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Abstract: The iterative hard thresholding (IHT) algorithm is a popular greedy-type method in (linear and
nonlinear) compressed sensing and sparse optimization problems. In this paper, we give an improved iterative
hard thresholding algorithm for solving the nonnegative sparsity optimization (NSO) by employing the
Armijo-type stepsize rule, which automatically adjusts the stepsize and support set and leads to a sufficient
decrease of the objective function each iteration. Consequently, the improved IHT algorithm enjoys several
convergence properties under standard assumptions. Those include the convergence to α-stationary point
(also known as L-stationary point in literature if the objective function has Lipschitz gradient) and the finite
identification of the true support set. We also characterize the conditions that the full sequence converges
to a local minimizer of NSO and establish its linear convergence rate. Extensive numerical experiments are
included to demonstrate the good performance of the proposed algorithm.
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1 Introduction
In this paper, we are concerned with efficient numerical methods for the nonnegative sparsity optimization
(NSO for short):

(1) min f(x), s.t. x ∈ S ∩ Rn+,

where f(x) : Rn → R is continuously differentiable and is bounded from below, s < n is a positive integer
and defines the sparse set S := {x ∈ Rn : ‖x‖0 ≤ s} with ‖x‖0 being the l0-norm of x (the number of
nonzero elements in x) and Rn+ is the nonnegative orthant in Rn. Important examples covered by (1)

include the linear compressed sensing problem of f(x) = fA(x) := ‖Ax − b‖2 with A ∈ Rm×n being a
linear measurement matrix and b ∈ Rm is the observation vector (see, e.g., [19] for an extensive treatment
of this problem) and the nonlinear compressed sensing problem of f(x) = fΦ(x) := ‖Φ(x) − b‖2 with
Φ : Rn 7→ Rm being a nonlinear measurement function [8]. Another important example is f(x) being a
regularized logistic regression cost function [2, Sect. 4]. Those examples of (1) may or may not have the
nonnegativity constraint x ≥ 0. We include it mainly because of the two reasons. One is that in many real-
world problems the underlying parameters represent quantities that can only take on nonnegative values,
e.g., amounts of materials, chemical concentrations, pixel intensities, to name a few [16]. Another reason
is that it is one of the prototype examples of the symmetric set considered by Beck and Hallak [6] in their
nonlinear sparse optimization. We hope that by including the nonnegativity constraint some of our results
may have their counterparts when a more general symmetric set is used instead of Rn+.

It is usually expected that numerical methods for the linear (nonlinear) compressed sensing should
naturally extend to solve (1). A class of such methods are of the greedy methods. One advantage of these
methods is that they are generally faster than the relaxation approaches, which often lead to separable
convex programming problems that can be solved, for example, by methods of alternating directions or
splitting methods [21]. Another advantage is that many of them have stable recovery properties under
some conditions [15]. A variety of greedy methods have been proposed in compressed sensing, such as
matching pursuit (MP) [29], orthogonal MP (OMP) [18], compressive sampling matching pursuit (CoSaMP)
[31], subspace pursuit (SP) [17], hard thresholding pursuit (HTP) [20], conjugate gradient iterative hard
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thresholding (CGIHT) [7], to name just a few. Some of those methods have been extended to the sparsity
constrained nonlinear optimization. For example, Bahmani et al. [2] proposed a gradient hard-thresholding
method which generalizes CoSaMP. Yuan et al. [39] generalized HTP to the sparsity constrained convex
optimization. Yuan and Liu [40] proposed a Newton greedy pursuit (NTGP) method to approximately
minimize a twice differentiable function over the sparsity constraint.

In particular, the iterative hard thresholding (IHT) algorithm, a popular greedy method which was
proposed for the linear compressed sensing problem by Blumensath and Davies in [9, 10] (and later extended
to the nonlinear case by Blumensath [8]), has attracted much attention due to its nice recovery properties.
For example, when the matrix A in defining fA is of full row-rank and its spectral norm satisfies ‖A‖2 < 1,
IHT converges to a local minimum [9]. Furthermore, it was observed in [11] that the algorithm may fail to
converge if the spectral norm condition is violated. They then proposed a normalised IHT (NIHT) with an
adaptive stepsize by the line search strategy and proved its convergence to a local minimum if A is of full
row-rank and is s-regular (i.e., any s columns of A are linearly independent). A latest result of Cartis and
Thompson [15] showed that NIHT converges to a local minimum if the matrix A is 2s-regular.

There recently emerges a new line of research on those problems mainly attempted from the numerical
optimization community [1, 5, 6, 34, 35, 27], which tend to ask the following fundamental questions:

(Q1) Towards what stationary points that a generated sequence converges?

(Q2) Under what conditions that such a stationary point may become a local/global minimizer?

(Q3) What is the convergence rate to a local/global minimizer if the convergence is taking place?

There are two key elements that seem to be indispensable in the delicate analysis among the existing
literature in answering those questions. One is on introducing a well characterized stationarity appropriate
to the data at hand and the other is on a well defined stepsize rule that is to force certain sufficient decrease
in the merit function used in the respective algorithms. For example, assuming that the function f has
Lipschitz gradient, Beck and Eldar [5] introduced L-stationarity (among others) and by using a fixed or the
accurate minimization stepsize rule, they established the convergence to an L-stationary point of various
algorithms including IHT. See [6] for further results along this line on the sparse optimization problem with
a symmetric constraint set. The results in [6] were further significantly enhanced by Lu [27] by employing a
nonmonotone line search stepsize rule. When f is nondifferentiable, Attouch et al. [1] introduced the concept
of critical point and showed that a few classes of algorithms actually converge to such a critical point. In
particular, a variant of IHT with a fixed (or varying) stepsize on the linear compressed sensing problem is
proved to converge to a critical point [1, Example 5.4], which in this special case is also the L-stationary
point of Beck and Eldar [5]. We note that (Q3) is hardly addressed in the literature.

In contrast to the research reviewed above, the stationarities studied by Pan et al. [34, 35] followed
the classical derivation of optimality conditions for nonconvex programming and are based on Bouligand or
Clarke tangent cones for nonconvex sets (see [12, Section 6.3] for the definitions of those two cones). This
leads to B-, C- and α-stationarites. Their relationships to L-stationarity (and others) have been briefly
discussed in [6, Remark 5.3]. The blanket assumption used in [34, 35] is that f is continuously differentiable
(its gradient is not necessarily Lipschitzian).

In this paper, we continue the research of [35, 34] by applying their stationarities to the algorithm of
IHT with the Armijo stepsize rule to solve (1). In answering the questions (Q1)-(Q3), we asked whether our
obtained results have been as general as they can be. This effort has led to the important relationships among
the global/local minimizer and the three stationary points (α-, B-, and C-stationarities) in Theorem 2.1 and
Figure 1, which clearly show what extra conditions are required for one to imply another. This theorem is
fundamental to our algorithmic analysis later on. It turns out that the extra conditions needed are satisfied
by the restricted strong convexity and restricted strong smoothness of f . Both of the concepts are introduced
and popularized in [32]. The resulting IHT enjoys a number of very nice convergence properties. We single
out a few that partially answered the questions (Q1)-(Q3):

(i) (for Q1) Any accumulation point of iterative sequence is an α-stationary point of NSO if the objective
function f is 2s-restricted strongly smooth (Theorem 3.1).

(ii) (for Q2) The full iterative sequence converges to a local minimizer of NSO if f is 2s-restricted strongly
smooth and 2s-restricted strongly convex (Theorem 3.2).

(iii) (for Q3) The sequence of functional values converges at a sublinear rate if f is 2s-restricted strong-
ly smooth and 2s-restricted strongly convex (Theorem 3.3). Furthermore, the sequence of iterates
converges at a Q-linear rate under the condition that the sparsity constraint is tight at the solution
(Theorem 3.4).

In addition, the numerical performance of our improved IHT is also very satisfactory for a large number
of commonly tested problems. Finally, we would like to emphasize that one of our convergence results,
namely Thm. 3.2(ii), is similar to what have been reported in [6, 27], but under different assumptions and
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on different algorithms. Our basic assumption is on the continuity of the gradient of f . When the gradient
is also Lipschitzian, our α-startionarity becomes the L-stationarity. We will make more comments on the
similarity right after Thm. 3.2.

This paper is organized as follows. Section 2 presents some technical results on the optimality conditions
of (1). Section 3 contains the IIHT algorithm for (1) and proves its convergence properties. Numerical results
are given in Section 4. The last section makes some concluding remarks. For the sake of easy reading, we
introduce some notations to end this section.

Table 1: Notations used in the paper.

