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A B S T R A C T

There is a great need for objective measures of perception and cognition that are reliable at the level of the
individual subject. Although traditional electroencephalography (EEG) techniques can act as valid bio-markers
of cognition, they typically involve long recording times and the computation of group averages. To overcome
these well-known limitations of EEG, vision scientists have recently introduced a steady state method known as
fast periodic visual stimulation (FPVS). This method allows them to study visual discrimination at the individual
level. Inspired by their work, we examined whether FPVS could be used equally effectively to capture abstract
conceptual processes. Twenty subjects (20.9 (± 2.1) yrs, 6 male) were asked to complete a FPVS-oddball
paradigm that assessed their spontaneous ability to differentiate between rapidly presented images on the basis
of semantic, rather than perceptual, properties. At the group level, this approach returned a reliable oddball
detection response after only 50 s of stimulus presentation time. Moreover, a stable oddball response was found
for each participating individual within 100 s. As such, the FPVS-oddball paradigm returned an objective, non-
verbal marker of semantic categorisation in single subjects in under two minutes. This finding establishes the
FPVS-oddball paradigm as a powerful new tool in cognitive neuroscience.

1. Introduction

Physicians and psychologists have a long history of measuring
people's ability to notice variation. Their interest in doing so frequently
arises from the fact that deficits in this ability can signal severe neural
impairments. To diagnose colour blindness, for example, physicians
typically ask patients to distinguish red from green figures (e.g., using
the Ishihara Plate Test, Birch, 1997). Similarly, to detect face blindness,
psychologists often require their clients to recognize faces of different
individuals (e.g., via the Cambridge Face Memory Test, Bowles et al.,
2009). In both cases (as in many other behavioural tests), however,
assessing people's ability to distinguish between certain entities re-
quires that they provide active and truthful replies. Yet, some in-
dividuals may simply not be able (e.g., children, stroke patients) or
willing (e.g., eye witness) to give such replies. Hence, physicians and
psychologists are frequently interested in developing tests that can be
reliably administered without requiring test-takers’ overt replies.

These alternative measures include standard brain imaging techni-
ques, such as electroencephalography (EEG; Chennu et al., 2013) and
functional magnetic resonance imaging (fMRI; cf Monti et al., 2010).

One popular EEG marker of people's ability to detect variation is known
as Mismatch Negativity (MMN). This marker is typically derived by
subtracting a person's neural response to a frequently presented stan-
dard stimulus from that of a rare oddball stimulus in a so-called oddball
paradigm, and can be elicited both with and without the subject's ex-
plicit attention (Czigler, 2014; Kimura, 2012; Näätänen et al., 1978;
Näätänen and Michie, 1979). In recent years, there has been growing
interest in using the MMN as an early marker of attentional deficits in
the pre-symptomatic stages of clinical disorders, such as schizophrenia
(see Näätänen et al., 2011 for a review). Meta-analyses have repeatedly
demonstrated clear MMN deficits in schizophrenia (Bodatsch et al.,
2015; Erickson et al., 2016; Umbricht and Krljes, 2005) however de-
spite decades of converging findings, viable clinical tools for assessing
these deficits in a reliable manner are still lacking. The great challenge
in the translation of experimental EEG findings into viable clinical tools
lies in finding measures that are reliable not only at the group level, but
at the level of the individual.

This is not just a challenge with MMN, but with EEG measures more
broadly (Duncan et al., 2009). To obtain sufficient Signal to Noise Ratio
(SNR) using traditional Event Related Potential (ERP) techniques, for
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example, subjects must typically complete hundreds or thousands of
experimental trials, resulting in long recording times. This problem is
compounded in oddball paradigms in which a minimum number of
standard stimuli are required between oddball stimuli in order to en-
sure their “rareness”. An alternative to ERPs is the Steady State Visual
Evoked Potential (SSVEP), in which periodic visual stimulation elicits a
periodic neural response at an equivalent frequency (see Norcia et al.,
2015 for a review). Recently a new technique combining oddball
paradigms with SSVEPs has shown considerable potential for solving
the issues of SNR that have hampered traditional ERP approaches.

