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Abstract

In this work we propose two formulations based on Support Vector Ma-
chines for simultaneous classi�cation and feature selection that explicitly
incorporate attribute acquisition costs. This is a challenging task for two
main reasons: the estimation of the acquisition costs is not straightforward
and may depend on multivariate factors, and the inter-dependence between
variables must be taken into account for the modelling process since compa-
nies usually acquire groups of related variables rather than acquiring them
individually. Mixed-integer linear programming models are proposed for
constructing classi�ers that constrain acquisition costs while classifying ade-
quately. Experimental results using credit scoring datasets demonstrate the
e�ectiveness of our methods in terms of predictive performance at a low cost
compared to well-known feature selection approaches.

Keywords: Analytics, Feature selection, Support Vector Machines,
Mixed-integer Programming, Credit scoring.

1. Introduction

Support Vector Machine (SVM) [32] is a well-known machine learning
tool for classi�cation. Among existing methods, it provides important ad-
vantages, such as adequate generalization to new samples, absence of local
minima, and a representation that depends on only a few parameters [16].

Feature selection is the process of choosing a subset of only relevant pre-
dictors for use in model estimation in order to increase stability, improve
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generalization power, and reduce over�tting [14]. The performance of clas-
si�cation methods, such as SVM, depends heavily on the proper choice of
the feature set used to construct the classi�er, especially in high-dimensional
applications [13, 22]. In business analytics, however, two other goals of fea-
ture selection might be even more important than improving classi�cation
performance: gaining (managerial) insight into the process that generates
the data, e.g. to understand the drivers that lead customers to leave a com-
pany or to default on a loan [20]; and reducing the variable acquisition costs
in domains such as credit scoring, in which companies develop their models
based on heterogeneous data sources.

Feature selection is an NP-hard problem that has been studied and re-
ported extensively in the literature [13]. Most strategies propose the elimi-
nation of features independently of the classi�er construction by exploiting
statistical properties of each of the variables, or via greedy search [19]. All
such strategies are heuristic by nature, and do not necessarily lead to models
that optimize goals speci�ed by the users or the organization they belong to.

Credit scoring corresponds to the use of statistical models to transform
relevant data into numerical measures that guide credit decisions, and its
main objective is to estimate the probability of default, i.e. the event of
a customer not paying back the loan in a given time period [31]. These
models are usually constructed based on historical data from the applicants
to represent their creditworthiness, and also based on credit information from
external sources, such as credit bureaus. For this work we used two credit
scoring datasets from a Chilean bank. These data come from a previously
developed project of small loans granted to micro-entrepreneurs [7].

In most business analytics applications, variables are grouped in such a
way that if one attribute from a group is included in the model, then all
the others in the same group are available at zero additional cost [8, 9].
For example, in credit scoring it is common for banks and other �nancial
institutions to buy sets of variables from credit bureaus, and if one variable
is used in the model, then the whole group of variables may be used for the
modelling process.

The main contribution of this work is the incorporation of the variable ac-
quisition costs in the feature selection procedure for a credit scoring project
with a Chilean �nancial institution. Two novel MIP (Mixed-Integer Pro-
gramming) approaches are proposed for this goal. These are based on the
SVM principles of margin maximization that take into account the cost-based
feature selection framework, while constructing linear classi�ers. The data
sets used in this work have six di�erent groups of variables with di�erent
costs. Some attributes come from external sources, while others are combi-
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nations of the original variables from di�erent groups in the form of �nancial
ratios. We take advantage of this structure in our method, estimating the
combination of data sources that are the most important for the model. Our
approach is valid in applications where variables are acquired from di�erent
sources and at di�erent costs. The estimation of the variable acquisition
costs is also a novel contribution of this work; although it is speci�c for the
credit assignment problem we faced and therefore cannot be extrapolated
directly to other datasets.

The work is structured as follows: In Section 2 previous work on SVM
classi�cation is discussed. In Section 3 previous work on feature selection
for SVM is described, including the formulations that are relevant in this
work. The proposed mixed-integer linear programming methods for SVM
classi�cation and cost-based feature selection are introduced in Section 4. In
Section 5 are provided experimental results using two credit scoring datasets.
We present the main conclusions of this study in Section 6 and address future
developments.

2. Support vector classi�cation

In this section we brie�y describe the standard l2-SVM formulation [32],
and two linear programming SVM extensions, namely the l1-SVM formula-
tion [6], and the LP-SVM method [35]. Both the l1-SVM and the LP-SVM
methods are used to develop a novel framework for cost-based feature se-
lection, while standard SVM is used together with other well-known feature
selection strategies as alternative approaches for benchmarking.

2.1. Standard l2-SVM

Given training points xi ∈ <n with their respective class labels yi ∈
{−1,+1}, i = 1, . . . ,m, SVM determines a hyperplane of the form f(x) =
w>x+ b that minimizes the classi�cation errors, and at the same time max-
imizes the margin, which is computed as the distance between both (re-
duced) convex hulls. A set of slack variables ξ, and a penalty parameter
C that balances the trade-o� between both objectives, are introduced. The
methodology to calculate the parameter C is explained in Section 5.1. The
soft-margin SVM formulation follows:

min
w,b,ξ

1

2
‖w‖22 + C

m∑
i=1

ξi

s.t. ∀mi=1 : yi(w
>xi + b) ≥ 1− ξi, ξi ≥ 0.