Notation Description

S The sparse set {x ∈ Rn : ‖x‖0 ≤ s};
S+ The feasible region of (1), i.e. S ∩ Rn+;

supp(x) The support set of x ∈ Rn, i.e., {i ∈ {1, · · · , n} : xi 6= 0};
Γ∗ (or Γk) The support set of x∗ ∈ Rn (or xk ∈ Rn);

Γxy The union of support sets between x ∈ Rn and y ∈ Rn, i.e., supp(x) ∪ supp(y) ;

|Γ| The cardinality of Γ;

xΓ The subvector consisting of entries of x ∈ Rn indexed by Γ;

AΓ The submatrix consisting of columns of A ∈ Rm×n indexed by Γ;

∇f The gradient of f(x) on Rn, i.e., ∇f(x);

∇Γf(x) The subvector of ∇f(x) indexed on Γ, i.e., (∇f(x))Γ;

N(x, δ) The neighbor region of x ∈ Rn with radius δ > 0, i.e., {y ∈ Rn : ‖y − x‖ < δ};
ei The vector in Rn whose ith component is one and others are zeros;

x↓i The ith largest (in absolute value) element of x ∈ Rn.

RnΓ The subspace of Rn spanned by {ei : i ∈ Γ}, i.e., span{ei : i ∈ Γ}

2 Characterizations of Various Stationarities
In this section, we will give detailed characterizations of the relationships among the three stationary points
(namely, α-, B-, and C-stationary point) and the local/global minimizers of (1). We will also report some
consequences of those characterizations under some additional conditions such as the restricted strong con-
vexity/smoothness of f . Those results will be used in the convergence analysis of the improved IHT algorithm
in later sections.

2.1 On the three stationarities
In this part, we assume that f is continuously differentiable. We will use the orthogonal projection onto a
closed set Ω ⊆ Rn defined as follows:

PΩ(x) := arg min
{
‖y − x‖2 : s.t. y ∈ Ω

}
,

where ‖ · ‖ is the Euclidean norm in Rn. Since Ω is not convex, there may be multiple optimal solutions. In
this case, PΩ(x) can be any one of them. In particular, when Ω = S, PΩ(x) can be obtained by setting all
but s largest absolute components of x to zero (PΩ(x) is also known as the support project of x onto S).
Furthermore, it was proved in [35, Prop. 3.1] that

(2) PS+
(x) = PS

(
PRn

+
(x)
)
.

Moreover,

(3) xΓx = yΓx for x = PS+
(y).

The B- and C-stationary points are respectively defined through the orthogonal projection onto the
Bouligand and Clarke tangent cones of S+. In our analysis, we will only use an equivalent characterization
of the each cone and will not need their original definitions, which are described in [12, Sect. 6.3] and [35,
Sect. 2.1]. We note that the Bouligand tangent cone below can also be derived following [4].
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Proposition 2.1 [35, Thms. 2.1 and 2.2] (Characterizations of Bouligand and Clarke tangent cones).
Recall from Table 1, Γ∗ is the support set of x∗ ∈ Rn. If x∗ ∈ S, the Bouligand and Clarke tangent cones
of S at x∗, respectively denoted by TBS (x∗) and TCS (x∗) are given by

TBS (x∗) =


RnΓ∗ , if |Γ∗| = s,⋃

Υ⊇Γ∗,|Υ|=s
RnΥ, if |Γ∗| < s,

TCS (x∗) = RnΓ∗ .

Furthermore, if x∗ ∈ S+ we have

TBS+
(x∗) = TBS (x∗) ∩ TRn

+
(x∗), TCS+

(x∗) = TCS (x∗),

where TRn
+

(x∗) := {d ∈ Rn : di ≥ 0, i /∈ Γ∗} is the usual tangent cone of Rn+ at x∗.

The α-stationary point defined below is actually the L-stationary point [5] when f has Lipschitz gradient
with the Lipschitz constant Lf . The difference lies in that α in our definition is allowed to take any positive
value, while it is restricted within 0 < α ≤ 1/Lf in [5].

Definition 2.1 Let x∗ ∈ S+ be a given feasible point of (1).

(i) We say that x∗ is an α-stationary point if there exists α > 0 such that

x∗ ∈ PS+
(x∗ − α∇f(x∗)) .

(ii) We say the x∗ is a B-stationary point if

0 ∈ PTB
S+

(x∗)(−∇f(x∗)).

(iii) We say the x∗ is a C-stationary point if

0 = PTC
S+

(x∗)(−∇f(x∗)).

The following table is extracted from [35, Table 3], which is very useful in helping us understand the
subtle differences among the definitions. We will frequently use those characterizations in our analysis below.

Table 2: Gradient characterizations of the three stationary points.

‖x∗‖0 = s, x∗ ≥ 0 ‖x∗‖0 < s, x∗ ≥ 0

α-stationary point ∇if(x∗)

 = 0, i ∈ Γ∗

≥ −α(x∗)↓s , i /∈ Γ∗
∇if(x∗)

 = 0, i ∈ Γ∗

∈ R+, i /∈ Γ∗

B-stationary point ∇if(x∗)

 = 0, i ∈ Γ∗

∈ R, i /∈ Γ∗
∇if(x∗)

 = 0, i ∈ Γ∗

∈ R+, i /∈ Γ∗

C-stationary point ∇if(x∗)

 = 0, i ∈ Γ∗

∈ R, i /∈ Γ∗
∇if(x∗)

 = 0, i ∈ Γ∗

∈ R, i /∈ Γ∗

It is well known that sparse optimization in general fundamentally differs from classical optimization.
One way to appreciate such difference, as well demonstrated in [5], is that the classical variational inequality

〈∇f(x∗), x− x∗〉 ≥ 0, ∀x ∈ S

is not a necessary optimality condition. Interestingly, as proved below, within sufficiently small a neighbour-
hood of x∗, the variational inequality is equivalent to the B-stationary point.

Proposition 2.2 Let x∗ ∈ S+. Then the following results hold.

(i) x∗ is a B-stationary point of (1) if and only if there exists δ satisfying 0 < δ < min{x∗i : i ∈ Γ∗}
such that

(4) 〈∇f(x∗), x− x∗〉
{

= 0, if ‖x∗‖0 = s
≥ 0, if ‖x∗‖0 < s

holds for any x ∈ N(x∗, δ) ∩ S+.
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(ii) In particular, if ‖x∗‖0 < s (the sparse constraint is not tight), then x∗ is a B-stationary point of (1)
if and only if

〈∇f(x∗), x− x∗〉 ≥ 0, ∀ x ∈ S+.

Proof (i) (Only if part) Suppose first that x∗ ∈ S+ is a B-stationary point of (1). We prove (4) for any
x ∈ N(x∗, δ) ∩ S+ with some δ > 0 by considering two cases.

Case 1. ‖x∗‖0 = s and x∗ ≥ 0. Take δ satisfying 0 < δ < min{x∗i : i ∈ Γ∗}, for any x ∈ N(x∗, δ) ∩ S+ and
i ∈ Γ∗, we have

xi = x∗i − (x∗i − xi) ≥ x∗i − |x∗i − xi| > x∗i − δ > 0,

which yields that Γ∗ ⊆ supp(x). By ‖x‖0 ≤ s and |Γ∗| = ‖x∗‖0 = s, we can obtain

(5) supp(x) ≡ Γ∗, ∀x ∈ N(x∗, δ) ∩ S+.

Since x∗ is a B-stationary point of (1), by Table 2, we have

∇if(x∗)

{
= 0, for i ∈ Γ∗,
∈ R, for i /∈ Γ∗,

which together with (5) yields that

〈∇f(x∗), x− x∗〉 =
∑
i∈Γ∗

∇if(x∗)(xi − x∗i ) +
∑
i/∈Γ∗

∇if(x∗)(xi − x∗i ) = 0.

Case 2. ‖x∗‖0 < s and x∗ ≥ 0. Since x∗ is a B-stationary point of (1), we have

∇if(x∗)

{
= 0, i ∈ Γ∗,
∈ R+, i /∈ Γ∗.

It follows that for any δ > 0 and x ∈ N(x∗, δ) ∩ S+,

〈∇f(x∗), x− x∗〉 =
∑
i∈Γ∗

∇if(x∗)(xi − x∗i ) +
∑
i/∈Γ∗

∇if(x∗)(xi − x∗i ) ≥ 0,(6)

where the last inequality follows from the facts that (a) ∇if(x∗) = 0, for i ∈ Γ∗, and (b) xi ≥ 0,
x∗i = 0,∇if(x∗) ≥ 0 for i /∈ Γ∗. We note that this part of the proof also applies to all x ∈ S+ with-
out having to be restricted in a neighbourhood of x∗.

