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Summary. This paper presents an integrated analysis of a nonlinear isolator-elastic beam interaction system to obtain extremely low
or high supporting frequency. The nonlinear suspension unit consists of two vertical inclined springs and two horizontal springs, of
which the vertical ones are to generate nonlinear effect while the horizontal one to provide a physical mean for realising required
horizontal forces in reported nonlinear isolation systems. The dynamic equations of the system are derived, based on which three
reduced models are obtained by introducing the related conditions. The nonlinear dynamic behavour on equilibria and stablities of
the system are investigated. The dynamic interaction mechanism between the nonlinear suspension system and the eleastic structures
are revealed. It is investigated the two application cases: one for aircraft ground vibration tests requiring an extreme low suporting
frequency and another involving structure dynamic tests in laboratory where a rigid supporting foundation is expected.
High performance vibration isolators with very low or very high stiffness are widely required in engineering. For ground
vibration tests (GVT) of aircrafts, the supporting frequency have to be lower than one third of its first elastic natural
frequency for flutter analysis. The weight of a large aircraft is huge but its first elastic natural frequency is quite low so
that the stiffness of suportor must have a big static stiffness to support the large weight and also a very low dynamic
stiffness for a very low supporting frequency [1]. In laboratories, dynamic tests of structures are often expected to be
fixed on a rigid foundation, for which the stiffenss of supportor must be extremelly high. Experiments show a quite
“rigid” foundation for static tests could be very soft for high frequency dynamic tests. To design this type of supportors,
one approach is using active feedback controls in passive systems to modify its dynamic stiffness [2-3], which requires
energy supply, so that it is difficult if the required energy is huge. Another approach is useing nonlinear spring [1]. The
investigations on nonlinear isolatorss were reported [4-6] and their behaviour on stabilities, birfurcations and chaos are
also given [7-8]. Available publications seem not tackling nonlinear isolator-structure interactions. As for structure-
control interactions [9], the dynamic characteristics of both structures and control system are affected each other. To
assess the efficiency of a nonlinear isolator, interactions analysis is necessary. This paper intends to discuss this
problem.
Mathematical model of an integrated nonlinear isolator-beam interaction system
Fig. 1 shows an interaction system in which an elastic beam, of length 2S5 , mass density o and bending stiffness ¥ = El
is supported by a nonlinear isolator, with a mass 2M (supporting frame weight) at its middle point. The beam deflection
isY(&,1) andY(0,t) = y(t)is the displacement of mass. The mass 2M , subjected to a harmonic force 2F, cosQt and
connected to two linear inclined springs of stiffness k and unstreched length I, moves in y direction. The other ends
of two inclined springs are connected to two carts A and B of mass m, positioning at x , allowing horizontal motions.
Two horizontal springs K, of length L and two dampers C, connected to carts A and B. The system is symmetrical to
axis O—y along which a spring-damper set of spring stiffness 2K , length L and damper 2C supports mass 2M . This
system redeuces to the SD [7] when no beam and A, B fixed or irrational one [8] when very rigid spring k and constant
pressure gas spring K, adopted.
Beam equation. It is linear elastic and its motion is represented by a mode summation
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Here, Y (&), (1=12,..,N) are normalized mode functions, ¢, generalised coordinates; Q_,K,andM, are the n-th
natural frequency, generalised stiffness and mass; f,, represents a shearing force acting on beam section £ =0 by mass