First demonstrated by Heinrich et al. (2009a) and developed ex-
tensively by Rossion et al. (e.g. Alp et al., 2016; Liu-Shuang et al., 2016;
Rossion et al., 2015) the Fast Periodic Visual Stimulation (FPVS)
technique involves frequency tagging standard and oddball stimuli.
Standard stimuli are presented at a fast rate typically about 6 Hz with
oddball stimuli embedded in the train of standard stimuli at fixed in-
tervals, resulting in a slower equivalent presentation rate for oddball
stimuli, typically around 1 Hz (e.g., S S S S S O S S S S S O S S S S S O S S
S S S O). The advantage of this approach in signal processing terms is
that the noise in EEG signals is distributed across all frequencies. Tra-
ditional ERP techniques will inevitably include both the signal and the
noise from all frequencies. The FPVS-oddball paradigm examines only
the exact frequency of the visual stimulation, that is, 6 and 1 Hz. Noise
in neighbouring frequencies does not affect the signal of interest, con-
sequently providing very high SNRs.

To date the approach has been used most commonly in studies of
face processing and recognition (Dzhelyova and Rossion, 2014; Liu-
Shuang et al., 2014, 2016; Rossion, 2014; Rossion et al., 2015). But it
has also proven successful in probing low-level visual processing (e.g.,
orientation encoding; Heinrich et al., 2009a) and basic lexical re-
presentations (e.g., word/non-word discrimination; Lochy et al., 2015).
To further advance our understanding of the method's potential, our
objective was to extend this approach to other domains of mental
processing, specifically to an example of higher level cognition, such as
abstract semantic categorisation. Semantic categorisation refers to
people's ability to group information in a manner that highlights con-
ceptual commonalities or differences between different entities (Rosch,
1975). As it can occur at different levels of specificity, the same entities
can be classified in many different ways (Mervis and Rosch, 1981).

Common objects such as furniture, for instance, can be categorised
into so-called subordinate categories (e.g., as chairs, tables, beds etc.,
Mack et al., 2008) which, in turn, can prompt even more fine-grained
subordinate classifications (e.g., chairs may be considered dining chairs
or office chairs; Tversky and Hemenway, 1984). At the same time,
however, furniture can also be categorised according to so-called su-
perordinate categories (e.g., just like vehicles, but unlike tools, as non-
graspable objects; Rice et al., 2007) which, in turn, can prompt even
coarser superordinate classifications (e.g., furniture, vehicles and tools
together can count as man-made rather than natural entities;
(Caramazza and Shelton, 1998; Rogers and Patterson, 2007). In short,
based on a perceiver's domain-specific knowledge (Tanaka and Taylor,
1991) and/or momentary processing goal (Barsalou, 1991), multi-level
conceptual hierarchies can provide numerous levels of specificity ac-
cording to which objects can be categorised.

To gain an even better hold on the mechanisms of semantic cate-
gorisation in the human brain, it seems warranted to develop tasks that
can objectively quantify an individual's ability to categorise objects
upon perception along various levels of semantic specificity. Such a task
would not only be of particular experimental value, but could ulti-
mately also inform the assessment of neural disorders characterized by
difficulties with semantic categorisation, such as fronto-temporal de-
mentia. We believe that the newly developed FPVS-oddball paradigm
lends itself well for such a purpose. The paradigm has already been used
to assess the integrity of face processing in prosopagnosia (Liu-Shuang
et al., 2016). Inspired by this prospect, the aim of this study was to
extend the FPVS-oddball paradigm to semantic processing. We

predicted that increases in power at the oddball stimulation frequencies
would be observed when standard and oddball stimuli differed in their
semantic categories. We also predicted that when stimuli were scram-
bled, therefore removing any semantic category level information,
oddball responses would not be observed.

2. Method

2.1. Participants

Twenty adults (aged 18–28, mean age 20.9 (± 2.1), 6 males) gave
consent to participate in the study. They were recruited from the
University of Bristol student population and declared themselves to be
in normal health and had normal or corrected-to-normal vision. Ethical
approval for our procedures were obtained from the University of
Bristol Science Faculty ethics board. Participants provided written in-
formed consent before participating and were free to withdraw from the
study at any time.

