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Abstract 

Rolling noise from railways is significantly affected by the wheel–rail combined 

roughness and the dynamic properties of the track. To facilitate vibration and noise 

predictions it is desirable to be able to determine these parameters accurately from field 

measurements. In this study an inverse method to determine these parameters is adopted and 

enhanced. Use is made of a track model based on a wavenumber finite element model of the 

free rail coupled to discrete supports, which allows for the pinned–pinned mode and 

cross–sectional deformation of the rail. The rail vibration induced by hammer impacts and the 

vibration during train passages are simulated using this model, and these results are then 

applied to illustrate the accuracy of the direct and indirect methods for the estimation of track 

decay rate. These methods are compared in a case study for a ballasted track for which 

hammer impact and train pass-by measurements have been obtained. Other track parameters 

can also be extracted from the measured data by using the advanced track model. Thereafter a 

more complete method is adopted to estimate the wheel–rail combined roughness from 

measured rail vibration under train passages. A comparison is conducted among the estimated 

roughness levels obtained from this full method, an existing simplified method and the direct 

measurement method. It is found that the simplified method overestimates the roughness 

around the pinned–pinned resonance frequency but gives a good estimation if the track decay 
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rates of the loaded track are used. 
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Introduction 

 Noise from railway traffic has gained increasing attention since the 1960s with the rapid 

development of rail networks worldwide and growing awareness of the adverse effects of 

noise on human health and well–being
1
. Many studies have been conducted to understand the 

generation and propagation of rolling noise from railways
2-5

. The rail and wheel vibration are 

the most important sources
1
 of rolling noise from straight railway lines operating at normal 

speeds. The critical parameters governing the vibration of wheel–rail systems are the 

wheel–rail combined roughness
1, 6

, the track decay rate
1, 7

 (TDR) and other track dynamic 

parameters such as the stiffness and damping of the rail pads. The wheel dynamics also play a 

role. To establish a noise prediction model it is necessary to quantify these critical parameters. 

In practice, they are often chosen from experience, existing standards or measurements 

conducted on other tracks. This inevitably leads to disagreement between the measured and 

predicted noise, which is often attributed to uncertainties of these parameters. In order to 

reduce the uncertainties, it is important to be able to estimate the track parameters and 

combined roughness case by case. Other reasons to estimate these parameters include 

monitoring the growth of roughness or irregularities and assessing the deterioration of track 

structures in the management and maintenance of railway lines.  

The stiffness and damping of rail fasteners can be measured in the laboratory by using a 

direct method
8
 or an indirect method

9-11
. Thompson and Verheij

10
 compared the stiffness and 

damping of unloaded rail fasteners derived from laboratory tests and field measurements. 

They observed large discrepancies between these two methods for the estimation of loss 



 

 

  

factors of the fasteners although they found better agreement with regard to the stiffness. This 

illustrates a difficulty in using laboratory tests to quantify the behaviour of fasteners installed 

in track. In addition, the fastener stiffness and damping generally depend strongly on load
11, 12

 

and to a lesser extent on temperature
13

 and frequency
14, 15

, which brings difficulty and 

uncertainty in the parameter estimation even for the same track.  

The TDR is a derived parameter of the track that has a direct influence on the noise 

produced by the rail
7
. The estimation of it using the hammer impact method has been 

standardised in EN 15461: 2008
16

. This test is quite time–consuming because it must include 

dozens of hammer positions and several repeated measurements per position on an 

unoccupied track; it also requires a degree of expert knowledge to analyse the data. An 

alternative way to measure the TDR is the train pass–by method developed by Janssens et al.
6
. 

They observed that the TDRs obtained from the pass–by method were generally larger than 

those from the impact hammer method and they attributed this difference to the pre–load 

applied to the track under passing trains. Li et al.
17

 compared the TDRs obtained from the 

impact hammer method and train pass–by method and also found the pass–by method gave 

larger TDRs at most frequencies. Dittrich et al.
18

 recently named this method the energy 

iteration method and conducted extensive benchmark tests to validate it. Their results, 

however, showed that the impact hammer method and energy iteration method matched well 

with each other irrespective of different loading conditions of the track. As the two methods 

have their own advantages and disadvantages, and measurement noise will definitely 

influence the measurements in either case, it is hard to tell which one is superior to the other 

from a comparison of them at a certain track site. 

The roughness on the surface of the rail and wheel has a random profile; it also varies 

over time due to wear and grinding operations
19, 20

. The rail roughness required for rolling 

noise predictions can be measured either by systems based on a short stationary beam 



 

 

  

mounted above the rail or a portable trolley moving along the rail
21, 22

. Wheel roughness can 

be measured by a displacement transducer as long as the wheel is allowed to turn freely above 

the rail
1
. For the rail roughness, ISO 3095: 2013

23
 specifies the longitudinal and lateral 

positions to be measured and the associated data processing method. However, differences in 

the operation of the equipment in the field and post–processing of the measured data will lead 

to variations in the measured roughness spectra for the same track
24

. It is clear therefore that 

the direct measurement of combined roughness requires great effort and specific facilities.  

As the wheel–rail contact exists over a finite length and width, roughness with short 

wavelengths tends to be attenuated in the effective excitation of the wheel–rail system
1
. This 

is the so called contact filter effect. Remington
25

 proposed an analytical filter function to 

represent it. The simplified form of the function can be written as
1
  

   
0.5

3
1

4
H k ka




 
  
 

                      (1) 

where k is the wavenumber of roughness in the longitudinal direction and a is the half-length 

of the contact patch. Remington and Webb
26

 later developed a numerical model to 

approximate the contact area by a series of distributed point–reacting springs. This model 

allows the contact filter effect to be evaluated in the time domain based on the measured 

roughness. Thompson
1, 27

 made a comparison between the numerical and analytical models 

and found that the simple filter function could be used reliably up to about ka=6.5.  

To avoid the direct measurement of roughness and evaluation of the contact filter effect, 

Dittrich and Janssens
28

 initially proposed an idea for indirect measurements of the combined 

effective roughness from rail vibration with the help of the estimated TDR. Janssens et al.
6
 

then developed this method by using the measured rail vibration under train pass–bys and 

compared it with the direct method. They found the pass–by method gave a similar roughness 

spectrum shape to that from the direct measurement. Dittrich et al.
18

 showed that the position 



 

 

  

of the accelerometer on the rail had an insignificant effect on the estimated roughness for 

wavelengths greater than 10 mm. 