(i) (The if part) Conversely, suppose that x∗ ∈ S+ satisfies (4) for any x ∈ N(x∗, δ) ∩ S+ and
0 < δ < min{x∗i : i ∈ Γ∗}. We show x∗ is a B-stationary point of (1) also by two cases.

Case 1. ‖x∗‖0 = s and x∗ ≥ 0. For any i ∈ Γ∗ and δ satisfying 0 < δ < min{x∗i : i ∈ Γ∗}, by letting
x = x∗ + δei/2, we have x ∈ N(x∗, δ) ∩ S+. It follows from (4) that

0 = 〈∇f(x∗), x− x∗〉 = 〈∇f(x∗), δei/2〉 = δ∇if(x∗)/2.

Hence, ∇if(x∗) = 0 for i ∈ Γ∗ and ∇if(x∗) for i 6∈ Γ∗ is not restricted.
Case 2. ‖x∗‖0 < s and x∗ ≥ 0. If i ∈ Γ∗, using the same proof as Case 1 above, we obtain ∇if(x∗) = 0. If
i /∈ Γ∗, let x = x∗ + δei/2. Then x ∈ N(x∗, δ) ∩ S+. It follows from (4) that

0 ≤ 〈∇f(x∗), x− x∗〉 = 〈∇f(x∗), δei/2〉 = δ∇if(x∗)/2.

Hence, ∇if(x∗) ≥ 0 for i 6∈ Γ∗. It follows from Table 2 that x∗ is a B-stationary point of (1).

(ii) The only-if part follows from Case 2 of the only-if part of (i), where it was noted that the proof does
not rely on the neighbourhood of x∗ used. The if-part proof follows from Case 2 of the if-part of (i), where
the current condition in (ii) necessarily implies the condition within a neighborhood used in (i). �

Our next major result is to establish the relationships among the three stationary points and the glob-
al/local minimizers of (1). Some of the relationships need a certain kind of convexity. We choose to use the
one of the restricted strong convexity introduced in [32, 22]. Slightly different forms of this concept were
also presented in [2, 8, 39]. Note that these properties are all analogous to the restricted isometry property
(RIP) [14] in the standard (linear) compressed sensing. For easy reference, we include a definition.

Definition 2.2 A function f is called s-restricted strongly smooth (s-RSS) with parameter Ls > 0, if for
any x, y ∈ Rn satisfying |Γxy | ≤ s, it holds that

(7) f(y)− f(x)− 〈∇f(x), y − x〉 ≤
Ls

2
‖y − x‖2.
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We say that the function f is s-restricted strongly convex (s-RSC) with parameter ls > 0, if for any
x, y ∈ Rn satisfying |Γxy | ≤ s, it holds that

(8) f(y)− f(x)− 〈∇f(x), y − x〉 ≥
ls

2
‖y − x‖2.

In particular, if ls = 0, the function f is said to be s-restricted convex (s-RC).

We note that f being s-RSS is a weaker condition than that f having a Lipschitz gradient, and s-RSC may
not imply the convexity of f on Rn. We are ready to report our main result below.

Theorem 2.1 For (1) and x∗ ∈ S+, consider three conditions: (a) ‖x∗‖0 = s; (b) ‖x∗‖0 < s; (c) f is 2s-
RC. Then we have the following (1)− (14) relationships shown in Figure 1 among the α-, B-, C-stationary
points and global/local minimizers. For example, for the relationship (3), an α-stationary point will be a
global minimizer of (1) under the conditions (b) and (c).

Figure 1: Relationships among α-, B-, C-stationary points and global/local minimizers.

Proof Clearly, (1) holds. By using Table 2, (11)-(14) can be verified directly. We actually only need to
prove (3), (7) and (8). In fact, if (3), (7) and (8) hold, then (12) and (8) ⇒ (5); (7) and (11) ⇒ (6); (6) and
(3) ⇒ (2); (1) and (6) ⇒ (4); (7) and (14) ⇒ (9); (13) and (8) ⇒ (10).

For (3), if f is 2s-restricted convex, then for any x ∈ S+ which implies |Γxx∗ | = |supp(x)∪Γ∗| ≤ 2s, we
have

f(x) ≥ f(x∗) + 〈∇f(x∗), x− x∗〉

= f(x∗) +
∑
i∈Γ∗

∇if(x∗)(xi − x∗i ) +
∑
i/∈Γ∗

∇if(x∗)xi

≥ f(x∗),

where the last inequality is from expression of α-stationary point in Table 2 for the case ‖x∗‖0 < s. This
proves that x∗ is a global minimizer of (1).

For (7), if x∗ ∈ S+ is a local minimizer of (1), then there is a constant δ > 0 such that

f(x∗) ≤ f(x), ∀ x ∈ N(x∗, δ) ∩ S+.

If ‖x∗‖0 < s, then for any i ∈ Γ∗, we have x∗ + tei ∈ N(x∗, δ) ∩ S+ with sufficiently small t > 0 or t < 0
such that

f(x∗) ≤ f(x∗ + tei) = f(x∗) + t∇if(x∗) + o(t),

thus ∇if(x∗) = 0 for i ∈ Γ∗. For any i /∈ Γ∗, the above inequality holds for sufficiently small t > 0, which
yields ∇if(x∗) ≥ 0. If ‖x∗‖0 = s, the same argument leads to ∇if(x∗) = 0 for any i ∈ Γ∗. Therefore, x∗ is
a B-stationary point of (1) by Table 2.

For (8), if x∗ is B-stationary point and f is 2s-restricted convex, then for any x ∈ N(x∗, δ) ∩ S+ that
implies |Γxx∗ | = |supp(x) ∪ Γ∗| = |Γ∗| = s ≤ 2s, we have

f(x) ≥ f(x∗) + 〈∇f(x∗), x− x∗〉 ≥ f(x∗),

where the last inequality is from Pro. 2.2(i), which means x∗ is a local minimizer of (1). �
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We would like to make some comments regarding the above theorem.

(R1) It follows from the relations (7) and (9) in Fig. 1 that a local minimizer must be a B- or C-stationary
point. This means that the B- or C-stationarity forms a necessary condition for the sparse optimiza-
tion (1). For the converse to be true, one must need some condition such as (c). In particular, the
condition (a): ‖x∗‖0 = s (i.e., the sparsity constraint is tight) is also part of the sufficient condition
for a C-stationary point to be a local minimizer. Without this condition, a C-stationary point may
fail to be a local minimizer even f is assumed to be convex, as shown by the following example:

min f(x) = (x1 + 1)2 + (x2 − 1)2 + (x3 − 1)2

s.t. ‖x‖0 ≤ 2, x ≥ 0.

The objective function f is convex on R3
+ and its gradient ∇f(x) = 2(x1 + 1, x2 − 1, x3 − 1)>. It

is obvious that x∗ = (0, 0, 1)> with ∇f(x∗) = (2,−2, 0)> is C-stationary point, but not a local
minimizer because f((0, ε, 1)>) < f(x∗), 0 < ε ≤ 1.

(R2) If one further assumes that f has Lipschitz gradient (not just being continuously differentiable), α-
stationarity becomes the L-stationaritiy introduced in [5]. Moreover, α-stationarity is also a necessary
condition of x∗ being a local minimizer [5, Thm. 2.2]. Without the Lipschitz property of the gradient
function, relation (6) shows that it is also a necessary condition provided that the sparse constraint
is not tight.

2.2 Global properties
In this subsection, we collect several useful global properties of B- and C-stationary points under the
restricted (strong) convexity. Our first result is a simple consequence of the results reported above. Recalling
the variational inequality characterization of the B-stationary point in Prop. 2.2(ii), the relationships (11)
and (3) in Fig. 1 establish the following important characterization of a global minimizer of (1).

Corollary 2.1 Suppose f is 2s-RC and x∗ ∈ S+ with ‖x∗‖0 < s. The following are equivalent.

(i) x∗ is a global minimizer of (1).

(ii) x∗ is an α-stationary point.

(iii) x∗ is a B-stationary point.

(iv) It holds that 〈∇f(x∗), x− x∗〉 ≥ 0, ∀ x ∈ S+.

The next result shows that a B-stationary point or a C-stationary point can be a global minimizer when
restricted to certain subspace.

Theorem 2.2 Suppose f is s-RC. Let x∗ ∈ S+. Then the following hold.

(i) If x∗ is a B-stationary point, then it is a global minimizer on the subspace RnΥ for any Υ ⊆ {1, · · · , n}
that satisfies Γ∗ ⊆ Υ and |Υ| = s.

