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Fluid residence time is a key concept in the understanding and design of chemically
reacting flows. In order to investigate how turbulent mixing affects the residence time
distribution within a flow, this study examines statistics of fluid residence time from
a Direct Numerical Simulation (DNS) of a statistically-stationary turbulent round jet
with a jet Reynolds number of 7,290. The residence time distribution in the flow is
characterised by solving transport equations for residence time of the jet fluid and for
the jet fluid mass fraction. The product of the jet fluid residence time and the jet fluid
mass fraction, referred to as the mass-weighted stream age, gives a quantity that has
stationary statistics in the turbulent jet. Based on the observation that statistics of mass
fraction and velocity are self-similar downstream of an initial development region, the
transport equation for the jet fluid residence time is used to derive a model describing
a self-similar profile for the mean of the mass-weighted stream age. The self-similar
profile predicted is dependent on, but different from, the self-similar profiles for the mass
fraction and the axial velocity. The Direct Numerical Simulation data confirm that the
first four moments and the shape of the one-point probability density function of mass-
weighted stream age are indeed self-similar, and that the model derived for the mean
mass-weighted stream age profile provides a useful approximation. Using the self-similar
form of the moments and probability density functions presented it is therefore possible
to estimate the local residence time distribution in a wide range of practical situations
in which fluid is introduced by a high-Reynolds number jet of fluid.

1. Introduction

In many industrial, environmental and biological flows, the extent to which chemi-
cal, physical, or biological processes progress within a given system depends upon the
residence time of fluid within the system. The residence time distribution for a system
provides information that may, in some situations, be related to the distribution of the
progress of processes within the system (Langmuir 1908; Danckwerts 1953; Spalding
1958). The residence time distribution is used for modelling processes in the food indus-
try (Fayolle et al. 2013), mineral processing (Mulenga & Chimwani 2013), wastewater
management (Moullec et al. 2008), and combustion (Costa et al. 2003). Understanding
of the relationship between the dynamics of a flow and the residence time distributions
throughout a flow therefore might offer valuable insights into the effects of flow-features
on the progress of processes taking place within the fluid.

In special cases involving steady flow and first-order kinetic processes there is a unique
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relationship between the residence time distribution and the extent of progress of the
kinetic processes (Langmuir 1908). In flows involving more complex kinetic processes,
generally there is not a direct relationship between the residence time distribution and
the extent of progress of kinetic processes, but the residence time distribution may still
provide information regarding the likely extent of these processes. Combustion is an
important example of a complex kinetic process in which the extent of the combustion
reactions and of pollutant formation in some cases can be related to fluid residence time.
As a first example, waste incinerators rely upon adequate residence time of combustion
gases within a high temperature region of the combustor in order to ensure burn-out
of pollutants: in particular, a minimum of one second residence time above 800 ◦C
for small scale incinerators is specified in the best practice guide by World Health
Organization (Batterman 2004). As a second example, residence time is the principal
indicator of where and when an ignitable mixture will autoignite, and Gomet et al.
(2012) used residence time statistics to predict the locus of autoignition in a supersonic
non-premixed flow by comparing the residence time with the ignition delay time of the
fuel-air mixture. A further example where residence time is used to characterise the
extent of physical processes in combustion is given by Nambully et al. (2014), who used
the mean residence time to explain the accumulation of preferential diffusion effects in
a bluff-body stabilised turbulent flame. In contrast to the preceding examples that use
residence time to characterise the extent of kinetic processes, recent works in the context
of turbulent reacting flow modelling (Bilger et al. 2004; Enjalbert et al. 2012; Grout 2007)
have used information concerning the fluid residence time as a modelling input in order
to improve modelling of the rate of progress of kinetic processes. These examples serve
to emphasise that the fluid residence time distribution has a wide domain of utility, not
restricted to simple situations involving steady-flow reactors and first-order kinetics.

Several definitions of fluid residence time appear in the literature and a clarification of
the differences is provided here. Danckwerts’ usage of residence time (Danckwerts 1953)
leads to its definition as the cumulative time that a conserved element of material has
spent within a specified domain. A conserved element of material can be considered as a
distinct physical object whose substance is not changed by the processes taking place in
the flow, such as an atom in the absence of nuclear reaction, or a molecule that does not
undergo chemical change. The instantaneous value of the residence time of an element
of material is described in the following as the elementary-age and denoted by a∗(t),
with the corresponding mass denoted by m∗. A number of experimental and numerical
approaches have been developed previously in order to characterise and model residence
time distributions, as described in the popular text book by Levenspiel (1999) and in
a recent review by Nauman (2008), and these methods are applied routinely in, among
others, the process industry. The probability density function of the elementary-age at
a point within a turbulent flow is not readily amenable to experimental measurement
due to the difficulty of tracking the motion of individual elements of material such as
molecules or atoms. In principle, direct numerical simulations describing the motion
of individual elements of material, such as molecular dynamic simulations, provide a
means to evaluate distributions of elementary-age within a turbulent flow. However
molecular dynamic simulations of practical turbulent flow remain computationally in-
feasible. Instead, elementary-age distributions can be modelled by Lagrangian tracking
of material elements (Mackley & Saraiva 1999), provided that the effects of Brownian
and turbulent motions are accounted for accurately, at least in a statistical sense. Rather
than simulating the molecular dynamics directly, random walk procedures (Mackley &
Saraiva 1999; Nauman 2008) and Langevin equations (Haworth & Pope 1986; Langevin
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1908) have been used to take account of molecular and turbulent contributions to the
transport of the elementary-age.

In contrast to the elementary-age, the fluid-age (aM ) is a continuum property of a fluid
that is defined by a transport equation in the form proposed by Sandberg (1981). Ghirelli
& Leckner (2004) generalised Sandberg’s equation for variable property flow. For flow of
a fluid consisting of one or more chemical species with equal diffusivities, the fluid-age
transport equation is given by

∂aM
∂t

+ u · ∇aM =
1

ρ
∇ · (ρD∇aM ) + 1, (1.1)

where u, ρ, and D are the velocity vector, the density, and the molecular diffusivity
of the fluid. The first term in equation 1.1 represents unsteadiness of the local fluid-
age, the second term represents advection by the convective velocity u, the third term
represents the effects of diffusive flux of material between regions with different values
of fluid-age, and the final source term represents the process of age increasing due to
the passage of time. Balo & Cloirec (2000) and Sandberg & Sjöberg (1983) used this
equation in conjunction with turbulence closure models to simulate the residence time
in turbulent flows. Note that the fluid-age may be interpreted as an instantaneous mass-
weighted average of the elementary-age of atoms in an infinitesimal volume within the
flow (Ghirelli & Leckner 2004).

