude the LS models.

5 Conclusion

In this paper, we have investigated the ability to probe one of the most predictive viable

neutrino mass and mixing models with future neutrino oscillation experiments: the Littlest

Seesaw. The LS models work within the framework of the Type I seesaw mechanism,

using two right-handed neutrinos to generate the left-handed neutrino masses. Combined

with constraints from flavour symmetries, the neutrino mixing angles and phases can be

predicted from a small number of parameters; in its most constrained form all neutrino

masses, angles, and phases are determined from just two input parameters. In fact, we have

shown that while the neutrino masses depend on the two mass parameters independently,

the mixing angles and phases depend only on a single dimensionless quantity, the ratio of

these two input parameters.

We have studied two versions of this model (LSA and LSB) which use different flavour

symmetries to enforce constraints which result in different permutations of the second and

third rows and columns of the neutrino mass matrix, leading to different predictions for

the octant of θ23. Using the results of a recent global fit of neutrino oscillation experi-

ments, we have found that both versions can well accommodate the parameter values as
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Figure 10: The predicted sensitivity of future experiments to excluding LSA, with η

fixed at η = 2π
3 , shown as a function of each pair of true parameters. The ranges of true

parameters shown in the plots corresponds to the current three sigma allowed NuFIT 3.0

regions.

measured by experiment, with the greatest tension on the value of θ23 at the 1σ level. The

prediction of LS is very close to the maximal mixing value with experimental results from

NOνA suggesting a more non-maximal value, while results from T2K still consistent with

a maximal value of θ23. We find that the LSB version, predicting a value of θ23 in the lower

octant, to be slightly preferred.

The ability of future experiments to exclude these models then comes from a convolu-

tion of the strength of the predictions of the model with the sensitivity of the experiments

in measuring those parameters. Through our fit of the models to current global neutrino

oscillation data, we have seen that the LS models make strong predictions for the values

of θ12, θ23, and δ, the three parameters for which current measurements are weakest. In

addition we find that, for certain combinations of the remaining observables, θ13, ∆m2
21

and ∆m2
31, the LS models predict strong correlations.

With future experiments expected to improve precision on all six parameters measured

through oscillations, our simulations have shown that the LS models can be thoroughly

tested through future precise individual measurements of θ12, θ23, and δ. This can be readily
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Figure 11: The predicted sensitivity of future experiments to excluding LSB, with η fixed

at η = −2π
3 , shown as a function of each pair of true parameters. The ranges of true

parameters shown in the plots corresponds to the current three sigma allowed NuFIT 3.0

regions.

understood since the free parameters of the LS models are currently most constrained by

the precise measurements of θ13, ∆m2
21 and ∆m2

31, leading to predictions for the currently

less well determined parameters θ12, θ23, and δ.

The predictivity of the LS models means that an even higher precision measurement of

those parameters which currently drive the fit of the input parameters, namely θ13, ∆m2
21

and ∆m2
31, could still exclude the LS models when considered in combination with each

other. For example, the combination of any two of them could require a region of LS

parameter space already excluded by the third.

These above results all highlight the strong complementarity between different classes

of oscillation experiment. While the long baseline accelerator experiments DUNE and

T2HK are expected to provide the strongest measurements of θ23 and δ (two of those

that can individually test the model’s viability) the third, θ12, will come from medium

baseline reactor experiments such as JUNO and RENO-50. The strongest complementarity,

however, comes from combining precision measurements of ∆m2
21, ∆m2

31 and θ13, where

any pair of these measurements relies on the results from all the different experiments:
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Figure 12: The predicted sensitivity of future experiments to excluding LSA, with η

fixed at η = 2π
3 , shown as a function of each pair of true parameters. The ranges of true

parameters shown in the plots corresponds to the current three sigma allowed NuFIT 3.0

regions.

long-baseline accelerator experiments for ∆m2
31, medium-baseline reactor experiments for

∆m2
21, and short-baseline reactor experiments for θ13.