(ii) If x∗ is a C-stationary point, then it is a global minimizer on the subspace RnΓ∗ .

(iii) If f is s-RSC, then the local minimizer of problem (1) on any s-dimensional subspace is unique.
Furthermore, the number of the local minimizers is finite.

Proof (i) For any x ∈ RnΥ ∩ Rn+, if ‖x∗‖0 = s = |Γ∗| (and hence Υ = Γ∗), we have (x− x∗)i = 0, ∀i /∈ Γ∗

; if ‖x∗‖0 < s, (x− x∗)i = xi ≥ 0, ∀i /∈ Γ∗, which together with the fact of f being s-restricted convex and
the expression of B-stationary point in Table 2 yields that

f(x) ≥ f(x∗) + 〈∇f(x∗), x− x∗〉

= f(x∗) +
∑
i∈Γ∗

∇if(x∗)(xi − x∗i ) +
∑
i/∈Γ∗

∇if(x∗)(xi − x∗i )

≥ f(x∗).

Thus the conclusion is derived. The proof of (ii) is similar to (i), and thus its proof is omitted.
(iii) We note that under the assumption of s-restricted strong convexity of f , the inequality in the proof

of (i) becomes strict. Therefore, there exists only one local minimizer on any s-dimensional subspace. We
also note that from Table 2 (Relation (9)), any local minimizer of (1) is also a C-stationary point. However,
according to (ii), any C-stationary point must be a unique minimizer on an s-dimensional subspace. Since
the number of the subspaces whose dimension is no larger than s is finite, we conclude that the number of
the local minimizers of (1) is finite. �
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The following example shows that there may exist multiple minimizers of (1) under the s-RSC. That is,
one cannot establish the uniqueness of the global minimizer in Thm. 2.2(iii), unless stronger assumptions
are in place.

min ‖x− 1‖, s.t. ‖x‖0 ≤ 1, x ≥ 0,

where 1 = (1, 1, · · · , 1)>. The objective function is strongly convex on Rn, and every ei, i = 1, . . . , n, is a
global minimizer.

3 A Convergent IHT and Its Theoretical Analysis
In this section, we will present an improved iterative hard thresholding (IIHT) algorithm for (1) and then
analyze its convergence properties utilizing the results reported above.

3.1 IIHT Algorithm
As reviewed in the Introduction, in order for the generated iterates by the IHT algorithm to converge to a
point satisfying certain optimality conditions (stationarities), a proper selection of stepsize seems necessary
at each iteration. For example, for classical linear compressed sensing, Blumensath and Davies introduced
an adaptive stepsize rule based on the RIP to ensure a sufficient decrease in the objective per iteration.
Recently, for the nonlinear sparse optimization problem, Lu [27] introduced a nonmonotone line search to a
projection algorithm to ensure its convergence. In this paper, we choose to use the classical Armijo stepsize
rule in IHT, leading to what we call an Improved IHT (IIHT) algorithm. Another new element that we
introduce in IIHT is a new stopping criterion that is motived by C-stationarity. The remaining part of IIHT
just follows the original IHT and hence the framework of IIHT is very simple and is described as follows.

Table 3: The framework of IIHT algorithm for (1).

Step 0 Initialize x0 = 0, 0 < α0 <
1
L2s

, σ > 0, 0 < β < 1, ε > 0. Set k ⇐ 0.

Step 1 Compute xk+1 = PS+

(
xk − αk∇f(xk)

)
, where αk = α0βqk and qk is the smallest

nonnegative integer q such that

f(xk(α0
kβ
q)) ≤ f(xk)− σ

2
‖xk(α0

kβ
q)− xk‖2,

and xk(α) := PS+
(xk − α∇f(xk)).

Step 2 If ‖∇Γkf(xk)‖ ≤ ε, then Stop; Otherwise, let k ⇐ k + 1 and go to Step 1.

The stopping criterion used will be justified by Thm. 3.2(iii). We emphasize that the major computaion
PS+

(·) is very easy to obtain via (2). The following result shows that the Armijo stepsize is well defined
under some condition.

Lemma 3.1 Let f be 2s-RSS and xk ∈ S+ be given. Then it holds

(9) f(xk(α)) ≤ f(xk)−
σ

2
‖xk(α)− xk‖2 for 0 < α ≤

1

L2s + σ
.

Therefore αk in the algorithm is well defined.

Proof According to the computation of xk(α) in Step 1, we have

xk(α) ∈ argmin
{
‖x− xk + α∇f(xk)‖2 : x ∈ S+

}
,

which implies that ‖xk(α)− xk + α∇f(xk)‖2 ≤ ‖α∇f(xk)‖2 by xk ∈ S+. This leads to

(10) ‖xk(α)− xk‖2 ≤ −2α〈∇f(xk), xk(α)− xk〉.

It follows from the property of 2s-RSS of f and (10) that

f(xk(α)) ≤ f(xk) + 〈∇f(xk), xk(α)− xk〉+
L2s

2
‖(xk(α)− xk)‖2

≤ f(xk)−
1

2α
‖xk(α)− xk‖2 +

L2s

2
‖(xk(α)− xk)‖2

= f(xk)−
1

2
(1/α− L2s)‖xk(α)− xk‖2.

By restricting α ∈ (0, 1
L2s+σ

], we obtain the desired result. The proof is completed. �
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3.2 Convergence Analysis
Combining the restricted strong convexity and smoothness of f , the convergence of IIHT can be established
in this subsection. We first present a technical result.

Lemma 3.2 Suppose that the function f is s-RC and s-RSS with parameter Ls. Then for any x, y ∈ Rn
satisfying |Γxy | ≤ s, we have

‖(∇f(y)−∇f(x))Γxy‖ ≤ Ls‖y − x‖.

Proof Let us fix x ∈ S and define the following function of variable y at point x:

φx(y) := f(y)− 〈∇f(x), y − x〉.

Due to the s-RC of f(·), the point x is a minimizer of φx(y) over all y satisfying |Γxy | ≤ s. This is because

(11) φx(y)− φx(x) = f(y)− 〈∇f(x), y − x〉 − f(x) ≥ 0 ∀ y such that |Γxy | ≤ s.

We note that function φx(·) has the same properties of s-restricted strong smoothness as f(·). Define
d ∈ Rn by

di :=

{ 1
Ls

(∇φx(y))i, if i ∈ Γxy

0, otherwise.

We have ∥∥y − d∥∥
0
≤ |Γxy | ≤ s and 〈∇φx(y), d〉 =

1

Ls
‖(∇φx(y))Γxy‖

2,

which, together with (11) and the s-RSS of φx(·), imply

φx(x) ≤ φx
(
y − d

)
≤ φx(y) +

〈
∇φx(y), −d

〉
+
Ls

2

∥∥ 1

Ls
(∇φx(y))Γxy

∥∥2

= φx(y)−
1

2Ls

∥∥(∇φx(y))Γxy

∥∥2
.(12)

Rewrite (12) as

(13) f(x) ≤ f(y)− 〈∇f(x), y − x〉 −
1

2Ls

∥∥(∇f(y)−∇f(x))Γxy

∥∥2
.

By interchanging x and y in (13) and adding the resulting inequality to (13), we get

(14)
∥∥(∇f(y)−∇f(x))Γxy

∥∥2 ≤ Ls〈∇f(y)−∇f(x), y − x〉.

The desired results then follows from applying the Cauchy-Schwarz inequality to (14). �

We report our first convergence result below.

Theorem 3.1 Let the sequence {xk} be generated by IIHT. Suppose f is 2s-RSS. Then the following hold.

(i) lim
k→∞

‖xk+1 − xk‖ = 0 and infk≥0 {αk} > 0;

(ii) Any accumulation point of {xk} is an α-stationary point of (1).

Moreover, if f is 2s-RC, then the following hold.

(iii) The sequence of projected gradients converges to zero, i.e.,

lim
k→∞

‖∇Γkf(xk)‖ = 0.

(iv) Any accumulation point of {xk} is a local minimizer of (1).

Proof (i) As required in IIHT, we have f(xk)− f(xk+1) ≥ σ
2
‖xk+1 − xk‖2. Then

∞∑
k=0

‖xk+1 − xk‖2 ≤
2

σ

∞∑
k=0

(
f(xk)− f(xk+1)

)
<

2

σ

(
f(x0)− lim

k→+∞
f(xk)

)
< +∞,

where the last inequality is due to f being bounded from below. Hence lim
k→∞

‖xk+1 − xk‖ = 0.