(1)
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Formulation (1) is a convex quadratic programming problem that can
be solved e�ciently e.g. by the Sequential Minimal Optimization (SMO)
algorithm [27].

2.2. l1-Support Vector Machine

The traditional SVM formulation can be cast into a linear programming
problem by replacing the use of the Euclidean norm as a regularizer with
the l1-norm or LASSO penalty [6]. The gain in doing so is twofold: on
the one hand the complexity of the problem is reduced, and, on the other,
the LASSO function performs embedded feature selection by reducing the
number of non-zero components of the weight vector w [6].

The l1-norm, however, cannot be used directly because the absolute value
of w is nonsmooth. A set of positive variables w̄ needs to be introduced in
order to cast this problem into a linear programming one. The l1-SVM
follows:

min
w,w̄,b,ξ

n∑
j=1

w̄j + C
m∑
i=1

ξi

s.t. ∀mi=1 : yi(w
>xi + b) ≥ 1− ξi, ξi ≥ 0;

∀nj=1 : −w̄j ≤ wj ≤ w̄j , w̄j ≥ 0.

(2)

2.3. Linear Programming Support Vector Machine

Another linear programming strategy based on SVM was proposed by
Zhou et al. [35], in which the bound of the Vapnik-Chervonenkis (VC) di-
mension is relaxed properly using the l∞-norm, resulting in an LP problem
that maximizes a margin variable r. The LP-SVM method follows:

min
r,w,b,ξ

− r + C
m∑
i=1

ξi

s.t. ∀mi=1 : yi(w
>xi + b) ≥ r − ξi, ξi ≥ 0;

∀nj=1 : −1 ≤ wj ≤ 1; r ≥ 0.

(3)

where C ≥ 0 is a trade-o� parameter that has a similar interpretation com-
pared with the one presented in the standard SVM (Formulation (1)).
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3. Feature selection for SVM

A plethora of feature selection methods has been proposed for SVM clas-
si�cation. Some strategies aim at eliminating poorly informative variables
before applying the classi�cation technique. One such approach is the Fisher
Criterion Score (F ), which computes each variable's contribution by com-
paring the means between both training patterns [13]:

F (j) =

∣∣∣∣∣ µ+j − µ
−
j

(σ+j )2 + (σ−j )2

∣∣∣∣∣ (4)

where µ+j (µ−j ) is the mean of the j-th feature for class +1 (-1), and σ+j
(σ−j ) is the respective standard deviation. The Fisher Score is simple to
implement and performs quickly, but does not take the interactions between
the variables and the classi�er into account. The Fisher Score is one of
the most intuitive best-known approaches in the literature to assess feature
relevance. Alternative two-sample independence metrics, such as the KS and
chi-squared tests, usually achieve similar results compared with the Fisher
Score.

Another family of methods consists of search strategies that explore
various subsets of variables, assessing them in terms of their performance.
Since exhaustive search is usually intractable [13], greedy algorithms such as
Sequential Forward Selection (SFS) and Sequential Backward Elimination
(SBE) have been proposed in the literature [19]. Recursive Feature Elimi-
nation (RFE-SVM) [15] is a popular SBE method that tries to �nd a subset
of relevant variables by eliminating those whose removal leads to the largest
margin of class separation. Compared to the Fisher Score and other �lter
methods, RFE-SVM is computationally more demanding, but it does takes
the interaction between the variables and the classi�er into account, leading
to a potentially better predictive performance [13].

Feature selection can also be a part of the optimization process used to
construct the classi�ers [34]. Such methods have the advantage of being
computationally less intensive than search strategies [13]. Some MIP mod-
els have been proposed for this purpose. For example, an MIP for feature
selection based on the assumption of feature independence was introduced
in Iannarilli and Rubin [18]. Recently, Bertsimas et al. [5] proposed a MIP-
based two-step algorithm for a linear regression problem. Their proposal
�nds good feasible solutions in the �rst stage, which are used as warm starts
to a MIP problem in the second step.

Some methods have incorporated binary variables in the SVM classi�ca-
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tion problem. In Mangasarian and Wild [24], a kernel-based SVM classi�er is
proposed, in which a linear model is used to construct the hyperplane while
the feature selection is performed by successive updates of the binary vari-
ables related to each attribute. In Carrizosa et al. [9], another MIP model
was proposed for multi-class classi�cation, in which bi-objective optimiza-
tion was used to balance the trade-o� between �t and feature elimination.
The authors also propose a framework for addressing the variable acquisition
cost minimization problem, which is also discussed below in our proposal.
Finally, we extended the ideas of Carrizosa et al. [9] in Maldonado et al. [21],
where two MIP models that included an additional budget constraint were
proposed.