 Standardisation work
18

 has been undertaken to implement the indirect train pass–by 

methods in a new standard for measuring the TDR and combined roughness. Although many 

field tests have been conducted to validate the pass–by methods, few numerical or theoretical 

studies have been carried out to investigate the applicability and limitations of these methods. 

This study therefore aims to illustrate the assumptions and limitations of the methods through 

analytical, numerical and experimental analyses, and to provide some principles in their use. 

In addition, new alternative procedures are also adopted and compared with the existing 

methods.  

The estimation of track parameters and combined roughness from rail vibration measured 

in the field relies on the use of theoretical or numerical dynamic models for the track and the 

wheel. A rail is often represented by an infinite Timoshenko beam on a continuous support
1, 3

 

in the prediction of rolling noise. The advantage of this model lies in its analytical solution. To 

include the pinned–pinned effect near 1000 Hz, it is better to use an infinite Timoshenko 

beam on discrete supports
1
. One possible way to obtain the numerical solution for this track 

model is to use a finite number of elastic supports to approximate the infinite supports
29

.  

The cross–sectional deformation of the rail becomes significant at frequencies above 

1500 Hz. Wu and Thompson
30

 proposed a simple approach to represent the cross–sectional 

deformation by means of a composite beam. However, Jones et al.
7
 showed that this model 

failed to give accurate TDRs at 5000 Hz compared with the measured ones. Nilsson et al.
31

 

established a wavenumber finite element (WFE) model of a rail on a continuous foundation to 

predict rail vibration and noise. Ryue et al.
32

 used this model to simulate TDRs up to 80 kHz. 

The WFE model of the rail on a continuous support suits the simulation of high frequency 

vibration of the rail but neglects the pinned–pinned effect. Here, this model is extended to 



 

 

  

include periodic supports. 

The structure of the paper is organized as follows. First, a train–track interaction model is 

proposed for the simulation of rail vibration by using the WFE model of the rail extended to 

include discrete supports. This accounts for the pinned–pinned mode of the rail around 1000 

Hz as well as cross–sectional deformation of the rail at higher frequencies. Second, simulated 

rail vibration with assumed measurement noise is used to illustrate the applicability of the 

direct and indirect methods for the estimation of TDR. This is followed by a case study based 

on field measurements on a ballasted track in the UK. Third, a procedure is presented to 

identify the stiffness and damping of the rail pad and ballast, and damping of the rail from 

hammer impact measurements. Then, the train pass–by method for the estimation of 

combined roughness is introduced and various simplifications are discussed with emphasis on 

their assumptions and accuracy. A comparison is afterwards made between the estimated 

roughness and the directly measured one. Finally, the main conclusions are drawn in the last 

section. Only vibration in the vertical direction is considered, although the same methods 

could also be applied to lateral vibration. 

 

Model for the simulation of rail vibration 

Track model 

A WFE
31

 model representing a free rail of infinite length is first developed to account for 

bending, shearing and cross–sectional deformation of the rail. To allow for the discrete 

supports of the rail provided by the fasteners, sleepers and ballast, a finite number of 

frequency–dependent support springs are then introduced. At the location of each rail fastener, 

the supports are distributed across the rail foot (Fig. 1(a)-(b)). 

To obtain the vibration of the discretely supported rail under a given external vertical 

force, a compatibility equation is required either in terms of unknown rail displacements
1, 29

 at 



 

 

  

the support points or unknown reaction forces
33, 34

 of the support springs. By using the latter 

method
33, 34

, the compatibility equation of the discretely supported rail for harmonic motion at 

angular frequency   is expressed as 

       rf s P P      Y Y F + Y 0                      (2) 

where  F  denotes a vector of unknown reaction forces at the rail support locations; 

 s Y  is a diagonal matrix containing the mobility of each support spring, each of which in 

the case of a ballasted track can be expressed as a frequency–dependent function
1
 of the 

stiffness and damping of the rail pad and ballast, and mass of the sleeper;  P Y  represents 

a vector of mobilities of the free rail at the positions of the springs due to the external load P; 

and  rf Y  represents the mobility matrix of the free rail due to forces at the positions of the 

springs.  

In order to evaluate  P Y and  rf Y , the stiffness, mass and damping matrices of the 

WFE model of the free rail are firstly assembled in the WANDS program
35

. Then the residual 

method
31

 is applied to calculate the mobilities of the free rail subjected to a point force at the 

rail head node and each node of the rail model corresponding to a support spring. After 

obtaining the solutions for the unknown reaction forces F from Eq. (2) for a unit external 

force P, the point and transfer mobilities of the discretely supported beam can be calculated 

for various response points
33, 34

.  

Wheel–rail interaction model 

To simulate the rail vibration due to a passing train, wheel–rail contact forces under the 

excitation of combined roughness should be obtained. It is generally necessary to take into 

account the effect of multiple wheels on the rail at least in the frequency ranges where the 

TDR is low. This can be realized by considering one wheel as the active wheel with 

roughness excitation and treating the others as passive wheels coupled to the track without 



 

 

  

roughness excitation
36

. Treating the ith wheel as the active one, a roughness of complex 

amplitude iR  is introduced at this wheel–rail interface. The wheel–rail interaction is then 

realized through a matrix formulation of the compatibility of the wheel–rail displacement as  

 rh c w c

0

0

0

i

i

j
R



 
 
 
 

    
 
 
 
 

Y Y Y F
                     (3) 

where c

i
F  represents the wheel–rail contact forces at all the wheels in the vertical direction 

induced by the combined roughness at the ith wheel–rail interface; the element rh,ikY  in rhY  

stands for the transfer mobility corresponding to the rail head at the locations of the kth and 

ith wheels, which varies depending on the position of the wheel on the discretely supported 

rail; cY  is a diagonal matrix denoting the mobility of the linearized Hertzian contact spring; 

wY  is a diagonal matrix of the wheel mobility which can be calculated using a rigid wheel 

model or from a finite element model of a flexible wheel
1
. 

In the following simulation of rail vibration it is assumed that each iR  is incoherent
36

 

and has the same spectrum. Moreover, iR  represents the effective roughness that is obtained 

from the actual roughness profile with application of the contact filter effect expressed by Eq. 

(1).  

