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Abstract

We study a principal-agent problem with multiple identical agents, where the action-dependent

stochastic relationship between actions and output is perceived to be ambiguous, and agents are

ambiguity averse. We argue that ambiguity, and particularly ambiguity aversion, make it more

attractive for the principal to choose a tournament. If agents are risk neutral, but ambiguity

averse, we show that the set of optimal incentive schemes contains a tournament. Moreover,

if ambiguity is rich enough, all optimal incentive schemes must be such that realized output

levels affect only the distribution of wages across agents and not the total wages paid out, as it

is true for tournaments. When agents are both risk averse and ambiguity averse, tournaments

need not be optimal, but ambiguity and ambiguity aversion still favor, in many cases, the use of

tournaments or tournament-like schemes over e.g. incentive schemes that only depend on each

agent’s own output level.
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1. Introduction

In principal-agent problems with multiple agents, a variety of incentive contracts can be

observed. Sometimes the compensation of the agents is solely based on their own performance.

Often, however, the relative performance of an agent in comparison to the other agents also de-

termines compensation. One example of this are tournaments, in which the payment awarded to

an agent depends only on the rank of her output contribution. In the context of wages in firms it
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is often argued that wage determination can be understood as the result of a firm-internal labor-

market tournament, where promotions (which are accompanied by a wage increase) constitute

the prize for winning the tournament. Prendergast [1] even argues that at least for white-collar

workers, tournaments seem to be the prevailing means of providing incentives in large firms.1

Yet, as we will argue in more detail below, the reasons for the popularity of tournaments are

not necessarily well-understood.

The question of finding the optimal incentive contract for multiple agents has so far been

analyzed under the assumption that principal and agents maximize expected utility. In many

situations, however, the agents may not have enough information about the stochastic process

that links effort to performance to describe it with a single probability distribution. Hence, we

depart from existing literature by treating the (effort-dependent) distribution over performance

levels as subjectively uncertain. In line with recent literature (e.g. Ghirardato et al. [3],

Klibanoff et al. [4]), we use the term ambiguity in reference to this uncertainty, and assume

that agents are ambiguity averse.

Ambiguity and ambiguity aversion have important effects on the design of the optimal con-

tract. We will show that tournaments do achieve first-best profits under ambiguity aversion and

risk neutrality (while other types of incentive schemes usually fail to do so). Under risk aversion,

we show that ambiguity aversion often ensures that the optimal contract is at least tournament-

like, and makes it more likely that a tournament performs better than other commonly used

incentive contracts.

More specifically, we analyze the problem of a principal who employs multiple agents. Each

agent’s performance is observable with noise, and contributes to the principal’s payoff. Agents

can improve their chance of performing well by exerting costly effort. The agent’s choice of

effort level cannot be observed by the principal. The principal needs to design a wage contract

which conditions wages on the performance of the agents in the firm. Our baseline assumption

is that there are identical agents who face the same tasks. We make this common assumption

as it allows us to isolate most clearly the potential advantages of tournaments in the case of

ambiguity aversion.

One motivation for taking ambiguity aversion into account is that in many contracting

1Note however, that the wage increase attributed to promotions could have other explanations besides being

a reward for past performance to the winner of a tournament. For instance, Waldman [2] argues that promotions

are accompanied by wage increases since they send positive signals about the worker’s ability to other potential

employers.
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situations, it seems plausible to expect that the players perceive output distributions to be

uncertain (so that ambiguity aversion could in fact make a difference). Certainly, a (noisy)

performance measure representing the output of a worker cannot be considered to be objectively

determined (like coin flips or lottery tickets), but is better understood as an example of subjective

uncertainty. The subjective nature of distributions over performance levels may not matter

equally in all situations. If the decision makers faces the same problem a large number of

times in a stationary environment, the subjective performance measure will become free of

uncertainty (about the distribution) over time (see Marinacci [5]). Thus, ambiguity aversion

could explain why contracts differ between blue-collar workers (who typically work in a more

stationary environment) and white-collar workers (who less often face routine tasks repeatedly).

There is a lot of evidence, for instance obtained by experiments, that in fact many individuals

violate the expected utility axioms in a way that is consistent with ambiguity aversion.2

We argue that if agents are risk neutral but ambiguity averse, tournaments can implement

the first-best outcome, while other incentive contracts, including independent incentive schemes,

typically do not. We establish that under a quite general assumption about the nature of

ambiguity, all optimal contracts will have the property that sum of the two agents’ utility does

not change with the outcome levels, only the distribution of utility does.

The assumption that agents are risk neutral but ambiguity averse may appear very strong.3

There are two directions in which our insights carry over to the case of risk aversion. First,

observe that, as Magill & Quinzii [11] and Fleckinger [12] show, in many cases the optimal

incentive contract is not tournament-like under ambiguity neutrality and risk aversion. We

show that even if there is little ambiguity, but large ambiguity aversion, the optimal contract

will remain tournament-like also in these situations, in the sense that an agent’s wage will

decrease in the performance of other agents. We also show that given infinite ambiguity aversion,

irrespective of the degree of ambiguity, the optimal contract will still be a tournament for

sufficiently small (but positive) degrees of risk aversion.

Second, we study and compare the profits resulting from tournaments with those from in-

2The classic thought experiment illustrating how ambiguity aversion is displayed has been described by Ells-

berg [6]. Examples of actual implementations of this experiment are Fox & Tversky [7] and Halevy [8].
3However, the observation that risk aversion is decreasing may suggest that this assumption could be a good

approximation for wealthy agents (if they remain ambiguity averse). Hence, our findings could apply to CEO

compensation, for example. While we are not aware of any work that investigates how ambiguity aversion in fact

changes with income, there is evidence that ambiguity aversion and risk aversion in general are not correlated

significantly (Potamites & Zhang [9], Dimmok et al. [10]).
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dependent wage schemes. As tournaments and independent wage schemes are the two most

commonly considered wage schemes in a multiple-agent setting, it is interesting to compare

their merits in the presence of ambiguity aversion even when neither of them is necessarily the

optimal incentive scheme.4 We show that in many cases, ambiguity and ambiguity aversion

favor the use of tournaments. We compare the ambiguity neutral case to existing findings in the

literature. We point out that the addition of an additive common shock to the output levels as

in Green & Stokey [13] could be interpreted as increasing both ambiguity and riskiness at the

same time. Moreover, we show that ambiguity aversion favors tournaments even in cases where

ambiguity alone does not.

The paper is organized as follows. Section 2 discusses how we model ambiguity and ambiguity

aversion. In Section 3 we analyze the case of binary outcomes. We describe first the optimal

contract, dealing with the two cases of risk neutrality and risk aversion separately. Second,

we compare tournaments with independent schemes. Section 4 discusses the case of multiple

outcomes, focusing mostly on the optimal contract under risk neutrality. Section 5 investigates

how robust our results are to the specifications of our model, such as our assumptions about the

nature of ambiguity or the symmetry of the agents, and we compare our results with existing

literature in Section 6. Section 7 draws conclusions.

2. The Model

We study the problem of providing incentives to multiple workers. The owner of a firm, the

principal, employs more than one worker, the agents, to undertake a certain task. The effort

of the agents determines, to a large extent, the payoff-relevant output of the firm, but it is also

influenced by random events that are beyond the control of the workers. Inefficiencies may arise

as the agents’ effort cannot be observed (or otherwise inferred) by the principal. In the case of

multiple agents the nature of the interactions between the agents deserves some attention. We

focus on the case of two identical agents, who are working on exactly the same task, and any

output that is produced can be clearly associated with the agent who produced it.5 We rule out

4See Prendergast [1] for evidence on the use of these two kinds of contracts.
5Note that the assumption that agents are identical might apply particularly well in cases where choosing the

high-cost action over the low-cost action stands for choosing a higher quality of inputs, which are equally available

to both agents. This could be the case if the agent is in fact the head of an organizational unit. Tournaments

between various kinds of organizational units can be observed widely. For instance university departments are

often funded based on their ranking.
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any considerations typically related to team work (synergies, free riding). When we introduce

the model formally now, we seek to present it in a way that highlights the differences created

by allowing for ambiguity and ambiguity aversion.

We will assume that there are only finitely many output levels that every worker might

possibly achieve, which are elements of the finite set Q = {q1, . . . , qI}.6 As a convention we

index the output levels so that qi < qj if i < j. As the principal can reward each agent based

on the output contribution achieved by the agent herself, as well as the output of the other

worker, agent k’s wage scheme can be represented by a function w : Qk × Q−k → (w,∞).

Here, w represents the minimum wage that the principal needs to pay to the workers (but we

allow for the possibility that w is −∞). As both workers are identical, we focus on the case of

symmetric wage functions, where the labels of the two agents do not matter. Hence, if agent

1 produces output qi and agent 2 produces qj , the wage for agent 1 is given by w(qi, qj) and

agent 2’s wage is given by w(qj , qi). For simplicity, each of the two agents has only two actions

available: The high action, H, represents high effort, and results in effort cost cH to the agent.

Choosing the low action, L, incurs lower effort costs, cL, but will also, on average, result in a

lower productivity level.

If we did not allow for ambiguity, we would conclude this discussion by stating that in addi-

tion to the effort cost, each action a ∈ A = {H,L} is identified with a probability distribution

pa ∈ ∆(Q) over outcomes, which applies equally to both agents.

2.1. Preferences under ambiguity

To introduce ambiguity, we assume that both the principal and the agents have a com-

mon but imperfect understanding of the (stochastic) relationship between the actions and the

outcomes. We represent this subjective uncertainty about the outcome distributions using the

smooth ambiguity model [4]. Decision makers who satisfy the axioms imposed in this model

appear to evaluate uncertain prospects in the following way: They are unable to assign a single

probability distribution to describe the subjective likelihood of each outcome. Instead, a set

of probabilities might better describe the implications of each action. However, they do not

necessarily consider all members of that set equally likely, but assign different likelihoods to

them, which are represented by a second-order belief. The utility function moreover reflects

6This is the same modeling approach as taken by Grossman & Hart [14] for the single-agent case and Mookher-

jee [15] for the case of multiple agents, while the seminal papers Holmstrom [16, 17] and Green & Stokey [13]

allow for infinitely many outcomes.
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their aversion against uncertainty about the probability distribution.