In this work we propose two novel mixed-integer linear programming
models based on SVM, in which cost-based feature selection is performed
by taking the variable acquisition costs into account. To the best of our
knowledge, there are no studies devoted to the estimation of the variable
acquisition costs in the context of SVM, and classi�cation in general. In
Carrizosa et al. [9], the authors used well-known data sets from the UCI
Repository [3] for the experimental section, and simulated costs were studied.
In Maldonado et al. [21], microarray datasets were studied, and all variables
(genes) were treated independently, and with similar acquisition costs.

4. Proposed cost-based framework for feature selection and SVM

classi�cation

In this section, we extend two SVM formulations based on linear pro-
gramming to MIP, namely, the l1-SVM and the LP-SVM methods (For-
mulations (2) and (3)). We use these formulations instead of the classical
l2-SVM (Formulation (1)) because the latter has a higher complexity since
it is a quadratic formulation instead of a linear one, assuming that the in-
clusion of binary variables causes a signi�cant increase in running times due
to the higher complexity. The proposed mixed-integer linear problems can
be solved e�ciently via state-of-the-art optimization tools, while a mixed-
integer quadratic model would be much more expensive computationally.

Section 4.1 presents the description of the credit scoring project used
in this paper, with a description of the datasets and the estimation of the
variable acquisition costs for each group of variables. The datasets and their
characteristics are presented before our proposal to enhance readability, and
for a better understanding of the framework. Next, in Section 4.2, we present
the framework used to incorporate variable acquisition costs into the SVM
models. Subsequently, the two proposed MILP formulations for SVM are
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described in Section 4.3. Finally, in Section 4.4 there is a discussion of an
additional issue, the class-imbalance problem, and the strategy we used to
deal with skewed class distributions.

4.1. Dataset description and cost analysis

The dataset used in this paper consists of 7309 loans granted to small
and micro companies, repaid in monthly instalments, granted by a local bank
during the period 2004-2007. The dataset includes a total of 676 variables
characterizing the loans, the borrowers, and the �nancial history of the bor-
rower which is available for all returning customers. The dataset was split
according to the credit history with the bank, resulting in two datasets: new
customers (NC) with 1510 loans, and returning customers (RC) with 5799
loans. The numbers of defaulters are 629 and 872 for the new and returning
customers, respectively, leading to imbalance ratios (IRs) of 1.4 and 5.65 for
the new and returning customers, respectively. The IR is computed as the
number of samples from the majority class divided by the number of samples
from the minority class.

The objective variable for this problem follows the usual Basel II/III
de�nition of default: one or more instalments in arrears for more than 90
days during the �rst year of the loan [4]. Following the methodology pre-
sented in Bravo et al. [7], a preprocessing step was applied to eliminate
noisy and irrelevant attributes from the datasets: �rst, variables whose val-
ues have more than a 99% concentration in a single value, or more than
30% of missing values were discarded. Secondly, we used two-sample tests to
discard poorly informative variables quickly by comparing whether the two
groups (defaulters and non-defaulters) were independent or not. We used
the Kolmogorov-Smirnov and χ2 tests for numerical and nominal variables,
respectively, where a p-value higher than 0.05 was used to remove irrele-
vant features. After preprocessing, the �nal datasets consisted of 94 and
46 variables for new customers and returning customers, respectively. The
RC dataset has fewer variables than the NC because some variables were
not captured in the evaluation process of the former dataset since it has a
greater amount of historical information available.

Although datasets with fewer than one hundred variables may seem low-
dimensional from a machine-learning perspective, it was of prime interest
for the company to construct risk models with no more than 10 variables for
two main reasons: �rst, they wanted models that could be understood easily
in terms of the variables that conform to them in order to gain managerial
insight into the customers and make better decisions; and second, to reduce
variable acquisition costs, the main motivation for this study. In particular,
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they wanted to assess whether or not expensive internal processes for col-
lecting and transforming information and data from external sources were
truly explicative.

The following groups of variables were identi�ed:

• Credit evaluation variables: These variables come from the application
form that each potential borrower �lls out. The application is then
processed by the risk area of the bank, and entered into the company
database. Since every borrower has to �ll out one of these applica-
tions, acquiring this set of variables can be considered as a sunk cost.
Each application has to be �lled out in an o�ce,where an executive
is assigned to assist the potential customer. On average, each appli-
cation takes one hour, so the estimated cost per processed application
corresponds to e 5 given the monthly salary of the executives (approx-
imately e 1000 per month, using the exchange rate on 4 April, 2016).

• In-depth interview: When there is little past credit information avail-
able for a given customer, the bank may choose to conduct an in-depth
interview of the potential borrower. This requires a visit to the place of
work of the potential borrower, which takes approximately four hours
of the time of an executive. We estimate the acquisition cost for this
group of variables as e 20 per application.

• Financial analysis: If an in-depth interview is conducted, the bank
may also choose to attempt to reconstructing the cash �ow of the
company. This is particularly relevant in micro-companies that are
not required to keep detailed logs of their transactions, and as such,
may not have cash �ows readily available. This requires two hours
of a specialist's time, for a total of e 20 per loan, in addition to the
e 20 per interview. Also, some variables are calculated only if there is
system-level information available.