2.2. Stimuli

Images were selected from a previously validated set of 360 high
quality colour images belonging to 23 semantic categories (Moreno-
Martínez and Montoro, 2012). Images were selected to form three se-
parate sets expected to prompt semantic categorisation at different le-
vels of specificity. Based on prior work on semantic categorisation (e.g.
Chan et al., 2011; Moss and Tyler, 2000), one image set (set A) probed
the coarse categorisation of everyday items as natural versus non-nat-
ural objects. This set comprised 60 images of natural objects (e.g, birds,
mammals, and trees, mean pixel intensity 0.91 (0.06), mean contrast
0.22 (0.08)) and 15 images of non-natural objects (e.g. buildings,
clothing, and furniture, mean pixel intensity 0.88 (0.06), mean contrast
0.25 (0.06)). A second set of images (set B) included only natural items
and probed the more fine-grained classification of these items as ani-
mals versus non-animals (c.f Blundo et al., 2006; Hart and Gordon,
1992). Hence, it comprised 60 images of animals (e.g. mammals, birds,
and marine animals, mean pixel intensity 0.91 (0.05), mean contrast
0.22 (0.06)) and 15 images of non-animals (e.g. fruit, vegetables, and
nuts, mean pixel intensity 0.92 (0.05), mean contrast 0.19 (0.08)). The
third set (set C), finally, contrasted different types of animals (c.f.
Naselaris et al., 2012). Specifically, it contained images of 60 birds
(e.g., blackbirds, budgies, and owls, mean pixel intensity 0.94 (0.06),
mean contrast 0.18 (0.04)) with images of 15 non-birds (i.e., small
mammals such as mice, rabbits, and squirrels mean pixel intensity 0.93
(0.02), mean contrast 0.19 (0.04)). As there were not enough bird
images in the original Moreno-Martínez and Montoro image set, an
additional 30 images were sourced using a Google image search and
adapted to match the Moreno-Martínez and Montoro images in relevant
physical characteristics. All images were 250×250 pixels, 72dpi, sub-
tending 9° visual angle, with the central image cropped to a white
background. In order to reduce systematic low-level colour confounds
between the standard and oddball categories all images were converted
to greyscale. In addition, control images were created by box scram-
bling the original images using the Matlab Randblock function (https://
uk.mathworks.com/matlabcentral/fileexchange/17981-randblock).
Box scrambling has been shown to remove semantic category in-
formation content, whilst preserving low-level visual content (e.g. Grill-
Spector et al., 1998). An example of the images is provided in Fig. 1 and
the full image set is available in Supplementary information A.

2.3. Procedure

Participants were seated 55 cm from the monitor and instructed to
maintain their gaze within a blue fixation square in which images were
presented. They were instructed to press a hand held button every time
the blue fixation square turned green. Images were presented onscreen
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for 80 ms with an inter-stimulus interval of 80 ms. The study used an
oddball paradigm presented in a steady state method as developed by
Rossion and colleagues (e.g. Liu-Shuang et al., 2016; Rossion et al.,
2015).

Images were presented in sequences of five images, with the first
four images being selected from the standard category and every fifth
image being drawn from the oddball category. An example of this se-
quence is presented in Fig. 2. This design elicits two distinct steady state
responses. The standard presentation frequency of 6.25 Hz, and the
oddball presentation frequency of 1.25 Hz.

Stimuli were presented in runs of 75 stimuli (60 standards and 15
oddballs) in a pseudo-randomised order ensuring 4 standard stimuli
and a fifth oddball stimulus were always presented sequentially.
Targets (fixation square turning green) only occurred on the second
stimulus of the run of five, with a 10% probability of occurring for each
run. This was repeated 15 times with a different randomised order each
time resulting in 1125 stimuli presentations over 180 s.

Six conditions were presented: Image Sets A, B and C and their
equivalent scrambled control image sets. The order of these blocks were
counterbalanced across subjects using a balanced latin square design.