Formally, let f denote any act which specifies the decision maker’s payoff for any possible

contingency (i.e. f is a real valued function over a state space, S). In the smooth ambiguity

model, preferences are represented by the function

U(f) =

∫
∆

φ

(∫
S

u(f)dp

)
dµ. (1)

Here, p is a probability measure over S, ∆ the set of all such probabilities. The second-order

belief µ indicates the subjective likelihood that the agent attributes to each probability measure

that she considers possible. The function u is a von-Neumann-Morgenstern utility function,

representing risk attitude, and φ is a real-valued transformation which represents ambiguity

attitude. In analogy to risk aversion, ambiguity aversion corresponds to a concave φ; if the

function φ is linear the decision maker is ambiguity neutral, and thus an expected utility–

maximizer.

To apply the smooth ambiguity model to the specific principal–agent problem we analyze,

we assume that, in analogy to uncertainty about probabilities over an outcome space, agents

perceive uncertainty about different (probabilistic) scenarios: A scenario is a pair of probability

distributions over output levels, one for each action.

Let M denote the set of possible scenarios, so that if (pH , pL) ∈ M ⊆ ∆(Q) × ∆(Q),

then pH represents a possible output distribution for the high action, and pL a possible output

distribution for the low action. (We also denote by MH and ML the corresponding set of output

distributions possible for H and, respectively, L.) The second-order belief µ ∈ ∆(M) represents

the likelihood over different scenarios.

Note that we assume that even if agents perceive the probabilistic scenario to be uncertain,

they understand that the same scenario always applies for both agents. In doing so, we want to

capture the idea that all ambiguity about the outcome distributions is solely about the likelihood

of observing the output levels, and how effort changes them, but not about whether or not the

two agents, and the problems they are facing, are in fact identical. This assumption might

apply well for instance in a situation where workers or students are evaluated by a third party

(a manager or a teacher), and there is uncertainty about how strict this person is, while there

is little reason to believe that the evaluator is biased against certain individuals.

We assume that agent 1’s preferences over wage schemes, dependent on both agents’ action
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choices, can be represented by the utility function U : A×A× (w,∞)I×I → R defined by

U(a, a′, w) =

∫
M

φ

 I∑
i,j=1

(pai p
a′

j )[u(w(qi, qj))− ca]

 dµ, (2)

where φ(u) = − exp[−αu]. (Agent 2’s preferences are specified in a symmetric way.) Here

a ∈ A is the action chosen by agent 1, a′ ∈ A the action chosen by agent 2; u : (w,∞) → R is

an increasing real-valued and concave function, and α > 0.7 For a fixed pair of actions, these

preferences fit into the smooth ambiguity model introduced in equation (1) as follows: The wage

scheme w can be understood as an act over the possible set of states Q × Q, which stands for

all possible combinations of output levels.

Note that the term in the sum resembles the utility of an expected utility–maximizer who

thinks that the independent probability distributions pa and pa
′

(corresponding to one of the

scenarios in M) determine the likelihood of any combination of output levels in Q × Q. We

make the usual assumption that effort costs contribute in an additive way to expected utility,

and since u is weakly concave, agents are risk neutral or risk averse.

Ambiguity enters this utility function since the agent does not only evaluate the expected

utility level that a wage scheme provides according to a single probability distribution (for

each agent) over the output levels, but instead she computes various expected utility levels

corresponding to a set of probability distributions.

When modeling ambiguity attitude, we chose the negative exponential form for φ for con-

venience.8 We will replace it by a linear function to model the case of ambiguity neutrality,

the limiting case as α approaches zero. Klibanoff et al. [4] classify such preferences as constant

absolute ambiguity aversion (CAAA, in analogy to CARA risk aversion). Such preferences are

also members of the class of variational preferences studied in Maccheroni et al. [19]. Increasing

α corresponds to increasing the agent’s degree of ambiguity aversion. We also allow for the case

of infinite ambiguity aversion, which corresponds to the limit utility as α approaches infinity.

Proposition 3 in Klibanoff et al. [4] shows that these preferences approach maxmin expected

utility preferences (Gilboa & Schmeidler [20]) if α approaches infinity. In our context, decision

7As is standard, we assume that limw→w u(w) = −∞. This ensures the existence of an optimal contract, as

shown in Grossman & Hart [14].
8As Kellner [18] argues, without this assumption it is possible that the individual rationality constraint is the

binding constraint, as effort costs do not enter separably in U given equation (2) if φ is not of the CAAA form.

Provided that the utility function U is specified in an alternative way such that effort costs enter separably, our

results are robust to other forms of φ.
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makers with infinite ambiguity aversion would evaluate every action according to the scenario

in M that minimize the resulting expected utility.

Finally, we turn to the principal’s payoff. Assuming the firm is both ambiguity neutral and

risk neutral, the firm’s payoff if actions a and a′ are chosen under payment scheme w is given

by the function Π : A×A× (w,∞)I×I → R defined by

Π(a, a′, w) =

∫
M

 I∑
i,j=1

pai p
a′

j (qi + qj − w(qi, qj)− w(qj , qi))

 dµ

=

I∑
i,j=1

P̄ij(a, a
′)(qi − w(qi, qj)) +

I∑
i,j=1

P̄ij(a, a
′)(qj − w(qj , qi)). (3)

Thus the principal maximizes expected profits, where the expectation is taken with re-

spect to the distribution given by the action-dependent average distribution over outcome pairs,

P̄ij(a, a
′) ≡

∫
M
pai p

a′

j dµ. When looking for the optimal contract, we can restrict ourselves to

deterministic wage schemes, since using a randomization device can never strictly improve the

principal’s profits due to the agents’ risk aversion.9

2.2. The principal’s problem

As the formulation of the principal’s problem differs from, e.g., Mookherjee [15] only in

the way the uncertainty is modeled, we will be brief. It is generally useful to think about the

principal’s problem in two stages: First, the principal tries to find the cheapest way to implement

each possible combination of effort levels. Second, she compares the implementation costs to

the resulting expected output, and decides to implement the effort level that offers the largest

spread between costs and benefits.

To solve the first part of the problem, we look for a Nash equilibrium solution. An agent

accepts a wage contract and carries out the effort level the principal intends him to do, if it

meets two constraints: The individual rationality constraint states that the agent must be better

off when she accepts the contract offered by the principal than with her outside option (which

results in the utility level u0), assuming that the other agent accepts the contract and chooses

the intended effort level. The incentive constraint (IC) requires that the agent prefers choosing

the action the principal intends to the other action, again assuming that the other agent does

not deviate.10

9Replacing any random wage component by its certainty equivalent yields weakly lower implementation costs.
10Note that there may be multiple equilibria. We focus on the equilibrium that is best for the principal.
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As we consider only incentive schemes that treat the two agents in a symmetric way, it

suffices to consider costs and incentives for agent 1: they are the same for agent 2. The solution

to the first stage (compare equation (3)) becomes:

C(a) ≡ min
w

I∑
i,j=1

P̄ij(a, a)w(qi, qj), (4)

subject to the two constraints

U(a, a, w) ≥ u0 (IR)

U(a, a, w) ≥ U(a′, a, w) for a′ 6= a. (IC)

The second stage is to choose a ∈ {H,L} to maximize the principal’s total profits

Π(a) = 2

(
I∑
i=1

p̄ai qi − C(a)

)
,

where p̄ai =
∫
pai dµ, the µ−average probability of observing output level i under action a.

To make the problem interesting, we assume that at least in a first best world it would be

optimal to implement H for both agents. That is, Ep̄H [q] > Ep̄L [q], and the difference in effort

costs is sufficiently small. The problem of optimally implementing the high-cost action is the

key part of our analysis, since the low-cost action is most cheaply implemented using a constant

wage scheme.

It will turn out to be convenient to state the problem in terms of the utility levels attributed

to each output combination. This is possible since for any wage level w there is a unique

corresponding utility level u(w). Thus we denote by h(u) the inverse utility function that

satisfies h(u(w)) = w. Consequently, h is increasing and convex. Thus, instead of choosing a

wage scheme, the principal can equivalently choose a scheme of utility levels. This approach is

common in the agency literature.

3. Main analysis: Two outcomes

To describe the set of optimal contracts, we introduce the following definition.

Definition 1. A tournament is a wage scheme that increases iff the rank of the agent’s output

level increases, i.e.

uij ≡ u(w(qi, qj)) =


uW if i > j

uT if i = j

uL if i < j

9



and uW > uT > uL.

Thus, for any tournament, the agent’s compensation depends only on the rank of their

output. Under risk neutrality these compensation levels can be directly interpreted as wage

levels (since u can be assumed to equal the identity function, scaling costs accordingly). In this

section, we consider the case of two output levels, success (S) and failure (F ). This fits our

framework if we set S = 2 and F = 1. Section 4 considers the case of I outcomes.

Throughout this section, to simplify the exposition, we assume that M is finite, there is ε > 0

such that maxpH∈MH pHS = p̄HS + ε, minpH∈MH pHS = p̄HS − ε and (p̄HS , 1− p̄HS ) ∈MH , reflecting

a minimal degree of symmetry about the ambiguity of the high action. Moreover, we assume

p̄HS − ε > maxpL∈ML pLS , which ensures that it is unambiguous that the high action achieves a

higher success rate than the low action.11

3.1. Optimal contract under ambiguity aversion and risk neutrality

We can now describe the optimal contract for the case of risk neutrality:

Proposition 1. Suppose agents are risk neutral but ambiguity averse, and I = 2. The set of

optimal contracts includes a tournament, and implementation costs are at the first-best level.

Moreover, if MH contains at least three priors, all optimal schemes are tournaments.

Proof. See below for an outline, and the appendix for a full proof.

Thus, ambiguity aversion provides an argument why the principal would prefer a tournament

over most other incentive schemes, including independent wage contracts, or even more complex

contracts that combine features of tournaments with features of independent contracts. Note

that no comparable agency model can provide such a justification for the use of tournaments

under risk neutrality. Without taking ambiguity aversion into account, many kinds of incentive

scheme are optimal under risk neutrality.