• System-level information: The bank may also choose to acquire a
database of the standing debts of the customers in the �nancial system.
This information is provided on a monthly basis for all borrowers in the
country, and requires a �xed cost of e 1000. According to the policy of
the bank, these variables are obtained only if there is no credit history
available for the application.

In addition to all these previously mentioned costs, we consider a per-
variable cost of e 0.001 per application, which accounts for the application
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Table 1: Groups of variables available per dataset.

Variable Group NC RC

Credit evaluation (g1) 32 31
In-depth interview (g2) 5 2
Financial analysis (g3) 34 13

System-level information (g4) 9 N/A
System-level + Financial analysis (g5) 14 N/A

processing costs incurred by the company. This cost is not estimated like
the other costs; it is su�ciently small value chosen to avoid any trade-o�
with the variable acquisition costs. Its goal is to allow the model to prefer
solutions with few attributes when including the same groups of variables.
Table 1 summarizes the available variables for each dataset and for each
group.

In Table 1 we observe that most variables are obtained from the credit
evaluation (group 1 or g1) and the �nancial analysis (group 3 or g3). The in-
depth interview (group 2 or g2) contributes few variables for both datasets,
while system level information (group 4 or g4) is available only for the new
customers. A new group results from the construction of ratios generated
as a combination of variables collected during the in-depth interview and
system-level information (group 5 or g5), which are only available for the
new customers.

4.2. Framework for variable acquisition cost modelling

Following the literature in variable cost modelling [see e.g. 9, 26], given
a set of selected variables S, and a cost per variable of cj ∀ j ∈ S, the total
variable acquisition cost follows:

π =
∑
j∈S

cj (5)

The main issue with the previous de�nition is that linearity is assumed,
which is not realistic in our case. The concept of groups of variables leads
to precedence relations between them, that is, if one variable of the group
is selected, then all the other variables from the group can be included in
the model with zero cost (or at the application processing cost). Formally,
if the use of an attribute b requires the inclusion of an attribute a, then a
partial order relation a � b is given [9]. Equation (5) can be rede�ned by
introducing an auxiliary variable zj ∈ {0, 1}, j = 1, . . . , n, where zj = 1 if a
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Table 2: Precedence relations for each group of variables.

Group Evaluation Interview Fin. anal. System info.

g1 3

g2 3 3

g3 3 3 3

g4 3 3

g5 3 3 3 3

payment for variable j is required, i.e. if k ∈ S for any k such as k � j, and
zj = 0 otherwise. The rede�ned variable acquisition cost equation follows:

π =
n∑

j=1

cjzj (6)

The previous approach is suitable for both types of precedence relations
we face in our credit scoring project. First, there are precedence relations
between groups, since, for example, an in-depth interview can be conducted
only after a credit evaluation, and therefore at least one variable from the
latter group should be included. Alternatively, ratios between system-level
information and credit evaluation variables can be performed via the �nancial
analysis (and its respective cost), but also require the payment for both
sources of information: system-level and evaluation variables. Secondly, if
one variable from a group is included, all the others from the same group
can be included by paying only the application processing cost. This is
equivalent to de�ning the cost of one of the variables as the acquisition cost
for the whole group, de�ning precedence relations of the form a ≺ b if and
only if attributes a and b belong to the same group and a has no additional
cost.

Next, we formalize the precedence relations for the �ve available groups
de�ned in Table 1. These relations are presented in Table 2.

We propose the following framework for modelling the cost analysis de-
scribed above: two sets of binary decision variables are introduced: a vector
v of size n that indicates the selection of attributes, and a binary vector g of
size K = 5 that represents the groups of attributes. We de�ne as parameters
the per-variable cost V Cj with j = 1, . . . , n; the per-group costs GCk with
k = 1, . . . ,K; and a monetary budget B designed to constrain the variable
acquisition costs. This constraint can be formulated as follows:
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n∑
j=1

V Cjvj +
K∑
k=1

GCkgk ≤ B (7)

Precedence relations can be de�ned as constraints under this framework.
For example, group 2 also requires the payment for group 1, i.e. g1 ≺
g2; which translates into g1 ≥ g2. All precedence relations can be written
compactly as

∀k,k′∈{1,...,K}|k>k′ : gk ≥ gk′ . (8)

Additionally, the relationships between both sets of variables need to be
de�ned in the model. For each group of variables, the attributes within the
group can be selected only if the group is activated, or

∀Kk=1 : M1gk ≥
∑
j∈Gk

vj , (9)

where M1 >> 0 should be at least the cardinality of Gk, the set of variables
that belongs to the group k, with k = 1, . . . ,K. Next, the two proposed
MILP models using this framework are proposed.

4.3. Proposed cost-based MILP formulations

In this section we incorporate the acquisition cost framework that can be
summarized as equations (7), (8), and (9), into two novel MILP formulations
based on the structural risk minimization principle used in SVM classi�ca-
tion.