To allow researchers to easily try this new method we have devel-
oped a free open-source toolbox to present stimuli and analyse the
subsequent data. The Fastball toolbox is a free, open-source Psychopy
(Peirce, 2007) and Matlab (Mathworks Inc.) toolbox we have made
available at https://gstothart.github.io/Fastball/. It allows the user to
easily present stimuli in an FPVS-oddball paradigm with many mod-
ifiable parameters, and analyse the subsequent EEG data.

2.4. EEG recording

EEG signals were sampled at 1000 Hz from 64 Ag/AgCl electrodes
fitted on a standard electrode layout elasticised cap using a BrainAmp
DC amplifier (Brain Products GmbH) with a common FCz reference and
online low-pass filtered at 250 Hz. Impedances were below 5 kΩ.
Recordings were analysed offline using Brain Electrical Source Analysis
software v5.3 (BESA GmbH), Matlab (Mathworks Inc.) and the Fieldtrip
toolbox (Oostenveld et al., 2011). Artifacts including blinks and eye
movements were corrected using BESA automatic artifact correction
(Berg and Scherg, 1994).

2.5. EEG analysis and steady state response

Data were re-referenced offline to a common average reference.

Epochs from 0 to 180 s around block onset were defined for each
condition. The steady-state response was calculated according to the
procedures described in Rossion et al. (2015). Epochs were defined as
the entire 180 s trial period associated with each semantic or control
condition. This epoch length represents an integer number of cycles
(225) of the oddball stimulus (1.25 Hz) ensuring that a frequency bin
corresponding to the exact oddball frequency and its harmonics, in-
cluding the standard frequency (6.25 Hz), were created. The frequency
resolution was 0.0056 Hz. Epochs were first linearly de-trended and the
DC component was removed. The epochs were tapered with a Tukey
window (matlab's tukeywin function) with the first and last 4 s of the
epochs being cosine tapered in order to remove discontinuities at the
edge of the epochs. For each participant and each electrode, amplitude
was computed on these windows using the fast Fourier transform (FFT).
Amplitude was then corrected by dividing the amplitude in each fre-
quency bin by the mean amplitude of surrounding bins within
a± 0.45 Hz range (e.g. Alp et al., 2016; Srinivasan et al., 1999) ex-
cluding the immediately adjacent bins (first neighbouring bin on each
side). The± 0.45 Hz range was chosen to give an amplitude correction
that was comparable with previous research (e.g. Alp et al., 2016;
Srinivasan et al., 1999), and represented 81 bins either side given the
frequency resolution of this study. Excluding the immediately adjacent
bins from this correction meant that the amplitude correction was less
likely to include any spread of the signal to proximal frequency bins
(e.g. for 1.25 Hz adjacent bins were 1.2444 & 1.2556 Hz).

Previous research has shown a robust SSVEP response to the oddball
frequency and many of its harmonics (e.g., Rossion et al., 2015; Norcia
et al., 2015), so following the procedure outlined in Rossion et al.
(2015) we determined the range of harmonics across which to analyse
the data. Grand-average amplitudes (uncorrected) were created for
each electrode and then pooled across all electrodes. The z-score for
each frequency bin was then calculated using the mean and standard
deviation of± 0.45 Hz bins, excluding the immediately adjacent bins
(as described above). Harmonics of the oddball frequency in excess of
z=3.29 (p<0.001) were defined as significant (see Table 1). The
harmonics used in later analysis were based on the largest range of
consecutive and significant harmonics across all 6 presentation condi-
tions. From 1.25 Hz upwards (e.g. 2.5, 3.75, 5 Hz…), once a harmonic
failed to reach significance, we capped the range for that condition as
the last harmonic that was significant. Harmonics that related to the
standard frequency (e.g. 6.25 Hz, 12.5 Hz…) were excluded. Following
the procedures of Rossion et al. (2015) and Heinrich et al. (2009b) the
corrected amplitude was calculated for 3 values: the standard frequency

Fig. 1. Examples of image sets and the equivalent
scrambled control images.