In a turbulent flow, the one-point one-time probability density function of the
elementary-age has two contributions: the first is due to the distribution of elementary-
age present within one realisation of the turbulent flow; and the second is due to turbulent
fluctuations in the flow. In contrast, the one-point one-time probability density function
of fluid-age shows variations only due to turbulent fluctuations in the flow. The fluid-age
is therefore a useful metric for isolating the effect of turbulent flow features on the
residence time distribution. Accordingly, the concept of fluid-age is employed for the
purposes of modelling or analysis in several turbulent combustion studies (Bilger et al.
2004; Enjalbert et al. 2012; Grout 2007; Nambully et al. 2014).

In order to characterise the residence time of fluid from different sources, or streams,
Ghirelli & Leckner (2004) proceeded to derive a further transport equation that defines
stream-age ai, which can be interpreted as the mass-weighted elementary-age of material
originating from the ith stream of fluid. The stream-age is undefined when mass fraction
ξi, the fraction of mass originating from stream i, is equal to zero. Avoiding singularities
where ξi = 0, Ghirelli & Leckner (2004) defined the stream-age via a transport equation
for the mass-weighted stream age, Φi = ξiai,

∂Φi
∂t

+ u · ∇(Φi) =
1

ρ
∇ · (ρD∇Φi) + ξi (1.2)

The mass-weighted stream age and fluid-age are related by
∑N
i=1 Φi = aM where N is the

total number of streams considered. Note that equations 1.1 and 1.2 are valid given the
assumption that all species have the same diffusivity D, although a more general set of
equations without this restriction is presented by Ghirelli & Leckner (2004). Appendix A
provides an alternative to the Ghirelli & Leckner (2004) derivation of equations 1.1 and
1.2 that makes explicit the link between the dispersion of elementary-age by Brownian
motion and the diffusion of the fluid-age or stream-age.

Provided that all of the conserved elements of material being tracked have the same
mass, it follows that there is a linear relationship between the mass-weigthed and
mole-weighted stream age. In chemically reacting flows it is pertinent to track the
residence time of either atoms or molecules. Since atoms and molecules have fixed masses
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related to their elemental composition, the mass-weighted and mole-weighted stream-age
distributions convey equivalent information. A mass-based presentation is retained in the
following for consistency with Ghirelli & Leckner (2004).

The mass fraction ξi is governed by the following transport equation,

∂ξi
∂t

+ u · ∇(ξi) =
1

ρ
∇ · (ρD∇ξi), (1.3)

where the sum of all the mass fractions is unity, i.e.,
∑N
i=1 ξi = 1.

The stream-age equation is useful because a broad set of chemical processes require
the presence of more than one reactant, so that reaction progress may be related to the
time since individual streams were introduced, rather than the fluid-age of the mixture
(Mouangue et al. 2014). For example, Gomet et al. (2012) used an ensemble-averaged
form of the stream-age equation in order to model the different residence times of fuel,
air, and fuel-air mixtures in an auto-igniting flow, and subsequently obtained accurate
predictions for the ignition locations.

Despite the long-standing use of residence times for analysis of systems in process
engineering, there is a lack of information concerning the characteristics of residence
time distributions at locations within turbulent flows. In order to provide fundamental
information concerning the statistical distribution of fluid residence time within turbulent
flows, this study analyses stream-age statistics obtained from new DNS data for a
turbulent jet flow. Given the lack of previous studies of this nature, we investigate the
turbulent round jet because it is a canonical example of a turbulent free shear flow, and
it exhibits features found in many flows in engineering and nature.

The statistically-stationary turbulent round jet has been studied extensively. A key
feature of such jets is that the velocity (Hussein et al. 1994; Wygnanski & Fiedler 1969)
and mass fraction (Mi et al. 2001) statistics become self-similar downstream from an
initial development region, when normalised by centreline values. Various measurements
confirm the self-similarity of the velocity statistics up to the fourth order moments of the
velocity vector (Panchapakesan & Lumley 1993). Furthermore, the approximate solution
for this self-similarity can be derived theoretically for the mean velocity by using a mixing
length hypothesis (Tollmien 1926) or an eddy viscosity model across the flow (Schlichting
& Gersten 2000). As the jet develops further downstream, the momentum flux remains
constant, but the mass flow rate increases. The increase of the mass flow rate implies that
the jet entrains surrounding fluid. In order to measure the mass entrainment rate, Ricou
& Spalding (1961) devised a porous-walled cylindrical chamber that controlled the radial
inflow of fluid. They determined the mass entrainment rate from the flow rate through
the porous wall that was required in order to maintain a uniform pressure along the
axis of the jet. Last, recent studies on the statistically-stationary turbulent jet focused
on the effect of the jet boundary condition. Xu & Antonia (2002) tested various nozzle
configurations and obtained different coefficients for half radius profile and entrainment
rates, confirming the dependence of the self-similar jet profile on the inlet boundary
conditions. Although the half-radius profiles and the entrainment rates depend on the
inflow conditions, the self-similar profiles of velocities are found to be independent of the
inlet conditions. Measurements with pipe inlets, converging nozzles, and fractal nozzles
all show comparable self-similar profiles after the initial development region.

The primary objective of this study is to investigate the implications of the self-
similarities of velocity and mass fraction statistics for the fluid-age distribution in turbu-
lent round jets. To this end, the following sections introduce the numerical simulations
and analysis used in order to obtain residence time statistics for a turbulent round jet;
demonstrate self-similarity of the mass-weighted stream age statistics; and derive a model
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that provides an estimate for the self-similar profiles of mean mass-weighted stream age
as a function of the profiles of the mean velocities and mass fraction.

2. Numerical simulation

The simulation configuration consists of a round jet of turbulent fluid issuing from a
flat plate into a quiescent environment. The injected fluid is a perfect gas with the same
temperature and density as the ambient fluid. The jet Reynolds number Re = (U0D)/ν
is 7,290 and the Mach number is 0.304, based on the bulk velocity U0, jet diameter D
and kinematic viscosity ν. The Taylor Reynolds number on the centreline at x/D = 15
is calculated to be Reλ = 35. Two streams are considered in the simulation: the jet fluid
with a subscript j and the ambient fluid. Transport equations for the mass fraction of
fluid originating from the jet (ξj) and for the fluid-age (aM ) are solved with the jet fluid
assigned zero age as it exits from the injector.