The �rst formulation is an extension of l1-SVM (Formulation (2)). It is
basically the same formulation but includes the three constraints mentioned
above, plus two extra sets of constraints that relate w̄, the positive variable
related to the absolute values of the weights, and v, our indicator variable
for feature selection. If a given attribute j is activated, i.e. vj = 1, then
w̄ > 0. In contrast, if j is not activated, i.e. vj = 0, then w̄ = 0. Thus
we include the constraints M2w̄j ≥ vj and M3vj ≥ w̄j for all j = 1, . . . , n.,
whereM2, M3 >> 0. We refer to this formulation as l1 Mixed-Integer SVM,
or simply l1-MISVM.
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min
w,g,w̄,v,b,ξ

n∑
j=1

w̄j + C
m∑
i=1

ξi

s.t. ∀mi=1 : yi(w
>xi + b) ≥ 1− ξi, ξi ≥ 0;

∀Kk=1 : M1gk ≥
∑
j∈Gk

vj , gk ∈ {0, 1};

∀k,k′∈{1,...,K}|k>k′ : gk ≥ gk′ ;
∀nj=1 : −w̄j ≤ wj ≤ w̄j , M2w̄j ≥ vj , M3vj ≥ w̄j ;

∀nj=1 : w̄j ≥ 0, vj ∈ {0, 1};
n∑

j=1

V Cjvj +

K∑
k=1

GCkgk ≤ B.

(10)

The second formulation extends the LP-SVM model (Formulation (3)),
and combines this LP model with the cost framework by including variables
v and g, and the three previously mentioned constraints (Eqs.(7), (8), and
(9)). The constraints in LP-SVM that bound the weights between -1 and 1
are rede�ned as −vj ≤ wj ≤ vj in order to incorporate the relation between
v and w. We refer to this formulation as LP Mixed-Integer SVM, or simply
LP-MISVM.

min
w,g,v,b,ξ

− r + C
m∑
i=1

ξi

s.t. ∀mi=1 : yi(w
>xi + b) ≥ r − ξi, ξi ≥ 0;

∀Kk=1 : M1gk ≥
∑
j∈Gk

vj , gk ∈ {0, 1};

∀k,k′∈{1,...,K}|k>k′ : gk ≥ gk′ ;
∀nj=1 : −vj ≤ wj ≤ vj , vj ∈ {0, 1};
n∑

j=1

V Cjvj +
K∑
k=1

GCkgk ≤ B.

(11)

Formulations (10) and (11) were solved by using a Branch and-Cut strat-
egy for the instances of a Chilean �nancial institution analyzed in this paper.
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4.4. The class-imbalance problem

One additional challenge is the class-imbalance problem. This issue arises
when the class distribution is signi�cantly skewed [17]. Imbalance ratios of
5:1 or higher are common in credit scoring since most risk models are created
based on rules used to reject those applicants who are most likely to default,
being the applicants accepted who do not repay their loans, strongly under-
represented in the dataset [31].

The class-imbalance problem a�ects SVM negatively since it usually con-
structs a classi�er that assigns all data points to the majority class, i.e. pre-
dicts that all applicants will not default and no risk model is needed. Since
accepting a defaulter usually has a higher cost for the �nancial institutions
than rejecting a good borrower [1], this outcome is far from ideal.

There is strong evidence that suggests the need for balancing credit scor-
ing samples [11], so we used two well-known resampling approaches to deal
with this issue. Resampling consists of adjusting the imbalance ratio of
the training set arti�cially by either discarding samples from the majority
class, downsizing it, or by generating new samples from the minority class.
The �rst resampling approach is known as undersampling, and is usually
performed randomly, while the second strategy is known as oversampling.
Arguably the most popular oversampling method is called the Synthetic Mi-
nority Over-sampling Technique (SMOTE) [10] in which new data points are
created arti�cially by interpolating the pre-existing pairs of samples from the
minority class. The techniques we used have been proven to give good results
in credit scoring by Marques et al. [25].

Both undersampling and oversampling have advantages and disadvan-
tages. On the one hand, undersampling may lead to a loss of relevant data
if too many points are discarded for the sake of a balanced training set. On
the other hand, oversampling is prone to over�tting, and it may increase the
size of the training set signi�cantly, causing longer running times [17].

In our work we explore the following two approaches in the dataset that
presents class-imbalance (Returning Customers, IR=5.65): random under-
sampling until perfect class balance; and 200% SMOTE oversampling, i.e.
the minority class is doubled via the generation of new, arti�cially generated
points, and then random undersampling is used until perfect class balance
is achieved. Resampling until perfect balance is a well-known strategy for
dealing with the class-imbalance problem in business applications [see e.g.
33].

Besides data resampling, there are various techniques designed to be
trained from imbalanced data sets without data resampling. Cost-sensitive
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approaches, for example, consider di�erent misclassi�cation costs to repre-
sent the fact that the cost of misclassifying a minority class sample is usually
higher than the one of misclassifying a majority class instance. For example,
to the decision threshold can be adjusted in order to favour the minority class
[17]. For SVM, the expression that controls the model �t C

∑m
i=1 ξi can be

split in two terms, C+
∑

i∈I+ ξi and C−
∑

i∈I− ξi, where I
+ (I−) is the set of

positive(negative) samples, and C+ > C− are two trade-o� parameters [2].
Alternatively, one-class techniques can be used for dealing with the class-

imbalance problem. Originally developed for outlier detection, one-class clas-
si�cation aims at constructing classi�ers by learning from a training set con-
taining only the objects of one of the classes. One technique is Support
Vector Data Description (SVDD), which �nds the smallest sphere of radius
R that contains most of the data points [30].

