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Technological developments in the last decade have shifted challenges

in traffic flow management from obtaining and storing data, to analysing

and presenting the enormous amount of available trajectory data in a com-

prehensible manner. This paper introduces a novel approach to visualising

air-traffic, shifting the focus from displaying traffic density, towards dir-

ectly visualising the flight corridors used by air-traffic. Such an approach

is suitable for visualising air-traffic in three dimensions, which is particu-

larly helpful in the vicinity of an airport where the air-traffic often changes

level. Furthermore, the approach is data-driven, allowing the comparison of

multiple trajectory datasets in order to identify changes in traffic corridors

related to changing air-traffic and weather conditions. Finally, by using the

probabilistic nature of the approach, it is possible to quantify the air-traffic

complexity in terms of the traffic structure. The results presented in this

paper show the approach applied to a trajectory dataset as measured by

ground-radar near Denver airport (DEN).
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Nomenclature

µ = mean vector

Σ = covariance matrix

σ = standard deviation

τ = normalised time [-]

τ = normalised time vector [-]

C = complexity measure

E = expectation

GP = Gaussian process

k = order of complexity

k = covariance kernel

M = number of data-points

m = mean function

N = number of trajectories

S = set of corridors

u = vector holding a three-dimensional coordinate [m]

v = column vector holding three-dimensional coordinates [m]

v̂ = estimated column vector holding three-dimensional coordinates [m]

x = eastings [m]

x = eastings vector [m]

y = northings [m]

y = northings vector [m]

z = altitude [m]

z = altitude vector [m]
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I. Introduction

A
s passenger demand for air travel and demand for air freight continues to increase,

air-traffic grows globally, and forecasts indicate that this trend will continue over the

next two decades. Therefore, in order to handle the increased air-traffic, the Air Traffic

Management (ATM) system needs to increase its capacity. Currently, ATM systems operate

on two different time scales. The Air Traffic Control (ATC) function operates on a short/mid

term horizon, with the goal of maintaining the appropriate separation between aircraft in

the different stages of their flights, from departure to arrival. The Traffic Flow Management

(TFM) function operates on a long term horizon by defining the flow patterns to ensure an

efficient organization of the overall air-traffic [1]. This paper is concerned with the long term

horizon planning required in the TFM function. The goal is to provide decision support

by visualising the flight corridors and produce air-traffic complexity maps as detected in a

trajectory dataset.

Previous work focuses on clustering the trajectory data based on similar weather con-

ditions [2] and similar flight paths [3], which has been proven effective at clustering and

classifying air-traffic flows [4]. However, in order to provide decision support to TFM, the

clustered trajectory data needs to be presented in a comprehensible manner.

Modelling air-traffic as if it moved along a limited set of predefined air routes is unrealistic.

Therefore, the air-traffic flow needs to be modelled from the trajectory data as measured

(e.g., by radar) [5]. An effective approach to visualising the airspace traffic flow is graph

bundling by density estimation [6]. By applying graph bundling by density estimation, it

is possible to gain an understanding of the traffic flow based on the trajectory data [7].

This approach has been included in an interactive program, capable of visualising traffic

information with the focus on air-traffic flow analysis [8]. However, the aforementioned

methods focus on visualising the traffic flow in two dimensions.

Visualising large datasets in three dimensions brings its own challenges, including the

occlusion of data [9]. Technically, it is possible to process the data real-time by using a

GPU-based visualisation pipeline [10], but the occlusion of information remains a problem.

The use of flight corridors to visualise the air-traffic is seen in work by Salaun et al. [11],

replacing the raw trajectory data with flight corridors. Here the flight corridor is represented

via window frames, each defined by a vertical and a horizontal line that encloses the air-

traffic. The frames also captures the dispersion by fitting a univariate normal distribution

in the vertical and horizontal direction independently, where the dispersion is considered

proportional to the standard deviation. We described a framework for modelling ensembles

of flight trajectories as instances of a Gaussian process [12]. By doing so, missing data can be

estimated, and the flight corridors are shaped by a continuous merger of ellipsoids. In these
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flight corridors each individual ellipsoid represents the three-dimensional normal distribution

with a constant standard deviation at each time-step. The application of Gaussian processes

to model the uncertainties in aircraft trajectories has also been applied to conformance

monitoring [13]. In this work, the Gaussian process model captures the behaviour of the

trajectory data measured by a surveillance system and integrates the result in a conformance

monitoring scheme [14].