The mass fraction of jet fluid in the ambient fluid is initialised equal to zero and
arbitrarily we initialise the age of the ambient fluid to zero at the start of the simulation.
This implies that the stream-age for the ambient fluid is uniform and equal to the time
t, and that the mass-weighted stream age of the jet fluid (Φj) is given by

Φj = aM − (1− ξj)t. (2.1)

The mass fraction (ξj) and the stream age (aj) of jet fluid at the inlet are set to unity
and zero, respectively, across the inlet. The domain in which the source term in the age
equations is applied is the entire simulation domain downstream of the inlet. The jet
inlet mean velocity is prescribed as a smoothed top-hat profile. The mean value of axial
velocity at the inlet is uniform out to a radius of r = 0.475D and then smoothly drops to
zero at r = 0.5D following a half cosine function. Away from the jet inlet (r > 0.5D), a no-
slip wall boundary condition is imposed at x = 0, where x is the streamwise coordinate.
Pseudo-turbulent homogeneous isotropic velocity fluctuations are superimposed at the
inlet using the digital filter method (Touber & Sandham 2009) with a low turbulence
intensity of 1.7%. The low turbulence intensity is chosen to be similar to the nozzle inlet
measurements of Mi et al. (Mi et al. 2001) where the measured inlet turbulent intensity
was ∼ 1%.

All the other boundaries are non-reflecting outlets (Poinsot & Lele 1992) with a small
buffer region (Sandberg & Sandham 2006) at the downstream outlet boundary where
artificial viscosity is used to damp the characteristic waves in order to minimize spurious
acoustic reflection from the boundaries. All scalar diffusivities (D) are set by assuming
Lewis numbers equal to unity, and a Prandtl number equal to 0.72. Viscosity changes
with temperature following Sutherland’s Law (Sutherland 1893).

The flow is simulated with the compressible DNS code, HiPSTAR, developed at the
University of Southampton and recently used for a jet noise study (Sandberg & Tester
2016). A fourth-order central finite difference scheme with energy conserving boundary
schemes of same order (Nordström & Carpenter 1999) are used in the longitudinal and
the radial directions, while a pseudo-spectral method is used in the circumferential
direction. The singularity of the axis resulting from the cylindrical coordinate system
is treated using parity conditions (Sandberg 2011). A fourth-order low-memory Runge-
Kutta scheme (Kennedy et al. 2000) is used for time advancement. In addition, skew-
symmetric splitting of the non-linear terms is used to enhance the stability (Kennedy &
Gruber 2008).

For the computational mesh, a structured and stretched grid is used, adapted from a
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(a) (b)

Figure 1: The ratios between the grid spacing and the calculated Kolmogorov length
scale along (a) the axial direction and (b) the radial direction.

previous round jet study (Sandberg et al. 2012) where Re = 6, 300. The grid spacing, ∆,

from the previous study was refined using Reynolds number scaling as ∆/D ∝ Re−3/4

(Antonia et al. 1980),be since the turbulent Reynolds numbers in the jet scale with the
jet Reynolds number Re to a good approximation. In the radial direction, the grid is most
refined near the edge of the jet inlet (r = D/2) where the velocity and scalar gradients
are the greatest, and 145 points are assigned radially within the jet diameter. In the
axial direction, the grid is most refined near the inlet and gradually stretched moving
downstream. In the circumferential direction, 64 Fourier modes are used, corresponding
to 130 physical collocation points. The grid consists of 3020×834×130 structured nodes,
spanning axially from x = 0− 60D and radially from r = 0− 30D.

In order to resolve all the turbulent flow structures, the grid spacing should have the
same order of magnitude as the Kolmogorov length scale (LK). In particular, Yeung &
Pope (1989) recommended use of ∆/LK ≈ 2.1. Figure 1a and b shows the ratios between
the grid spacing and the calculated Kolmogorov length scale. ∆x and ∆r vary as the grid
is stretched, and the Kolmogorov length scale also changes spatially as noted by Antonia
et al. (1980). The values of ∆/LK along the axial direction at r/D = 0 and r/D = 0.5,
and across the radial direction at x/D = 0.5 and x/D = 15 shown in Figure 1a and b
remain below 2.5, confirming that the grid resolution is adequate.

In order to accelerate the development of the statistically-stationary jet flow field, the
flow is simulated for 540 jet times (τ = D/U0) using a computational mesh with half of
the resolution of the final grid. By 540 jet times the first and second order statistics in
the first 30 diameters of the domain show that the simulation has reached a statistically-
stationary state. Then, the coarse-grid solution is interpolated onto the final mesh, and
the simulation continued over an additional 80τ , confirming that statistical-stationarity
is re-established. Subsequently, statistics are sampled over 380 jet times. The converged
turbulent jet simulation also displays self-similarity downstream of 40 jet diameters as
discussed below.

Figure 2a-c show the first and second moments of the axial and radial velocity
components from the simulation versus the scaled radius (η = r/(x − x0)), where x0 is
a virtual origin. The experiment of Panchapakesan & Lumley (1993) was chosen for the
comparison because they used a similar boundary condition as the present DNS involving
a near-laminar jet (urms ≈ 0.5%) with a top hat velocity profile from a convergent
nozzle issuing through a flat plate. All the mean quantities of the current simulation
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(a) (b)

(c) (d)

Figure 2: Radial profiles of (a) the mean axial velocity, (b) the axial velocity fluctuation,
(c) the axial-radial Reynolds stress, and (d) the energy spectrum of axial velocity.

show adequate agreement with the laboratory measurements. Panchapakesan & Lumley
(1993) reported that the higher moments reach a self-similar state for x/D > 70. We
noted that the statistics achieved self-similarity already after x/D > 15 for the first
moment, and x/D > 25 for the second moment, and note that this might be attributable
to the lower Reynolds number of the DNS, since the jet Reynolds number is 11,000 in
the measurements reported by Panchapakesan & Lumley (1993).

Figure 2d shows the energy spectrum of the axial velocity component, E11. The energy
spectrum is obtained from a single point measurement and the temporal variation of
velocity is converted to a spatial dependency employing Taylor’s hypothesis, i.e., the
turbulent fluctuations are assumed to move downstream with the averaged velocity. As
E11 is the energy spectrum of a single component, the peak value occurs near k = 0
(Pope 2000). Over the wave number range kD = 2 − 20, k−5/3 scaling is obtained,
indicating that the flow is locally isotropic. The range of the spectrum also confirms that
the Kolmogorov length scales are resolved in the simulation.