5. Experimental results

In this section we provide the classi�cation results using the two proposed
methods (l1-MISVM and LP-MISVM), and the two alternative approaches
for feature selection and SVM classi�cation that are described in Section 3:
the Fisher Score as a �lter strategy for feature ranking using standard SVM
as baseline classi�er, and RFE-SVM.

5.1. Experimental settings and summary of results

For these approaches, the �rst step of the experimental setting is model
selection for linear SVM without feature selection. Parameter C was tuned
using 10-fold cross-validation, and we explored the following set of parame-
ters applying line search, based on previous research [23]:
C ∈ {2−7, 2−6, ..., 2−1, 20, 21, ..., 26, 27}.

Feature selection was performed on the training set for each of the folds,
using the best parameter C found in the previous step, where the Area Un-
der the Curve (AUC) was used as the performance metric. The Receiver
Operating Characteristic (ROC) curve is a graphical representation of the
true positive rate against the false negative rate at various discrimination
threshold settings, and the AUC is simply the area under this curve. This
measure provides an adequate balance between the true positive and the
true negative rates, being more suitable than the overall accuracy for as-
sessing the performance of binary classi�cation problems when facing class-
imbalanced datasets [29]. For the Fisher Score and RFE-SVM, we explored
the classi�cation performance for an increasing number of ranked features:
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n = {5, 10, 20, 30, 40, 50, 60, 70, 80, 90} and n = {5, 10, 20, 30, 40} for the new
and returning customers, respectively.

Regarding our proposals, we performed a similar line search for parameter
C using 10-fold cross-validation. Since the �nancial institution did not have
a precise value for the budget, we varied this parameter in order to obtain
di�erent solutions, and to assess the performance of the proposed methods
as a function of the number of variables, and the total cost.

Tables 3 and 4 summarize the results for the new and returning cus-
tomers, respectively. These tables present the best performance in terms of
AUC among all subsets of features, the selected number of variables, and the
total cost.

Table 3: Performance summary for di�erent feature selection approaches. New customers.

AUC n Cost [e]

Fisher+SVM 70.6 50 57,320
RFE-SVM 69.4 90 57,320
l1-MISVM 70.4 13 57,320
LP-MISVM 69.5 13 6,189

Table 4: Performance summary for di�erent feature selection approaches. Returning
customers.

Undersampling Under & Oversampling
AUC n Cost [e] AUC n Cost [e]

Fisher+SVM 67.3 30 219,831 67.5 40 219,831
RFE-SVM 63.6 40 219,831 64.1 40 219,831
l1-MISVM 67.0 31 29,443 67.6 31 29,443
LP-MISVM 66.2 32 122,678 67.8 32 122,678

In Tables 3 and 4 we �rst notice that no method seems to outperform
the others for these datasets. The Fisher Score performs slightly better than
our approaches, but uses 50 attributes instead of the 13 selected by our pro-
posals, and includes all variable groups. If we are willing to sacri�ce one
percentage point in AUC, we can reduce the acquisition costs signi�cantly
(from e57,320 to e6,189). We provide further details regarding this trade-o�
between cost and performance at the end of this section. On the other hand,
the best average performance is achieved with our proposals for the returning
customers and at a signi�cantly lower variable acquisition cost (one tenth of
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the total costs for l1-MISVM). We also observe that the best performance
for each method is reached when using the combination of under- and over-
sampling (SMOTE) instead of random undersampling as the sole resampling
strategy.

To support our previous analysis, the Holm's test is used to identify if
any of the methods outperform others statistically, as is recommended by
Dem²ar [12]. This test computes a Z statistic based on the average ranks for
each technique. The best approach (the one with with the lowest mean rank)
is set as the baseline, and then pairwise comparisons are performed between
this method and the other techniques. The results for this test are reported
in Table 5. From this analysis we conclude that no approach outperforms
the others for these two datasets, being LP-MISVM the approach with the
best average performance.

Method Mean Rank Mean AUC p value α/(k − i) Action

LP-MISVM 1.50 68.65 - - -
Fisher 2.00 69.05 0.70 0.05 not reject

l1-MISVM 2.75 68.50 0.33 0.025 not reject
RFE-SVM 3.75 66.75 0.08 0.016 not reject

Table 5: Holm's test for pairwise comparisons between methods.

The proposed approaches are MILP implementations, which are known
to be more time-consuming than linear and quadratic programming. Ac-
cording to our results, our proposals achieved tractable running times. For
the dataset with new customers, the mean running times were 0.72 and 1.01
seconds for l1-MISVM and LP-MISVM, respectively; while the mean running
times for the dataset with returning customers were 5.07 and 2.49 seconds
for l1-MISVM and LP-MISVM, respectively. These values were obtained
by averaging all running times for di�erent folds on a laptop with 16 GB
RAM, i7-6650U processor with 2.20 GHz, and using Microsoft Windows 10
Operating System (64-bits).