Ellipsoids have previously been used as a measure for air-traffic complexity in three-

dimensional airspace [15]. The focus of the air-traffic complexity here is on the traffic struc-

ture. When the focus is air-traffic controller workload, there is evidence that including factors

such as heading, speed, and altitude change is a better measure than traffic density only [16,

17]. In neither is the air-traffic complexity directly linked to the traffic density, however it

is possible to estimate a density at which the airspace becomes saturated [18].

This paper applies the approach of modelling the trajectory data as a Gaussian process

to the visualisation of air-traffic trajectory data as flight corridors. This shifts the focus from

density-based methods to probabilistic analysis. As a result, less frequently used flight paths

are not automatically ignored, but included in the analysis. A key benefit of our approach is

obtaining situational awareness from large historic datasets, otherwise difficult to visualise.

Furthermore, by focusing on identifying and visualising flight corridors used by dominant

flows of air-traffic, we can identify and visualise areas that have a structural presence of high

air-traffic complexity in terms of traffic structure. The approach is data-driven, and requires

minimum human interaction to construct the flight corridors and complexity maps from

the trajectory data, save selecting the resolution of the evaluation. The flight corridors are

generated via an open-source Python toolbox, developed specifically for generating corridors

in two and three dimensions [19]. We provided evidence of the effectiveness of this toolbox

in the analysis of rocket trajectories generated by a stochastic rocket simulator [20, 21]. The

aircraft trajectory data is provided as input via a Comma Separated Values (CSV) file. The

data and code required to generate the figures seen in this paper are available online [22].

This includes a Jupyter notebook which was used to produce all the figures seen in this

paper.

The rest of the paper is organised as follows. Section II elaborates on how the flight

corridors are formed, and how the complexity maps are generated from these flight corridors.

Results using trajectory data gathered at Denver airport (DEN) are presented in section III.

Finally, conclusions and future work are provided in section IV.
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II. Methodology

Section A begins with an overview of our proposed method for generating a probabilistic

model from clustered trajectory data. Next, section B elaborates on how a flight corridor is

created from a probabilistic model. Finally, section C presents an approach for producing a

complexity map from the flight corridors.

A. Probabilistic modelling of trajectories

The task at hand is to translate the trajectory data into a mean trajectory and capture the

dispersion from the mean trajectory. This section contains a review of the method, specific-

ally adapted to three-dimensional aircraft trajectory data. We make two key assumptions:

the data describing all trajectories are complete and they are not corrupted by measurement

noise (see [12] for a more general treatment). The trajectory data referred to in this section

are assumed to be clustered, therefore all trajectories contained in a cluster belong to aircraft

flying the same nominal flight path.

Given the trajectory data v in the following format:

v =


x

y

z

 (1)

where v is a column vector and x, y, and z are vectors containing the coordinates easting,

northing, and altitude respectively, as a function of time. Therefore, when a trajectory has

M coordinates, v is a 3M×1 vector. As the interest lies in finding the spatial distribution of

trajectories and we are not concerned with their variation in time, each trajectory is norm-

alised in the interval τ = [0, 1], in which τ indicates normalised time. With the assumption

that the measurements are made at regular intervals, and all trajectories in a cluster have an

identical, constant velocity, it is valid to state that the trajectories start at the normalised

time τ = 0, and end at τ = 1. The effect of normalising time has been investigated in

previous work [12]. Following this procedure, the normalised time vector τ to accompany

the coordinate vector v is equal to:

τ =
[
0 1

M
. . . M

M

]ᵀ
(2)

Furthermore, with the additional assumption that the aircraft travels linearly between each

data point, the coordinate vector u can be expressed as a function of the normalised time τ :

u(τ) = [x y z]ᵀ (3)
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where x, y, and z are the coordinates from x, y, and z, linearly interpolated as a function

of τ . All trajectories can now be resampled to the column vector v̂. The structure of v̂ is

identical to v, seen in Equation (1), however, the size is identical across all trajectories. In

the experiments described in this paper 100 steps are taken, thus v̂ is a 300 × 1 vector for

all N trajectories found in the data. The mean vector µ and the covariance matrix Σ of the

multivariate normal distribution N (µ,Σ) are calculated following:

µ =
1

N

N∑
n=1

{E[v̂n]} (4)

Σ =
1

N

N∑
n=1

{v̂nv̂
ᵀ
n − 2v̂ᵀ

nµ + µµᵀ} (5)