We now give a brief outline of the proof, to explain the intuition behind the above result.

First, any incentive scheme that implements the high action for both agents has to satisfy the

IR constraint, which requires that

2∑
i,j=1

P̄ij(H,H)w(qi, qj) ≥ AH + u0 + cH ,

11Without the latter assumption incentive contracts could be designed which use a negative bonus, i.e. reward

lower output level instead of the higher (compare e.g. [18]). Also, a tournament could be designed where the

prize is awarded based on achieving the lower output level.
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where

AH = 1
α log

(∫
M

exp
[
−α

(∑I
i,j=1

[
pHi p

H
j − P̄ij(H,H)

]
w(qi, qj)

)]
dµ
)
.

The principal’s implementation costs correspond to the left-hand side of this inequality. The

(nonnegative) term AH can be interpreted as an ambiguity premium, which the principal has

to pay to compensate the agent for the ambiguity of the wage scheme. Thus implementation

costs are at least u0 + cH . Tournaments with random tie-breaking are purely risky, so that

AH vanishes. These schemes result in the same expected utility irrespective of which possible

output distribution (in M) is considered. This property can be understood in a very intuitive

way: If ties are broken at random, there is one prize which is awarded to one of the two agents.

(Hence, we call tournaments with random tie-breaking one-prize tournaments in what follows.)

Since these agents are identical, and the tournament treats them symmetrically, both agents

must have the same winning probability of one half. (Instead of breaking ties at random, the

principal may also choose a deterministic wage scheme that pays the certainty equivalent of the

tie-breaking lottery if a tie occurs. For risk neutral agents, this means the prize is split in half.)

As we verify in the appendix, other incentive schemes will not eliminate all ambiguity from the

wage scheme, unless the agents consider only two priors to be possible.

Given two outcomes, a tournament that uses a large enough prize uW −uL will always meet

the incentive constraint. Deviating to the low action would reduce the (average) chances to

receive this prize. The deviation may even introduce ambiguity about the prospective wages,

which makes it even more unattractive to deviate. Since for any purely risky wage scheme,

AH = 0, ambiguity aversion does not change the IR constraint for one-prize tournaments, so

that no ambiguity premium has to be paid. Thus, the first best implementation costs, u0 + cH ,

can be achieved.

3.2. Optimal contract under ambiguity aversion and risk aversion

We now want to look at the effect of ambiguity aversion in the presence of risk aversion.

Uncertainty about the probability distributions may matter even under ambiguity neutrality

if this uncertainty has a common component (as we have assumed). In this case, the optimal

contract is complex, and combines features of independent schemes and relative performance

evaluation (see Mookerjee [15] and Holmstrom [17]). This raises the question whether the

optimal contract will be tournament-like, in the sense that an agent’s wage decreases if the

performance of an other agent increases. As Fleckinger [12] and Magill & Quinzii [11] have

argued, under ambiguity neutrality this may not be the case even if uncertainty about the
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true probability distribution affects both agents in the same way. The way the probability

distributions of the two actions are believed to vary together still matters. If the high action

does well in situations where the low action does poorly, the optimal contract will not be

tournament-like. We are going to show that if ambiguity aversion is high enough, already a

small amount of ambiguity will suffice to establish the optimality of tournament-like schemes

also in these situations.

Before we discuss the effects of ambiguity aversion, we review the case of uncertainty about

success rates under ambiguity neutrality. The following definition introduces a more general

class of incentive schemes, which includes the set of all tournaments.

Definition 2. An incentive scheme is tournament-like if both uSF ≥ uSS and uFF ≥ uFS.

Recall that, e.g., uSF = u21 = u(w(q2, q1)). The following proposition characterizes the

set of principal-agent problems (within the class of problems discussed in this paper) in which

the optimal incentive contract is tournament-like for ambiguity neutral agents.12 To state the

result, denote the variance of the success rate of the high action by σ2
H ≡ Eµ[(pHS − p̄HS )2] and

the covariance between the success rate of the high and the low action by ρHL ≡ Eµ[(pHS −

p̄HS )(pLS − p̄LS)].

Proposition 2. (Fleckinger[12]) Assume strict risk aversion, ambiguity neutrality, and I = 2.

In the optimal incentive scheme, uSF ≥ uSS iff ρHL
p̄L
≥ σ2

H

p̄H
and uFF ≥ uFS iff ρHL

1−p̄L ≤
σ2
H

1−p̄H .

Thus, the optimal incentive scheme is tournament-like iff both conditions hold.13

For the case of perfect negative correlation between the two actions (where for all (pHS , p
L
S) ∈

M , pHS − p̄HS = −(pLS − p̄LS) such that ρHL = −σ2
H) the result is particularly intuitive since the

optimal contract can be interpreted as rewarding an outcome the more, the stronger it signals

that the agent has in fact chosen the equilibrium action. Under perfect negative correlation

success of the other agent occurs more often under circumstances where effort makes a difference.

Hence, if the other agent succeeded as well, success is a stronger signal of the high action and

12Apart from our limitation to two outcomes, this result differs from Magill & Quinzii [11] in that they give a

condition that guarantees an incentive scheme to be tournament-like no matter which probabilities are attributed

to the realization of the common shock. Fleckinger [12] considers a setting similar to ours. His setting is slightly

more general since outcome distributions may differ between the two agents even if they choose the same action.

Neither paper considers ambiguity aversion.
13 This proposition is a special case of Proposition 3 in Fleckinger [12]. Note that this author uses the term

RPE schemes (relative performance evaluation schemes) instead of tournament-like contracts.
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effort should be rewarded more strongly in these situations. (That is, uSS − uFS should be

larger than uSF − uFF so that uSS will exceed uSF .)

An example of a situation with substantial negative correlation between the actions could be

that the (sales) agents’ task consists of advertising a new feature of a well-established product

to potential costumers. In such a situation, it could be uncertain weather there is a relevant

number of potential costumers who care about this feature at all. If there is little interest, effort

to explain the implementation will make little difference. If there is interest in the feature, it

will however be important to convince potential costumers that it is actually implemented in

a better way than in the product of the main competitors. In such a situation, the fact that

another agent makes a sale is an indication that costumers do care about the feature, and hence

success should be rewarded more strongly.

We will argue now that these results are not robust to ambiguity aversion. We will show first

that, if ambiguity aversion is infinite, for sufficiently small levels of risk aversion the optimal

contract is a tournament. Second, we show that if risk aversion is more substantial, already for

small levels of ambiguity, under sufficiently high ambiguity aversion the optimal contract will

be at least tournament-like.

Proposition 3. Suppose I = 2. If risk aversion is sufficiently small, and ambiguity aversion is

infinite, the optimal contract is a tournament.

See the appendix for a proof. To understand the intuition, recall that the costs of imple-

menting the high action consist of the expected payments, a risk premium, and an ambiguity

premium. Given risk aversion, it is clear that both constraints bind, so we only consider such

contracts. Then there is a unique contract, a tournament, that eliminates all ambiguity aversion,

and hence the need for an ambiguity premium. Implementing a contract other than a tourna-

ment increases the ambiguity premium, while it could reduce the risk premium. Given infinite

ambiguity aversion, the ambiguity premium increases linearly in any direction in a neighborhood

around the tournament. The effect of the decrease in the risk premium vanishes as risk aversion

gets small, so that eventually there will be a global minimum in implementation costs at this

tournament.

Under finite levels of ambiguity aversion, the effect of introducing a small amount of am-

biguity to an unambiguous contract vanishes at a first-order level, while any effects related to

reducing the degree of riskiness from an already positive level persist. Nevertheless one expects

that, still, as risk aversion becomes sufficiently small, the optimal contract is arbitrarily close to

a tournament, and hence tournament-like.
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We now investigate the case where risk aversion is not necessarily small, so that one would

not expect the optimal contract to be close to a tournament. We will show that also in such

cases, it will often be tournament-like under high ambiguity aversion, irrespective if it is so

under ambiguity neutrality or not.

Proposition 4. Suppose I = 2. For small enough degrees of ambiguity the optimal incentive

scheme will be tournament-like if ambiguity aversion is high enough.

A proof can be found in the appendix. Here, we will provide some intuition for this result

for the limiting case of infinite ambiguity aversion (where preferences can be represented by the

maxmin expected utility model).

For maxmin preferences, agent 1 obtains the following utility if both agents choose the high

action:

U(H,H) ≡ min
(pH ,pL)∈M

pHS
(
pHS uSS + (1− pHS )uSF

)
+ (1− pHS )

(
pHS uFS + (1− pHS )uFF

)
− cH .

(5)

Denote by p̃HS the value of pHS that solves this minimization problem. If agent 1 chooses the low

action instead, her utility becomes

U(L,H) ≡ min
(pH ,pL)∈M

pLS
(
pHS uSS + (1− pHS )uSF

)
+ (1− pLS)

(
pHS uFS + (1− pHS )uFF

)
− cL.

(6)

Denote by (p̌HS , p̌
L
S) the solution to this minimization problem.

Assume ambiguity is small. Then the optimal contract will still be close to an independent

contract, which is optimal in the absence of ambiguity. In this case p̃HS will correspond to the

lowest possible probability level. To understand generally why tournament-like schemes are now

attractive, we will now demonstrate that the principal benefits from adding a small tournament-

like relative performance component in two different ways. We focus on the case where the

agent in question has succeeded herself (uSS and uSF ). The highly ambiguity averse agent

will attribute a probability of p̃HS to the state uSS , while the principal applies the conditional

probability of p̄HS +σ2
H/p̄

H
S > p̃HS . Hence, the agent views uSS effectively to be less likely than the

principal, the opposite holds for uSF . With respect to fulfilling the IR constraint, uSF becomes

more attractive for the principal over uSS (to an extent limited by the agent’s risk aversion).