In terms of computational complexity, the MI problems solved by l1-
MISVM consisted in 1798 decision variables (99 binary variables) and 1912
constraints for the dataset with new customers, and 5943 decision variables
(51 binary variables) and 6009 constraints for the dataset with returning
customers. For LP-MISVM, the MI problems consisted in 1705 decision
variables (99 binary variables) and 1724 constraints for the dataset with
new customers, and 5898 decision variables (51 binary variables) and 5917
constraints for the dataset with returning customers.
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5.2. Sensitivity analysis for parameter C

Next, we analyze the in�uence of the parameter C on the performance
of the proposed methods. On the one hand, stable results would show ro-
bustness in terms of performance, which is a desirable feature in machine
learning. And on the other hand, a strong in�uence of this parameter in the
�nal solution would suggest that the model calibration procedure used in
this work is highly recommended in order to achieve adequate performance.
In Figures 1(a) and 1(b) we report the AUC as a function of C for l1-
MISVM and LP-MISVM, respectively. The three curves presented in each
plot represent the three datasets: new customers, returning customers with
random undersampling as the resampling technique (RetU), and returning
customers with the combination of undersampling and SMOTE oversampling
as the resampling technique (RetUO).

Parameter C

A
U

C

l1−MISVM (New)
l1−MISVM (RetU)
l1−MISVM (RetUO)

50
60

70
80

0.1 1 10 50 150

(a) l1-MISVM
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(b) LP-MISVM

Figure 1: Sensitivity analyisis for parameter C. Proposed methods.

In Figure 1(a) we observe that l1-MISVM shows relatively stable results
when 0.1 ≤ C ≤ 1 (the highest AUC), but performance decreases signif-
icantly when C ≤ 0.1 or C ≥ 1. In contrast, the LP-MISVM method
achieves very stable performance for all C values (See Figure 1(b)). We con-
clude from these experiments that, although the results are relatively stable
in terms of performance for the di�erent values of C, an adequate validation
step based on line search is strongly recommended, as is suggested in the
SVM literature [16].
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5.3. Trade-o� between performance and acquisition costs

A deeper analysis of the trade-o� between predictive performance and
variable acquisition costs is reported here. First, we report the AUC and the
total variable acquisition cost for an increasing number of ranked attributes
for the new customers: Figure 2(a) for the Fisher Score and Figure 2(b) for
the RFE-SVM method. Then, this is shown for the returning customers:
Figure 3(a) for the Fisher Score and Figure 3(b) for RFE-SVM. The results
reported for the latter dataset consider only the use of the combination of
undersampling and SMOTE oversampling as the resampling technique; the
results obtained when using random undersampling as the sole resampling
technique were omitted in this analysis since they are always outperformed
by the combined strategy.
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Figure 2: Performance and cost for an increasing number of attributes. New Customers.
Alternative feature selection methods.

In Figures 2 and 3 we observe similar patterns for both datasets and
methods: in all cases both the AUC and the total cost remain stable and
high when using around 20% of the attributes or more, but performance de-
creases signi�cantly when using only 5 or 10 variables. This drop in terms of
AUC also implies lower costs, but the performance gap is too high to accept
these low-dimensional classi�ers as valid candidates for implementation. We
also observe that the Fisher Score performs better than the RFE-SVM on
these datasets. We conclude from these experiments that, on the one hand,
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Figure 3: Performance and cost for an increasing number of attributes. Returning Cus-
tomers, Under- and Oversampling. Alternative feature selection methods.

feature selection methods like the Fisher Score and RFE-SVM are success-
ful at identifying irrelevant attributes correctly, leading to good predictive
performances even with only 20% of the original variables, but they fail at
constructing low-dimensional classi�ers with both good predictive perfor-
mance and low variable acquisition costs.

In contrast to feature ranking approaches, our proposals �nd the optimal
number of selected attributes automatically for a given budget. This is a
desirable attribute in machine learning, since it avoids additional validation
steps to determine it [22]. In order to make both approaches comparable,
we report the AUC and the number of selected variables for an increasing
value of the budget parameter B for the new customers (Figure 4(a) for l1-
MISVM and Figure 4(b) for LP-MISVM), and for the returning customers
(Figure 5(a) for l1-MISVM and Figure 5(b) for LP-MISVM).

In Figures 4 and 5 we also observe similar patterns for both datasets
and methods: classi�cation performance (AUC) remains very steady while
varying the budget parameter, and very good solutions can be achieved with
few attributes, and, most importantly, at a very low cost. Only a few di�erent
solutions are obtained for each model, showing robustness. For each �gure
we observe the following results:

• For l1-MISVM, new customers (Figure 4(a)), we observe two valid so-
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Figure 4: In�uence of the budget parameter. New Customers.
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Figure 5: In�uence of the budget parameter. Returning Customers, Under- and Oversam-
pling.

lutions, using 13 attributes with an AUC of 69.4 and a cost of e6,189,
or using 16 attributes with an AUC of 70.4 and a cost of e57,320. Both
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solutions are sparse (only around one tenth of the attributes were se-
lected), while a decision-maker that ignores the cost would probably
prefer the solution with 16 variables. The inclusion of the cost infor-
mation in the modelling leads to a solution that is 1% worse in terms
of AUC, but reduces the variable acquisition costs up to one tenth by
removing three expensive features. A decision-maker that takes this
information into account would probably prefer this second alternative.