This solution fits into a Gaussian Process (GP) framework, where a function is defined

as a Gaussian process GP by a mean function m(τ) and a covariance kernel k(τ , τ ′):

u(τ) ∼ GP(m(τ),k(τ , τ ′)) (6)

where

m(τ) = E[u] = µ (7)

k(τ , τ ′) = E[(u(τ)−m(τ))(u(τ ′)−m(τ ′))] = Σ (8)

A more intuitive representation of the mean function m(τ), given by Equation (7), is a point

that moves along a three-dimensional trajectory as a function of τ . In turn, the covariance

kernel k(τ , τ ′), given by Equation (8), can be represented as a three-dimensional ellipsoid at

a constant probability. The reference to the GP framework is included here, as it provides

the mathematical tools necessary to handle noise measurements and missing data. However,

the dataset used in this paper has neither, and therefore the trajectory data can be modelled

via the computationally less taxing approach described in this section.

B. Flight corridor

This section introduces the algorithm for generating the flight corridors, starting from the

mean vector µ and covariance matrix Σ found through the methodology described in the

previous section.

As mentioned before, at each time-step for a given standard deviation σ, the three-

dimensional normal distribution can be expressed as an ellipsoid. For two sequential time-

steps, and the corresponding two ellipsoids, the volume of these ellipsoids, and the volume
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between the two ellipsoids is assumed to be part of the flight corridor. The necessary res-

olution of the discretization depends on the geometry of the trajectory; for the experiments

described here we used 100 steps.

Next, in order to evaluate whether a point is within the ellipsoids or the volume between

the ellipsoids, the Quickhull algorithm [23] is applied. Essentially, the points belonging to the

ellipsoids are taken as a point-cloud, thereafter the Quickhull algorithm efficiently converts

this to a hull constructed by the outer points. Using the hull, it is possible to quickly evaluate

which points lie inside the flight corridor, and which lie outside. The figures seen in this

paper are produced by evaluating a grid of points, however there is no such restriction. For

example, the same approach can evaluate whether a flight corridor conflicts with restricted

airspace.

C. Complexity map

This section describes the method implemented to evaluate air-traffic complexity. This

method works via the probabilistic models as described in section A, hence the air-traffic

complexity as discussed here only relates to the traffic structure.

The complexity measure used in the complexity map has been inspired by Prandini, Putta

and Hu [15], and allows for the identification of conflict regions. This approach allows the

visualisation of different orders of complexity, where the first order complexity C1 represents

the probability of at least one flight corridor intersecting with a selected point in space. The

second order complexity C2 represents the probability of at least two flight corridors, and so

forth. The mathematical description of the k-th order complexity Ck evaluated at point x is

equal to Equation (9):

Ck(x) =

(S
k)∑
T

(
T∏
n

(p(x|n))

)
(9)

where
(S
k

)
is a k-th combination of the set of all corridors S, and p(x|n) represents the

probability of corridor n intersecting with point x. Note that following the method from

section A, each corridor is described by 100 normal distributions N (µ,Σ). Therefore, there

are 100 probabilities corresponding to corridor n intersecting with point x. However, as

we are not concerned with their variation in time (each normal distribution represents a

time-step), p(x|n) is taken equal to the highest probability. This corresponds to the largest

chance of point x intersecting with corridor n at any given time.

Finally, a demonstration of Equation (9) is provided here. A schematic overview of

the example is shown in Figure 1, where point x is surrounded by the set of corridors

S = {A,B,C}. Following Equation (9), the corresponding complexity measures C1, C2, and
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A

x B

C

Figure 1: An example where point x is surrounded by the corridors A, B, and C.

C3 are then equal to Equations (10) to (12):

C1(x) = p(x|A) + p(x|B) + p(x|C) (10)

C2(x) = p(x|A) · p(x|B) + p(x|A) · p(x|C) + p(x|B) · p(x|C) (11)

C3(x) = p(x|A) · p(x|B) · p(x|C) (12)

This example confirms that C1 is indeed the sum of probability of each individual corridor

intersecting with point x, C2 the sum of probability for all combinations of two corridors

intersecting with point x, and C3 the probability of all three corridors intersecting with point

x.

III. Results

In this section, the methods described in section II are applied to a trajectory dataset

measured by ground-radar at Denver airport (DEN). First, using surveillance meta-data,

the trajectories from aircraft that are landing at the airport are extracted from the tra-

jectory data. The aircraft trajectory data of approaching aircraft holds 909 trajectories.