 The total amplitude of the wheel–rail contact force cnF  at the nth wheel, caused by 

roughness at all the wheels, can be expressed as the energy summation of the incoherent 

excitations 

2

c c

1

N
i

n n

i

F F


                              (4) 



 

 

  

where N is the number of wheels in the train on the rail; and 
c

i

nF  is an element in vector 
c

i
F  

denoting the wheel–rail contact force at the nth wheel due to roughness excitation at the ith 

wheel. The wheel–rail contact forces under each wheel in the given frequency band are 

generally different for each position of the wheels.  

If the interference between the wheels on the same rail is neglected, the non–diagonal 

elements in rhY  become zeros and the summation in Eq. (4) is not required. Moreover, if in 

addition the driving point mobilities of the rail are assumed not to vary with position, as 

would be the case for a continuously supported rail, then the contact force cnF  at each wheel 

has the same magnitude at a given frequency.  

Rail vibration during a train pass–by 

 Since the train speeds are generally far smaller than the wave propagation speeds along 

the rail, the Doppler effect can be ignored in the calculation of the rail vibration. The wheels 

are assumed to be stationary but the effect of wheel motion is simulated by averaging the 

response for a set of different wheel positions. The instantaneous rail velocity amplitude at a 

sensor position can be therefore expressed by 

22

s c rs

1

N

n n

n

V F Y


                           (5) 

where rsnY  denotes the transfer mobility of the rail at the sensor position produced by a unit 

force on the rail head beneath the nth wheel. Vs is a function of the longitudinal distance 

between the fixed sensor and the wheel at different positions.  

 In the rest of the paper this model, with and without the simplifying assumptions listed 

above, is used to assess different methods of determining TDR and combined roughness.  

 

Estimation of TDR   



 

 

  

Field test and parameters used in the simulation 

In this section, the direct impact hammer method and two indirect train pass–by methods 

for determining TDRs will be discussed with the help of the model proposed in the previous 

section. A hammer impact measurement for TDR was conducted in May 2015 for a ballasted 

track with UIC60 rails and bi–block sleepers. The rail vibration of the same track section was 

recorded in   December 2015 under four train passages each comprised of 6 cars at operational 

speeds from 212 km/h to 218 km/h. These field measurement data will be discussed in the 

case study parts of this section and the Section ‘Estimation of combined roughness’. 

Table 1 lists four sets of arbitrarily chosen parameters for ballasted tracks that will be 

used in the simulation of rail vibration; the fifth column will be discussed later. The four 

tracks with significantly different rail pad stiffness are referred to as stiff, medium, soft and 

very soft for convenience. The sleeper mass per rail was set to 120 kg. The WFE model of a 

UIC60 rail attached to discrete supports was used for all tracks (Fig. 1). Each rail support was 

discretized by 8 springs across the rail foot. In this study the stiffness of each spring was 

simply determined in accordance with the transverse length of rail to which it is attached. This 

method of distributing the spring stiffness has been compared with a more sophisticated 

method considering the shape function of the quadrilateral element and found to give almost 

identical results for the mobility at the rail head. The supports of the infinite rail were 

truncated in the longitudinal direction into a total of 131 rail supports with a fastener spacing 

of 0.6 m. This allows the typical waves generated in the centre of the supported section of the 

rail to attenuate to sufficiently small amplitude at the ends of the finite supported region. To 

consider different positions of the impact hammer or the wheels along the rail, the transfer 

mobilities of the rail were obtained every 0.1 m over the discretely supported section of the 

rail, subjected to a driving force located at 0.1 m intervals within one fastener span (Fig. 1). 

A total of 24 wheels distributed over 120 m along the rail were considered in the 



 

 

  

wheel–rail interaction analysis to comply with the configuration of the measured train. Fig. 2 

shows the magnitude of the sum of the mobilities of the wheel and the contact spring. Both 

rigid and flexible wheel models are considered. It can be seen from Fig. 2 that the flexible 

wheel model exhibits many resonance peaks and anti–resonance dips in the mobilities above 

2000 Hz. The rigid wheel model is a good approximation to represent the averaged mobilities 

of the flexible wheel model over a wide frequency range. Since the estimation of TDR is 

dependent on the relative magnitude of the rail vibration along the track during the passage of 

the train, the details of the wheel mobility are not important and the rigid wheel model was 

used in this section for the simulation of rail vibration. Calculations were carried out at 

one–ninth octave frequency spacing (i.e. 30 points per decade). The flexible wheel model will 

be applied in the Section ‘Estimation of combined roughness’ associated with the narrow 

frequency spacing to obtain more accurate rail vibration considering the resonances of the 

flexible wheel. In each case the simulated results are ultimately converted to one–third octave 

band resolution for further processing. 

Impact hammer method 

In the impact hammer measurement, according to EN 15461: 2008
16

 the TDR D 

expressed in dB/m in each one–third octave band is evaluated using the following formula  

2

0 0

4.343

M
i

i

i

D
Y

x
Y





                            (6) 

where iY  is the measured frequency–response function (or transfer mobility) in each 

one–third octave band due to the impact force at the ith hammer position; the subscript i=0 

denotes the sensor position; M+1 is the total number of hammer positions; and ix  is the 

weighted interval in metres for each hammer position. 

Fig. 3 illustrates the simulated vertical rail mobilities of the stiff track using the model 



 

 

  

shown in Fig. 1. Fig. 3(a) shows the mobilities at x=0 and Fig. 3(b) shows the corresponding 

results for excitation at 0.3 m (the position of the first sleeper). Fig. 3(c) and Fig. 3(d) show 

the results at 1.25 kHz and 5 kHz respectively as a function of hammer position. It can be 

seen that the mobilities at the rail head above 1000 Hz are obviously different from those at 

the rail foot due to the cross–sectional deformation of the rail. Note that the sensor location on 

the rail foot has been chosen to be slightly away from the centreline. These differences lead to 

different estimated TDRs, as shown in Fig. 4, if the vibration sensors are placed on the rail 

head or foot, especially at high frequencies.  

Besides the effect of sensor positions, another potential challenge is the influence of 

background noise or instrumentation noise in the low frequency range. Fig. 5 compares the 

simulated rail foot mobilities of the stiff track with a real example of measurement noise 

which was obtained from the ambient vibration signal of the rail obtained during a hammer 

impact test. It can be noticed that the rail mobilities at low frequencies would be significantly 

affected by such inherent measurement noise. It is not surprising that the dips of the rail 

mobilities and the far–field transfer mobilities where the TDR is high are more vulnerable to 

measurement noise. Fig. 6 shows that the TDR estimated using the polluted rail mobilities 

deviates significantly from the correct one below 100 Hz.  