Fig. 2. Oddball steady state design and hypothesised
neural steady state responses. A base frequency F is
elicited in response to the presentation of every
image at 6.25 Hz, the oddball response f is elicited
only to stimuli that violate the previously established
semantic category of the standard stimuli. In the
example above the standard stimuli are living objects
and the oddball stimuli are non-living objects.
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F (6.25 Hz), the oddball frequency f, and the sum of the oddball fre-
quency and significant harmonics f+ (i.e. sum of 1.25, 2.5,
3.75,5 & 7.5 Hz). These three values were calculated for each partici-
pant and electrode across the six experimental conditions. We have
made all the analysis code freely available and modifiable through the
Fastball toolbox, https://gstothart.github.io/Fastball/.

Using Fieldtrip software (Oostenveld et al., 2011), the difference in f
+ between original and scrambled images for the three levels of se-
mantic categorisation was statistically assessed across all electrodes
using cluster-based permutation analysis (see Maris and Oostenveld,
2007) with 10,000 permutations. For image Sets A and C the initial
alpha value for cluster formation was lowered from alpha<0.05 to

alpha<0.001, and for Set B it was lowered to alpha< 0.01, as the
difference was so large between experimental and control conditions
that one large cluster spanning the entire scalp emerged. This is one
weakness of the cluster permutation approach highlighted recently by
Mensen and Khatami (2013). As a “sanity check” for the appropriate-
ness of the cluster-based electrode selection a split-halves analysis was
undertaken in which the subjects were split into two groups of 10. The
10 electrodes showing the strongest effect in subgroup 1 were then used
to examine the experimental effects in the subgroup 2, and vice versa.
All experimental effects were maintained and validate the cluster-based
approach.

2.6. Presentation durations required to measure the steady state response

To examine the time required to detect a reliable steady state
oddball response, the steady state response was calculated over 15 in-
creasing epoch lengths from 12 to 180 s (12 s increments). All lengths
included an integer number of cycles at the oddball frequency. The
steady state response was calculated in a similar way to the procedure
described in the previous section except that amplitude values were
converted to z-scores using the mean and standard deviation of the
frequency bins± 0.45 Hz (excluding the immediately adjacent bins).
This allowed the significance of the steady state response at the oddball
f, oddball plus harmonics f+, and standard frequency F to be assessed
relative to alpha levels of 0.05 (z=1.96) and 0.001 (z=3.29), for a
similar approach see (Rossion et al., 2015). The electrodes selected
were those showing the largest f+ response (PO10 for image sets A and
C, PO9 for image set B). For the group-level analysis, the across-parti-
cipant mean z-score for each epoch length was then calculated for each
image set separately so that the detectability of the steady-state

Table 1
Across participant z-scores at oddball frequency and its harmonic (scalp-average). Bold
indicates significance at p<0.001.

Harmonic (Hz) Condition

Set A Set A
control

Set B Set B
control

Set C Set C
control

1.25 5.07 2.65 6.02 3.36 3.45 1.53
2.5 18.61 4.88 10.20 7.42 5.60 3.20
3.75 23.05 7.75 12.61 6.99 19.99 5.63
5 21.22 7.31 11.58 5.49 13.48 4.34
7.5 3.54 1.87 10.78 6.06 5.98 3.77
8.75 2.86 2.55 0.98 1.44 2.74 1.66
10 2.62 3.65 1.05 0.71 0.21 2.05
11.25 1.49 1.01 2.29 0.70 0.49 1.45
13.75 2.09 0.94 0.90 0.39 0.16 −0.13
15 0.21 1.04 −0.24 0.17 1.50 −0.68
16.25 −0.46 2.46 −0.63 0.48 0.17 −0.22

Fig. 3. Topography plots indicating significant differences between image sets compared to their scrambled controls in the spectral power of f+ (sum of 1.25 Hz and its harmonics at
2.5 Hz, 3.75 Hz,5 Hz and 7.5 Hz) at regions of interest identified by cluster permutation analysis. Spectral plots represent the mean corrected amplitude of the electrodes included in the
clusters identified with x and + markers.
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response to F, f and f+ could be investigated over increasing lengths of
stimulus presentation.