Second, if for the high action an increase in uSF is exactly balanced by a corresponding decrease
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in uSS , this leaves the utility from the low action unchanged or makes it worse.14 The case

of perfect negative correlation between the actions illustrates most clearly the second possible

advantage of tournament-like schemes. For a contract that is not very close from an independent

contract, a very ambiguity averse agent will fear that the success rate of the high action is low

(for both agents). In the case of perfectly negative correlation, a deviation to the low action

would mean that this agent fears only his own success rate to be below average, while the success

rate of the other agent is now believed to be above average. This has a positive effect on the

incentive constraint only for tournament-like schemes, as then, under the low action, ambiguity

averse agents consider it less likely to get the bonus for outperforming the other agent.

Note that one expects that, even if ambiguity is not small, and risk aversion is substantial,

the worst-case success rate will typically be the lowest success rate, so that the optimal contract

will still be tournament-like. Consider for reference the tournament where both constraints

bind, where all success rates yield the same utility on equilibrium. While uSF − uSS > 0 and

uFF − uFS > 0 (corresponding to relative performance incentives), uFF − uSS = 0 (which can

be interpreted as independent incentives). Given the lowest success rate in MH , the arguments

above suggest that both kind of utility differences are suitable to provide incentives. In this

case, it is well-known that tournaments perform poorly given strong risk aversion, as they

neglect independent incentives entirely. However, introducing individual incentives in response

to risk aversion makes one’s own performance more relevant, and hence one expects the lowest

prior to be the one which makes such a contract least favorable.

Figure 1 illustrates the proposition. It presents the optimal solution to a set of principal-

agent problems which differ only by the agents’ ambiguity aversion (obtained using numerical

methods). In the figure, it is assumed that for all (pH , pL) ∈ M , pH − p̄H = −(pL − p̄L). The

optimal scheme is not tournament-like for ambiguity neutral agents: The payment of an agent

who succeeds is higher if also the other agent succeeds (uSS > uSF ). However, as ambiguity

aversion increases, agent 1’s compensation (measured in utility terms), given success, varies less

whether agent 2 fails or not, up to some finite level of ambiguity aversion after which the optimal

incentive scheme becomes tournament-like.

In conclusion, the results in [12] (summarized in proposition 2) establish circumstances that

if ambiguity aversion is absent (or perhaps small, for fixed risk aversion), the optimal contract

is not even tournament-like. If ambiguity aversion is low relative to risk aversion those results

14It becomes worse, if p̌HS > p̃HS before the change, or if the change leads to a change in p̌HS .
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Figure 1: Optimal incentive contract depending on ambiguity aversion

Α

uSF

uSS

uFS

uFF

are robust to ambiguity aversion. If ambiguity aversion (but not necessarily ambiguity) is

large relative to risk aversion, one expects however the optimal contract type to change (to a

tournament-like contract) as ambiguity aversion is taken into account.

3.3. Effect of ambiguity and ambiguity aversion on popular contracts

As we argued in the introduction, it seems that in many applied contexts principals select

either tournaments (implemented, for instance, via promotions) or independent contracts to

provide incentives to the agents. As these schemes are not optimal in general, it might be the

case that practical constraints prevent the principal from implementing the optimal contract,

which may be quite complex. The principal might be forced to choose among sufficiently simple

contracts, such as tournaments and independent schemes. Thus we want to investigate whether,

keeping everything else equal, introducing ambiguity and ambiguity aversion makes it more likely

that the principal prefers a tournament over independent schemes. To do so, we analyze how

the profits of the principal change for tournaments and compare with the effects for independent

incentive schemes.

We begin with the case of introducing ambiguity, assuming agents are ambiguity neutral.

We will focus on one-prize tournaments (which have the constant-sum property). Such schemes
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arise naturally in a situation where the principal can only award a single indivisible prize (like

a promotion).

Proposition 5. Suppose I = 2. For ambiguity neutral agents, introducing mean-preserving

ambiguity leaves profits that can be achieved using a one-prize tournament constant.

Proof. It can be verified easily that a one-prize tournament results in an expected utility of

1
2u

W + 1
2u

L on the equilibrium path. Given a deviation to L, for a scenario (pH , pL) the

expected utility is 1
2u

W + 1
2u

L − 1
2 (pHS − pLS)(uW − uL). Under expected utility, this becomes

1
2u

W + 1
2u

L − 1
2 (p̄HS − p̄LS)(uW − uL), so that any (mean preserving) change in the degree of

ambiguity is immaterial for both constraints. Also, expected wages (h(uW )+h(uL)) and output

(2
∑
i p̄
H
i qi) are unchanged for the principal.

This result shows that for one-prize tournaments, ambiguity alone does not have any effect on

implementation costs. The following proposition indicates that introducing ambiguity aversion

will never decrease attainable profits when one-prize tournaments are used.

Proposition 6. Suppose I = 2. Increasing ambiguity aversion can never decrease the profits

that the principal can achieve if the best one-prize tournament is used.

Proof. We will argue that the set of implementable one-prize tournaments cannot shrink, but

may grow. (The result follows since ambiguity aversion changes nothing about implementation

costs for a given tournament.) As we have argued in the context of Proposition 1, the agent’s

utility does not change with increases in ambiguity aversion when she chooses the high action,

as one-prize tournaments are purely risky. Thus, the set of constant-sum tournaments which

satisfy the IR constraint remains unchanged. If also the wages induced by the low action are

unambiguous, the IC constraint remains unchanged. However, the wage scheme following a

deviation may not be not purely risky. Then increases in ambiguity aversion make (only) the

low action less attractive. In both cases, any one-prize tournament that satisfies both constraints

under ambiguity neutrality still does so under ambiguity aversion, and hence the set of all such

schemes which implement the high action pair cannot shrink.

In short, one-prize tournaments eliminate all ambiguity about the agent’s equilibrium wages.

However, deviating to the low-cost action may still result in an ambiguous wage scheme. This

might allow the principal to choose an incentive scheme that is less risky. Thus, for constant-sum

tournaments, ambiguity aversion might increase the principal’s profit, but it can never decrease

it. This provides tournaments with an advantage over other schemes.
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Note the combined effect of the last two propositions corresponds to the effect of introducing

ambiguity for ambiguity averse agents. Hence, as far as one-prize tournaments are concerned,

it is not in the interest of the principal to remove ambiguity even if this were possible in specific

applications at a low cost (e.g. by providing evidence on the true success rates).

The effect of ambiguity and ambiguity aversion is quite different for independent schemes.

For binary outcomes, independent schemes pay a base wage regardless of the performance and

an additional bonus to the agent if she achieves the high outcome. Benefits from independent

schemes will be the same as if there were only a single agent present. Mean-preserving ambi-

guity (without ambiguity aversion) can never have an effect on independent schemes. In the

framework studied in Weinschenk [21], ambiguity aversion always makes the principal worse off.

In general, it might be possible that ambiguity aversion makes the principal better off when

she uses independent wage schemes. An intuitive example is the case where the high action

is unambiguous, but the low action is not. Then, ambiguity aversion makes deviations less

attractive, so a lower wage bonus will suffice to implement the high action.

To introduce a sufficient condition for profits to decrease under ambiguity aversion, we

introduce a definition to compare the degree of ambiguity of two actions. To do so, denote by

µ̂a the distribution of the difference between the success rate of action a and its average under

µ, i.e. define ∀p̂ ∈ [−p̄aS , 1− p̄aS ], µ̂a(p̂) ≡ µ(p̄a + (−p̂, p̂)).

Definition 3. Action a is at least as ambiguous as action a′ if the distribution µ̂a is a mean

preserving spread of µ̂a
′
.

Proposition 7. Suppose I = 2. If the high action is at least as ambiguous as the low action,

ambiguity aversion will reduce the profits that the principal can achieve using an independent

scheme.

See the appendix for a proof. To understand the result, consider the optimal contract in

the absence of ambiguity aversion. First, for an ambiguity averse agent, it will fail to meet

the individual rationality constraint, as an independent bonus contract exposes the agent to

ambiguity on the equilibrium path. To correct this, the principal needs to pay an ambiguity

premium, which reduces her profits. Second, if the high action is at least as ambiguous as

the low action, ambiguity aversion (weakly) favors the low action relative to the high action,

so that the principal needs to pay a (weakly) higher wage bonus in case of success to ensure

the incentive constraint holds. In compensation for the resulting increased riskiness of the new

contract, a higher risk premium must be paid, further lowering profits. If the low action however
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is more ambiguous, the second effect goes in the other direction. Provided that the high action

is sufficiently close to being unambiguous, the first effect diminishes and the second effect will

eventually dominate, so that profits may increase in this case.

In conclusion, ambiguity aversion increases profits for one-prize tournaments (at least weakly),

while profits for independent schemes are strictly decreased if the high action is at least as am-

biguous as the low action. In fact, if ambiguity aversion and ambiguity about the high action

are sufficiently large, a tournament will always dominate all independent contracts.

Proposition 8. Suppose I = 2. Fix the average outcome distributions p̄HS and p̄LS . If ambiguity

about the high action and ambiguity aversion both grow sufficiently large (min(1−pHS ,pHS )∈MH pHS

is small enough), the principal will strictly prefer some tournament over any independent bonus

contract (or will choose a constant scheme to implement the low action).

See the appendix for a formal proof. Note that the profits of a tournament are bounded below

by the case where the low action is unambiguous. Increasing ambiguity or ambiguity aversion

can never decrease the profits below this level. Regarding the bonus contract, if ambiguity

aversion becomes large enough, the decision maker will essentially only be driven by the worst

case scenario. As ambiguity increases, the agent will at one point attribute a success rate to the

high action that is just marginally above (or even below) the one for the low action. This means

that, if at all possible, to provide incentives the principal would need to pay an extremely high

bonus. This would lead to extremely low profits if she insisted on implementing the high action

with an independent bonus scheme.

In general, a tournament will eventually do strictly better than an independent contract in

such situations. Under risk aversion, it might however be possible that the principal chooses

to implement the low action using a constant contract, which is a degenerate version of both

classes of incentive schemes. However, provided u is unbounded above, implementing H using a

non-degenerate tournament will always be possible and better than implementing L if qS−qF is

sufficiently large. For the last argument, the assumption that u is unbounded is clearly stronger

than necessary. It is only important that a possible bound on u is large enough so that a

tournament can in fact provide incentives for H.