To reduce this effect, it is possible to use two impact hammers, a large one with a soft tip 

to produce sufficient response at low frequencies and a smaller one with a hard tip for high 

frequencies. It is also important to avoid the use of the far–field rail mobilities at low 

frequencies in the estimation of TDR as these are easily contaminated. This can be achieved 

by setting a threshold (e.g. –15 dB) relative to the drive point mobility, below which the data 

are ignored. Additionally measured vibration data that are either too high or too low 

compared with the expected attenuation can be suppressed. 

Train pass–by method using energy iteration  



 

 

  

To illustrate the assumptions and limitations in the train pass–by method
18

 for the 

estimation of TDR, a derivation of this method is given in this section. It is assumed first that 

the wheel–rail contact forces at all wheels are of same magnitude (see the assumptions after 

Eq. (4)), i.e. neglecting the interference between wheels and variations in the rail mobility 

with distance. Second it is assumed that, in a given frequency band, the dependence of the rail 

vibration induced by each wheel on the distance along the rail can be described by a decaying 

exponential function. Then the rail vibration ‘energy’ 
1

in

LE  measured at a fixed position 

produced by the ith wheel, during the passage of the nth wheel over a distance 1L  (see Fig. 7) 

centred at the sensor position, can be written as 

 
1

1

1

/2
2

/2

in

L

x xin

L

L

E Ve dx
 



                         (7) 

where V is the root mean square (rms) amplitude of rail vibration just beneath a given wheel; 

  is related to the TDR by  20lgD e  = 8.686; and inx  is the distance between the 

nth and ith wheels. If 1L  is less than the minimum distance between two wheels, Eq. (7) can 

be expressed as 

1 1

1 1
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                 (8) 

The rail vibration energy 
1

n

LE  induced by all the wheels during this time in which the nth 

wheel passes over the sensor position can be obtained by the summation of the vibration 

energy as 

1 1

1

N
n in

L L

i

E E


                              (9) 

Summing this total rail vibration energy over all N sections of length 1L  corresponding to 



 

 

  

the passage of each wheel over the sensor gives 

1

1 1

2

1

1
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n
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n

e
E E V


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






                      (10) 

where 
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If 1 1L , in  also approaches unity in the case of i n , as presumed by Dittrich et al.
18

 

When the integral distance used to determine the vibration energy becomes sufficiently 

large (for example, if it is taken to be equal to the total length of the train 2L ), the total 

vibration energy caused by all N wheels can be approximately expressed as 

 
2

2
21x

LE N Ve dx N V









                  (13) 

Thus the parameter   can be obtained by dividing Eq. (10) with Eq. (13)  
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2

1

ln 1
L

L

E N

E

L




 
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 
                          (14) 

It is noted that 
1LE and 

2LE can be calculated in each frequency band from the measured rail 

vibration. As   is itself a function of  , Eq. (14) has to be solved by an iteration algorithm. 

It is therefore called the energy iteration method by Dittrich et al.
18

.  

The estimation of the TDR from Eq. (14) is independent of the absolute rail vibration 

amplitude V. This allows the estimation of the TDR without a detailed knowledge of the track, 

the train or the roughness. Another advantage of this method lies in the fact that it takes into 

account the rail vibration contributed separately by each wheel using the factor   in Eq. 



 

 

  

(11). However, there are also several limitations in the method. In practice, 
1LE  is mainly 

determined by the attenuation of the rail vibration close to the excitation points while 
2LE  is 

determined by the averaged attenuation rate over a long distance. The value of  may differ in 

these two regions so that Eq. (7) is not valid and the elimination of   by dividing Eq. (10) 

by Eq. (13) is not rigorous. As a result, the main estimation error from the energy iteration 

method occurs due to neglecting the rapidly decaying evanescent waves that exist near the 

excitation points and the variation of the attenuation rates along the track in a given frequency 

band (see Fig. 3(c) and Fig. 3(d)). Other estimation errors are introduced by the differences 

between the vibration caused by each wheel due to the coupling effect of multiple wheels and 

the fact that the combined roughness under each wheel is non–stationary. In addition, the 

time–history of measured rail vibration during the passage of a wheel is strongly dependent 

on the actual roughness waveform in the vicinity of the sensor (see Fig. 7). This effect is 

ignored in the frequency domain based analysis. Nevertheless, the use of the averaged result 

from several train pass–bys can reduce this adverse effect to some extent.  

Fig. 8 depicts the simulated instantaneous rail foot acceleration levels in three frequency 

bands during the passage of a train (a) without and (b) with assumed measurement noise. It 

can be noticed that the vibration of the rail decays at different rates as the train passes. The 

acceleration levels at 1250 Hz also fluctuate periodically due to the pinned–pinned effect (see 

Fig. 3(c)). Moreover, there are sharp peaks in the acceleration levels at each wheel position at 

5000 Hz which indicate that the rail mobility is dominated by different waves in the near– and 

far–fields (see also Fig. 3(d)). This phenomenon is not consistent with the assumption of an 

exponential decay in the energy iteration method.  

Fig. 9 shows the simulated TDRs obtained using the hammer impact method and the 

energy iteration method for the four different sets of track parameters in Table 1. From this, it 



 

 

  

is clear that there are considerable discrepancies between the estimated and directly calculated 

TDRs from Eq. (6) even without any measurement noise. A Gaussian noise with standard 

deviation 10% of the maximum simulated acceleration amplitude in each frequency band is 

further introduced to all the simulated accelerations together with a wheel position 

identification error with a standard deviation of 0.1 m in the calculation of 
1LE  (i.e. the 

interval of the integral is not centred at the exact wheel position). The estimated TDR with 

measurement noise shown in Fig. 9 is the averaged result from five simulations with different 

random noise samples. It can be seen from the figure that the energy iteration method is quite 

robust at frequencies between 500 Hz and 3000 Hz for the four different tracks but is 

inaccurate for the higher values of TDR at low and high frequencies. Fig. 10 shows the effect 

of reducing the integral distance 1L  by half while keeping the same amount of measurement 

noise. This shows that the estimation quality can be improved between around 300 Hz and 

500 Hz for the case with measurement noise. 

Train pass–by method using slope fitting  

According to its definition, another way to estimate the TDR is to obtain the slope of the 

rail vibration level curve over a certain distance L3 (see Fig. 8(c)) after a passage of a wheel. 

