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Summary. This paper presents an integrated analysis of a nonlinear isolator-elastic beam interaction system to obtain extremely low 

or high supporting frequency. The nonlinear suspension unit consists of two vertical inclined springs and two horizontal springs, of 

which the vertical ones are to generate nonlinear effect while the horizontal one to provide a physical mean for realising required 

horizontal forces in reported nonlinear isolation systems. The dynamic equations of the system are derived, based on which three 

reduced models are obtained by introducing the related conditions. The nonlinear dynamic behavour on equilibria and stablities of 

the system are investigated. The dynamic interaction mechanism between the nonlinear suspension system and the eleastic structures 

are revealed. It is investigated the two application cases: one for  aircraft ground vibration tests requiring an extreme low suporting 

frequency and  another involving structure dynamic tests in laboratory where a rigid supporting foundation is expected.  

High performance vibration isolators with very low or very high stiffness are widely required in engineering. For ground 

vibration tests (GVT) of aircrafts, the supporting frequency have to be lower than one third of its first elastic natural 

frequency for flutter analysis. The weight of a large aircraft is huge but its first elastic natural frequency is quite low so 

that the stiffness of suportor must have a big static stiffness to support the large weight and also a very low dynamic 

stiffness for a very low supporting frequency [1]. In laboratories, dynamic tests of structures are often expected to be 

fixed on a rigid foundation, for which the stiffenss of supportor must be extremelly high. Experiments show a quite 

“rigid” foundation for static tests could be very soft for high frequency dynamic tests. To design this type of supportors,  

one approach is using active feedback controls in passive systems to modify its dynamic stiffness [2-3], which requires 

energy supply, so that it is difficult if the required energy is huge. Another approach is useing nonlinear spring [1]. The 

investigations on nonlinear isolatorss were reported [4-6] and their behaviour on stabilities, birfurcations and chaos are 

also given [7-8]. Available publications seem not tackling nonlinear isolator-structure interactions. As for structure-

control interactions [9], the dynamic characteristics of both structures and control system are affected each other. To 

assess the efficiency of a nonlinear isolator, interactions analysis is necessary. This paper intends to discuss this 

problem. 

Mathematical model of an integrated nonlinear isolator-beam interaction system 

Fig. 1 shows an interaction system in which an elastic beam, of length S2 , mass density   and bending stiffness EI  

is supported by a nonlinear isolator, with a mass M2 (supporting frame weight) at its middle point. The beam deflection 

is ),( tY   and )(),0( tytY  is the displacement of mass. The mass M2 , subjected to a harmonic force tF 00 cos2   and 

connected to two linear inclined springs of stiffness k and unstreched length l ,  moves in y direction. The other ends 

of two inclined springs are connected to two carts A and B of mass m , positioning at x , allowing horizontal motions. 

Two horizontal springs 
1K  of length 

1L and two dampers 
1C connected to carts A and B. The system is symmetrical to 

axis yO  along which a spring-damper set of spring stiffness K2 , length L and damper C2 supports mass M2 . This 

system redeuces to the SD [7] when no beam and A, B fixed or  irrational one [8] when very rigid spring k and constant 

pressure gas spring
1K adopted. 

Beam equation. It is linear elastic and its motion is represented by a mode summation 
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Here, )(nY , ),...,2,1( Nn  are normalized mode functions, 
n  generalised coordinates; 

n̂ , nK and nM are the n-th 

natural frequency, generalised stiffness and mass;
bsf  represents a shearing force acting on beam section 0 by mass

M . For free-free beams, its first rigid mode 0ˆ
1  and .11 Y   

Dynamic equations of nonlinear isolator                                                
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Here, 
1 and  respectively are the static extensions of 

1K  and K2 , when their moving ends are at origin O .  

Interaction conditions. On section 0 , an equilibrium condition and geomentrical constraint condition are required, 

Equilib.: ;,0 fffff sbbssbbs    Const.:   );(),0( tytY    Matrix form: ).0(,)0( 00 YYYΦY  y    (3) 

Introduce the following non-dimensional parameters, 
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from which it follows 
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qK represent nonlinear damping and stiffness matrices. Eq. 6 is re-written in the integrated coupling form 
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Indices “L” and “N” identify linear and nonlinear parts of matrices. Based on Eq. 7, equilibrium points, stabilities, 

nonlinear behavior and energy flow characteristics [10] can be investigated. 

Influence of the nonlinear isolator on the beam  

Eliminating the interaction force vector f in Eq. 5, we obtain  
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describing the beam dynamics influenced by the nonlinear isolator. 
Nm , 

Nk  and 
Nc  denote an additional mass, stiffness 

and damping matrices added to the beam by the nonlinear isolator. Fig.2 shows the suspension frequency affected by 

the supporting stiffness. 

Extremely low supporting frequency. A very low supporting frequency required by GVT is designed  
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by choosing nonlinear term as a negative stiffness satisfying  
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 A rigid supporting platform. This design is to obtain an extreme high frequency, it is necessary   
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where the nonlinear term plays a positive stiffness. 

                
                                 Fig.1 Integrated interaction system.                     Fig.2 Suspension frequency affected by supporting stiffness 
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