3. Results

Fourier analysis of responses to the three image sets showed large
steady state responses at 6.25 Hz (F), 1.25 Hz (f) and its harmonics at
2.5 Hz, 3.75 Hz, 5 Hz and 7.5 Hz (f+) (see Table 1). Cluster permuta-
tion analyses demonstrated significantly increased f+ for the all three
image sets compared to scrambled controls, clearly demonstrating that f
+ responses were not due solely to low-level visual differences but
reflected deviance detection due to semantic categorisation differences.

3.1. Set A

Initial cluster analysis at cluster formation alpha<0.05 revealed
one large cluster which included all electrodes. To identify the strongest
areas of activity on the scalp, electrode clusters were formed with an
entry alpha<0.001, which revealed a cluster with activity strongest in
occipital and central areas including electrodes FCz, F4, FC5, FC1, FC2,
FC6, T7, C3, Cz, C4, CP1, CP2, TP10, P8, PO9, O1, Oz, O2, PO10, F1,
F2, FC3, FC4, C5, C1, C2, C6, CP3, CPz, CP4, TP8, P6, PO7, PO3, PO4,
PO8, cluster p<0.0001, see Fig. 3.

3.2. Set B

Cluster analysis at cluster formation alpha<0.01 revealed a left
hemisphere dominant centro-parietal cluster comprising electrodes
CP1, CP3, CPz, PO7, PO3, TP9, P7, P3, Pz, TP7, P5, P1, POz, cluster
p<0.001, and a right hemisphere dominant parieto-occipital cluster
comprising electrodes P8, PO10 and PO8, cluster p = 0.008, see Fig. 3.

3.3. Set C

Initial cluster analysis at cluster formation alpha<0.05 revealed
one large cluster which included all electrodes. To identify the strongest
areas of activity on the scalp cluster formation alpha<0.001 revealed
an parieto-occipital cluster including electrodes P8, PO10, PO8, PO7,
PO3, P7, PO9, O1, Oz and O2, cluster p<0.0001, and a central cluster
comprising electrodes CPz, F4, FC1, FC2, C3, Cz, C4, CP2, F2, FC4, C1,
C2, FCz and Fz, cluster p<0.0001, see Fig. 3.

It was observed that F reduced when images were scrambled. To
verify that any reductions in f+ observed were due to the removal of
semantic content (as opposed to simply being a consequence of image
scrambling) the percentage change in F from original to scrambled was
calculated. The difference in f+ at electrode PO7 was then examined in
a 1-way (original vs scrambled) repeated measures ANCOVA with
percentage change in F as a covariate. The f+ to scrambled images was
significantly reduced image sets A (F(1,18)=35.64, p< 0.001), B (F
(1,18)=6.75, p< 0.05) and C (F(1,18)=17.26, p< 0.001) after con-
trolling for the percentage reduction in F from original to scrambled
images.

3.4. Presentation durations required to measure the steady state response

3.4.1. Group effects
The main analysis demonstrated a SSVEP to the oddball stimuli

demonstrating the detection of a change in semantic categorisation that
occurred during the 3 min trial period. As a follow-up analysis, we in-
vestigated the presentation duration of the stimuli needed for the
across-participant amplitude at the oddball frequency of experimental
trials to be detectable as statistically significant. By analysing the Z
score over increasing presentation durations, we were able to in-
vestigate the time necessary for a stable and measurable steady state
response to occur, see Fig. 4. The Z score of F was greater than p =
0.001 after 30 s in all three conditions. The Z score of f+ in response to

image set A was greater than p = 0.05 after 36 s and greater than
p=0.001 after 72 s. The Z score of f+ in response to image set B was
greater than p = 0.05 after 72 s and greater than p=0.001 after 168 s.
The Z score of f+ in response to image set C was greater than p = 0.05
after 48 s and greater than p=0.001 after 96 s. A 3-way repeated
measures ANOVA (Set A, Set B, Set C) indicated no significant effect of
image set on onset time of F F(2,38) = 1.80, p = 0.178, or f+ F(2,38)
= 2.29, p = 0.115. For image sets A and C the sum of 1.25 Hz and the
subsequent four harmonics (f+) was a stronger than 1.25 Hz alone (f).
In image set B they were equivalent.