To apply this method, the rail acceleration levels should be obtained at short time intervals 

corresponding to the motion of the train by steps of e.g. 0.1 m. The time instant must also be 

detected when the relevant wheel is just passing over the sensor position on the rail. Then the 

linear fitting can be conducted on the time–history of the rail acceleration levels over a larger 

distance L3 starting from the detected time instant. The TDR is just the absolute value of the 

fitted slope.  

Fig. 11 shows the estimated TDRs obtained from slope fitting of the simulated rail foot 

acceleration levels including the same measurement noise as those considered in the 

simulations of the energy iteration method. It can be observed that the slope fitting method 



 

 

  

with 
3L =1.2 m gives a similar estimate to the energy iteration method with 

1L =1.0 m. A 

good estimation in the regions with high decay rates at low and high frequencies can be 

obtained by reducing 
3L  to 0.6 m. However, a small value of 

3L  leads to overestimation of 

the low TDRs in the middle frequencies around 1000 Hz. It is suggested to use a smaller 

value of L3 for frequencies with high decay rates and a larger one for frequencies with low 

ones to obtain the decay rates more reliably in all frequency bands. 

Case study 

Fig. 12(a) shows a time–history of vertical acceleration measured on the rail foot during 

the passage of a train with a speed of 218 km/h. Fig. 12(b) and (c) illustrate the rail 

acceleration after low–pass filtering with a cut–off of 100 Hz. The filtered acceleration curve 

keeps the low frequency rail vibration content with high decay rates, and it can be used to 

identify the time instants when the wheels passed over the measurement position. Fig. 12(d) 

shows the measured rail acceleration levels during the motion of the train, with an averaging 

time corresponding to a distance equal to one sleeper span (0.6 m). The comparison between 

the measured vibration levels and the simulated ones shown in Fig. 8 suggests that the 

measured results are highly polluted by background or instrumentation noise. This might 

bring significant error in the estimation of TDRs using the pass–by methods. Other factors 

affecting the accuracy of estimation include the inhomogeneity of the track properties and 

non-stationary random roughness occurring in reality. 

Fig. 13 gives the estimated TDRs measured at this site from the hammer impact method 

and pass–by methods. It can be seen from Fig. 13(a) that the directly measured TDR is 

incorrect below 400 Hz if it is obtained from Eq. (6) by using the results for all the hammer 

positions. The trends are similar to the simulated results in Fig. 6 when measurement noise is 

included. Results are also shown in which the highly polluted far–field transfer mobilities are 

excluded from the summation in Eq. (6) by setting thresholds. These have been chosen to 



 

 

  

exclude the transfer mobilities below 400 Hz corresponding to attenuation rates relative to the 

driving point mobility greater than 30 dB/m or less than 3 dB/m. This leads calculated TDR 

much closer to those expected from experience. The above threshold values were selected 

because the TDRs below the cut-on frequencies of the ballast track are generally no more than 

20 dB/m or less than 6 dB/m, according to the simulated TDRs for different tracks in this 

study as well as those for ballast tracks provided in existing literature
1
. Other threshold values 

or criteria for excluding mobilities can be used if the track property is largely known or the 

measurement noise can be quantified. In any case, the TDRs at low frequencies are still 

unreliable if the measurement noise plays a significant role, because only the transfer 

mobilities corresponding to a few hammer positions can be used in the calculation with the 

threshold method. 

Fig. 13(b) shows results from the energy iteration method using different integration 

lengths 1L . The results at high frequencies are quite stable even when 1L  is varied. Since a 

large value 1L =2.0 m fails to predict the peak at 1250 Hz and a small value 1L =0.6 m may 

be too short to represent the vibration energy, an integral distance 1 1L  m was adopted for 

the final estimated decay rates in this study. Fig. 13(c) shows the results of the slope fitting 

method. This also gives stable results at high frequencies with different fitting distances. The 

fitting distance L3=1.2 m is therefore used for the frequencies above 1000 Hz and L3=0.6 m 

for those below 1000 Hz where the TDR is higher.  

The TDRs estimated from the above three methods are compared in Fig. 13(d). It can be 

seen that the estimated TDRs from the two pass–by methods agree with each other to some 

extent but they do not match well with the result obtained from the hammer impact method. 

This may be attributed to the following reasons: (1) the impact hammer method gives the 

TDR for an unloaded track but the pass–by methods give the results for a loaded track; (2) the 



 

 

  

track parameters may have changed between May and December 2015, particularly due to the 

change in temperature
13

; (3) some measurement noise and background noise will lead to 

estimation errors; and (4) all three methods have their own limitations and assumptions shown 

in the previous numerical and analytical discussions. 

 

Estimation of track stiffness and damping   

Besides the TDR, the values of the stiffness and damping parameters of the track are 

generally required for use in numerical models for rolling noise prediction. The impact 

hammer measurements not only give the decay rates of the track but can also be used to 

determine important information such as the rail pad stiffness and damping loss factor. This 

section will present a general procedure to estimate these track parameters from the impact 

hammer measurements.  

Firstly, the peak frequencies in the driving point mobility can be used to obtain the rail 

pad stiffness and ballast stiffness by comparison with a model. Fig. 14(a) shows the measured 

driving point mobility of the rail head together with the simulated ones for various track 

parameters. The peak in the measured mobility at 630 Hz indicates the rail pad stiffness 

should be around 600 MN/m as represented by the stiff track in Table 1. This peak frequency 

indicates the resonance frequency of the rail mass on the support stiffness of the rail pad
1
. The 

peak of the measured mobility around 90 Hz shows that the ballast stiffness per fastener 

should be around 48 MN/m. This peak frequency represents the resonance frequency of the 

mass of the rail plus the sleeper on the elasticity of the ballast. 

Secondly, the magnitude and sharpness of the peaks in the driving point mobility can be 

utilized to estimate the damping loss factors of the rail pad and ballast. Fig. 14(a) illustrates 

that in this case the loss factor of the rail pad of the track must not be as small as 0.05 if the 

magnitude and sharpness of the simulated peak mobility is to match the measured ones. By 



 

 

  

trial and error, the required loss factor of the rail pad can be determined as 0.25 and that of the 

ballast as 1.0 in this example.  