Armijo-type stepsize rule and Lemma 3.1 imply that {αk} is bounded from below by a positive constant.
In fact,

(15) inf
k≥0
{αk} ≥

β

σ + L2s
:= α > 0.
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(ii) Suppose that x∗ is an accumulation point of the sequence {xk}. There exists a subsequence {xkj }
converging to x∗. It follows from (i) that

(16) lim
j→∞

xkj+1 = lim
j→∞

xkj = x∗.

Based on the update

(17) xkj+1 = PS+

(
xkj − αkj∇f(xkj )

)
in Step 1 of the IIHT algorithm, we consider two cases.

Case 1. For i ∈ Γ∗. There must exist a sufficiently large index n1 and a positive constant c0 such that

min{xkji , x
kj+1

i } ≥ c0 ∀ j ≥ n1.

This together with the projection formula of PS+
(·) in (2) and (17) implies

x
kj+1

i = x
kj
i − αkj∇if(xkj ).

Therefore, the positive lower bound in (15) and the limit in (16) yield

∇if(x∗) = 0, ∀ i ∈ Γ∗.

Case 2. For i /∈ Γ∗. Without loss of any generality, we may assume limj→∞ αkj = c1 > 0 on the

subsequence {kj}. We consider two subcases. Subcase 2.1: ‖x∗‖0 = s. Then we have

0 = lim
j→∞

x
kj+1

i = lim
j→∞

(
PS

(
PRn

+
(xkj − αkj∇f(xkj ))

))
i

Due to the property of the projections PS(·) and PRn
+

(·), we must have

max
{
x
kj
i − αkj∇if(xkj ), 0

}
≤
(
xkj+1

)↓
s
.

Taking limits on both sides, we obtain

∇if(x∗) ≥ −
1

c1
(x∗)↓s .

Subcase 2.2: ‖x∗‖0 < s. Suppose ∇if(x∗) < 0. We then have

lim
j→∞

(
x
kj
i − αkj∇if(xkj )

)
= −c1∇if(x∗) > 0,

leading to (
PRn

+
(xkj − αkj∇f(xkj ))

)
i
≥ −

1

2
c1∇if(x∗)

for all sufficiently large j. Since ‖x∗‖0 < s, we must have for j sufficiently large

x
kj+1

i =
(

PS

(
PRn

+
(xkj − αkj∇f(xkj ))

))
i

=
(

PRn
+

(xkj − αkj∇f(xkj ))
)
i
≥ −

1

2
c1∇if(x∗) > 0.

This contradicts the assumption i 6∈ Γ∗ (which in turn implies limj→∞ x
kj+1

i = 0). Therefore, we must
have ∇if(x∗) ≥ 0 for Subcase 2.2.

Summarizing the above two cases, we obtained

∇if(x∗)

{
= 0, if i ∈ Γ∗,

∈ [− 1
c1

(x∗)↓s , ∞), if i /∈ Γ∗,
(18)

which means that x∗ is an α-stationary point of (1) by Table 2.
(iii) Notice that TCS+

(xk) = Rn
Γk is a subspace. The projection of the negative gradient (−∇f(xk)) to

this subspace has the following property due to [13, Lemma 3.1]:

‖PRn
Γk

(−∇f(xk))‖ = max
{
〈−∇f(xk), v〉 : v ∈ Rn

Γk , ‖v‖ ≤ 1
}

=
∥∥∇Γkf(xk)

∥∥.
Moreover, the maximum takes place at the boundary of ‖v‖ = 1. Therefore, for any given ε > 0, there exists
vk ∈ Rn

Γk with ‖vk‖ = 1 such that

(19)
∥∥∇Γkf(xk)

∥∥ ≤ −〈∇f(xk), vk〉+ ε.
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It follows from xk+1 = PS+

(
xk − αk∇f(xk)

)
and the property in (3) that

xk+1
Γk+1 =

(
xk − αk∇f(xk)

)
Γk+1

.

In other words, the vector (xk+1 − (xk − αk∇f(xk))) is orthogonal to Rn
Γk+1 . This yields that〈

xk+1 − (xk − αk∇f(xk)), wk+1 − xk+1
〉

= 0, ∀ wk+1 ∈ Rn
Γk+1 .

Choose a particular wk+1 by wk+1 := xk+1 + vk+1. The Cauchy-Schwartz inequality implies

(20) −〈∇f(xk), vk+1〉 ≤
‖xk+1 − xk‖

αk
.

Since f is 2s-RSS, we have from Lemma 3.2 and (20) that

−〈∇f(xk+1), vk+1〉 = −〈∇f(xk+1)−∇f(xk), vk+1〉 − 〈∇f(xk), vk+1〉

≤ L2s‖xk+1 − xk‖+
‖xk+1 − xk‖

αk
.

Taking limits on both sides and using the facts established in (i), we have

lim sup
k→∞

−〈∇f(xk+1), vk+1〉 ≤ 0.

From (19) and the arbitrariness of ε, we proved lim
k→∞

∥∥∇Γkf(xk)
∥∥ = 0.

(iv) The convergence to a local minimizer of (1) provided that f is 2s-restricted convex follows directly
from Theorem 2.1 ( Relation (5)). �

The following result further characterizes when the whole sequence converges to a local minimizer and
when the local minimizer becomes a global one.

Theorem 3.2 Assume f is both 2s-RSS and 2s-RSC. Then the whole sequence {xk} converges to a local
minimizer x∗ of (1). Furthermore, depending on whether the sparse constraint is tight or not at x∗, we
have the following detailed characterization of x∗.

(i) If the sparse constraint is tight at x∗ (i.e., ‖x∗‖0 = s), then

Γk ≡ Γ∗ for all sufficiently large k.

(ii) If the sparse constraint is not tight at x∗ (i.e., ‖x∗‖0 < s), then x∗ is a global minimizer of (1).

Proof From Thm. 2.2(iii), the number of the local minimizers of (1) is finite and from Theorem 3.1(iv),
every accumulation point of {xk} is a local minimizer of (1). Hence, the number of accumulation points
of sequence {xk} is finite and every accumulation point, which is also a local minimizer, is isolated. Since
f is 2s-RSC, the sequence {xk} is bounded. Theorem 3.1(i) has established that the whole sequence {xk}
satisfies ‖xk+1 − xk‖ → 0. It follows from [30, Lemma 4.10] (which is restated as [23, Prop. 7], which is
more relevant to our current setting) that the whole sequence must converge to a local minimizer. We now
prove the remaining two claims.

(i) If ‖x∗‖0 = s, since xk → x∗, we have ‖xk−x∗‖ < δ where 0 < δ < min{x∗i : i ∈ Γ∗} for all sufficiently

large k. Then following the same reasoning as proving (5), we have Γk ≡ Γ∗ for all sufficiently large k.
(ii) If ‖x∗‖0 < s, the conclusion can be derived immediately due to f being 2s-RSC and Theorem 2.1

(Relation (2)). �

What we have proved in the above theorem is that when the sparse constraint ‖x‖0 ≤ s is tight at x∗,
we can only claim that the whole sequence converges to a local minimizer, whereas when it is not tight,
the whole sequence converges to the global minimizer. We note that a similar result has also been recently
proved by Lu [27] though under different assumptions. If the sparse constraint is tight, then the sequence
generated in [27] only converges to a local minimizer under the assumptions that f has Lipschitz gradient
and is convex. If the sparse constraint is not tight, then the sequence generated in [27] converges to the
global minimizer provided that f further satisfies Assumption (3) in [27]. Here we assumed 2s-RSS and
2s-RSC. Therefore, our basic assumptions as well as the proof techniques are fundamentally different from
those in [27]. Moreover, our result in (i) states that the active index set can be correctly identified in the
case of tight constraint. This is the crucial property that allows us to establish the Q-linear convergence
rate (Thm. 3.4) below.
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3.3 Sub-linear and Q-linear convergence rate
In this subsection, we will show the linear convergence rate both in terms of functional value sequence
{f(xk)} and the sequence itself {xk}. From the view of point in Theorem 3.2, we need the assumptions of
both 2s-RSC and 2s-RSS. Consequently, the whole sequence {xk} converges to a local minimizer x∗.

First we make an easy observation. For xk, denote

Fk(x) := ‖x− xk + αk∇f(xk)‖2.

Then it is obvious that
xk+1 = PS+

(xk − αk∇f(xk)) = arg min
x∈S+

Fk(x).

We claim that it holds

(21) 〈∇Fk(xk+1), x∗ − xk+1〉 ≥ 0 for any k such that Γ∗ ⊆ Γk+1.

