Provenance Composition in PROV

Peter Buneman', Adria Gascoén', Luc Moreau?, and Dave Murray-Rust!

1 School of Informatics, University of Edinburgh
2 Electronics and Computer Science department, University of Southampton

Abstract. When two communicating processes each record their own prove-
nance, what extra information needs to be recorded in order that a satis-
factory account can be given, of the combined process? We propose a set
of requirements on (i) the kind of information that the processes can share
and (ii) the kind of queries that should be answerable from the combined
provenance graph. We describe a solution using PROV.

1 Introduction

We examine the following scenario, which we believe may be quite common. Two
processes, possibly long-running, communicate with one another. Each keeps an in-
cremental record of its provenance. What, in addition to the two provenance stores
do we need to keep in order to record the communication and to allow a satisfactory
account of the provenance of combined processes? An example, given in [1], is of
a research group communicating with a clinical data provider. Each side records
its own provenance, but neither side wants to take responsibility for recording the
other’s provenance; nor — perhaps because of security or differing software environ-
ments — do they want to share their recording process with the other. However, they
want to record enough about the communication that a provenance record of the
entire process could be constructed if needed — perhaps because the research had
discovered the existence of a patient at risk.

In a study of the problem of representing composition and substitution in graphical
models of workflows and provenance [1], it was suggested that a graph model in
which each node had labelled ports was needed in order to specify general operations
such as composition and substitution on provenance graphs. What we propose here
is a less general recipe based on message labelling for recording, in PROV, sufficient
information about the communication that a satisfactory PROV account of the
combined processes can be constructed.

While message passing has been studied in various proposals related to PROV
and distributed provenance stores (a brief summary is given in Section 8), these
proposals alone do not provide enough to address address the requirements we give
here. In the closely related area of workflow models, abstractions have been proposed
for the composition and substitution of workflows [2,3]. Indeed, [3] investigates a
model of workflows in which the purpose is to conceal the provenance associated
with some part of the workflow in a series of executions of that workflow.

Our purpose in this paper is to provide a recipe for combining provenance descrip-
tions formulated in PROV, and we assume a working familiarity with PROV. For
the purpose of this explanation, it is enough to regard a PROV document as a set
of statements, that correspond to the labeled edges in the its associated graph.

Our intention is to do this in a way that is transparent and would cause minimal
effort for an organization that is already keeping a PROV record. That is, we want
to make minimal assumptions about how PROV is used.

This paper is organised as follows. Section 2 defines five requirements that prove-
nance composition in PROV needs to address. After defining some notations (Sec-
tion 3), we propose a minimal solution, addressing two of these requirements. Then,
Sections 5, 6 and 7 successively address the remaining requirements, building on
PROV notions of bundle, attribution and ping-back, respectively. Related work,
discussed in Section 8, is followed by the conclusions in Section 9.

2 Requirements

We want to be able to give a “satisfactory” account of the combined provenance,
but what, in practice, does this mean? One could imagine some formal criteria based
on reachability or causality [4], but this would not cover some of the practical issues
such as responsibility for generating the relevant provenance data or for making
sure that it is accessible. Instead we offer what we believe to be a practical set
of requirements, with the understanding that some more formal analysis might be
desirable. As mentioned above, in the scenario considered in this paper, we have
two processes, or parties, A and B that communicate with each other.

1. The solution should use existing machinery — that belonging to A and B — for
generating new URIs, and should not have to rely on a new “authority”.

2. The parties should disclose as little information as possible about their local
provenance, in particular URI naming schemes should be kept private.

3. When A sends a message m to B, B should be made aware of the location of A’s
provenance graph, even if B is denied access to that graph, i.e., a third party
examining B’s provenance should be able to find the provenance graph of the
sender of m.

4. Information regarding origins should be preserved in the combined provenance
graph, e.g. it should be easy to check whether a given entity in the joint prove-
nance graph was generated by A or B.

5. The converse of requirement 3 should also hold: The provenance of A should
be enough to identify the recipient of a message sent by A, and its associated
provenance.

There are many solutions satisfying these general constraints. After introducing
some notation, in Section 4 we describe what we believe is a minimal approach to
this problem that satisfies requirements 1 and 2. Later, we extend our proposal to
satisfy the rest of our requirements.