3.4.2. Individual subject effects
Analysis of individuals’ amplitudes after increasing presentation

durations demonstrated that the oddball f+ response was detectable at
a statistically significant (p<0.05) threshold in 1–2 min for the ma-
jority of subjects. Fig. 5 illustrates the distribution of individual sub-
jects’ times, individual values are available in Supplementary Info B.

4. Discussion

Across three levels of semantic categorisation subjects showed clear
and distinct steady state responses to standard and oddball stimuli.
Oddball responses were significantly increased compared to scrambled
controls demonstrating that they were a result of a change in the se-
mantic category of the visual object, and not due to systematic differ-
ences between standard and oddball stimuli in their basic visual
properties or the overall reduction in steady-state responses to scram-
bled images. Examination of the amplitude of the oddball steady state
responses after increasing presentation durations showed they were
significant at group level at p<0.05 in under 72 s in all three condi-
tions. Individual subjects typically showed significant responses within
~60 s. We have demonstrated that the FPVS-oddball paradigm is a
powerful, sensitive and most importantly easily modifiable tool that can
used to examine abstract conceptual processing in single subjects and
groups.

The extension of this approach to abstract conceptual processing,
e.g. semantic categorisation, is an important addition to the work of
Rossion and colleagues in the field of face perception (e.g. Rossion,
2014). While the paradigm has also been demonstrated to be viable
with lexical discrimination tasks (Lochy et al., 2015) ours is the first
study demonstrating its validity in assessing abstract conceptual pro-
cessing, e.g. semantic knowledge. There is considerable evidence for the
ability of the visual system to classify objects after short presentation
times during explicit target detection, e.g. during Rapid Serial Visual
Presentation (Potter, 1975, 1976), and that classification can be made
on the basis of higher level visual properties (e.g. VanRullen and
Thorpe, 2001). Importantly however, we demonstrate that the FPVS-
oddball paradigm is sensitive to implicit processing as participants were
instructed simply to pay attention to all images presented and were not
cued in any way to attend to the semantic category. Consequently, we
are able to objectively measure the extent of pre-attentive discrimina-
tion without having to include the additional noise associated with the
impact of masking and memory recall performance on explicit re-
sponses. The paradigm is therefore easily adaptable, and what con-
stitutes an oddball and elicits an oddball response can be defined in low
level visual or abstract conceptual properties.

We propose that the f+ response in the current study reflects a
combination of the visual MMN (vMMN) and a semantic category
specific neural response. E.g. for image set A, the oddball response will
reflect both change detection and the neural populations that respond
specifically to non-living objects. These populations are stimulated at a
rate of 1.25 Hz, which we propose results in less neural habituation
than in those being stimulated at 6.25 Hz. Roving standard paradigms
in traditional MMN studies have addressed the issue of neural habi-
tuation, and the extension of the FPVS-oddball paradigm to other
oddball designs would be a worthy avenue for future investigation and
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may help to delineate the MMN response from that of differences in
neural habituation.

The topographic distribution of responses to original images was
broadly similar across the image sets, with the greatest power in lateral
occipital sites, and a weaker but consistent central site. Scrambled
images showed a considerably weaker but comparable pattern of lateral
occipital and central activity. Cluster permutation analyses identified
these areas as significantly different in both image sets A and C. The
difference in central areas is intriguing and points to neural generators
beyond the visual cortex. The vMMN, which we propose forms part of
the f+ response, has been demonstrated to involve neural generators in
the Inferior Frontal Gyrus (Hedge et al., 2013). The temporal lobe, as
part of the visual ventral stream, has repeatedly be shown to be in-
volved in semantic categorisation (e.g. Anzellotti et al., 2010; Huth
et al., 2016; Kreiman et al., 2000; Moss and Tyler, 2000). It is beyond
the remit of the current study to make any claims about the neural
generators of the oddball response but is certainly an avenue of interest
for future studies, as the very high signal to noise ratio of the current
approach would lend itself well to spatial modelling. While the topo-
graphies in response to original and scrambled images in image set B
were similar to sets A and C, the cluster permutation analysis revealed a
parietal and right hemisphere occipital cluster, which were less statis-
tically significant than the clusters in sets A and C. It is possible that the
distinction between standards and oddballs in set B was less clear than
sets A and C, resulting in a weaker change detection response. This was
neither anticipated or desired, but may be helpful in demonstrating the

