Hawkes, James, Vaz, Guilherme, Phillips, Alexander, Cox, Simon and Turnock, Stephen (2017) On the strong scalability of maritime CFD. Journal of Marine Science and Technology, [JMST-D-16-00183R1]. (doi:10.1007/s00773-017-0457-7).
Abstract
Since 2004, supercomputer growth hasbeen constrained by energy efficiency rather than raw hardware speeds. Tomaintain exponential growth of overall computing power, a massive growth inparallelization is under way. To keep up with these changes, computationalfluid dynamics (CFD) must improve its strong scalability – its ability tohandle lower cells-per-core ratios and achieve finer-grain parallelization. Amaritime-focused, unstructured, finite-volume code (ReFRESCO) is used toinvestigate the scalability problems for incompressible, viscous CFD using two classicaltest-cases. Existing research suggests that the linear equation-system solveris the main bottleneck to incompressible codes, due to the stiff Poisson pressure equation. Here, these results are expandedby analysing the reasons for this poor scalability. In particular, a number ofalternative linear solvers and preconditioners are tested to determine if thescalability problem can be circumvented, including GMRES, Pipelined-GMRES,Flexible-GMRES and BCGS. Conventional block-wise preconditioners are tested,along with multi-grid preconditioners and smoothers in various configurations.Memory-bandwidth constraints and global communication patterns are found to bethe main bottleneck, and no state-of-the-art solution techniques which solve thestrong-scalability problem satisfactorily could be found. There is significantincentive for more research and development in this area.
More information
Identifiers
Catalogue record
Export record
Altmetrics
Contributors
University divisions
- Faculties (pre 2018 reorg) > Faculty of Engineering and the Environment (pre 2018 reorg) > Southampton Marine & Maritime Institute (pre 2018 reorg)
- Professional Services > Professional Services - COO
- Faculties (pre 2018 reorg) > Faculty of Engineering and the Environment (pre 2018 reorg) > Aeronautics, Astronautics & Comp. Eng (pre 2018 reorg) > Computational Engineering & Design Group (pre 2018 reorg)
Current Faculties > Faculty of Engineering and Physical Sciences > School of Engineering > Aeronautical and Astronautical Engineering > Aeronautics, Astronautics & Comp. Eng (pre 2018 reorg) > Computational Engineering & Design Group (pre 2018 reorg)
Aeronautical and Astronautical Engineering > Aeronautics, Astronautics & Comp. Eng (pre 2018 reorg) > Computational Engineering & Design Group (pre 2018 reorg) - Faculties (pre 2018 reorg) > Faculty of Engineering and the Environment (pre 2018 reorg) > Civil Maritime & Env. Eng & Sci Unit (pre 2018 reorg)
Current Faculties > Faculty of Engineering and Physical Sciences > School of Engineering > Civil, Maritime and Environmental Engineering > Civil Maritime & Env. Eng & Sci Unit (pre 2018 reorg)
Civil, Maritime and Environmental Engineering > Civil Maritime & Env. Eng & Sci Unit (pre 2018 reorg) - Faculties (pre 2018 reorg) > Faculty of Engineering and the Environment (pre 2018 reorg) > Civil Maritime & Env. Eng & Sci Unit (pre 2018 reorg) > Fluid Structure Interactions Group (pre 2018 reorg)
Current Faculties > Faculty of Engineering and Physical Sciences > School of Engineering > Civil, Maritime and Environmental Engineering > Civil Maritime & Env. Eng & Sci Unit (pre 2018 reorg) > Fluid Structure Interactions Group (pre 2018 reorg)
Civil, Maritime and Environmental Engineering > Civil Maritime & Env. Eng & Sci Unit (pre 2018 reorg) > Fluid Structure Interactions Group (pre 2018 reorg) - Faculties (pre 2018 reorg) > Faculty of Natural and Environmental Sciences (pre 2018 reorg) > National Oceanography Centre (pre 2018 reorg)
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.