3 Notations

As above, consider two processes, or parties, A and B. If A sends some data D; to
B, we assume that A denotes D; by an identifier, or URI, d‘f‘; similarly, B denotes
the received data D; as dP. A subsequent piece of data Do from A to B will be
denoted by URIs d3' and d¥ and so on. Note that we use superscripts to denote the
party that minted a given identifier. To be able to construct a satisfactory combined
provenance graph, it is essential that we capture the pairing (df', d?), (d2', d),
This pairing, or correspondence, might be recoverable from accurate timestamping,
but even if this is available, it will not be enough if messages can be sent in parallel.
We shall use the term combined provenance graph to mean the result of taking union
of the local provenance graphs of A and B, where nodes with the same identifier are
merged.

4 A minimal approach to provenance composition in PROV

In this section, we focus on how to collect and represent, in PROV, the pairing
(dgt,dP), (d3',dE),. .. described in the previous section. Because we are using PROV
to represent the provenance of A and B, the identifiers df',d?,d4',d¥, ... are URIs
generated by the two processes, or by whatever mechanism records the provenance of
these two processes. As mentioned above, in general, we use superscripts to indicate
the process that generated the URI. Thus, d{* is a URI generated by process A.
From now on, when we refer to a piece of data d*, or a message m”, we mean,
respectively, a PROV entity with URI d* minted by A denoting some data D, and
a PROV entity with URI m®? minted by B denoting a message.

Although we will explore this assumption in the next section, for the moment, we
do not make any assumptions on how A (resp. B) records its interactions with B
(resp A). Figure 1 illustrates the provenance graphs constructed by A and B, after
data items D7 and Dy were communicated from A to B.

s used .
.« wasGeneratedBy . . .
! wasGenarstedBy : . usad .

PROV graph of process A PROV graph of process B

Fig. 1. The provenance graphs of processes A and B.

The entities denoted by d' and d? (resp. denoted by d5' and d¥) in Figure 1 may
correspond to a variety of scenarios, such as a file being sent from A to B, or an
acknowledgement being sent as part of a TCP data transfer from A to B. Even
though d{' and dP ultimately denote the same data, there are reasons for allowing
them to have different URIs. For example a TCP packet on arrival may not be
identical to what has been sent, or df may refer to some data that A subsequently
modifies.

The main problem is that nothing in Figure 1 captures the pairing between df* and
dP (resp. d5' and d¥). Thus, the fact that they respectively denote a data item
that was communicated with a message between A and B is not captured in the
graphs of Figure 1. We propose to represent this pairing in PROV by describing
the messages as entities with URIs m{ and m2' in Figure 2. Moreover, we represent
the fact that the message m{* contains the data d{', also an entity, by means of the
“wasDerivedFrom” relation. One could also represent represent other data relevant
to the message, such as address of the recipient and destination port, with additional
“wasDerivedFrom” PROV relations to the corresponding entities. Conversely, the
data denoted by d¥ is extracted from the message m3', which is expressed by means
of a further derivation again by means of an edge “wasDerivedFrom” from d¥ to
m4', as shown in in Figure 2.

Note that the URIs of entities m1{',m3', as denoted by their superscript, must be
generated by process A. It is also important to note that both A and B use the
same identifier to denote the message they exchanged. By simply taking the union
of the PROV graphs in Figure 2, we get the combined PROV graph in Figure 3.

Note that requirement 2 is satisfied as long as the only URIs that are communicated
between A and B are m{' and m3'. Indeed, the identifier d' used internally by A

PROV graph of process A PROV graph of process B

Fig. 2. Entities m{ and m4 denote the existence of messages sent from A to B.

" Composed PROV graph of processes Aand B

Fig. 3. The combined provenance graph of processes A and B in PROV.

to denote the data before communication does not have to be revealed to B, and
vice versa.

Up to this point, we proposed that the URIs denoting messages, minted by the
sender of the message, should be the only provenance-related information exchanged
by the parties in addition to the data itself. The best way of exchanging such
information depends on the specifics of the communication protocol. For that reason,
we will not propose a concrete method for exchanging provenance information in this
section. However, we will revisit this issue later on, when we address requirement 3.

5 Distributed provenance

Requirement 3, although simple to state intuitively, is not trivial to capture formally.
Note that, when we require B’s provenance to refer to A’s provenance we are in
fact refering to “provenance of provenance”.