Figure 3 shows the mean and the root mean square fluctuations of the jet fluid mass
fraction. The contracting nozzle experiments of Mi et al. (2001) are shown for comparison
as their inlet velocity conditions match approximately with those in the current DNS. The
mean of the current DNS shows a good agreement with the measurements, while the level
of fluctuations predicted is slightly lower than the level in the laboratory observations.
The difference in the level of fluctuations may be attributable to the differences in
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(a) (b)

Figure 3: The radial variation of (a) mean mass fraction and (b) the root mean square
fluctuation of mass fraction.

inlet conditions, including a 50K temperature difference between the jet fluid and 288K
ambient fluid in the experiment by Mi et al. (2001).

The statistical distributions of the fluid properties can be further characterised by their
higher moments. The third order (skewness) and the fourth order (kurtosis) moments of
jet fluid mass fraction are defined as follows:

skewness =
(ξj − ξj)3
(ξrmsj )3

, (2.2)

kurtosis =
(ξj − ξj)4
(ξrmsj )4

, (2.3)

where ξrmsj is the root mean square (rms) value. The skewness is a measure of symmetry
for a given distribution – zero for a symmetric distribution, negative indicating a longer
tail on the left of the distribution, and positive indicating a longer tail on the right.
The kurtosis is a measure of tailedness or peakedness – large if a distribution is spread
out (or more influenced by tails) and small if a distribution has a more pronounced
peak (or it is less influenced by tails). For reference, the skewness and the kurtosis of
a Gaussian distribution are zero and three, respectively. Figure 4 shows the skewness
and the kurtosis of the jet fluid mass fraction over the scaled radius at different axial
locations. In addition, the measurements from Mi et al. (2001) have been added for
comparison, showing close agreement between the DNS and the measurements. Note
that measurements from Mi et al. (2001) are extracted between x/D = 25 − 65, while
the DNS data are extracted between x/D = 10 − 30, and that both the experimental
and numerical data lack statistical convergence in the outer portion of the jet (η > 0.2).

The normalised profiles of statistical quantities evaluated from the DNS are expected to
be self-similar downstream of an initial development region. A degree of variation in the
normalised profiles is evident between different axial locations and this may be attributed
partly to incomplete statistical convergence, and partly to ongoing development of the
flow in the region shown, x/D = 15− 40. The statistics reported are evaluated over 380
jet times, however the integral timescale of the turbulent flow increases approximately
quadratically in the downstream direction, and higher-order statistical moments are
strongly influenced by relatively infrequent intermittency events in the radially-outer
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(a) (b)

Figure 4: The skewness (a) and the kurtosis (b) of the mass fraction over the scaled
radius at different axial locations.

portion of the jet. Therefore the statistical convergence of the results varies through
the flow, reducing with axial distance and for higher-moments. Statistical moments of
second order and higher are reported downstream of either x/D = 20 or 25, which
is similar to the upstream location x/D = 25 at which Mi et al. (2001) report self-
similarity of the first four moments of mass fraction. Figure 4 also indicates that the
statistics obtained from the present DNS exhibit a similar level of scatter compared to
the previous experimental study by Mi et al. (2001), and this is considered adequate for
the purposes of characterising statistics of the residence time distribution.

3. Results

In this section we first present an a priori analysis concerning the self-similarity of
the mass-weighted stream age profiles. Second, we demonstrate that the mass-weighted
stream age distribution is statistically stationary and, downstream of an initial develop-
ment region, self-similar with respect to the scaled radius of the jet. Last, we will use the
self-similar properties of the velocity and mass fraction fields to develop a model for the
mean mass-weighted stream age, which we test using the DNS data.

3.1. A priori analysis of the mass-weighted stream age profiles

The mass-weighted stream age (Φj) is a passive scalar that depends on flow variables u
and ξj whose moments are known to be self-similar with scaled radius η. However it does
not immediately follow that the mean mass-weighted stream age Φj is self-similar with η
for two reasons. First, we need to confirm that statistics of Φj are statistically-stationary.
It is shown in Section 3.2 that the statistics of Φj are indeed stationary, whereas those
of the fluid-age not. Second, there are unclosed turbulent flux terms in the transport
equation for Φj and more needs to be known about these before presuming that profiles
of Φj will be self-similar. The second point is illustrated below by demonstrating that
certain forms for the turbulent flux terms would give profiles of Φj that are not a function
of the scaled radius, and therefore not self-similar.

The self-similar flow variables of ū, v̄, and ξj in turbulent round jets can be expressed
as follows:
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ū =
A

x
f(η), v̄ =

A

x
g(η), and ξj =

B

x
h(η), (3.1)

where A and B are the constants known as decay ratios and η = r/x. Note that the
virtual origin, x0, is omitted in this section for brevity.

Next, assuming Φj is statistically stationary, the averaged equation for mass-weighted
stream age can be written from eq. 1.2. Substituting eq. 3.1 into the average of eq. 1.2
leads to

f(η)
∂Φj
∂x

+ g(η)
∂Φj
∂r

= − x
A

∂

∂x

(
u′Φ′j

)
− x

Ar

∂

∂r

(
rv′Φ′j

)
+
B

A
h(η), (3.2)

where the molecular diffusion terms are neglected for a simpler presentation. Equation
3.2 contains two unclosed turbulent flux terms, therefore the generic form for Φj cannot
be determined. In order to illustrate how these unclosed terms influence the profile of
Φj , we construct hypothetical profiles for u′Φ′j and v′Φ′j as follows:

u′Φ′j = F1 + F2 + F3 and v′Φ′j = G1, (3.3)

where F1, F2, F3, and G1 are defined as the solutions of the following formulae:

F1(x, r) =

∫ x/r

0

B

η′
h

(
1

η′

)
dη′, (3.4)

∂F2(x, r)

∂x
= Aαxα−2f

( r
x

)
ϕ
( r

xβ

)
, (3.5)

∂F3(x, r)

∂x
= −Aβxα−2f

( r
x

) r

xβ
ϕ′
( r

xβ

)
, (3.6)

1

r

∂(rG1(x, r))

∂r
= Axα−2

x

r
g
( r
x

) r

xβ
ϕ′
( r

xβ

)
, (3.7)

where η′ is a dummy variable, ϕ′ represents the derivative of ϕ, α and β are some con-
stants, and ϕ is some function. The functions, F1, F2, F3, and G1, are constructed in such
a way that the right hand side of eq. 3.2 has a general form

∑
x(α−1)C1(r/x)C2(r/xβ),

where CX denotes a generic function. Henceforth, given the assumed turbulent closure
terms, Φj becomes

Φj = xαϕ
( r

xβ

)
. (3.8)

As β is an arbitrary constant, Φj can have a dependence other than on η. This example
illustrates that further information about the form of the turbulent flux terms in eq. 3.2
is required before presuming whether or not Φj is self-similar with η.