In summary, the work presented in this paper shows that the most straightforward

way to exclude the LS model is to provide a better individual determination of the three

currently less precisely measured parameters θ12, θ23, and δ, which requires both medium

baseline experiments such as JUNO and RENO-50, and long baseline experiments such as

DUNE and T2HK, where the synergy between the latter two experiments is thoroughly

explored in [50]. In addition, the LS model could be constrained by combined measurements

of the three remaining parameters ∆m2
21, ∆m2

31 and θ13, where an even higher precision of

the latter reactor parameter at the short baseline Daya Bay experiment can also play an

important role.
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Figure 13: The predicted sensitivity of future experiments to excluding LSB, with η fixed

at η = −2π
3 , shown as a function of each pair of true parameters. The ranges of true

parameters shown in the plots corresponds to the current three sigma allowed NuFIT 3.0

regions.

We remark that, although the above conclusions have been established for the LSA

and LSB models, similar arguments can be expected to apply to any highly predictive

flavour models which determine the oscillation parameters from a smaller number of input

model parameters. In any such model, the input parameters will tend to be tuned to fit the

strong constraints from the most precisely measured parameters, leading to predictions of

the other parameters. If the models can accommodate individual measurements in this way,

distinguishing between them using those parameters which drive the fit is still possible, if

those models are highly constrained, but this requires the parameter measurements to be

considered in combination.

In conclusion, the need for future reactor and accelerator experiments to measure

individually θ12, θ23 and δ, plus combinations of θ13, ∆m2
21 and ∆m2

31, may be considered
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to be general requirements in order to probe predictive flavour symmetry models. Therefore

a broad programme of such precision experiments seems to be essential in order to take

the next step in understanding neutrino oscillations in the context of the flavour puzzle of

the Standard Model.
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Appendix

A Exact expressions for LS sum rules

The angles and Dirac phase can then be written as

sin2 θ13 = s(r), tan2 θ12 = t(r), cos 2θ23 = ±c(r), cos δ = ±d(r), (A.1)

with positive signs taken for LSA and negative for LSB and where

s(r) =
1

6

(
1− 55r2 + 4(1− 4r)√

((11r)2 + 4(1− 7r)) ((11r)2 + 4(1− r))

)
(A.2)

t(r) =
1

4

(
1 +

55r2 + 4(1− 4r)√
((11r)2 + 4(1− 7r)) ((11r)2 + 4(1− r))

)
(A.3)

c(r) =
2r(11r − 1)

(
55r2 − 16r + 4− 5

√
((11r)2 + 4(1− 7r)) ((11r)2 + 4(1− r))

)
((11r)2 + 4(1− 7r)) ((11r)2 + 4(1− r)) + 4r2 ((11r)2 + 2(2− 11r))

(A.4)

d(r) =− c(r)(1− 5s(r))

2
√

2s(r)(1− c(r)2)(1− 3s(r))
. (A.5)

Similar expressions for the Majorana phases also possible. Combining these, expressions

relating any two of the angles and/or phases can be found. The first such relation, relating

θ13 and θ12, is the same as Eq. (2.6), which is general for all CSD(n). New exact relations

between θ13 and θ23 or θ12 and θ23, as well as the relation between δ and θ12, true for LSA

with η = 2π
3 or LSB with η = −2π

3 , are found of the form

f±(θ13, θ23) = 0, g±(θ12, θ23) = 0, h±(δ, θ12) = 0, (A.6)

– 24 –



where again the positive (negative) sign is used in the functions valid for LSA (LSB). Exact

expressions are given as

f±(θ13, θ23) =
44s2

13

√
1− 3s2

13

4(1− 6s2
13)∓ 3c2

13 cos 2θ23
± c2

13 cos 2θ23√
1− 3s2

13

−

√
8s2

13

3
− c4

13 cos2 2θ23

3(1− 3s2
13)

, (A.7)

g±(θ12, θ23) =
22s2

12

√
1− 3s2

12

2(5s2
12 − 1)∓ cos 2θ23

± cos 2θ23√
1− 3s2

12

−

√
4s2

12 −
cos2 2θ23

3(1− 3s2
12)

, (A.8)

h±(δ, θ12) =
5s2

12 − 1

s12

√
1− 3s2

12

±
√

3 cos δ√
1− 12s2

12(1− 3s2
12) sin2 δ

+
11
√

1− 12s2
12(1− 3s2

12) sin2 δ

2(6s2
12 − 1) sin δ ∓ 2

√
3 cos δ

.

(A.9)
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