4. Extension: Multiple outcomes

We will now discuss how our results generalize to the case of more than two output levels.

We begin with the optimal contract under risk neutrality and turn to the comparison of popular
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contracts in the next subsection.

4.1. Multiple output levels under risk neutrality

If agents are risk neutral, there are two main differences to the case of two outcomes. If

there are more than two outcomes, it might sometimes be the case that no tournament in the

narrow sense provides incentives for the high action. However, the principal can resort to a

coarser type of tournament to provide incentives, which does not use all information about the

agent’s performance to rank them. Moreover, it will now be true that not only tournaments,

but a larger class of incentive schemes can lead to first-best profits.

When there are more than two output levels, the principal might rank the agents using a

coarser criterion than the set of all available output levels. For instance, if the revenue generated

by each agent can be measured in dollars and cents, the principal could rank agents only based

on the dollar-amount. We use the term coarse tournament to describe such tournaments.

Definition 4. A coarse tournament is a tournament that ranks agents according to a connected

partition of Q, i.e. there exists a weakly increasing function f : {1, . . . I} → {1, . . . I} such that

uij ≡ u(w(qi, qj)) =


uW if f(i) > f(j)

uT if f(i) = f(j)

uL if f(i) < f(j)

and uW > uT > uL.

Next, we define a property that the optimal incentive contract will satisfy under risk neu-

trality (except in a limited set of circumstances):

Definition 5. An incentive scheme is constant-sum if total compensation does not vary with

output (uij + uji = ui′j′ + uj′i′ for all i, i′, j, j′ ∈ {1, . . . I}).

Under risk neutrality, this implies that for constant-sum schemes total wages do not change

with the realized combination of output levels, only the division of wages among the agents may

change. For the natural class of one-prize tournaments, and their deterministic equivalents, the

constant-sum property is satisfied.

However, there are also schemes other than tournaments who do so. One notable example

are wage schemes that are linear in the performance difference: w(qi, qj) = α + β(qi − qj). As

in a tournament, the agents are paid based on their relative performance only, absolute levels

do not matter. Another example is the class of k-contracts introduced in Hvide [22]. While a
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tournament rewards agents based on there performance rank, such contracts rank the agents

based on the difference of their performance to some benchmark level k. (Not all values of k

would, however, provide incentives to exert high effort.)

Proposition 9. Suppose agents are risk neutral but ambiguity averse.

(a) The set of optimal contracts includes a coarse tournament, and profits are at the first-best

level.

(b) Schemes with the constant-sum property eliminate all ambiguity from equilibrium wages. If

MH contains less than I(I + 1)/2 priors, there are also wage contracts that eliminate all

ambiguity from the equilibrium path which do not have the constant sum-property.

(c) Fix the average probability distribution p̄H and p̄L. One can always find a corresponding

set of I(I + 1)/2 beliefs MH such that only schemes with the constant-sum property achieve

first-best profits.

See the appendix for a proof. We focus now on the differences to the case of two outcomes.

Part a) of the proposition establishes that coarse tournaments can always implement the first-

best. As is well-known, even in the absence of ambiguity, in some specific situations tournaments

fail to provide incentives to choose the high action. The first best can always be achieved with

a coarse tournament that partitions output levels in a “high” and a “low” group. The resulting

coarse tournament parallels the case of I = 2.

Parts b) and c) discuss which type of schemes other than constant-sum schemes can im-

plement the first best. More specifically, point b) states that if only few beliefs are considered

possible, also other schemes are purely risky, and hence may result in first-best profits. Point

c) identifies the minimum number of (suitable) beliefs sufficient to ensure that only constant

schemes induce the first best.

To understand why also other schemes might now achieve the first best, observe that accord-

ing to µ, it might be possible, for instance, that a (non-trivial) event is unambiguous. That is, all

probability distributions agree on the likelihood to observe a particular set of outcomes. Then,

even an independent wage scheme may achieve the first best. To provide incentives, the princi-

pal could pay a bonus whenever this event occurs, and a base wage otherwise. Such situations

require that agents would consider either very few or a very specific set of outcome distributions.

In the appendix we provide an example that illustrates that the number of I(I+ 2)/2 (suitable)

priors is always enough to ensure that only constant-sum schemes can implement the first-best.
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4.2. Multiple output levels under risk aversion

We now investigate whether, given risk aversion, tournaments become more attractive given

ambiguity and ambiguity aversion in comparison to the best independent contract also if there

are more than two outcomes. Given ambiguity, introducing ambiguity aversion continues to have

weakly positive effects on profits given one-prize tournaments are used, since those continue to

reduce all ambiguity on the equilibrium path. Hence, Proposition 6 generalizes to the case of

multiple outcomes. However, it is easy to provide examples where, even for ambiguity neutral

agents, introducing ambiguity alone now has an effect on tournaments, which could go in either

direction. In many situations however, there is no such effect, so that the combined introduction

of ambiguity and ambiguity aversion would not decrease profits if one-prize tournaments are

used. This includes situations where uncertainty about the distribution of the high action is

perfectly (positively or negatively) correlated with uncertainty about the distribution of the low

action, or if there is no correlation between the two distributions.

In principle, Proposition 7 can also be generalized to show that also given many outcomes,

ambiguity often has a negative effect profits under independent contracts. However, it is less

obvious how to compare the degree of ambiguity attached to different actions when there are

more than two outcomes. See Jewitt & Mukerji[23] and Kellner [18] for possible orders on the

degree of ambiguity that would allow a generalization of Proposition 7.

5. Robustness

To show to what extent our results depend on our assumptions, we focus mostly on the

question as to when the principal can still design a tournament that provides incentives and

removes all ambiguity about wages.

As we have already discussed, we assumed that there are only two agents mainly for nota-

tional convenience. If there are many agents, it is still possible to design a purely risky wage

scheme. If all agents exert the high effort, the principal could still break ties in a way that all

agents have the same probability of winning the tournament, irrespective of the actual proba-

bility distribution. The same is true if there are more than two actions available to the agent.

As long as all agents choose the same action, a one-prize tournament will be unambiguous on

equilibrium.

In the remainder of this section we discuss to what extent our results remain valid in situa-

tions where there is a difference in abilities between the two agents. First, note that if we model

changes in abilities as changes in the effort costs, our results will not be altered in important
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ways. It will still be possible to design an ambiguity-free tournament. Of course, a symmetric

wage scheme will not be optimal in this case, as the agent with higher effort costs needs to be

compensated more to choose the high action. The situation is different if the two agents differ

in the actions that they have available, that is if the high action of agent 1 results in different

output distributions than the high action of agent 2.

Even then, a tournament may result in an ambiguity-free wage scheme. We focus on the case

where the skill difference is perceived not to be ambiguous. That is, the probability distribution

over output levels for the high-ability agent differs from its average always to the same extent

as the probability distribution of the low-ability worker (under the high action). Consider

a one-prize tournament (where ties are broken at random). We begin with the case of two

outcomes. If we reinterpret p̄L as the success rate attributed to the agent with the low ability

when she chooses the high action, the winning probability of the low skilled agent becomes

P (prize|low ability) = .5−.5(p̄HS −p̄LS) for all possible success rates (while it is the complementary

probability for the high-skilled agent). Hence, equilibrium wages are purely risky. Thus, in this

case, tournaments remain a good response to ambiguity, at least if risk aversion is sufficiently

small.

The situation becomes slightly more complicated if there are more than three outcomes. In

this case, it can be easily verified that tournaments can result in ambiguous equilibrium wages.

However, there is still a (binary) coarse tournament that induces unambiguous equilibrium

wages. Thus, if ambiguity aversion is an important concern relative to risk aversion, a coarse

tournament could be used to address differences in skills, leading the principal to ignore even

more information she has about the performance of the agents. This increases even further the

contrast to the Informativeness Principle, which guides contract design under risk aversion.

Our results however may change quite considerably, if differences in abilities are perceived

to be ambiguous. Any incentive scheme that uses relative performance measures is likely to

be vulnerable to such kinds of ambiguity. Similarly, if the agents do not face exactly the same

task, or if they do not operate in the same environment, the agent may consider it to be

ambiguous how their own outcome distribution compares to their competitors’. But even in

these cases, tournaments can still do better than independent schemes, as independent schemes

are exposed to ambiguity as well. Whether this will be the case in a given situation depends on

whether ambiguity about aspects of the output distributions that apply to both agents is large

in comparison to ambiguity about the difference between the two agents.
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6. Related literature

The positive properties of tournaments have been documented in several papers, starting

with the seminal work of Lazar & Rosen [24]. Not many papers contribute to answering the

question: Why are tournaments, not other schemes, used to provide incentives? Lazar & Rosen

[24] show that tournaments achieve the first best solution if risk-aversion is absent. But in this

case, many other incentive schemes, for instance linear piece rates, achieve this goal as well. An

advantage of tournaments could be that sometimes only the rank of the agents’ contribution

can be observed, but not the level. This argument is often considered unsatisfactory (e.g.

Prendergast [1]). Tournaments, for instance implemented via promotions, also seem to prevail

in situations where a measure of individual performance is available.

Mookherjee [15] and Holmstrom [17] consider more general incentive contracts based on

relative performance. They show that the optimal incentive scheme in general is based on more

information than just the performance-rank of the agents. Even if the optimal incentive scheme

is more complex, it could still share one of the main characteristics of a tournament: Wages

increase in the agent’s own performance but decrease with the performance of other agents.

Magill & Quinzii [11] and Fleckinger [12] show that in an expected utility context even this may

not hold. One could indeed conclude that from an agency point of view, support for the use of

tournaments or even tournament-like schemes is actually not very strong (see Prendergast [1]).

Our Section 3.1 suggests that in situations where risk aversion plays a limited role in compar-

ison to ambiguity aversion, the use of tournaments can be justified also from the perspective of

an agency model. Also, our Section 3.2 illustrates that even if the agents’ risk aversion matters,

the optimal contract under ambiguity aversion is more often at least tournament-like.