To this end, PROV introduces the concept of bundle [5], defined as a named set
of provenance statements; it is a mechanism by which provenance of provenance
can be expressed. With bundles, a provenance description can be given a name and
can itself be regarded as an entity, whose provenance can in turn be described us-
ing PROV. Bundle names are URIs, which are also minted by the bundle creator,
and can act as locator for the bundle, allowing its contents to be accessed accord-
ing to some suitable access control. Section 6 deals specifically with the notion of
attribution.

In a distributed setting, bundles, can be maintained at different locations by the
various components of an application. In such a situation, bundles act as distributed
islands of information that a provenance consumer needs to be able to navigate. For

instance, given a statement about m3! in a bundle produced by B, where can we
find its provenance, which has been captured by A.

For this, we introduce the property topicIn [6] of an entity, which allows us to
connect an entity in a given bundle, to another bundle where more provenance
about that entity can be found.

Hence, a combination of bundles and the topicIn property are enough to address
requirement 3. The solution requires A to create provenance descriptions related to
the communication with B in a bundle?, and share the bundle URI with B, like m#
was shared with B. Then, B can add a property topicIn to entity m*, allowing
navigation from B’s bundle to A’s bundle, referred to as backward navigation. In the
following section, we show how to address requirement 4, and update our running
example.

6 Attribution

For many purposes, a key consideration for deciding whether something is reliable
and/or trustworthy is knowing who or what was reponsible for its production. Data
published by a respected independent organization may be considered more trust-
worthy than that from a lobby organization; a claim by a well-known scientist with
an established track record may be more believed than a claim by a new student; a
calculation performed by an established software library may be more reliable than
by a one-off program.

In our case, if the team performing analysis of anonymised clinical data identifies a
patient at risk, it would need to find which organisation provided the clinical data
about the patient.

PROV defines attribution as the ascribing of an entity to an agent [5]. Likewise, an
activity association is an assignment of responsibility to an agent for an activity,
indicating that the agent had a role in the activity [5]. Moreover, bundles can also
be seen as entities, and therefore can be attributed to an agent. This gives us the
necessary machinery to address requirement 4. Figure 4 shows an updated version of
Figure 3, where the presented PROV machinery for fullfilling requirements 3 and 4
has been incorporated.

(Adria: Labels in figures should be enlarged and placed properly. J

7 Forward reachability and provenance pingback

To satisfy Requirement 3, A has to share the identifier of the provenance bundle it
created, as well as B has to add the topicIn property to the description of message
mi it received from A, so that backward navigation from B’s bundle to A’s bundle
becomes possible. Requirement 5 mandates the converse: the description of message
m4' in A’s bundle should also include a topicIn property pointing to the bundle of
B containing further provenance description about the message m3' received from
A. This in turn allows for forward navigation (or forward reachability)of B’s bundle

from A’s bundle.

3 The solution is flexible as it allows A to decide how to organise its provenance according
to messages and recipients in bundles.

k
wpesprovBundle | | vaues 0 (DRI r— m
v N

2>
type: exMessage Ceommb) (k)

:

type: prov:Bundle value: &

comm_b

Fig. 4. Combined provenance graph with bundles and recorded attribution of a message
sent from A to B. Party A contructs a bundle called comm_a containing descriptions of
entities for the message being sent and its data. Both such bundle and the message’s data
are attributed to an agent representing A. Also, the provenance of the data of the message
is associated to a bundle priv_a. This addresses requeriments 2 and 4. Analogously, B
constructs a bundle called comm b attributed to an agent representing B. Note that, in
B’s provenance, the message has a topicIn property refering to A’s comm_a bundle, which
allows B to trace the provenance of message m to A’s provenance, fulfilling requirement 3.
As all URIs are minted by either A or B, requirement 1 is also fulfilled.

For this to happen, A needs to be made aware of the bundle containing B’s prove-
nance descriptions. If the location of B’s bundle was agreed before communication
(e.g., by negotiation or at application design time), A can directly express the
topicIn property as its provenance is being generated. In the more common cir-
cumstances in which the location was not agreed before communication, there is a
requirement put on B to communicate the location of its bundle back to A: this
requirement necessitates a message to be passed from B to A.