3.2. Evolution of the mass-weighted stream age

Fluid-age increases with residence time, causing the stream age of the ambient fluid
around the jet to increase continuously. However, as the jet fluid issues from the inlet with
age equal to zero and, as the turbulent jet reaches a statistically-stationary state, the
influx of new jet fluid balances the ageing of the jet fluid inside the turbulent jet. Figure
5a shows the mass-weighted stream age of jet fluid Φj at two positions in the flow over
a period of 350τ , confirming that the evolution of Φj achieves a statistically-stationary
state. By comparison, figure 5b shows that the fluid-age at the same locations increases
over time due to the contribution of the uniformly increasing stream age of the ambient
fluid.
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(a) (b)

Figure 5: (a) Temporal profile of mass-weighted stream age at selected locations marked
in figure 6a and b, and (b) the temporal profile of fluid-age at the same locations.

Having established that the mass-weighted stream age of jet fluid is statistically
stationary, samples of Φj from around the statistically-homogeneous circumferential
direction are accumulated over time in order to obtain ensemble statistics as a function
of the axial and radial positions. Figure 6a shows an instantaneous and an ensemble-
averaged Φj field on a cross-section through the jet centreline, and the radial profiles of
Φj at selected axial locations. Comparison of the instantaneous and ensemble-averaged
fields of Φj indicates that, similar to the velocity and mass fraction fields, the width of
the Φj profile appears to increase approximately linearly in the downstream direction.
The ensemble-average Φj increases monotonically in the downstream direction along the
centreline. Since the mean mass fraction ξj decreases downstream, the increase of Φj
indicates that the fractional increase of stream age aj exceeds the fractional decrease
of mass fraction along the centreline. Conversely, the ensemble-average ξj decreases
monotonically in the radial direction, revealing that the radial decrease of mean mass
fraction outweighs the radial increase in stream age.

Downstream of an initial development region (x/D > 7), Φj increases approximately
linearly along the centreline of the jet, as shown in figure 7a. The linear increase of
Φj along the centreline can be explained by considering a Reynolds-averaged form of
equation 1.2 for statistically-stationary flow:

∂Φj
∂x

=
ξj
ū

+R , (3.9)

where the R term includes all radial transport terms and molecular and turbulent
transport in the axial direction. The detailed contributions of budget terms for Φj are
discussed in section 3.3. However it is instructive to consider that, since ξj,c and uc both
decrease linearly along the centreline of the jet, as shown in figure 7a, the first term on
the right hand side of equation 3.9 is approximately constant in the developed region of
the jet. Figure 7b shows that the first term on the right hand side of equation 3.9 provides
the dominant contribution to the centreline gradient of Φj , and therefore explains why
Φj increases approximately linearly along the jet centreline.

3.3. Self-similarity of mass-weighted stream age

In this section, the radial profiles of mass-weighted stream age statistics are presented.
All values are normalised by relevant centreline mean values, ξj,c, uc, or Φj,c, and the
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(a) (b)

(c)

Figure 6: (a) Instantaneous mass-weighted stream age, Φj and (b) ensemble-averaged
Φj fields on a section through the jet centreline, and (c) the radial variation of Φj at
different axial locations.

(a) (b)

Figure 7: Axial variation of (a) the centreline average of mass-weighted stream age, Φj,c
(right axis), the reciprocals of the centreline average mixture fraction 1/ξj,c and axial
velocity 1/uc (left axis). (b) The axial gradient of Φj,c and the ratio of ξj,c and uc along
the centreline.
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radial position is scaled by the axial distance downstream from the virtual origin, η =
r/(x − x0). The virtual origin, x0, was obtained from figure 7a by extrapolating uc
upstream from the linear region. All data presented in this section are sampled in the
range 15 6 x/D 6 40 and 15 6 x/D 6 30 for the first and second moments, respectively.

Figure 8 shows the radial profiles of the mean and rms mass-weighted stream age,
and the turbulent fluxes u′Φ′j , and v′Φ′j that appear in the axisymmetric, steady-state,

constant-density, and Reynolds-averaged transport equation for Φj :

u
∂Φj
∂x

+ v
∂Φj
∂r

= D
[
∂2Φj
∂x2

+
1

r

∂

∂r

(
r
∂Φj
∂r

)]
− ∂

∂x

(
u′Φ′j

)
− 1

r

∂

∂r

(
rv′Φ′j

)
+ ξj . (3.10)

All of these radial profiles appear self-similar for the range of downstream positions
shown. The radial profile of Φj is compared with the radial profiles of the mean axial
velocity and mean jet mass fraction in figure 8a. The mean axial velocity and mean mass
fraction display approximately Gaussian profiles, with the jet fluid mass fraction profile
slightly wider than the axial velocity profile, consistent with previous observations for
passive scalars with order unity Schmidt numbers (e.g. Dowling & Dimotakis 1990). In
contrast, the radial profile of Φj has a flatter peak compared to the Gaussian profile, but
a similar overall width to the mass fraction profile. The shape of the profile of the root
mean square fluctuations of Φj in figure 8b also differs from the shape of the urms and
ξrmsj profiles shown in figure 2b and figure 3b, respectively. In each case the location of
the peak fluctuation level is close to the location of the maximum radial gradient of the
corresponding mean quantity, which is close to the point where the variance production
term due to the mean radial gradient is greatest. Due to the broad-peaked radial profile
of Φj , the location of the peak rms value Φrmsj is radially outward from the location of
the peak values of urms and ξrmsj . Figure 8c and figure 8d show the axial and radial

turbulent fluxes u′Φ′j and v′Φ′j versus the scaled radius. These profiles are qualitatively

similar to u′v′ profile shown in figure 2c, however the radial location of the peak turbulent
fluxes lies at approximately η = 0.12, roughly mid-way between the location of the peak
rms value of the velocity fluctuations at η = 0.06 and the peak rms value of the Φj
fluctuations at η = 0.18.