Secondly, trajectory data are cut-off at an altitude of 800 metres. Finally, these trajectories

are clustered according to their nominal flight paths via the method presented by Gariel,

Srivastava and Feron [3], where the epsilon parameter used in the clustering is 0.3, with a

minimum number of trajectories per cluster of 10. This method identified 10 distinct nom-

inal flight paths, placing 909 trajectories in 10 clusters, where 339 trajectories are considered

outliers. A summary of the clustered trajectory data is available in Table 1.

Up to 50 trajectories per cluster are seen in Figures 2a and 3a, showing identical trajectory
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(a) trajectory data

(b) flight corridors

Figure 2: Comparing trajectory data and flight corridors, first viewpoint.
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(a) trajectory data

(b) flight corridors

Figure 3: Comparing trajectory data and flight corridors, second viewpoint.

Table 1: An overview of the clustered trajectory data.

Cluster 1 2 3 4 5 6 7 8 9 10 total

Size 80 63 58 37 26 25 10 89 104 78 570
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(a) 550 m (b) 500 m

(c) 450 m (d) 400 m

Figure 4: Flight corridors at a constant altitude.
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(a) C1 (b) C2

Figure 5: Complexity map of complexity measures C1 and C2 at an altitude of 450 metres.

data as seen from a different viewpoint. A maximum of 50 trajectories per cluster are shown

to prevent visual clutter. Furthermore, the airport runways have been included and are

visible as red lines. By applying the method as presented in section B, the flight corridors

are generated for one standard deviation. The results are visible in Figures 2b and 3b, with

different viewpoints of the trajectory datasets. Again, the airport runways are visible as red

lines. Each cluster of trajectory data and the corresponding flight corridor are linked via

colour coding.

The same models capturing the flight corridors at one standard deviation are presented

at a constant altitude in Figure 4. As the aircraft in the trajectory data are on approach,

the altitude changes from high (550 m) to low (400 m). The airport runways are visible as

red lines, and the average trajectory for each cluster is visible as a dashed line. The colour

coding is consistent with Figures 2 and 3. Due to the overlap of the flight corridors at an

altitude of 450 metres, both to the east and west of the airport, a high complexity in terms

of traffic structure is expected.

The complexity map of the complexity measures C1 and C2 at an altitude of 450 metres

is shown in Figure 5. These complexity maps are normalised, displaying only the relative

complexity. Each complexity measure represent the background noise from the lower meas-

ure, for example C1 is the lower complexity measure of C2. This follows from the definition,

where C1 represents the probability of at least 1 flight corridor intersecting – this includes

the values of C2, which represents the probability of at least 2 flight corridors intersecting.
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Both Figure 5a and Figure 4c visualise the probabilities of each individual cluster, where

the complexity map shows the probability density, and the flight corridor displays a contour

(chosen via the standard deviation) of that density. Figure 5b shows the most important

complexity measure for identification of multi-aircraft conflict situations, the probability of

two or more corridors intersecting. This figure highlights high complexity in the regions

to the east and west of the airport, corresponding with the situation sketched as seen in

Figure 4c.

IV. Conclusion

This paper introduces an approach of modelling the flight corridors found in aircraft

trajectory data as Gaussian processes. Results reveal that the Python package Teetool is

capable of generating flight corridors from aircraft trajectory data – effectively capturing the

dominant flows found in the data. These results have been visualised in both two and three

dimensions, supporting the Traffic Flow Management (TFM) in improving the situational

awareness.

Furthermore, these flight-corridors supported by a probabilistic model have been applied

to generate a complexity map, identifying the areas that have a structural presence of high

air-traffic complexity in terms of traffic structure. Such a data-driven approach enables the

use of optimisation schemes in the re-design of existing procedures and the addition of new

arrival/departure procedures.

A limitation of generating the flight corridors via the method presented in this paper is

that the results are very dependent on the clustering method. For example, no information

on the weather conditions are available for the trajectory data used in this paper, therefore

no actual conclusions can be made about the intersecting flight corridors. This is because

changing wind conditions will trigger the use of different approach routes. While this is

not important for the purpose of this paper, which is to demonstrate the workings of the

method, it is important when providing decision support to the TFM and specific conditions

are evaluated.

Future work involves analysing aircraft trajectory data that include information on the

weather conditions, providing a case-study suitable for a more extensive analysis. Future

work also includes the implementation of an optimisation algorithm that is capable of op-

timising the structure of the existing procedures and of introducing new paths that avoid

existing flight corridors.
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