Two cases are then possible: either B’s bundle location can be piggybacked onto
a subsequent application message from B to A, or an extra message solely for
the purpose of sharing this information can be sent. While the former approach
does not require extra messages to be exchanged, forward reachability guarantees
are difficult to be made, since it is dependent on the application’s behaviour to
pass that information (B may be very slow to respond back to A, for instance).
In the latter option, dedicated messaging allows for prompt availability of forward
reachability. PROV-AQ [7] offers a mechanism to support this functionality referred
to as pingback: when sending m{', A can share the address of a pingback endpoint,
to which B can post the location of its bundle. Upon receiving a bundle location, A’s
pingback endpoint can enrich A’s provenance descriptions with a topicIn property.

8 Related provenance models

Workflow systems such as Taverna [8] provide facilities for the composition of work-
flows and for the representation of subroutines. Also, in [9] a method is described
for labelling that allows modules to be recursively expanded (a form of graph sub-
stitution). In these models, the basic module is described with labelled inputs and
outputs. In this paper, we have used message identifiers as these labels. Using global
identifiers as labels has some limitations — it does easily permit any kind of graph
substitution or recursive expansion — but it is sufficient for what we want to do here,
which is to compose existing provenance graphs. A more general solution based on

port labelling [1] could be simulated in PROV, but it would substantially complicate
the solution.

Message identifiers are also used in the Provenance-Aware Service Oriented Archi-
tecture (PASOA [10, 11]), in which so-called event identifiers allow the linking of
assertions independently made by the senders and receivers of messages, in a struc-
ture called the p-structure. Such p-structures can be recorded in distributed prove-
nance stores. PASOA defines a notion of p-header [11] as a header to be inserted
in messages and containing provenance-specific information: a p-header includes a
message identifier and a list of URIs denoting the provenance stores the sender
used to record provenance in. Such URIs allow the distributed p-structure to be
navigated both backward and forward.

While PASOA [10, 11] was framed in the context of service-oriented architectures,
and specifically of Web Services, the Open Provenance Model (OPM [12]) adopted
a conceptual data model to define provenance. In this context, the mechanisms
defined by PASOA [10,11] were re-framed in OPM [13]: on the sending side, a
message to be sent (described as an entity in PROV terminology [5]) is derived
from the data inserted in it; on the receiving side, data received is extracted from
a received message. The link between a received message and a sent message is
established by its identifier. This approach [13] shares several aims with this paper,
but pre-dates the Recommendation PROV [5], and therefore is not standardised.
Furthermore, it fails to deconstruct the solution according to the requirements it
seeks to address.

PROV [5] introduces two notions absent from OPM used in this paper. First, PROV
has a notion of attribution, allowing an entity to be ascribed to an agent; second,
PROV introduces the concept of bundle [5], which we used in our proposal to
ensure that provenance can be traced backwards across systems boundaries. To this
purpose, we also use the topicIn relation introduced by Moreau and Groth [6]. This
relation is used to to associate an entity with a bundle, in which further descriptions
about that entity can be found. The relation topicIn bears some similarity with
mentionOf [14], except that it is not defined as a subproperty of specializationOf [5]
(which therefore was irreflexive, and did not allow us to refer to the same entity
occurring in a separate bundle).

While PASOA'’s p-header introduced the idea of embedding provenance information
in messages, PROV-AQ [7] provides a partial instantiation of this idea in the context
of HT'TP. For a resource accessible using HT'TP, the location of its provenance may
be indicated by using the HTTP Link header field [15] has_provenance, referring
to a URL where further provenance can be found. Note that PROV-AQ [7] only
allows such Link header field to be included in the HTTP response to a GET or
HEAD operation, and it is unclear whether this approach would be sufficient for
the solution we propose here.

PROV-AQ also introduces a “pingback” mechanism by which any client is allowed
to report the existence of a provenance about a given resource [7]. The “pingback”
mechanism is declared by another HT'TP Link header field, pingback, providing a
URL to which location of provenance can be posted to. WebMention [16] is a norma-
tive mechanism enabling similar posting back of URLs to allow forward navigation
of documents on the Web.

The approach we describe here keep the provenance separate from the data be-
ing communicated. Alternative approaches, such as Souilah et al. [17], enrich data
with a provenance field that accumulates the send/receive operations it underwent.
Given that provenance information is carried along with data, sharing of provenance

information is not possible for data products that have a common provenance. In
contrast, graphical models such as PROV and OPM allow for such a sharing.