We prove above inequality by considering two cases. Case 1: ‖xk+1‖0 < s and Case 2: ‖xk+1‖0 = s. For
Case 1, apply Cor. 2.1(iv) to Fk (instead of f therein) to get (21) because Fk(·) is 2s-RC due to Fk(·) being
strongly convex. For Case 2, xk+1 is the global minimizer of Fk(x) and thus a B-stationary point, which
implies ∇Γk+1Fk(xk+1) = 0. Then by Γ∗ ⊆ Γk+1 when k is sufficiently large, we must have

〈∇Fk(xk+1), x∗ − xk+1〉 =
∑

i∈Γk+1

∇iFk(xk+1)(x∗i − x
k+1
i ) = 0.

Hence (21) holds and its leads to the following linear rate convergence.

Theorem 3.3 Assume f is 2s-RSS and 2s-RSC. Let {xk} be generated by IIHT and be convergent to a
local minimizer x∗ of (1) (the convergence is guaranteed by Thm. 3.2). Then for any k > k0, the following
inequality holds:

(22) f(xk)− f(x∗) ≤
1

(k − k0)αl2s

(
f(xk0 )− f(x∗)

)
,

where α := β
L2s+σ

and k0 is the smallest positive integer such that Γ∗ ⊆ Γk for any k > k0.

Proof Since xk → x∗, there exists k0 such that Γ∗ ⊆ Γk, ∀ k > k0. Therefore, (21) holds for any k > k0.
Since f is convex on any 2s-dimensional subspace and 2s-RSS with 0 < αk <

1
L2s

, it follows that

f(x∗) ≥ f(xk) + 〈∇f(xk), x∗ − xk〉,(23)

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
1

2αk
‖xk+1 − xk‖2.(24)

By the function Fk(x) being strongly convex with modulus 2 and (21), we have

Fk(x∗) = Fk(xk+1) + 〈∇Fk(xk+1), x∗ − xk+1〉+ ‖x∗ − xk+1‖2 ≥ Fk(xk+1) + ‖x∗ − xk+1‖2.

Substituting the definition of Fk(x) into the above inequality and simplifying lead to

〈∇f(xk), xk+1 − xk〉+
1

2αk
‖xk+1 − xk‖2(25)

≤ 〈∇f(xk), x∗ − xk〉+
1

2αk
(‖x∗ − xk‖2 − ‖x∗ − xk+1‖2).

Combining (24), (25) and (23), it holds that

f(xk+1) +
1

2αk
‖x∗ − xk+1‖2

≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
1

2αk
‖xk+1 − xk‖2 +

1

2αk
‖x∗ − xk+1‖2 (by (24))

≤ f(xk) + 〈∇f(xk), x∗ − xk〉+
1

2αk
‖x∗ − xk‖2 (by (25))

≤ f(x∗) +
1

2αk
‖x∗ − xk‖2, (by (23))

which amounts to

f(xk+1)− f(x∗) ≤
1

2αk

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
≤

1

2α

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
,
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where we have used the fact αk ≥ β
σ+L2s

= α proved in Theorem 3.1(i) (15). For any positive integer j,

using this inequality and the monotonically decreasing property of {f(xk)}, we have

j(f(xk+j)− f(x∗)) ≤
k+j−1∑
i=k

(
f(xi+1)− f(x∗)

)
≤

1

2α
(‖xk − x∗‖2 − ‖xk+j − x∗‖2).

We thus have

(26) f(xk+j)− f(x∗) ≤
1

2jα
‖xk − x∗‖2.

In addition, since x∗ is a local minimizer and thus aB-stationary point. By Prop. 2.2(i), it holds 〈∇f(x∗), xk−
x∗〉 ≥ 0 because xk is in a neighborhood of x∗. This and f being 2s-RSC yield

f(xk)− f(x∗) ≥ 〈∇f(x∗), xk − x∗〉+
l2s

2
‖xk − x∗‖2 ≥

l2s

2
‖xk − x∗‖2,

which together with (26) contributes to

f(xk+j)− f(x∗) ≤
1

jαl2s

(
f(xk)− f(x∗)

)
.

Therefore, for any k > k0, it holds that

f(xk)− f(x∗) ≤
1

(k − k0)αl2s

(
f(xk0 )− f(x∗)

)
,

which completes the proof. �

We now show the Q-linear convergence rate of the iterative points sequence of IIHT under assumption
‖x∗‖0 = s.

Theorem 3.4 Assume f is 2s-RSS and 2s-RSC. Let x∗ be the limit of the sequence {xk} generated by
IIHT that satisfies ‖x∗‖0 = s. Then for any sufficiently large k, it holds,

(27) ‖xk+1 − x∗‖2 ≤ ρ‖xk − x∗‖2, 0 < ρ < 1,

where ρ := 1− 2l22sα/L2s + l22sα
2 with α being defined in Theorem 3.3.

Proof As already used, the convergence of {xk} to x∗ is guaranteed by Thm. 3.2. Since f is 2s-restricted
strongly convex with parameters l2s in (8), we can easily obtain that

‖(∇f(x)−∇f(y))Γxy‖ ≥ l2s‖x− y‖ ∀ |Γxy | ≤ 2s.

This together with Lemma 3.2 and Thm. 3.2(i) (proving Γk ≡ Γ∗ for all sufficiently large k) yields that for
any sufficiently large k,

‖xk+1 − x∗‖2 = ‖xkΓ∗ − αk∇Γ∗f(xk)− x∗Γ∗ + αk∇Γ∗f(x∗)‖2

= ‖xk − x∗‖2 − 2αk〈xk − x∗,∇f(xk)−∇f(x∗)〉+ α2
k‖(∇f(xk)−∇f(x∗))Γ∗‖2

≤ ‖xk − x∗‖2 − (2αk/L2s − α2
k)‖(∇f(xk)−∇f(x∗))Γ∗‖2

≤
(
1− 2l22sαk/L2s + l22sα

2
k

)
‖xk − x∗‖2,

where∇Γ∗f(x∗) = 0 in the first equality holds due to Thm. 3.1(iii), namely,∇Γ∗f(x∗) = limk→∞∇Γkf(xk) =
0. It follows from α ≤ αk < 1/L2s that

1− 2l22sαk/L2s + l22sα
2
k = 1 + l22s

(
αk − 1/L2s

)2 − l22s/L2
2s

≤ 1 + l22s
[(
α− 1/L2s

)2 − 1/L2
2s

]
= 1− 2l22sα/L2s + l22sα

2 = ρ.

Moreover, ρ = l22s
(
α − 1/L2s

)2
+ 1 − l22s/L

2
2s > 0 and ρ = 1 − l22sα

(
2
L2s
− β
L2s+σ

)
< 1. The proof is

completed. �

We note that convergence result of the type (27) is known to be Q linear rate in optimization. We are
only able to establish this result for the special case when the sparse constraint is tight. The key reason is
that we were able to correctly identify the active index set for this case.
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4 Numerical Experiments
In this section, we report our numerical experiments of IIHT on three classes of problems: Linear compressed
sensing under nonnegativity constraints, Sparse logistic regression and Phase retrieval. Our stopping crite-
rion is set as

number of iterations ≤ Maxiter or ‖(∇f(xk))Γk‖ ≤ ε,
where we stop our algorithm whenever the number of iterations exceeds Maxiter or the projected gradient
becomes less than ε. We will set a different level for ε and Maxiter for each class of test problems. The CPU
time reported here does not include the time for data initialization. All those simulations are carried out on
a CPU 3.2GHz, RAM 4.0GB desktop.

4.1 Compressed Sensing
We first test the classical linear CS problem under the nonnegativity constraint with f(x) = fA(x) :=
‖Ax− b‖2, where A ∈ Rm×n is a linear measurement matrix satisfying

b = Ax+ ξ.

We will test two scenarios. One is the exact recovery where ξ ≡ 0 and the other is the so-called stable
recovery where ξ follows the normal distribution. More specifically, two types of sensing matrices of A will
be generated, namely, random Gaussian matrix, and random partial Discrete Cosine Transform (pDCT)
matrix:

Gaussian: A·j
i.i.d.∼ N (0, I/m), j = 1, 2, · · · , n,

pDCT: Aij = m−1/2 cos(2π(j − 1)ψi), i = 1, 2, · · · ,m, j = 1, 2, · · · , n,

where A·j denotes the jth column of A, ψi, i = 1, . . . ,m are uniformly and independently sampled from
[0, 1]. After generating them, we orthogonalize them to satisfy AA> = I.

We generate the ’true’ original signal xorig with nonnegative elements as follow: first produce an index
set T with s indices randomly selected from {1, · · · , n}; then for each element of xorig with index in T ,
uniformly choose them from [0, 10]. The data are generated as follows (in Matlab format):

xorig = zeros(n, 1); T = randperm(n);

xorig(T (1 : s)) = 10 ∗ rand(s, 1);(28)

b = A ∗ xorig + σ0 ∗ randn(m, 1).