The budget of equation 3.10 is shown in figure 9 versus the scaled radius. Since the
moments appearing in equation 3.10 are self-similar with respect to the scaled radius, the
data for each value of scaled radius is normalised by the centreline value ucΦj,c/(x− x0)
and averaged over axial positions from x/D = 15 − 40. The relative magnitudes of the
terms in equation 3.10 show that axial convection and the source term are the dominant
contributions, consistent with the centreline analysis shown in figure 7b. The next
most significant terms are the radial transport terms due to mean convection v∂Φj/∂r

and turbulent flux − 1
r∂
(
rv′Φ′j

)
/∂r. Diffusive transport of Φj and axial transport by

turbulent velocity fluctuations play a relatively minor role. The relative importance of
the terms in the Φj budget is similar to the relative magnitudes of the corresponding
terms in the mean axial velocity or mean mass fraction equations. The mean convection
terms and the source term ξj are closed at first order, and the relative magnitude of
diffusive transport of mean properties is expected to decrease in high Reynolds number
turbulent flow and may be neglected, however additional modelling is required in order
to close the turbulent flux terms. Noting that the axial turbulent flux term is small
compared to the radial turbulent flux, a model for the radial turbulent flux is developed
in section 3.4.
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(a) (b)

(c) (d)

Figure 8: Radial variation of (a) the normalised mean mass-weighted stream age, Φj
between x/D = 15 − 40; (b) the normalised Φj rms between x/D = 15 − 30; (c) the

normalised axial turbulent flux u′Φ′j between x/D = 15 − 30; and (d) the normalised

radial turbulent flux v′Φ′j between x/D = 15− 30.

Figure 9: The budget of equation 3.10 versus scaled radius. Budget terms are normalised
by ucΦj,c/(x− x0) and averaged over normalised axial distance x/D = 15− 40.
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3.4. Closure model for v′Φ′j
In this section, we propose closure models for the radial turbulent flux of the mass-

weighted stream age, v′Φj
′. The axial and radial turbulent flux terms in equation 3.10

for the Reynolds average of Φj are unclosed and both require modelling. However, figure

9 illustrates that the axial turbulent flux term, u′Φj
′, has a minor influence on the

overall transport budget, suggesting that it may be neglected, and here we focus only

on developing a closure for the radial turbulent flux term, v′Φj
′ in terms of first-order

moments. Since the velocity, mass fraction and mass-weighted stream age statistics are all
self-similar, it is convenient to develop the closure model in terms of self-similar variables
that are normalised by centreline values and that depend only on the scaled radius η.
Due to the very similar shapes of the normalised mean mass fraction and normalised
mean axial velocity profiles in the turbulent jet shown in figure 8, a number of different
model forms can be used to approximate v′Φ′j . Initially two model forms are considered:

Model 1:
v′Φ′j

ucΦj,c
= −β1

∂
(
Φj/Φj,c

)
∂η

, (3.11)

and

Model 2:
v′Φ′j

ucΦj,c
= −β2η

∂ (ū/uc)

∂η
, (3.12)

where βi are modelling constants. Model 1 is proposed based on the eddy viscosity
model for u′v′ (Boussinesq 1877; Prandtl 1925). Model 2 was obtained by trying various
combination of flow variables. However, Model 2 has the undesirable property, from
a modelling perspective, that it contains neither v nor Φj . Hence a third model was
developed from Model 2 by using the continuity equation to obtain an expression in
terms of v̄ and Φj .

The Reynolds-averaged axisymmetric steady-state constant-density continuity equa-
tion can be rewritten in terms of the self-similarity variable as follows:

ū

uc
+ η

∂ (ū/uc)

∂η
− 1

η

∂

∂η

{
η
v̄

uc

}
= 0. (3.13)

Due to the similarity between the axial velocity and the Φj profiles, approximating ū/uc
with Φj/Φj,c leads to

η
∂ (ū/uc)

∂η
≈ 1

η

∂

∂η

{
η
v̄

uc

}
− Φj

Φj,c
. (3.14)

This approximation constitutes Model 3 as follows:

Model 3:
v′Φj

′

ucΦj,c
= −β3

(
1

η

∂

∂η

(
η
v̄

uc

)
− Φj

Φj,c

)
(3.15)

Figure 10 shows the comparison between v′Φj
′ and the three models proposed in

equations 3.11, 3.12, and 3.15. The present data indicate which form for the turbulent
flux model are plausible, however data for a wider range of flow conditions should be
used to establish the general validity of the modelling. Model 1 differs substantially from

the observed profile of v′Φj
′, however Model 2 and Model 3 give close agreement with

the actual profile. Models 2 and 3 are very close to one another, supporting the validity
of the approximation made in equation 3.14. From this comparison, it is clear that either
Model 2 or Model 3 provide a good approximation. As Model 2 contains neither v nor
Φj , Model 3 would be preferred.



16 D. Shin, R. D. Sandberg and E. S. Richardson

Figure 10: Comparison of the models proposed in equations 3.11, 3.12, and 3.15 with the

DNS data of normalised radial flux of mass-weighted stream age, v′Φj
′/ucΦj,c (shaded

area), plotted against the scaled radius, η. Fitting parameters are β1 = 0.0015, β2 =
0.016, and β3 = 0.01.

3.4. Theoretical analysis of the self-similar profile of Φj

In this section, the self-similar properties of the turbulent round jet and the closure
developed in section 3.4 are used to develop a closed form solution for the self-similar
profile of the mean mass-weighted stream age, Φj . In agreement with previous studies
(Hussein et al. 1994; Mi et al. 2001), figure 7 shows that, in the self-similar region of the
flow, the centreline mean axial velocity uc and mean mass fraction ξj,c vary in inverse
proportion to the distance x′ downstream from the virtual origin at x0. Consequently
the jet spreads linearly (Pope 2000) and exhibits a constant entrainment rate (Ricou &
Spalding 1961). The axial and radial mean velocities, and the mean mass fraction may
then be expressed as

ū =
A

x′
f (η) , (3.16)

v̄ =
A

x′
g (η) , (3.17)

and

ξj =
B

x′
h (η) , (3.18)

where f (η), g (η) and h (η) are the self-similar shape functions for u, v and ξj respectively.