M . For free-free beams, its first rigid mode ¢, =0andY, =1.
Dynamic equations of nonlinear isolator
MX+(C+C)x+(K+ K )x= [KlA1 f,, + F, cosQt — Mg — KA]T, M = diag(m, M), C=diag(C,,C),
C,=oxx" /12, K=diag(K, +k,K+k), K, =—kll/uz,x=[x y[,A =X,—L,u =x*+y* A=Y, -L.
Here, A, and A respectively are the static extensions of K, and 2K , when their moving ends are at origin O .
Interaction conditions. On section & =0, an equilibrium condition and geomentrical constraint condition are required,
Equilib.: f +f, =0, —f =f,=f; Const: Y(0,t)=y(t); Matrix form: YO)®=Y,y, Y,=Y(0). (3)
Introduce the following non-dimensional parameters,
X=x/, y=y/l, A, =A/l, A=All, T=Qt, Y =Y/l, E=&/l, S=S/I, @ =w/Q,,7 =kI(k+K,), 7, =K, I(k+K,),
y=kIK,, z. =¢/C,,K, =K, (MmQ2), 7, +7, =L =+/(k+K,)/m,&=C, [(2mw),T, =k/(k+K), T =K/(k+K),T=K/K,,
X, =¢/C,K =K/(MQ?),Q=0Q/Q,,Q=./(k+K)/M,E=C/2MQ),T, +T, =1F, = F, (MQ?),g = g (Q2I), f, = KA,
F=KA,f=f,(MQ), p=pl/M, M=m/M, ®=®/I, A>=A%/Q}, G=G/(MQZ)=7g[ Y dE,
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from which it follows
®+A®=RI-m'G, R=p -mY]] Y@=y _
G+ 2oz[1 + C(a)lg + @[ + K(@)la = F, +f F,+F, C@)=x.0a"/x*, K@)=-v/u ©)
Vi _dlagj(yk,l“) v =diag(y,.ITy), @@= dlag(a) Qt I =diag(11), x. =diag( z.,X.), €=diag(¢,E),
l
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E:(q) and R(q) represent nonlinear damping and stiffness matrices. Eq. 6 is re-written in the integrated coupling form

MO + 2mT oe(l +9q" / £2)TO + m{diag (0, MA?) + TT@?(l - Y )TIQ=F, - F +F,
. "] 10 1 07 - 0 6
o=|Eim=t O &=t Orot O R - Fy = mTTFO,Fg_mTTF fomrr O
@ 0 I+my 0 m 0 Y, miG

=P 2T —
Q=P e L An . =2mT oe(oqq" / x?)T,Ct = 2mT' @eT,
P=M*YF-(C"+C")P-(K"-K" )Q} )
K" = m{diag(0,MA%) + T"@°T}, KN =mT'@*(y,/u)T, F=F)—F; —F, +F,.
Indices “L” and “N” identify linear and nonlinear parts of matrices. Based on Eq. 7, equilibrium points, stabilities,

nonlinear behavior and energy flow characteristics [10] can be investigated.
Influence of the nonlinear isolator on the beam

Eliminating the interaction force vector f in Eq. 5, we obtain
(I+m )(I>+c ® +[A? vk 1@ = —ZQEC21m’lYqu+ m’lYTiF cost—g—-F)-m'G, K,,=T,/yx, 8)
my = milY Ky =0 a- KZZ)mN ' =2QEQ+C,,)my, C,,=X.0; /4, Cpi=Xo0,0,/ 4,

describing the beam dynamics influenced by the nonlinear isolator. m,, k, and c, denote an additional mass, stiffness

and damping matrices added to the beam by the nonlinear isolator. Fig.2 shows the suspension frequency affected by
the supporting stiffness.
Extremely low supporting frequency. A very low supporting frequency required by GVT is designed

Qo= QP =JA-T, 1 u®) A+ 59D, 7+ F, 1@ = 1, ©)
1-T /@ =1-k A+ k) [A+K)(k +A)], K =k/K, k =k/K,, A, =(X,-L)/L
by choosing nonlinear term as a negative stiffness satisfying

/>0, k+A=kIK+(X,-L)/1>0, 1>K@+k)/[A+K)(K +A,)]>0, (10)
A rigid supporting platform. This design is to obtain an extreme high frequency, it is necessary
T/ u® =T, [y, + f,1 %) =k L+ k) [A+K)(K +A)]<0, k +A, =k/K, +(X,-L)/1<0, (11)

where the nonlinear term plays a positive stiffness.
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Fig.1 Integrated interaction system. Fig.2 Suspension frequency affected by supporting stiffness
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