sensitivity of the approach to varying degrees of differentiation be-
tween standards and oddballs. MMN magnitude increases as the dif-
ference between standards and oddballs increases (Näätänen et al.,
2004; Pakarinen et al., 2007), therefore we maintain that although
vMMN is not the sole driver of the f+ response, the weaker vMMN to a
standard-oddball pairing that is not as distinct as others may explain the
difference in results. An alternative explanation is that the difference in
topographies is due to different neural generators for the different se-
mantic categories. Dzhelyova et al. (2017) demonstrated distinct to-
pographic patterns to different facial expressions using a similar FPVS-
oddball paradigm. However we should be cautious in drawing im-
mediate parallels between face and object processing, and further stu-
dies using a wide range of semantic categories is required to explore
this possibility.

We have also demonstrated that the approach is remarkably stable
and sensitive at the level of the individual subject, with most partici-
pants showing statistically significant oddball responses after only 60 s.
This has not been possible with traditional event-related paradigms,
and resulted in an inability to translate promising experimental findings
at group level to viable clinical tools at the individual level. In com-
bination, the adaptability, speed, stability at the individual participant
level, and sensitivity to implicit processing mean that with rigorous
validation this approach has the potential to provide a reliable, objec-
tive, non-verbal measure of many aspects of cognition.

Finally, small f+ responses were observed to the scrambled images.
This was unexpected and is likely due to systematic differences in visual
properties between the standard and oddball images that were not to-
tally disrupted by box scrambling. E.g. in image set C birds vs non-birds
feathers and fur would have been distinguishable even in the scrambled
images. Additionally box scrambling created a small difference in the
visual angle of the control stimuli as they were less concentrated in the
centre of the fixation square. This highlights the need for the careful
control of low-level visual characteristics when assessing higher level
processing. Future studies should make every effort to ensure sys-
tematic differences are minimised, and investigate the efficacy of al-
ternative techniques for generating control stimuli, e.g. phase, texture
or diffeomorphic scrambling (Stojanoski and Cusack, 2014). Ad-
ditionally future studies could include the reversal condition of stan-
dard and oddball stimuli, e.g. non-living objects as standards and living
as oddballs, in order to investigate any hierarchical preference in the
visual system for particular semantic categories. While participants
were not formally assessed for their explicit awareness of standard/
oddball categories, anecdotally they indicated that they did not notice
any change. Future studies should formally measure whether partici-
pants noticed any categorical change during the task, this would also
allow direct comparisons with the Rapid Serial Visual Presentation
literature.

Fig. 4. The F, f and f+ steady state responses over increasing presentation durations for image sets A and C at electrode PO10 and image set B at PO9. Z-scores reflect the deviation of
amplitude at the specific frequencies of stimulation (F, f & f+) from surrounding frequencies (± 0.45 Hz). The horizontal dashed lines indicate the z-score thresholds associated with
conventional levels of statistical significance (z = 1.96, p = 0.05; z = 3.29, p = 0.001).

Fig. 5. Time for individual subjects’ F,f and f+ to reach z = 1.96, p = 0.05. Circles
indicate subjects with times greater than 1.5 x Interquartile Range, asterisks indicate
subjects with times greater than 3 x Interquartile Range.
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In summary, we have demonstrated that the FPVS-oddball paradigm
is a powerful new tool in cognitive neuroscience capable of being
adapted to assess a wide range of cognitive functions. Stable and reli-
able at the level of the individual subject the technique has considerable
clinical potential and provides an objective, non-verbal measure of
abstract conceptual processing.
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