• For LP-MISVM, new customers (Figure 4(b)), we observe that the
cheapest solution (13 selected attributes, AUC of 69.5, and a cost of
e6,189) is also the best one in terms of performance. This result is
very similar to the one obtained by l1-MISVM for this dataset.

• For l1-MISVM, returning customers (Figure 5(a)), we again observe
two valid solutions: using 26 attributes with an AUC of 67.4 and a
cost of e4,907, or using 31 attributes with an AUC of 67.6 and a
cost of e29,443. For this case, if a loss of 0.2 in performance leads
to a reduction of the variable acquisition cost to one sixth, a decision-
maker would most likely prefer the cheapest alternative. Compared
to the alternative approaches, the proposed method achieves similar
performance compared to the best strategy, while reducing the costs
up to one tenth.

• For LP-MISVM, returning customers (Figure 5(b)), we also observe
two valid solutions: using 29 attributes with an AUC of 67.4 and a cost
of e24,536, or using 32 attributes with an AUC of 67.8 and a cost of
e122,678. For this case, the decision-maker has to trade-o� a sacri�ce
in performance of 0.4 in order to reduce the variable acquisition cost
to one �fth.

From these experiments we conclude that our proposal achieves similar
predictive performance compared with the best alternative feature selection
model (the Fisher Score) while selecting fewer attributes and, most impor-
tantly, reducing the variable acquisition costs by about one tenth. Alter-
native methods failed at �nding cheap solutions with adequate predictive
performance. A comparison between l1-MISVM and LP-MISVM shows that
both methods present similar performance in terms of AUC and cost.

6. Conclusions

In this work we have presented two SVM-based strategies for simulta-
neous classi�cation and embedded feature selection. The identi�cation of
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relevant attributes was achieved through the introduction of binary vari-
ables, while a budget constraint was introduced in order to �nd accurate
solutions at a low variable acquisition cost. These costs were estimated for
a credit scoring problem: two datasets of loans granted to small and micro
companies by a Chilean bank.

A comparison between our proposals and other feature selection methods
for SVM in these real-world datasets showed the advantages of the proposed
approaches. First, they achieved similar or better performance compared to
the best alternative approach, using fewer attributes and with a total vari-
able cost of about one tenth. Secondly, they identi�ed the optimal subset of
attributes automatically for a given budget, avoiding additional calibration
steps required for feature ranking methods. Additionally, solving the feature
selection problem while constructing the classi�er takes all variable inter-
actions and the relationship between those and the classi�ers into account,
leading to best predictive performance and a robust feature selection scheme.
Finally, the linearity of our models allows the use of our proposal in practice
for credit risk modelling, and it is easily extrapolated to other applications
within business analytics.

From the results of our experiments we can conclude that the proposals
are stable in terms of performance for di�erent values of the parameters C
and B, the budget for variable acquisition costs. A sensitivity analysis for the
latter suggests that di�erent solutions can be obtained in terms of cost and
predictive performance, allowing the decision-maker to choose between sev-
eral alternatives according to this trade-o�. Finally, both the l1-MISVM and
LP-MISVM methods achieved relatively similar results, both being excellent
alternatives for SVM classi�cation, even without the need of estimating the
variable acquisition costs.

Interestingly, predictive results are very similar between new and return-
ing applicants. Although the returning customers are better at repaying
(85% good applicants compared with 58% for the new customers), their be-
haviour is not easier to predict. This can be due to the fact that more
variables for external sources are collected for the new applicants, compen-
sating the lack of behavioural variables. Predictive performance in general
is also rather low compared to other credit scoring studies. A reason for this
could be that the applicants are micro-entrepreneurs, which is a riskier group
that receives loans with high interest rates. Traditional credit scoring vari-
ables like income are no longer relevant for micro-entrepreneurs, resulting in
less accurate predictive models [7].

Future work can be carried out in several directions. First, it would
be interesting to apply these methods to other application domains, such
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as medicine and biotechnology. For example, the detection of respiratory
diseases like the Obstructive Sleep Apnea Syndrome requires data in the
form of signals from di�erent sources, such as an electrocardiogram, or a nasal
air�ow sensor, and each of these tests has di�erent costs [28]. Additionally,
other areas within business analytics besides credit risk could be studied
using these approaches, such as churn prediction, or fraud detection. Another
possible future development is the extension of our proposal to include pro�t-
based measures. The trade-o� between a less accurate solution but cheaper
in terms of variable acquisition costs can be better assessed under a cost-
bene�t setting by computing the total pro�t of the solution instead of the
AUC. Finally, the proposed methods can be extended to kernel methods,
which may lead to better predictive performance in domains that are not
regulated in terms of the type of models that can be used, such as credit
assignment.
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