Clearly, the case σ0 = 0 is the exact recovery. For stable recovery, we take σ0 = 0.01.
(a) Parameter setting. In our implementation, we set Maxiter = 1000, ε = 10−5, β = 0.8 and

σ = 10−5 for simplicity. Instead of fixing α0 for each step in IIHT, we update it according to [11] to
accelerate the computational speed, namely,

αk0 =
‖A>

Γk (b−Axk)‖2

‖AΓkA>
Γk (b−Axk)‖2

.

We run 40 trials for Gaussian and pDCT matrices with n = 5000,m = n/4 and s = 0.01n or s = 0.05n
for exact and stable recovery to see the decreasing of objective function at each iteration. Results recorded
in Figure 2 show that only 5 (15) iterations are needed to get the desirable solutions when s = 0.01n
(s = 0.05n ) for both exact and stable recovery, which shows that the gain in decreasing the objective
function per iteration is sufficient.
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Figure 2: Objective function value at each iteration.
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(b) Comparison of different methods. The reason for us to consider linear mapping is that we
can compare our algorithm with other state-of-the-art greedy methods which are used to address liner
compressed sensing. For example, Normalized Iterative Hard Thresholding (NIHT) proposed by Blumensath
in [11], Compressive Sampling Matching Pursuit (CoSaMP) established by Thomas et al. in [31], and Subspace
Pursuit( SP) in [17] 1.

We begin with running 100 independent trials for each type of matrix under m = 64, n = 256 and
recording the corresponding success rate at sparsity levels from 5 to 30. The success rate is defined as the
percentage of successful recovery of 100 trials. If the relative error is smaller than 10−2, i.e.,

Relative Error :=
‖x− xorig‖
‖x‖

< 10−2,

the recovery is regarded as a successful one. Here x denotes computed solutions by four methods. Corre-
sponding results are seen in Figure 3. Obviously, for these two types of matrices, IIHT basically runs the
best results, followed by SP which outperforms NIHT and CoSaMP.
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Figure 3: Success rates with two types of matrices with m = 64, n = 256.

To see the accuracy of the solutions and the speed of these four methods, we now run 40 trials for
each kind of matrices with higher dimensions n increasing from 1000 to 9000 and keeping m = n/4, s =
0.01n, 0.05n. We also fix σ0 = 0.01. Specific results produced by these four methods are recorded in Tables
4 and 5. The most obvious property of the data in the table is that the relative error of those four methods
almost are identical. However, in terms of computational time, SP performs the best when s = 0.01n,
followed by IIHT, CoSaMP and NIHT; When s = 0.05n, our proposed IIHT behaves better than SP and NIHT,
and CoSaMP comes the last.

Table 4: Average results for Gaussian matrix.

1. CoSaMP and SP are available at: http://media.aau.dk/null space pursuits/2011/07/a-few-
corrections-to-cosamp-and-sp-matlab.html.
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s n Relative Error Time

IIHT NIHT SP CoSaMP IIHT NIHT SP CoSaMP

1000 0.0040 0.0046 0.0046 0.0051 0.0049 0.0070 0.0052 0.0059

3000 0.0035 0.0037 0.0037 0.0041 0.0124 0.0914 0.0081 0.0125

0.01n 5000 0.0036 0.0035 0.0036 0.0041 0.0254 0.2817 0.0116 0.0282

7000 0.0042 0.0041 0.0043 0.0051 0.0541 1.6674 0.0292 0.0862

9000 0.0038 0.0039 0.0041 0.0047 0.0905 2.8940 0.0719 0.1070

1000 0.0043 0.0046 0.0045 0.0067 0.0113 0.0787 0.0145 0.0428

3000 0.0038 0.0038 0.0039 0.0067 0.0651 2.8045 0.1194 37.491

0.05n 5000 0.0044 0.0042 0.0044 0.0065 0.2946 11.075 0.5455 150.69

7000 0.0038 0.0038 0.0038 0.0061 0.4264 23.916 1.2049 559.55

9000 0.0040 0.0041 0.0041 0.0065 0.8517 58.758 1.9868 1492.2

Table 5: Average results for pDCT matrix.

s n Relative Error Time

IIHT NIHT SP CoSaMP IIHT NIHT SP CoSaMP

1000 0.0038 0.0039 0.0039 0.0039 0.0047 0.0060 0.0051 0.0049

3000 0.0034 0.0034 0.0034 0.0042 0.0123 0.0877 0.0083 0.0127

0.01n 5000 0.0035 0.0035 0.0035 0.0044 0.0321 0.3904 0.0143 0.0350

7000 0.0039 0.0039 0.0037 0.0044 0.0530 1.4925 0.0318 0.0728

9000 0.0037 0.0037 0.0037 0.0045 0.0903 3.2969 0.0532 0.2942

1000 0.0041 0.0040 0.0040 0.0068 0.0104 0.0754 0.0167 3.0316

3000 0.0038 0.0038 0.0038 0.0061 0.0654 2.3984 0.1477 32.955

0.051n 5000 0.0041 0.0040 0.0041 0.0069 0.2266 11.858 0.3876 141.56

7000 0.0042 0.0040 0.0042 0.0068 0.4541 17.088 1.5226 562.10

9000 0.0040 0.0040 0.0041 0.0063 0.9101 56.779 8.73688 1485.2

4.2 Sparse Logistic Regression Problem
The logistic regression model plays an important role in two-class classification method that has been used
widely in many applications ranging from data mining, machine learning, computer vision, to bioinformatics.
Specifically, given data z ∈ Rn and weights (v, w), it assumes the following probability model

P(b = ±1|v, w) =
1

1 + exp(−b(v + w>z))
,

where b is the class label. If zi ∈ Rn, i = 1, · · · ,m are m given samples with n features and bi ∈ {1,−1}, i =
1, · · · ,m are given m binary outcomes or labels, one estimates (v, w) by minimizing the negative log-
likelihood:

min
v,w

L(w, v) :=

m∑
i=1

log
(

1 + exp(−bi(v + w>zi))
)

Recently, sparse logistic regression is attractive in many applications involving high-dimensional data, seen
[24, 28] and references therein. The corresponding optimization model is

min
v,w

L(v, w), s.t. ‖w‖0 ≤ s.(29)

Letting x = (v;w) ∈ Rn+1 and pi = (1; zi) ∈ Rn+1, denote the so-called logistic loss as

f(x) :=
1

m

m∑
i=1

log
(

1 + exp(−bi · x>pi)
)
,

We select two popular methods for numerical comparison. One is the penalty method of Lu and Zhang
[28] proposed a penalty decomposition (PD) method. The other is the first-order method SLEP of [26]. To
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compare the solution quality of the three methods, we adopt the criterion, error rate, from [28], which is
defined by

Error Rate :=
1

m

m∑
i=1

|sign(x>pi)− bi|,(30)

where x is the solution obtained by methods and sign(a) is the sign function, i.e., sign(a) = 1 if a > 0;
sign(a) = −1 if a < 0; sign(a) = 0, otherwise.

(a) Parameter setting. We will test two kinds of data sets: real data sets and random data sets to
be described below. For the PD method, we set eps = 10−3, maxit = 1000, and the rest of its parameters
are set by default. For SLEP method, we set opts.mFlag = 1, opts.lFlag = 1, opts.tFlag = 2, and fix
rho= 0.05 for the random data sets, where rho corresponds to l1 norm penalty parameter λ. However, rho
is appropriately adjusted for the real data sets. The rest of its parameters are set by default. For our IIHT,
we use

Table 6: Parameters for IIHT.

Real data α0 = 0.01, β = 0.2, σ = 10−5, Maxiter = 1000, ε = rm/λmax(A
>A)

Random data α0 = 0.2, β = 0.5, σ = 10−3, Maxiter = 1000, ε = mmax
{
10−4, 10

m+n
1000

−13
}

Here, A := [p1, · · · , pm] and r := max{m,n}/min{m,n}, x0 = (v0;w0). We always start with w0 as a zero
vector, and initialize v0 = 10 for real data sets but v0 = 1 for random data sets.