Third, the TDR can be used to derive a value for the equivalent loss factor of the rail. It 

can be observed from Fig. 14(a) that the rail loss factor does not have a significant effect on 

the point mobility, whereas it has a significant effect on the TDR at high frequencies. As 

shown in Fig. 14(b), the loss factor of the rail can be estimated as 0.01 to match the simulated 

and measured decay rates in the high frequency range around 3000 Hz. As reported by Ryue 

et al.
32

, the damping loss factor of the rail itself can be as low as 0.0002, since the material 

damping of steel is quite low. The estimated rail loss factor of 0.01 here is mainly due to the 

dissipation of vibration energy by the connection of the rail foot with the fasteners which are 

not included in the model.  

Finally, the simulated TDR and mobilities should be checked against the measured 

results over a wide frequency range and if necessary the estimated parameters adjusted 

slightly to obtain a better agreement with the measured curves. The agreement between the 

simulated and measured TDRs in Fig. 14 shows that the estimated track parameters are 

reasonable. The agreement at the peak at 1250 Hz corresponding to the pinned–pinned effect 

also gives confidence in the estimated parameters. Nevertheless, it is not considered necessary 

to match the simulated peak in the TDR to the measured one around 400 Hz, because the 

measured decay rate at this frequency is more likely to be affected by measurement noise as 

shown in Fig. 6 and Fig. 13(a). Although the measured TDR below 400 Hz has been 

improved by excluding highly polluted far–field transfer mobilities, it is still unreliable 

because only transfer mobilities corresponding to a few hammer positions could be used in 

the calculation. No obvious improvement was found by applying wavelet filtering to the 

measured data, because the measurement noise is either quite small compared with the driving 

point mobility or very large compared with the far–field transfer mobilities. The fifth column 



 

 

  

of Table 1 gives the estimated parameters for the test track obtained from the fitting procedure. 

Note that these values are obtained without the train loading. These values will be applied in 

the next section for the estimation of wheel–rail combined roughness. As the estimated TDRs 

from the pass–by methods show no obvious peaks and dips (see Fig. 13(d)), they are not 

suitable for the parameter extraction of the loaded track.  

Fig. 15 shows the calculated mobilities and TDRs for the estimated track parameters from 

the WFE rail attached to discrete supports, and the infinite Timoshenko beams on discrete and 

continuous supports together with those from measurements. It can be noticed from Fig. 15(a) 

that the peak frequency of 630 Hz (cut–on frequency of the track) in the mobility curve 

obtained from the WFE model shifts to 680 Hz and 736 Hz in one–ninth octave resolution if 

the two Timoshenko beam models are used instead. This will lead to an underestimation of 

16% and 36% for the rail pad stiffness if the discretely and continuously supported 

Timoshenko beam models are respectively applied in the curve fitting. Nevertheless, if these 

models are to be used, the corresponding parameters would be the correct ones to use with 

them. In fact it is found that the calculated cut–on frequencies from the three models will 

show less difference if the pad stiffness is softer. Moreover, it can observed from Fig. 15(b) 

that the Timoshenko beam models underestimate the TDRs in the frequency range from 3 

kHz to 7 kHz. A larger loss factor of the rail can be assigned to the Timoshenko beam in order 

to match the simulated TDR with the measured one in this frequency range, but it does not 

represent any physical damping in the track. On the other hand, the use of a more advanced 

track model, i.e., the WFE model of a free rail attached to discrete supports, can give better 

simulated TDR with peaks and dips that agree with the measured ones. In conclusion, it is 

very important to use an appropriate track model in the estimation of track parameters from 

curve fitting. The use of the WFE model of the rail is recommended when the frequency of 

interest is above 3 kHz or when the cut–on frequency of the track approaches the 



 

 

  

pinned–pinned frequency in the case of stiff fasteners. In the latter case, a discrete support is 

also suggested in the track model as presented in this study. 

 

Estimation of combined roughness 

The magnitudes of the wheel–rail contact force and of the rail vibration in the vertical 

direction are both linearly dependent on the magnitude of the wheel–rail combined roughness, 

as indicated by Eqs (2)–(5). This relationship provides the possibility to estimate the 

roughness from measured rail vibration during a train pass–by. In this section, a full method 

using the proposed numerical model for rail vibration is applied to estimate the combined 

roughness. The results are compared with those obtained from the simplified method 

introduced by Janssens et al.
6
 and Dittrich et al.

18
 and described in this section. The estimation 

errors arising from the two methods are discussed through numerical simulations. In June 

2015, the rail roughness was measured using a portable CAT trolley
22

 on the same section of 

the track as the rail vibration measurements. Wheel roughness has also been measured for 64 

wheels from trains of the type running over the section, although they were not necessarily the 

ones used in the pass–by measurement. The directly measured rail and wheel roughness levels 

and their sum are depicted in Fig 16. It can be observed that the rail roughness dominates at 

wavelengths between 20 mm and 40 mm and above 300 mm but the wheel roughness has an 

important contribution to the combined roughness at wavelengths between 50 mm and 300 

mm. The directly measured combined roughness is compared with the estimated results 

obtained from the pass–by methods. 

Full method 

If the track parameters are determined or at least estimated with reliable accuracy, the 

combined wheel–rail roughness r can be estimated from the measured rail vibration levels as  
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where mv  is the measured rms value of rail velocity in each one–third octave frequency band; 

sv  is the simulated rms velocity obtained using the given roughness sr  and track parameters; 

0r  and 0v  are reference values for the calculation of roughness level and vibration level 

respectively. It is noted that r  and sr  are both expressed here as functions of frequency but 

can be readily expressed in terms of wavelength for a given train speed. 

The accuracy of the estimated roughness is obviously dependent on the accuracy of the 

measured rail vibration. However, the main error of the estimation comes from the simulated 

rail vibration which relies on the numerical model and the input parameters, especially the 

TDR. To quantify the estimation error due to inaccuracy in track parameters, the rail foot 

vibration was first simulated with the aforementioned model, the direct roughness and the 

‘estimated’ track parameters listed in Table 1 for a train speed of 215 km/h. This is treated as 

the measured rail vibration in Eq. (15). Then, the rail vibration was simulated with inaccurate 

track parameters by varying them around the given ones with certain factors of 0.63, 0.80, 

1.26 and 1.60. The estimation error could be obtained from Eq. (15) by subtracting the 

vibration level (representing the measurement) under given track parameters with that 

(simulated) using inaccurate parameters. Fig. 17 shows the influence on the estimated 

roughness of changes in the various track parameters, i.e. pad stiffness and loss factor and 

ballast stiffness and loss factor. It can be seen from Fig. 17 that the pad stiffness has the most 

significant effect on the estimated roughness over a wide range of wavelengths. The loss 

factor of the rail pad mainly affects the estimated roughness for wavelengths less than 100 

mm whereas the ballast stiffness and damping significantly influence the results for 

wavelengths larger than 200 mm. Generally, the maximum estimation error in the roughness 

reaches ±2 dB when the error in each track parameter is ±25%. 