Green and Stokey [13] have argued that tournaments do at least better than independent

contracts if uncertainty about the output levels contains a sufficiently important common shock

(to output levels). They argue that tournaments are a way to filter common shocks, but this

benefit comes at the cost of adding some of the other agents’ idiosyncratic noise to the compen-

sation scheme of any given individual.

Such a common shock could be interpreted as adding ambiguity about the mean of the out-

come distribution, and in this sense, also Green & Stokey [13] suggest that ambiguity favors

tournaments. However, in their model the common shock does not leave the average output dis-

tribution unchanged, but instead makes it more risky. In short, one can interpret [13] as showing

that a common shock to the output levels makes tournaments relatively more attractive under

ambiguity neutrality. We show that a common shock to output distributions (preserving the
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average distribution) often has no effect under ambiguity neutrality, while it favors tournaments

if agents are ambiguity averse.

For the single-agent case, the effect of ambiguity aversion on incentive contracts has been

discussed in the literature (Mukerji [25], Weinschenk [21], Lopomo [26]). It is often argued

that ambiguity aversion can favor the use of simpler contracts in this context. An important

difference is that in the single-agent case, even under risk-neutrality, the first best cannot be

achieved under ambiguity aversion, while tournaments may allow this in a world with multiple

agents.

Our results rely crucially on the idea that agents would indeed perceive tournaments as

unambiguous. The results in Halevy [8], claiming that ambiguity averse agents also often do not

reduce compound lotteries, cast some doubts on the empirical validity of this idea. In contrast,

Kellner & Riener [27] provides preliminary experimental evidence that tournaments are indeed

attractive under ambiguity.

7. Conclusions

We have argued that in many cases ambiguity aversion provides a strong justification why

a principal might set up a tournament as a way to provide incentives. In the existing liter-

ature, which stays within the expected-utility framework, tournaments are either suboptimal

(under risk aversion), or many possible incentive schemes are optimal (under risk neutrality).

Under ambiguity aversion however, if agents are risk neutral, tournaments are always optimal,

and many other schemes, like independent schemes, are not. Even if agents are risk averse,

ambiguity aversion will often make it relatively more attractive for the principal to choose cer-

tain tournaments over independent contracts, or to choose incentive schemes that are at least

tournament-like.

We conclude that, if agents are in fact ambiguity averse, one would expect that a principal

chooses tournaments or schemes that are very similar to tournaments if the distribution of

output levels is very ambiguous. In applications, this might more likely be true for white-collar

workers, as opposed to blue-collar workers who routinely face the same task. Indeed, as we have

demonstrated in the introduction, it has often been argued that tournament-like incentives (for

instance via promotions) seem to play a more important role for white-collar workers.

8. Appendix

We begin with stating a short lemma.

25



Lemma 1. The utility function Ũ(a, a′, w), given below, represents the same preferences as the

utility function U(a, a′, w).

Ũ(a, a′, w) =

I∑
i,j=1

P̄ij(a, a
′)u(w(qi, qj))− ca−

1

α
log

[∫
M

e

[
−α
(∑

i∈Q,j∈Q[pai p
a′
j −P̄ij(a,a

′)]u(w(qi,qj))
)]
dµ

]
.

(7)

Proof. Immediate since Ũ(a, a′, w) = − 1
α log(−U(a, a′, w)).

Also, let µa denote the marginal distribution over possible probabilities for a given action

a ∈ {H,L} alone, so that Ma becomes the support of µa.

Proof of Proposition 1

Step 1 (Describing ambiguity-free wage schemes.). Using the utility function introduced in

Lemma 1, the individual rationality constraint becomes

I∑
i,j=1

P̄ij(H,H)uij ≥ AH + u0 + cH ,

where AH = 1
α log

(∫
exp

[
−α

(∑I
i,j=1[pHi p

H
j − P̄ij(H,H ′)]uij

)]
dµ
)
.

The left hand side equals the principal’s implementation costs (under risk neutrality, u can

be assumed to be the identity function). Since the expectation (over µ) of
∑I
i,j=1[pHi p

H
j −

P̄ij(H,H)]uij = 0, and exp(0) = 1, according to Jensen’s inequality the integral evaluates to a

number larger than 1, so that AH ≥ 0.

Thus implementation costs are at least u0 + cH , and they reach this lower bound whenever

AH = 0. We focus on the case where M is finite. Due to Jensen’s inequality, AH = 0 iff∑I
i,j=1[pHi p

H
j − P̄ij(H,H ′)]uij = 0. As P̄ij(H,H)) does not vary between elements in MH , the

condition becomes that

∑
i,j∈Q

pHi p
H
j uij = constant over MH . (8)

Step 2 (Characterizing ambiguity-free wage schemes.). If there are only two outcomes, the pre-

vious requirement is equivalent to the condition that the expression

uFF + pHS (uSF − uFF )− pHS (uFF − uFS)− (pHS )2[(uSF − uSS)− (uFF − uFS)]
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does not vary between members of MH . If pH and p′H are two such members, it is required

that

uSF − uFF + uFS − uFF = (pHS + p′HS )[(uSF − uSS)− (uFF − uFS)].

If those are the only two members, this condition can be satisfied by multiple incentive contracts.

When MH has at least three elements, this can only be fulfilled if uSF − uFF = uFF − uFS =

uSF − uSS , or equivalently uSS = uFF = (uSF + uFS)/2. This condition describes one-prize

tournaments (respectively their deterministic equivalents).

Step 3 (A certain one-prize tournament satisfies the IC). Now, we show that a certain one-prize

tournament always provides the necessary incentives, and moreover results in first-best profits

for the principal.

Now suppose wW denotes the wages paid to the winner of this coarse tournament, wL denotes

the wages paid for losing under this scheme, and assume agent 2 chooses the high action. Then

if agent 1 chooses the high action as well, her utility becomes wL + 1
2 (wW − wL) − cH . This

follows from the fact that on the equilibrium path, the probability of winning is 1/2 and hence

the wage scheme is purely risky. If she defects to the low action, wages may become ambiguous.

In this case the agent’s utility is equal to

Ũ(L,H,w) = wW + (1/2− (p̄HS − p̄LS))(wW − wL)−AL − cL

where AL = 1
a log

(∫
M
e−α((pLS−p̄

L
S )−(pHS −p̄

H
S ))(wW−wL)dµ

)
. This expression can be derived

from simplifying equation (7) for the case of I = 2.

Comparing the utility under the two actions, the IC constraint becomes

1

2
(p̄HS − p̄LS)(wW − wL) ≥ cH − cL −AL.

Since AL increases (weakly) in (wW −wL), the right-hand side of the IC decreases in (wW −wL).

The left-hand side increases in a linear way with (wW −wL). Therefore, for some large enough

level of (wW − wL) the IC constraint holds with equality.

The IR constraint becomes

wL +
1

2
(wW − wL) ≥ u0 + cH ,

which can be easily satisfied by choosing wL accordingly. Hence, a coarse tournament can always

be designed to meet both constraints, and thus to implement the high action. Since under risk

neutrality, our assumption that limw→w u(w) = −∞ corresponds to assuming w = −∞, it is

clear that wL can be chosen in a way where the IR constraint binds, which implies that the

principal’s expected profits are at the first-best level.
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Proof of Proposition 3

Consider a family of utility functions ur, where risk aversion is continuously parametrized by

a parameter r, such that if r′ < r, ur
′

is less risk averse than ur, and if r = 0, ∀w, u0′′(w) = 0.

As usual, let hr be the inverse of ur.

We now assume that agents display infinite ambiguity aversion, the highest level of aversion

we allow. Proposition 3 in [4] establishes that such preferences can be represented by the maxmin

model of ambiguity aversion, where the set of beliefs remain those implied by the set M . We

will now argue that if r is sufficiently small, the optimal solution to the principal’s problem is

in fact a tournament.

Given risk aversion, it is clear from [18] that in an optimal contract both constraints must

bind. Hence, it suffices to consider such incentive contracts. Let ∆uS ≡ uSF − uSS ,∆uF ≡

uFS − uFF and

U(H,H, p) ≡ p(uSS + (1− p)∆uS) + (1− p)(uFF − p∆uF ),

U(H,H, pH , pL) ≡ pL(uSS + (1− pH)∆uS) + (1− pL)(uFF − pH∆uF ).

The principal’s implementation costs for the high action under contracts with binding constrains

correspond to the function Cr(∆u
S ,∆uF ) given by:

Cr(∆u
S ,∆uF ) =p̄H

(
hr(uSS) + (1− p̄H − σ2

H

p̄HS
)(hr(uSS + ∆uS)− hr(uSS)

)
+(1− p̄H)

(
hr(uFF )− (p̄H − σ2

H

1− p̄HS
)(hr(uFF )− hr(uFF −∆uF ))

)
s.t. min

pH∈MH
U(H,H, pHS ) = u0 + cH

and min
(pH ,pL)∈M

U(L,H, pHS , p
L
S) = u0 + cL.

(9)

(A closed form solution is available but omitted.) Also, denote by Cr(∆u
S ,∆uF , pHS , p

L
S) the

case where the minimization over probabilities is removed from the second constraint. Observe

that the constraints do not depend on r, only the objective function does. To determine the

values of this function for various contracts, consider first C0, the limit case of risk neutrality.

Let

C̃(∆uS ,∆uF , p̃HS , p̌
L
S , p̌

H
S ) ≡ h′0(0)

[
p̄HS

(
uSS + (1− p̄H − σ2

H

p̄HS
)∆uS

)
+

(1− p̄H)

(
uFF − (p̄H − σ2

H

1− p̄HS
)∆uF

)]
+ h(0),

where uFF and uSS are chosen to satisfy U(H,H, p̃HS ) = u0 +cH and U(L,H, p̌HS , p̌
L
S) = u0 +cL.
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It is easy to see that C0(∆uS ,∆uF )= C̃(∆uS ,∆uF , p̃HS , p̌
L
S , p̌

H
S ) iff p̃HS is a maximizer of

C(∆uS ,∆uF , p̃HS , p̌
L
S , p̌

H
S ). Note that if ∆uS and ∆uF correspond to the tournament defined by

p̌HS and p̌LS , then, since C̃ is affine in its first two arguments,

C̃(∆uS + ds,∆uF + df, p̃HS , p̌
L
S , p̌

H
S ) = u0 + cH + ds

∂C̃(0,0,p̃HS ,p̌
L
S ,p̌

H
S )

∂∆uS
+ df

∂C̃(0,0,p̃HS ,p̌
L
S ,p̌

H
S )

∂∆uF
.