The mean mass-weighted stream age is assumed to have an n-polynomial axial depen-
dence with a coefficient α and its self-similar shape function is denoted ψ(η),

Φj = α (x′)
n
ψ (η) . (3.19)

According to figure 8, the radial turbulent flux of Φj is also self-similar when normalised

by the centreline values. Combining equations 3.17 and 3.19, v′Φj
′ is written as follows:

v′Φj
′ = ucΦj,cθ (η) = Aα (x′)

n−1
θ (η) , (3.20)

where θ(η) is the shape function for v′Φ′.

Neglecting the axial turbulent flux and molecular transport, equation 3.10 for the
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Reynolds-averaged transport of Φj can be rewritten as

u
∂Φj
∂x

+ v
∂Φj
∂r

= −1

r

∂

∂r

(
r v′Φj

′
)

+ ξj . (3.21)

Substituting equations 3.11, 3.12, and 3.15 into equation 3.21 and transforming the
equation with respect to η leads to

xn−1
[
n f (η)ψ (η)− η f(η)

∂ψ (η)

∂η
+ g(η)

∂ψ (η)

∂η

]
= −xn−1 1

η

∂

∂η
[η θ (η)] +

B

Aα
h (η) ,

(3.22)
Given that the flow is self-similar, the solution of equation 3.22 is required to be a function
of η only. Since the coefficients A, B, and α have no x-dependence, n must equal unity.
This linear growth of Φ in the axial direction is consistent with the result shown in figure
7a.

Next, this equation is closed by incorporating Model 3 from section 3.4, which is
rewritten in the self-similar form as,

Model 1: θ(η) = −β1
∂ψ(η)

∂η
. (3.23)

Substituting equation 3.23 into equation 3.22 leads to

f(η)ψ(η)− ηf(η)
∂ψ(η)

∂η
+ g(η)

∂ψ(η)

∂η
=
β1
η

∂

∂η

(
η
∂ψ(η)

∂η

)
+

B

Aα
h(η), (3.24)

which is rewritten in the self-similar form as,

Model 3: θ (η) = −β3
(

1

η

∂ (η g (η))

∂η
− ψ (η)

)
. (3.25)

Substituting equation 3.25 into equation 3.22 leads to

f (η)ψ (η)− η f(η)
∂ψ (η)

∂η
+ g(η)

∂ψ (η)

∂η
=
β3
η

∂

∂η

[
∂

∂η
(η g (η))− η ψ (η)

]
+

B

Aα
h (η) ,

(3.26)
which is a closed-form equation for ψ(η), the shape function for the mean mass-weighted
stream age Φj . This equation is an ordinary differential equation of ψ(η), so once f(η),
g(η), h(η) and a single point of ψ(η) are known, the entire solution of ψ(η) can be
calculated.

Figure 11 shows the comparison of ψ(η) from the DNS data and ψ(η) evaluated from
equations 3.24 and 3.26. In addition, the axial velocity shape function f(η) is shown for
reference. The evaluation of the equations uses DNS data for f(η), g(η), h(η) and a single
point of ψ(η), and then equations 3.24 and 3.26 are solved numerically. Note that due to
the difficulties associate with η = 0 (i.e., 1/η on the right hand side of the equations), the
ψ(η) profiles are evaluated starting away from the centreline at η = 0.001 and η = 0.04 for
equations 3.24 and 3.26, respectively. For equation 3.26, the slope of the calculated ψ(η)
at η = 0.04 does not necessarily match with the DNS data as the solutions are obtained
by imposing a single value of ψ(η) at a single point η. In addition, the solutions are very
sensitive to small changes of parameters β1, β3 or B/Aα. Nevertheless, the comparison
shows good agreement between the DNS and ψ(η) calculated using Model 1 and Model
3.

3.5. Statistical distributions of mass-weighted stream age

Figure 12 shows the radial profiles of the skewness and the kurtosis of Φj at various
locations in the self-similar region of the jet. Overall, the skewness and kurtosis profiles
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(a) (b)

Figure 11: Comparison of the mass-weighted stream age shape function profiles over the
scaled radius between the current DNS data and solutions from (a) equation 3.24 and
(b) equation 3.26. The parameters used are β1 = 0.0038, β3 = 0.01, and B/(Aα) = 1.33.

(a) (b)

Figure 12: (a) The skewness and (b) the kurtosis of mass-weighted stream age over the
scaled radius.

show similar trends to those for the mass fraction shown in figure 4. Near η = 0, the
weak negative skewness indicates that the distribution has a slightly longer tail on the left
– making large negative fluctuations of Φj more likely than large positive fluctuations.
Away from η = 0 the skewness increases parabolically with radius and switches to positive
values, indicating that the distribution of Φj has a relatively high probability for Φj values
several standard deviations greater than the mean in the radially outer portion of the
flow.

The kurtosis takes values of less than 5 at the jet centreline which, combined with the
low magnitude of the skewness at the jet centreline, indicates that the Φj distribution
is approximately Gaussian near the centreline. The kurtosis values remain similar until
η = 0.2, beyond which they increase rapidly, corresponding to a switch to bi-modal pdf
shapes.

Figure 13a and b show the spectra of Φj over the wave number. In Figure 13a, the
Batchelor spectrum is calculated in the same way as calculating E11 . The scaling of
k−5/3 is also observed over the range of k = 3 − 30 which is similar to the velocity
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(a) (b)

Figure 13: (a) Energy spectrum of mass-weighted stream age and (b) power spectrum by
direct Fourier transform of the mass-weighted stream age at x/D = 15 and r/D = 1.1.

Figure 14: The probability density function of mass-weighted stream age on the centreline
at axial positions in the range x/D = 5− 35.

spectrum as shown in Figure 2. Figure 13b shows the power spectrum by direct Fourier
transform of the time series of Φj at x/D = 15 and r/D = 1.1. In the range of ω = 3−10,
ω−4/3 scaling is observed. The spectrum shows that there are no particular narrow band
fluctuations in Φj .

Figure 14 shows the probability density function of mass-weighted stream age on the
centreline at axial positions in the range x/D = 5 − 35. The centreline Φj pdf remains
mono-modal but its peak value and variance evolve in the axial direction. Standardising
the Φj pdf by subtracting the mean and dividing by the standard deviation gives
pdf shapes in the scaled sample space ((Φj − Φj)/Φrmsj ) that are self-similar between
axial locations, for each value of scaled radius. This collapse is consistent with the self-
similarities of the Φj moments demonstrated above.