 

 

  

Simplified method 

By assuming the forces due to all wheels are incoherent and the rail mobilities do not 

vary with the wheel positions, the simplified method of Janssens et al.
6, 18

 is obtained. The rms 

rail vibration averaged over the pass–by time of a train can be obtained from Eqs. (1) – (5) 

and Eq. (13) as  
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s

rh w c 2

j rY N
v

Y Y Y L






 
  (16) 

where rhY  denotes the rail head mobility at the driving point; sY  is the transfer mobility to 

the rail foot sensor position for excitation at the same longitudinal position; and wY  and cY  

are respectively the mobilities of the wheel and the wheel–rail contact spring. Substituting Eq. 

(16) into Eq . (15) gives 
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where s
1 10

rh

20log
Y

A
Y

  represents the level difference between the vibration at the sensor 

position and the rail head at the driving point; rh
2 10

rh w c

20log
Y

A
Y Y Y


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 indicates the level 

difference between the combined roughness and the displacement at the rail head; and 

3 1020logA H  accounts for the contact filter effect described by Eq. (1) and converts the 

combined effective roughness to combined roughness that is comparable to the directly 

measured one. In Janssens et al.
6, 18

 A1 was generally set to be 0 dB up to 4 kHz and A2 was 

pre–calculated for particular situations with a continuously supported track model and a 

flexible wheel model. If the track parameters for a particular location are known, A1 can be 

calculated from the WFE model of the rail on an equivalent continuous support, and A2 can be 

also obtained from the same WFE model of the rail together with the flexible wheel model. 



 

 

  

However, in order to illustrate the accuracy of the original method in references
6, 18

, a 

continuously supported Timoshenko beam model of the rail was used in this study to obtain 

A2. Fig. 18 shows the variation of A1, A2 and A3 with frequency; the corresponding wavelength 

at a train speed of 215 km/h is also shown. They all have large effect on the estimated 

roughness at high frequencies around 6 kHz (or short wavelengths about 10 mm). Therefore, 

the accuracy of the simplified method is highly dependent on the models applied to obtain 

these values when estimating the roughness of short wavelengths. Eq. (17) becomes identical 

to that reported by Dittrich et al.
18

 when 0r  and 0v  take the same values and the measured 

rail vibration is expressed in terms of acceleration level rather than velocity. 

The advantage of this simplified method is that the measured track decay rate can be 

explicitly introduced into the roughness estimation. Nevertheless, other errors are introduced 

by the assumptions of incoherent wheels and invariant rail mobility and also from 

inaccuracies in the parameters A1, A2 and A3 used in the calculation. Fig. 19 shows the error 

introduced by the simplified method when all the track parameters are known exactly. The 

TDR calculated from the WFE model of the free rail attached to discrete supports was utilized 

in Eq. (17) to represent the measured one. It can be seen from Fig. 19 that the simplified 

method overestimates the roughness by about 10 dB for a wavelength of 47 mm. This 

corresponds to 1250 Hz at the train speed of 215 km/h where the peak TDR due to the 

pinned–pinned mode occurs. The difference occurs because the simplified method neglects 

the pinned–pinned effect whereas the full method overestimates it by ignoring the 

longitudinal length of the rail pad. Other reasons leading to the estimation error of the 

simplified method are due to the assumptions of incoherent wheels and invariant rail mobility 

along the track. Fig. 19 shows that including A1 has an obvious effect on the estimation above 

4000 Hz, or for wavelengths smaller than 15 mm, which agrees with previous findings
6, 18

. At 

lower frequencies around 400 Hz, A1 also has an influence of about 1.5 dB. 



 

 

  

Case study 

Fig. 20(a) compares the directly measured combined roughness with that estimated from 

the full pass–by method, using the estimated track parameters shown in the last column of 

Table 1. Note that there are significant variations between trains. The full pass–by method 

underestimates the roughness at most wavelengths. This may be attributed to the fact that the 

track stiffness and damping adopted in the simulation are obtained from the unloaded track. 

Fig. 20(b) shows the effects of increasing the pad and ballast stiffness by a factor of 3 in the 

simulation to approximate the effect of loading. As a result of this change the discrepancy 

between the measured roughness and estimated one is reduced.  

Fig. 21 gives the estimated roughness obtained from the simplified method by using 

directly measured TDR or indirectly estimated TDRs in Eq. (17). It can be seen from the 

figure that the use of TDRs obtained from pass–by methods gives an estimated roughness that 

matches well with the directly measured one for wavelengths between 20 mm and 100 mm. 

However, the use of the TDR from the hammer impact method underestimates the roughness 

because the directly measured TDR on the unoccupied track is generally lower than the 

pass-by estimations for the loaded track (see Fig. 13(d)).  

 

Conclusions  

Methods for the estimation of track parameters and wheel–rail combined roughness have 

been investigated in this study by using simulations based on a wavenumber finite element 

model of a free rail attached to discrete supports. This model allows for the effect of the 

pinned–pinned mode of the track and cross–sectional deformation of the rail above 1000 Hz. 

It has been utilized to simulate the rail vibration in the frequency domain due to a hammer 

impact or a train pass–by. 

In the impact hammer measurements, the position of the vibration sensor was found to 



 

 

  

have a significant effect on the measured track decay rates above 1000 Hz, particularly above 

5000 Hz. The measured track decay rates in the low frequency range could be easily affected 

by unavoidable measurement noise. A method has been suggested to exclude far–field 

transfer mobilities of the rail to obtain the track decay rates at low frequencies.  

In the estimation of track decay rates using the vibration during a train pass–by, it is 

found that the energy iteration method is likely to be accurate for low track decay rates but 

inaccurate for high track decay rates, whereas the slope fitting method was found to be more 

reliable than the energy iteration method in the frequency ranges with higher decay rates. The 

distances used for the energy integral and slope fitting in the two pass–by methods should be 

carefully chosen to improve the quality of the estimation.  