Omitted algebra reveals that

ds
∂C̃(0, 0, p̄HS , p̌

L
S , p̌

H
S )

∂∆uS
+ df

∂C̃(0, 0, p̄HS , p̌
L
S , p̌

H
S )

∂∆uF
> 0 iff ds < df.

Moreover,

ds
∂C̃(0, 0, p̄HS + ε, p̌LS , p̌

H
S )

∂∆uS
+ df

∂C̃(0, 0, p̄HS + ε, p̌LS , p̌
H
S )

∂∆uF
> 0 iff

ds >

(
1− ε(p̌HS − p̌LS)

p̄HS (εp̄HS − 2p̌LSε+ ε2 − σ2
H)− p̌LS((p̌HS − ε)ε+ σ2

H)− εσ2
H

)
df,

and

ds
∂C̃(0, 0, p̄HS − ε, p̌LS , p̌HS )

∂∆uS
+ df

∂C̃(0, 0, p̄HS − ε, p̌LS , p̌HS )

∂∆uF
> 0 iff

ds <

(
1− ε(p̌HS − p̌LS)

p̄HS (εp̄HS − 2p̌LSε− ε2 + σ2
H)− p̌LS((p̌HS + ε)ε− σ2

H)− εσ2
H

)
df.

Note that

1− ε(p̌HS − p̌LS)

p̄HS (εp̄HS − 2p̌LSε− ε2 + σ2
H)− p̌LS((p̌HS + ε)ε− σ2

H)− εσ2
H

< 0

and

1− ε(p̌HS − p̌LS)

p̄HS (εp̄HS − 2p̌LSε− ε2 + σ2
H)− p̌LS((p̌HS + ε)ε− σ2

H)− εσ2
H

< 0

and the former is larger than the latter if 2(ε2 − σ2
H)(p̄H − p̌LS) > 0 , which is the case since

ε2 > σ2
H given our assumptions.

This means that if the relevant combination of (p̌LS , p̌
H
S ) was known, one can find a minimal

δ(p̌LS , p̌
H
S ) such that for any (ds, df) of length k the implementation costs increase by at least

kδ(p̌LS , p̌
H
S ). Now consider the case where r > 0 but small. It is clear that we can restrict our

search for optimal contracts to a compact set of candidate contracts: For (∆uS ,∆uF ) to be

optimal given off equilibrium probabilities (p̌LS , p̌
H
S ), if (∆uS ,∆uF ) represents the corresponding

tournament contract, it is necessary that Cr(∆u
S , p̌LS , p̌

H
S ) ≤ Cr(∆uS ,∆uF , p̌

L
S , p̌

H
S ), or equiva-

lently

C0(∆uS ,∆uF , p̌LS , p̌
H
S )− C0(∆uS ,∆uF , p̌LS , p̌

H
S ) ≤

Cr(∆uS ,∆uF , p̌
L
S , p̌

H
S )− C0(∆uS ,∆uF , p̌LS , p̌

H
S )−

(
Cr(∆u

S ,∆uF , p̌LS , p̌
H
S )− C0(∆uS ,∆uF ), p̌LS , p̌

H
S

)
.

(10)
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The right hand side of the preceding inequality is bounded above by Cr(∆uS ,∆uF , p̌
L
S , p̌

H
S )−

C0(∆uS ,∆uF , p̌LS , p̌
H
S ), while the left hand side, as shown above, increases at least proportionally

with the distance to the tournament. Taking the union over the respective off-equilibrium

probabilities results the set of candidate contracts. Also, the set can be made arbitrarily small,

as Cr(∆uS ,∆uF , p̌
L
S , p̌

H
S ) − C0(∆uS ,∆uF , p̌LS , p̌

H
S ) approaches 0 as r approaches 0. Provided

the optimal contract is arbitrarily close to a tournament, it is now straightforward to determine

which are the relevant off-equilibrium beliefs, and hence the relevant values of ∆uS ,∆uF . Taking

the minimum of δ(p̌LS , p̌
H
S ) over all remaining values of (p̌LS , p̌

H
S ) one can indeed conclude that

there exists a δ > 0 such that C0(∆uS + ds,∆uF + df) > u0 + cH + kδ.

Given this compact set of candidate contracts, and comparing the derivative of (9), with

the corresponding derivative for r = 0, for r small enough, any directional derivative around

Cr(∆uS ,∆uF ) of length k will be arbitrarily close to kδ > 0, as the differences in h′ for the for

different reward levels will be small enough. Hence, the optimal contract will be a tournament.

Proof of Proposition 4

We will first specify how we parametrize the degree of ambiguity. Consider first an arbitrary

set of action-dependent beliefs M , with a second-order belief µ. Define Mδ = {(p̄H + δ(pH −

p̄H), p̄L + δ(pL− p̄L)) : (pH , pL) ∈M} and µδ such that µδ(p̄
H + δ(pH − p̄H), p̄L + δ(pL− p̄L) =

µ(pH , pL). It is clear that reducing δ reduces the degree of ambiguity involved in the problem,

but leaves the µ−average success probabilities p̄H and p̄L constant. Moreover, since this change

reduces both σ2
H and ρHL by to a factor of δ2 of it original value, under ambiguity neutrality,

a contract is tournament-like for δ = 1 iff it is so for any other (positive) value of delta. As we

study changes in uncertainty about the two success rates (corresponding to the high and the

low action), this definition allows for both effects on ambiguity averse and ambiguity neutral

decision makers (via the implied correlation). This is in contrast to the definition in Jewitt and

Mukerji [23].

Again, we now assume that agents display infinite ambiguity aversion, where preferences can

be represented by the maxmin model of ambiguity aversion. The set of beliefs corresponds to

Mδ.

The principal’s problem (given some Mδ and µδ) is then to minimize∑
i,j∈{S,F}

P̄ij(H,H)h(uij) s.t.
∑

i,j∈{S,F}

p̃Hi p̃
H
j uij ≥ ū+ cH

and
∑

i,j∈{S,F}

p̃Hi p̃
H
j uij − cH ≥

∑
i,j∈{S,F}

p̌Li p̌
H
j uij − cL.

(11)
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where

p̃H = arg min
pH∈MH

δ

∑
i,j∈{S,F}

pHi p
H
j uij

and

(p̌H , p̌L) = arg min
(pH ,pL)∈Mδ

∑
i,j∈{S,F}

pLi p
H
j uij .

Note that also P̄ij(H,H) depends in a continuous way on δ. In analogy to the proof of proposition

1 in [14] one can artificially bound the constraint set due to the agent’s risk aversion. Therefore,

Berge’s maximum theorem implies that the solution to this problem is upper hemi-continuous.

Hence, we can find an δ > 0 such that the solution to the principal’s problem is arbitrarily close

to the solution to the the principal’s problem for the case where δ = 0, which is an independent

contract. In what follows, we will therefore omit the dependence on δ, but assume δ is indeed

as small as needed.

The Lagrangian for the principal’s minimization problem is given by:

L =
∑

i,j∈{S,F}

P̄ij(H,H)h(uij)− λ
∑

i,j∈{S,F}

p̃Hi p̃
H
j uij − µ

∑
i,j∈{S,F}

(
p̃Hi p̃

H
j uij − p̌Li p̌Hj uij

)
where

p̃HS = arg min
pH∈MH

pHS (pHS uSS + (1− pHS )uSF ) + (1− pHS )(pHS uFS + (1− pHS )uFF ) (12)

and

(p̌HS , p̌
L
S) = arg min

(pH ,pL)∈M
pLS(pHS uSS + (1− pHS )uSF ) + (1− pLS)(pHuFS + (1− pHS )uFF ) (13)

Since in the optimal independent scheme, uSS = uSF > uFS = uFF , in any contract that is

sufficiently close to the optimal independent contract, it is true that p̃HS = minpH∈MH pHS . By

similar arguments, p̌LS = minpL∈ML pLS for all contracts that are sufficiently close to the optimal

independent contract. The value of p̌H is harder to determine, but also of less importance.

At those points where the Lagrangian is differentiable, the first-order derivatives become:

∂L(uSS , uSF , uFS , uFF , λ, µ)/∂uSS = ((p̄HS )2 + σ2
H)h′(uSS)−

(
(λ+ µ)(p̃HS )2 − µp̌LS p̌HS

)
∂L/∂uSF = ((1− p̄HS )p̄HS − σ2

H)h′(uSF )−
(
(λ+ µ)p̃HS (1− p̃HS )− µp̌LS(1− p̌HS )

)
∂L/∂uFS =

(
p̄HS (1− p̄HS )− σ2

H

)
h′(uFS)−

(
(λ+ µ)p̃HS (1− p̃HS )− µp̌HS (1− p̌LS)

)
∂L/∂uFF = ((1− p̄HS )2 + σ2

H)h′(uFF )−
(
(λ+ µ)(1− p̃HS )2 − µ(1− p̌HS )(1− p̌LS)

)
.

(14)
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At points where the Lagrangian is not differentiable, the right hand sides of the above

formulae still corresponds to directional derivatives, given the right choice of p̌HS . (Close to an

independent contract, p̌HS is the only potential source of non-differentiability. In many cases,

also p̌HS stays unchanged close to any independent contract, so that the Lagrangian is in fact

differentiable. This is the case e.g. if pHS and pLS are perfectly positively or negatively correlated.)

Suppose first that uSS > uSF . Consider the vector vS ≡ (− 1−p̃HS
p̃HS

, 1, 0, 0, 0). The correspond-

ing directional derivative can be computed to equal

∇vSL =−
p̄H +

σ2
H

p̄HS

p̃HS
(1− p̃HS )p̄HS h

′(uSS)− µp̌
H
S

p̃HS
p̌LS(1− p̃HS )

+

(
1− p̄HS −

σ2
H

p̄HS

)
p̄Hh′(uSF ) + µp̌LS(1− p̌HS ).