(b) Comparison on real data. In our first experiment, we test three real data sets. The first data
set is the colon tumor gene expression data1 with 62 samples and 2000 features. The second data is the
ionosphere2 data with 351 samples and 34 features. The third one is the German Credit data3 with 1000
samples and 24 features. The first and third data sets are from the UCI machine learning bench market
repository [33]. We standardize each data set so that the sample mean is zero and the sample variance is one.
We first apply SLEP to (29) with a sequence of suitably chosen rho to obtain solutions ŵ with an increasing
sparsity sequence such as ‖ŵ‖0 = 1, 2, · · · , 20. We then set s being same as ‖ŵ‖0 for PD and IIHT, so that
the solutions of these three method are of the same sparsity.

Results for the first two data sets are recorded in Figure 4. In terms of CPU time, PD performs poorly
for both data sets, while SLEP and IIHT run very fast. For Colon data, SLEP basically gets lowest logistic loss
and error rate, and PD produces the highest ones. For Ionosphere data, there is no big difference for logistic
loss between PD and IIHT. Both are better than SLEP. In terms of error rate, IIHT behaves the best, followed
by PD and SLEP.

In fact, the error rate is often used to evaluate the quality of a model vector, which is taken the sum over
the testing samples instead of the training samples in (30). It is well known that when the ratio between
the number of training samples and the number of features is small, namely, m/n, the error rate is usually
high for most of models. Thus, Colon and Ionosphere data sets may not be appropriate for evaluating the
error rate. Based on this, we chose German Credit data to estimate it. Specifically, we simply divide this
data into two parts: the first 900 samples being training data and the rest 100 samples being testing data.
Then we apply three methods in the way as above. The results are shown in Figure 5. For training data,
PD returns the best results in terms of logistic loss and error rate, followed by IIHT and SLEP. However, IIHT
basically outperforms SLEP and PD for testing data, as it generates lowest logistic loss for most cases.

(c) Comparison on random data. Now we compare the three methods on the random data sets,
where the samples {z1, · · · , zm} and the corresponding outcomes {b1, · · · , bm} are generated in the same
manner as [28]. In detail, for each instance we choose equal number of positive and negative samples, that
is, m+ = m− = m/2, where m+ (resp., m−) is the number of samples with outcome +1 (resp., -1). The
features of positive (resp., negative) samples are independent and identically distributed, drawn from a
normal distribution N (φ, 1), where φ is in turn drawn from a uniform distribution on [0, 1] (resp., [−1, 0]).
Corresponding pseudo MTALAB codes are:

T = randperm(m); b = ones(m, 1); b(T (1 : m/2)) = −1;

zi = bi ∗ rand + randn(n, 1), i = 1, · · · ,m.

Data of different sizes are generated. For each size, we randomly generate the data set consisting of 40
trials. For each trial, let ŵ be the approximate optimal solution obtained by SLEP. We then apply our PD

and IIHT methods to solve problem (29) with s = ‖ŵ‖0 so that the resulting approximate optimal solutions

1. Colon tumor gene expression data: http://genomics-pubs.princeton.edu/oncology/affydata/index.html.
2. Ionosphere data: http://archive.ics.uci.edu/ml/datasets/Ionosphere.
3. German Credit data: https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data).
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Figure 4: Results for Colon tumor gene expression data and Ionosphere data.
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Figure 5: Results for German Credit data.

are at least as sparse as ŵ. The results of the three methods for the these randomly generated instances are
presented in Table 7. Clearly, IIHT obtains the best results with lowest logistic loss and least CPU time. PD

outperforms SLEP in terms of logistic loss but takes the most time.

Table 7: Average results generated by three methods.
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Logistic Loss Time

m n s IIHT PD SLEP IIHT PD SLEP

1000 127.2 2.42e-04 2.46e-04 1.65e-01 0.51 13.32 0.75

1000 3000 145.3 4.90e-05 2.26e-04 1.55e-01 1.33 65.41 4.23

5000 165.2 3.40e-05 1.89e-04 1.50e-01 2.87 100.68 6.83

1000 195.4 9.94e-05 4.10e-04 1.91e-01 2.22 81.49 3.56

3000 3000 233.3 5.31e-05 4.10e-04 1.83e-01 4.14 201.88 11.33

5000 246.5 4.21e-05 2.97e-04 1.79e-01 6.08 360.44 20.75

1000 239.7 3.06e-05 5.72e-04 1.94e-01 4.06 139.51 6.41

5000 3000 304.5 1.58e-05 3.84e-04 1.87e-01 10.07 362.73 18.76

5000 326.3 2.14e-05 2.96e-04 1.86e-01 16.07 549.65 33.12

4.3 Phase Retrieval Problem
Phase retrieval is the problem that aims at recovering a signal from the magnitude of its Fourier transform.
Namely, it is to find a real-valued discrete time signal x ∈ RN from its magnitude-squared of an N point
discrete Fourier transform (DFT):

bj =
∣∣∣ n∑
k=1

xke
−2πi(j−1)(k−1)/N

∣∣∣2, j = 1, · · · , N.

Here x is constructed as x = (x1, · · · , xn, 0, · · · , 0)> ∈ RN . If we denote F the DFT matrix, then each
elements Fjk = e−2πi(j−1)(k−1)/N and b = |Fx|2, where | · |2 denotes the element-wise absolute-squared
value. Therefore, phase retrieval of sparse signals actually can be reformulated as the following model (see
[36] for details).

minx∈RN

∑N
i=1(|Fix|2 − bi)2,

s.t. ‖x‖0 ≤ s,
supp(x) ⊆ {1, · · · , n}.

where Fi is the i-th row of F . Actually, phase retrieval of sparse signals is a special case of the more general
quadratic compressed sensing (QCS) problem [5, 37]. For our IIHT, we set Maxiter = 2000, α0 = 0.001, ε =
10−2 and β = 0.1, σ = 10−4. We generate y ∈ Rn with sparsity s as in (28), and then get xorig and b by
the pseudo MATLAB codes:

xorig = [y; zeros(N − n, 1)];

b = abs(fft(xorig)).∧2 + σ0 ∗ randn(N, 1);

In order to evaluate the performance of IIHT, we compare it with GESPAR proposed in [36]. Its parameters
are set by default.
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Figure 6: Success rates with three types of matrices.

By fixing n = 64 and N = 64, 128 under σ0 = 0.01 and σ0 = 0.1, we test 100 trials for these two methods
with different sparsity level s. The corresponding success rate which is defined as before and CPU time are
taken into consideration in illustrating their performance. Results shown in Figure 6 demonstrate that IIHT
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outperforms GESPAR when N = 64, while performs worse than GESPAR when N = 128, regardless of noise
level.

To see the accuracy of the solutions and the speed of these two methods, we now run 40 trials with
slightly higher dimensions n increasing from 500 to 3000 and keeping N = 2n, s = 1%n. We also test them
under two noise levels σ0 = 0.01 and σ0 = 0.1. We only report results associated with successful recovery,
i.e., Relative Error < 0.01. Such results are recorded in Table 8, in which IIHT outperforms GESPAR in
terms of both average CPU time and average relative error when n ≥ 1500.

Table 8: Average results with N = 2n, s = 1%n.

n σ0 = 0.01 σ0 = 0.1

Time Relative Error Time Relative Error

IIHT GESPAR IIHT GESPAR IIHT GESPAR IIHT GESPAR

500 1.82 0.82 8.73e-06 4.97e-06 1.58 0.65 7.71e-05 5.72e-05

1000 3.38 8.47 2.73e-06 1.93e-06 4.70 8.82 2.59e-05 1.79e-05

1500 4.22 45.64 1.65e-06 2.07e-04 4.07 54.40 1.65e-05 5.46e-05

2000 7.14 98.53 1.08e-06 4.93e-04 6.33 115.02 1.03e-05 3.46e-04

2500 9.07 284.07 9.57e-07 5.89e-04 9.48 360.91 9.22e-06 1.05e-03

3000 12.45 490.90 7.29e-07 2.69e-04 9.88 754.86 7.73e-06 1.21e-03

5 Conclusion
In this paper, we studied an improved version of the popular Iterated Hard-Thresholding (IHT) algorithm,
for the sparsity and nonnegativity constrained optimization, from the veiwpoint of optimization. We try to
answer the questions that are common in optimization. Those questions include towards what stationary
point that the IHT would converge to and at what speed. In order to answer those questions, we studied
the relationships among the three stationary points (α-, B- and C-stationary points) and local (global)
minimizers of (1). Moreover, we established some results on convergence and linear convergence rates of
IHT by including the Armijo line search in IHT. Numerical experiments demonstrated the efficiency of the
improved IHT on three widely tested problems.

Two immediate questions arise from this research. One is to assess whether the nonmonotone line search
strategy used by Lu [27] would lead to more efficient performance of IHT and lead to stronger convergence
results. The second question is whether we can establish convergence to the global minimizer for the case
that the sparse constraint is not tight.
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