Figures 15a-d plot the self-similar profiles of the standardised Φj pdf at η =
0, 0.08, 0.16, and 0.20 respectively, showing the transition from an approximately
Gaussian distribution with a slight negative skewness at the centreline, through an
approximately symmetrical but bi-modal distribution at η = 0.16, to a strongly
positively skewed distribution at η = 0.20. This transition of the Φj pdf shape with
radius is qualitatively similar to the behaviour of the jet fluid mass fraction pdf
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(a) (b)

(c) (d)

Figure 15: The probability density function of mass-weighted stream age on the scaled
sample space at (a) η = 0, (b) η = 0.08, (c) η = 0.16, and (d) η = 0.20.

(Gampert et al. 2013), in which the transition of the pdf shape is attributed to the
effect of external intermittency increasing with radius, with the peak at low values of ξj
or Φj corresponding to instances of nominally non-turbulent ambient fluid engulfed by
the jet, and the peak at higher values of ξj or Φj corresponding to turbulent mixture.
The self-similarity of the Φj pdf demonstrated here substantially simplifies the task of
modelling the distribution of Φj in turbulent flow.

4. Conclusion

The statistical distribution of the residence time within a turbulent flow is investigated
using direct numerical simulation of a turbulent round jet. The jet issues from a smooth
pipe with a top-hat velocity profile and a jet Reynolds number of 7,290. The instantaneous
local residence time and mass fraction of fluid originating from the jet are simulated
using transport equations for fluid age and for mass fraction. The product of the mass
fraction and the fluid age – described as the mass-weighted stream age Φj – is found
to be statistically stationary, and analysis of this quantity leads to the following key
conclusions:

(i) The radial variation of the Φj statistics are self-similar downstream of an initial
development region when normalised by centreline values – the first four moments of Φj
exhibit self-similar profiles, and the one-point probability density functions of Φj from
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different axial positions show collapse when standardised and grouped by the scaled
radius.

(ii) The spatial variation of the mean Φj is influenced most by the counteracting
effects of convection by the mean axial velocity and the increase of the fluid age due
to the passage of time. Radial transport by the mean radial velocity and by the radial
turbulent flux provide the next most significant contributions to the transport of Φj ,
whereas the molecular transport and the axial turbulent flux are negligible.

(iii) The radial turbulent flux of Φj is self-similar and modelling is developed in terms
of the self-similar Reynolds-averaged radial velocity and Φj profiles, providing a closure
for the Reynolds-averaged transport equation for Φj .

(iv) Consistency of the Reynolds-averaged equation for Φj with the self-similar prop-
erties of the flow requires that the mean centreline value Φj increases linearly along the
jet axis, and this behaviour is confirmed by the observations from the DNS.

(v) The modelled Reynolds-averaged transport equation for Φj written in terms of the
radial similarity coordinate η provides a closed equation for the self-similar shape function
of Φj , and the predicted shape function shows good agreement with the observations from
the DNS.

The residence time distribution provides information that can be related to the extent
of progress of kinetic processes in a flow. The self-similar properties of the residence time
distribution that are demonstrated by this investigation simplify the task of modelling
the residence time distribution, thereby facilitating the development of modelling based
on residence time for kinetically-limited processes, such as for autoignition in turbulent
fuel jets.
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Appendix A. Derivation of Eulerian transport equations for fluid-age
from the Brownian motion of individual particles.

The following derivation yields the Eulerian transport equations for fluid-age and
stream-age derived previously by Ghirelli & Leckner (2004), but starting from stochastic
differential equations describing the dispersion of particles with fixed mass and com-
position (i.e. conserved elements of material). This derivation provides an explicit link
between the dispersion of discrete particles and the diffusion of fluid-age and stream-age
appearing in their Eulerian equations.

The particles each have an elementary age a∗(t) and fixed mass m∗. The stream mass
fraction ξ∗i (t) of each particle is either unity, if the particle originates from the ith stream,
or zero if it originates from elsewhere. The elementary age a∗(t) of the particle is initialised
as zero when the particle enters the specified domain, and increases linearly with time.
The position X∗(t) of the elementary particle changes due to Brownian motion of the
particles within the flow. The Brownian motion is modelled as a stochastic process (von
Smoluchowski 1916) depending on the molecular diffusivity D and the local ensemble
average velocity u. The properties of the particle are governed by,
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dξ∗i
dt

= 0 (A 1)

da∗

dt
= 1 (A 2)

dX∗ =

(
u +

1

ρ
∇ (ρD)

)
dt+

√
2DdW∗ (A 3)

where dW∗ is a Weiner process. Note that there are no micromixing terms for the
elementary properties because these equations refer to particles which, like physical
molecules, undergo dispersion but do not change composition due to molecular diffusion.

According to the principle of equivalent systems (Pope 1985), the equations for the
particle properties are statistically equivalent to the following equation for the joint mass
density function F(ηi, α) of the elementary mass fraction and elementary age, which are
given sample space variables ηi and α respectively:

∂F
∂t

+∇ · (uF) = ∇ · (ρD∇(F/ρ))− ∂F
∂α

. (A 4)

The Eulerian mass fraction ξi and fluid age aM are obtained by taking moments of the
mass density function:

ρξi =

∫ ∞
0

∫ 1

0

ηiF(ηi, α)dηi.dα (A 5)

ρaM =

∫ ∞
0

∫ 1

0

αF(ηi, α)dηi.dα. (A 6)

The stream-age ai is the conditional expectation of elementary age, conditional on ηi = 1,
evaluated as,

ai =

∫∞
0
αF(ηi = 1, α)dα∫∞

0
F(ηi = 1, α)dα

. (A 7)

Noting that the marginal mass density function for ηi consists of two delta-functions at
ηi = 0 and ηi = 1 respectively, the denominator in equation A 7 is equal to the mass of
fluid per unit volume with η = 1, which is equal to ρξi. The mass-weighted stream age
Φi = ξiai is then given by,

ρΦi =

∫ ∞
0

αF(ηi = 1, α)dα. (A 8)

The Eulerian transport equations 1.1 – 1.3 for the properties of the continuum fluid
are obtained by taking moments of the mass density function equation as in equations
A 5,A 6 and A 8 and dividing by density:

∂aM
∂t

+∇ · (uaM ) =
1

ρ
∇ · (ρD∇aM ) + 1 (A 9)

∂Φi
∂t

+∇ · (uΦi) =
1

ρ
∇ · (ρD∇Φi) + ξi (A 10)

∂ξi
∂t

+∇ · (uξi) =
1

ρ
∇ · (ρD∇ξi). (A 11)
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Langevin, P. 1908 Sur la théorie du mouvement brownien. Comptes Rendus Hebdomadaires
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