(15)

To see that this directional derivative is indeed negative for all uSS ≥ uSF consider first the

terms multiplying µ. Since p̌HS /p̃
H
S ≥ 1 and 1− p̃HS ≥ 1− p̌HS , these terms sum to at most zero.

Since
p̄HS +σ2

H/p̄
H
S

p̃HS
> 1, (1− p̃HS ) > (1− p̄HS − σ2

H/p̄
H
S ), and h′ is increasing, for all uSS ≥ uSF the

remaining terms sum to a strictly negative number. Hence, the principal’s cost decreases in this

direction, so that uSS ≥ uSF cannot be optimal. For vF = (0, 0,− 1−p̃HS
p̃HS

, 1, 0, 0), the directional

derivative is given by

∇vFL =−
p̄HS −

σ2
H

1−p̄HS
p̃HS

(1− p̃HS )(1− p̄HS )h′(uFS)− µ(1− p̌LS)
p̌HS
p̃HS

(1− p̃HS )

+

(
1− p̄HS +

σ2
H

1− p̄HS

)
(1− p̄HS )h′(uFF ) + µ(1− p̌LS)(1− p̌HS ).

(16)

By the same arguments as above, the terms multiplying µ sum up to a non-positive number.

For uFS ≥ uFF the remaining terms add to a strictly negative number, since
p̄HS −σ

2
H/(1−p̄

H
S )

p̃HS
> 1

while (1−p̃HS ) > (1− p̄HS + σ2
H/(1− p̄HS )). Hence, a situation with uFS ≥ uFF does not minimize

implementation costs.

Proof of Proposition 7

An independent bonus contract is a contract where u12 = u11 ≡ uF , u22 = u21 ≡ uS , the

individual rationality constraint becomes:

uF + p̄HS (uS − uF ) ≥ u0 + cH +AH

where for a ∈ H,L,

Aa =
1

α
log

(∫
M

exp
[
−αp̂HS (uS − uF )

])
dµ̂a.
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The IC constraint becomes

(p̄HS − p̄LS)(uS − uF ) ≥ cH − cL +AH −AL.

In the absence of ambiguity aversion, AH = AL = 0. Since exp−αu is convex in u for α > 0

and µ̂H is a mean-preserving spread of µ̂L, under ambiguity aversion AH ≥ AL ≥ 0. Hence,

both constraints tighten weakly, which means that the principal’s profits can never increase.

Proof of Proposition 8

We show that, while implementation costs for tournaments stay bounded, they tend to

infinity for independent contracts as ambiguity and ambiguity aversion grow sufficiently large.

Consider first an independent bonus contract. Consider the extreme case of infinite ambiguity

aversion, the limiting case of the CAAA specification of the smooth ambiguity model as α

approaches infinity. Recall that such preferences can be represented by the maxmin model of

ambiguity aversion[4]. Assume ambiguity is high enough so that min(1−pHS ,pHS )∈MH pHS ≤ ε.

A bonus contract needs to satisfy the IC constraint:

min
(1−pHS ,pHS )∈MH

uF + pHS (uS − uF )− cH ≥ min
(1−pLS ,pLS )∈ML

uF + pLS(uS − uF )− cL.

Since the minimization problem on the left hand side is solved by (1−ε, ε), it becomes necessary

that ε(uS − uF ) ≥ cH − cL . It is intuitive that as ε gets very small, the principal needs to pay

a very high bonus, which leads to large costs to provide incentives for H. To see this formally

note that the IR constraint binds in every optimal bonus contract,

uF = u0 + cH − ε(uS − uF ).

The implementation costs for the principal satisfy

h(uF ) + pHS (h(uS)−h(uF )) > h(uF + pHS (uS −uF )) ≥ h
(
u0 + cH + pHS

cH − cL

ε
− (cH − cL)

)
.

Since h is convex, the right hand tends to infinity as ε decreases, i.e. for a sufficiently small ε

implementation costs for a bonus contract get arbitrarily large. It might however be possible

that no bonus contract meets the constraints (if e.g. ε = 0, if the low action is not too ambiguous,

or if u is bounded so that the domain of h is too small.)

Now consider a tournament. Regardless of the degree of ambiguity aversion, the IR constraint

is: uL + 1
2 (uW − uL) ≥ u0 + cH . The IC is always satisfied if 1

2 (p̄HS − p̄LS)(uW − uL) = cH − cL.

Hence, a tournament where (uW−uL) is determined in this way, while uL is determined to satisfy

33



the IR provides an upper bound on the principal’s implementation costs. Thus, given infinite

ambiguity aversion, if ambiguity gets high, implementation costs will become unbounded for

bonus contracts (or it becomes impossible to use them), while the costs for the best tournament

stay bounded. It may however be the case that the principal prefers to implement L for both

agents, if she finds a constant contract better than all tournaments (and hence independent

contracts). Provided u is unbounded, this will not be the case if qS − qF is large enough.

Proof of Proposition 9

Step 1 (Describing ambiguity free wage schemes.). As in the case of two outcomes, a wage

scheme eliminates all ambiguity iff

I∑
i,j=1

pHi p
H
j uij = constant over MH . (17)

Written in matrix-form, where pH is interpreted as a row vector and the matrix U is defined

by U = (uij)i∈I,j∈I , it is required that pHU(pH)T is a constant for all p ∈ MH . This holds iff

pH(U + UT )(pH)T is constant.

Step 2 (Constant-sum schemes eliminate all ambiguity.). We normalize u11 to equal zero, since

if equation (17) is satisfied for scheme, it is satisfied by any other scheme that differs by a

constant. Then, if a scheme satisfies the constant-sum property, uij + uji = u11 + u11 = 0 for

all i ∈ Q and j ∈ Q. Thus, a scheme is constant-sum iff U +UT = 0 in this case, so that indeed

equation (17) holds.

Step 3 (If there are less then I(I+1)/2 priors in MH , there exists a non-constant-sum contract

that also eliminates all ambiguity about wages.). Fix any prior p̌ ∈ MH . Assume (w.l.o.g)

that U is a diagonal matrix, and u11 = 0. Condition (17) is satisfied if
∑I
i,j=1 p

H
i p

H
j uij =∑I

i,j=1 p̌
H
i p̌

H
j uij for all pH ∈ MH \ {p̌H}. Hence, this condition can be interpreted as a (linear

homogeneous) system of |MH | − 1 equations in I(I + 1)/2− 1 unknowns. If |MH |-1 is less than

I(I + 1)/2 − 1, there must be a solution other than the trivial solution U = 0. Any scheme

where U 6= 0 (or U + UT 6= 0) does not have the constant sum property.

Step 4 (If there are I(I+1)/2 suitably chosen priors, only constant-sum schemes eliminate am-

biguity.). We now describe, for any fixed average probability distribution p̄H >> 0, an example

of a set MH of exactly I(I−1)/2 priors which is sufficiently diverse to ensure that AH = 0 only

for constant-sum schemes. Suppose first that p̄H ∈MH . Let ei be an I-dimensional vector that
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equals 1 for coordinate i and 0 otherwise. Suppose that MH consists of at least the following

elements. For every pair (i, j) such that 1 ≤ j < i, MH contains an element pij such that,

for some sufficiently small ε, pij ≡ p̄H + εei − εej . Also suppose that MH contains, for i ≥ 2,

p̃i = p̄H − γiei + γie1. It is easy to check that some γi > 0 can be chosen such that indeed

p̄H remains the average probability distribution. For this set of priors, we will now show that

AH = 0 only for constant sum schemes. Now let U(p) ≡ pUpT . Suppose AH = 0 . Then U(p)

is constant over all elements in MH . We now show that this implies three properties of such

contracts.

Property 1. Since U(p̄H)−U(p1i) = U(p̄H)−U(p̃i) = 0 for all i ≥ 2, (U(p̄H)−U(p1i)/ε)−(U(p̄H)−

U(p̃i)/γi) = 0. Since omitted calculations reveal that (U(p̄H)−U(p1i)/ε)− (U(p̄H)−U(p̃i)/γi) =

−(γi + ε)(uii − (u1i + ui1)), it must be the case that uii = (u1i + ui1) for all i ∈ I.

Property 2. Now, for arbitrary 1 < j < i, one can show that (U(pij) − U(p̄H)) − (U(p1i) −

U(p̄H)) + (U(p1j)−U(p̄H)) = ε (uij + uji − (u1j + uj1)− (u1i + ui1)) . Hence uij +uji = (u1j +

uj1) + (u1i + ui1) for all 1 < j < i.

Property 3. Using properties 1 and 2 one can show that, U(p1i)− U(p̄H) = ε(u1i + ui1) so that

that ui1 + u1i = 0 for arbitrary i. Together, these three properties imply that uij + uji = 0

for all combinations of i, j ∈ Q. Hence, for the set of priors described above, if AH = 0, the

contract must be a constant-sum scheme.

Thus, if MH contains e.g. these beliefs, only constant-sum schemes can implement the first

best.

Step 5 (Coarse constant sum schemes satisfy IC). Now, we show that a certain coarse constant-

sum tournament always provides incentives to choose the high action.

Since we assume that H is better for the principal,
∑
i p̄
H
i qi >

∑
i p̄
L
i qi. Thus, there must

exist a k > 1 such that
∑
i≥k p̄

H
i >

∑
i≥k p̄

L
i .Otherwise p̄L would first-order stochastically dom-

inate p̄H , so that the principal would prefer L. Now suppose that the principal designs a coarse

tournament (with random tie-braking) that considers only whether or not each agents’ outputs

exceed the output level qk (i.e the function f , used in the definition of a coarse tournament, is

given by f(i) = 2 for i ≥ k and 1 otherwise). Arguments parallel to the case of two outcomes

establish that a high enough prize provides incentives for H, and since no ambiguity premium

needs to be paid for constant-sum schemes, the first best can still be achieved.
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