A comparison has been made between the track decay rates estimated from the direct 

hammer impact method and indirect pass–by methods in a case study using field 

measurements. The differences between the results of direct and indirect methods may be 

associated with different loading and temperature conditions of the track. 

A general procedure has been adopted to identify the stiffness and damping parameters of 

the unloaded track from the hammer impact measurement using a suitable track model. The 

stiffness of the rail pads and ballast was derived from the peak frequencies of the driving 

point mobility of the rail, and their damping was estimated by matching the magnitude and 

sharpness of the simulated rail mobility peak with the measured one. The directly measured 

track decay rates at high frequencies could be fitted using an equivalent loss factor of the rail 

of 0.01. However, the track parameters of the loaded track during the passage of a train could 

not be obtained from the indirectly estimated track decay rates because they showed no clear 

peaks or dips. This problem needs to be resolved with an improved estimation method and 

more accurate field tests in the future. 

A full train pass–by method has been developed as an extension of the established 



 

 

  

pass-by method to estimate wheel–rail combined roughness. It was found that the existing 

simplified method overestimates the roughness corresponding to the pinned–pinned resonance 

frequency of the rail. Nevertheless, the simplified method could give a good estimation of the 

roughness if the track decay rates estimated from train pass–bys are utilized. For further 

validation and improvement of the simplified method, a more advanced model of the track is 

required in the future that can allow for the unloaded and loaded regions under a running train. 

More field measurements should be also conducted to obtain the wheel roughness, rail 

roughness, and rail vibration at the same time to exclude the effect of changing track 

properties and roughness over time and temperature. 

All data published in this paper are openly available from the University of Southampton 

repository at http://dx.doi.org/10.5258/SOTON/D0068. 
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Table 1 Track parameters for simulations in this study 

Track  Stiff  Medium  Soft  Very soft  Estimated (unloaded) 

Rail pad stiffness per fastener 600 MN/m 300 MN/m 120 MN/m 60 MN/m 600 MN/m 

Loss factor of rail pad  0.05 0.1 0.15 0.20 0.25 

Ballast stiffness per fastener 48 MN/m 90 MN/m 120 MN/m 360 MN/m 42 MN/m 

Loss factor of Ballast  2.0 1.5 1.0 0.5 1.0 

Loss factor of rail 0.05 0.04 0.03 0.02 0.01 

 

 



 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

 

 

 

 

 

 

 

 

 

 

Figure  1. Model of the track: (a) WFE mesh of the rail and springs distributed across rail 

foot; (c) rail on discrete springs in the longitudinal direction  
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Figure  2. Magnitude of the sum of the mobilities of the wheel and the contact spring in 

radial direction 
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Figure  3. Simulated magnitude of mobilities from the rail on discrete supports (stiff track), 

excited on rail head at mid-span: (a) driving point mobilities at x=0 m; (b) mobilities at x=0.3 

m; (c) mobilities along the rail at 1250 Hz; (d) mobilities along the rail at 5000 Hz 
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Figure  4. Estimated TDRs from simulated rail head and foot mobilities (stiff track) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

  

 

 

 

 

   

  
 

  Figure  5. Simulated magnitude of mobilities at the rail head due to excitation at the rail 

head (stiff track): (a) driving point, x=0 m; (b) x=0.9 m; (c) x=2.4 m; and (d) x=6.0 m 
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Figure  6. Estimated TDRs from simulated rail head mobilities with and without 

measurement noise (stiff track) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure  7. Illustration of rail vibration at fixed position produced by the moving wheels 
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Figure  8. Simulated instantaneous acceleration levels at rail foot (stiff track): (a) no 

measurement error; (b) with Gaussian noise with standard deviation equal to 10% of 

maximum acceleration amplitude in each frequency band; (c) zoom of (a) 

 

 

 

 

 

 

 

(c) 

(a) (b) 

 
1L

L3 



 

 

  

 

 

 

 

 

 

   

  
 

Figure  9. Estimated TDR from simulated rail foot acceleration using energy iteration 

method (L1=2.0 m): (a) stiff track; (b) medium track; (c) soft track; and (d) very soft track 
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Figure  10. Estimated TDR from simulated rail foot acceleration using energy iteration 

method (L1=1.0 m): (a) stiff track; (b) medium track 
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 Figure  11. Estimated TDR from simulated rail foot acceleration using slope fitting method 

(stiff track) with different fitting distance L3: (a) 1.2 m; (b) 0.6 m  
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Figure  12. Measured vertical acceleration of rail at train speed 218 km/h: (a) original data; 

(b) after low–pass filtering with a cut-off of 100 Hz; (c) zoom of (b); and (d) time history of 

acceleration level 
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Figure  13. Estimated TDRs from measured rail vibration: (a) hammer impact method; (b) 

pass-by method, energy iteration; (c) pass-by method, slope fitting; and (d) comparison of 

different methods 
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Figure  14. Comparison of measured mobilities and TDRs with simulated results for various 

tracks: (a) driving point mobilities at rail head; (b) TDRs 
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   Figure  15. Comparison of measured mobilities and TDRs with simulated results from 

various track models (estimated track): (a) driving point mobilities at rail head; (b) TDRs 
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Figure  16. Rail, wheel and combined roughness levels from direct measurements   
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Figure  17. Estimation error of roughness by the full method adopting different changes in 

the estimated track parameters (215 km/h): (a) pad stiffness; (b) loss factor of pad; (c) ballast 

stiffness; and (d) loss factor of ballast 
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Figure  18. Variation of A1, A2 and A3 with frequency and wavelength (215 km/h) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

  

 

 

 

 

 

 
10

1
10

2
10

3

-5

0

5

10

Wavelength (mm)

R
o
u
g
h
n
e
s
s
 (

d
B

 R
e
 1


m
)

10
2

10
3

10
4

-5

0

5

10

Frequency (Hz)

 

 

With A
1

Without A
1

 

Figure  19. Estimation error of roughness by the simplified pass-by method (215 km/h) 
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Figure  20. Estimated roughness by the full method with different track parameters: (a) 

estimated track; and (b) pad stiffness and ballast stiffness of the estimated track increased by a 

factor of 3. 
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Figure  21. Estimated roughness by the simplified method with different measured TDRs 

from hammer impact, energy iteration and slope fitting methods 

 