9 Concluding Remarks

We have constructed a solution according to five requirements that need to be
addressed to allow provenance composition in PROV. First, we have identified a
minimal solution by which a message identifier is shared by its sender and receiver,
to allow a form of composition addressing the first two requirements. The minimal
solution was then progressively enriched with bundles and the topicIn property,
attribution and the pingback mechanism to address subsequent requirements suc-
cessfully.

While the solution that we offer here addresses a gap in the PROV specifications, it
still leaves open a number of practical issues. To ensure inter-operable behaviour, is-
sues that need to be worked out in detail include the conventions to share identifiers,
the normative definition of topicIn, and the ability to access (or dereference) bun-
dles from their identifiers. From a foundational viewpoint, a more formal study of
the protocol might be desirable in conjunction with the notion of labelled ports [1].

References

1. Buneman, P., Gascén, A., Murray-Rust, D.: Composition and Substitution in Prove-
nance and Workflows. In: Proceedings of the 8th USENIX Worshop on the Theory and
Practice of Provenance, TAPP 2016, June 8-9, 2016, Washington D.C. USA. (2016)

2. Cohen-Boulakia, S., Chen, J., Missier, P., Goble, C., Williams, A.R., Froidevaux, C.:
Distilling structure in taverna scientific workflows: a refactoring approach. BMC bioin-
formatics 15(1) (2014) 1

3. Davidson, S.B., Khanna, S., Milo, T., Panigrahi, D., Roy, S.: Provenance views for
module privacy. In: Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, PODS 2011, June 12-16, 2011, Athens,
Greece. (2011) 175-186

4. Cheney, J.: Causality and the semantics of provenance. arXiv preprint arXiv:1004.3241
(2010)

5. Moreau, L., Missier (eds.), P., Belhajjame, K., B’Far, R., Cheney, J., Coppens, S.,
Cresswell, S., Gil, Y., Groth, P., Klyne, G., Lebo, T., McCusker, J., Miles, S., Myers,
J., Sahoo, S., Tilmes, C.: PROV-DM: The PROV Data Model. W3C Recommendation
REC-prov-dm-20130430, World Wide Web Consortium (April 2013)

6. Moreau, L., Groth, P.: Provenance: An Introduction to PROV. Morgan and Claypool
(September 2013)

7. Klyne, G., Groth (eds.), P., Moreau, L., Hartig, O., Simmhan, Y., Myers, J., Lebo, T.,
Belhajjame, K., Miles, S.: PROV-AQ: Provenance Access and Query. W3C Working
Group Note NOTE-prov-aq-20130430, World Wide Web Consortium (April 2013)

8. Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-science: An overview
of workflow system features and capabilities. Future Generation Computer Systems
25(5) (2009) 528-540

9. Bao, Z., Davidson, S.B., Milo, T.: Labeling workflow views with fine-grained depen-
dencies. Proceedings of the VLDB Endowment 5(11) (2012) 1208-1219

10. Groth, P.,; Miles, S., Moreau, L.: A Model of Process Documentation to Determine
Provenance in Mash-ups. Transactions on Internet Technology (TOIT) 9(1) (2009)
1-31

11. Groth, P., Jiang, S., Miles, S., Munroe, S., Tan, V., Tsasakou, S., Moreau, L.: An
architecture for provenance systems. Technical report, University of Southampton
(February 2006)

12.

13.

14.

15.
16.

17.

Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska,
N., Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E., Van den
Bussche, J.: The open provenance model core specification (v1.1). Future Generation
Computer Systems 27(6) (June 2011) 743-756

Groth, P., Moreau, L.: Representing distributed systems using opm. Future Generation
Computer Systems 27(6) (June 2011) 757-765

Moreau, L., Lebo, T.: Linking across provenance bundles. W3C Working Group Note
NOTE-prov-sem-20130430, World Wide Web Consortium (April 2013)

Nottingham, M.: Web linking. Internet RFC 5988, IETF (October 2010)

Parecki, A.: Webmention. W3C Recommendation REC-webmention-20170112, World
Wide Web Consortium (January 2017)

Souilah, I., Francalanza, A., Sassone, V.: A formal model of provenance in distributed
systems. In Cheney, J., ed.: TAPP’09: First workshop on on Theory and practice of
provenance, San Francisco, CA, USENIX Association (February 2009)

