
Inhibiting Browser Fingerprinting and Tracking  
 

Sakchan Luangmaneerote  

Electronic and Computer Science  

University of Southampton  

Southampton, SO17 1BJ, UK 

sl8e14@soton.ac.uk 

Ed Zaluska and  Leslie Carr  

Electronic and Computer Science  

University of Southampton  

Southampton, SO17 1BJ, UK 

ejz@ecs.soton.ac.uk

 

 

 
Abstract— This paper discusses possible approaches to 

address the loss of user privacy when browsing the web and 

being tracked by websites which compute a browser fingerprint 

identifying the user computer.   The key problem is that the 

current fingerprinting countermeasures are insufficient to 

prevent fingerprinting tracking and also frequently produce side-

effects on the web browser.    The advantages and disadvantages 

of possible countermeasures are discussed in the context of 

improving resistance against browser fingerprinting.  Finally, 

using a new browser extension is proposed as the best way to 

inhibit fingerprinting as it could probably inhibit some of the 

fingerprinting techniques used and also diminish the side-effects 

on the user browser experience, compared with existing 

techniques. 

Keywords; Browser Fingerprinting, User Privacy, Web 

Tracking, Fingerprinting Countermeasure,   side-effects  

I. INTRODUCTION  

A typical user computer usually has a large number of 
different attributes which facilitates identification of the user. 
The rapid advances in web technologies (e.g. CSS, JavaScript, 
HTML, etc.) help the user to browse the web conveniently, but 
at the expense of user privacy. These technologies provide 
communication between the web browser and the web server 
but are unable to restrict access to the user data.   A 
consequence of this inability to control access to user data is 
that users are at a high risk of a loss of privacy. A third party 
could identify the user from the user data, a technique known 
as “fingerprinting”. On a typical user computer, there are many 
attributes used (e.g. the list of plugins, the list of fonts, user 
agents, operating system version, etc.) that can be easily 
accessed using the web browser.     This information will be 
combined into one string, and  a fingerprinting ID then created 
(typically by using a hashing function). These user attributes 
can be accessed through a variety of different channels (e.g. 
JavaScript, network traffic, plugins, etc.). The stability of the 
fingerprinting ID created (sometimes called a “hash ID”) will 
depend on the alteration of the attributes associated with the 
user computer (e.g., updating of the operating system, fonts or 
version of the web browser, etc.). Unlike stateful tracking (e.g. 
using web cookies or Flash cookies), this fingerprinting 
technique does not need to store any files on user computers.  
This creates a substantial problem for Internet users who wish 
to retain their privacy as they cannot detect any trace on their 
computers. Today, many companies (e.g. Bluecava [1] and 

Iovation [2]) have adapted these fingerprinting techniques to 
fingerprint millions of Internet users and then track them, even 
after all cookies are disabled.  Knowledge of the user identity 
by a third party has both advantages and disadvantages. 
Considering the advantages, fingerprinting can be used with 
web analytics [3] to tackle online fraud such as identity theft or 
credit card fraud [4, 5]. For example, some new anti-fraud 
payment systems will not only check the user login with the 
normal authentication techniques but also authenticate the user 
using a fingerprinting technique. The information obtained will 
assist the anti-fraud payment system to check basic information 
(such as IP address,  user agents,  screen resolution,  timezone,  
system language, processor characteristic, etc.) and if this is 
significantly different from the last login, then additional 
security requirements will typically be invoked. The 
disadvantages of browser fingerprinting are that it can be used 
as a web cookie regenerator [6] (in the case of disabled 
cookies), spread malware [7] and to track users without their 
consent [6] (which creates a potentially-significant loss of 
privacy). 

A number of countermeasures have recently been proposed 
to tackle fingerprinting tracking.  There are a number of 
different ideas and concepts - some countermeasures seem to 
be more effective to prevent fingerprinting tracking, while 
others appear to be somewhat far-fetched and likely to create 
more problems than they will solve. This paper will discuss 
which countermeasures appear to be more suitable for 
preventing fingerprinting tracking and then evaluate the best 
approaches to tackle this problem. Finally, it proposes a new 
countermeasure to address the problem of fingerprinting 
tracking. 

The key contributions of this paper are the following: 

1) Classification of fingerprinting countermeasures 

2) Discussing possible approaches to prevent fingerprinting   

     tracking 

3) Proposing a new countermeasure to address the  

     weaknesses of the current  countermeasures. 

II. DISCUSSION OF POSSIBLE COUNTERMEASURES  

Browser fingerprinting usually consists of two key stages. The 

first stage is obtaining user data through various channels (e.g.  

JavaScript and plugins).  The second stage is to combine all 

attribute values into one string and then calculate the 



fingerprinting ID. The countermeasure must select which part 

should be addressed to defeat the fingerprinting algorithm. 

Despite fingerprinting technique being a relatively new 

technique, a number of countermeasures have been recently 

proposed. This paper classifies these into four main methods 

and discusses the advantages and disadvantages of each as 

follows. 

A. Blocking access to the user data 

Blocking is a normal technique to prevent the fingerprinting 

algorithm to obtain the user data from a user computer. When 

the fingerprinting algorithm is incapable of obtaining any 

value from a user computer, it cannot initiate the creation of 

fingerprinting ID.  Once the fingerprinting ID did not send to 

the fingerprinting server, the fingerprinting server cannot 

actually identify the user computer as its purpose.  Several 

research studies had recently inferred the blocking technique 

as follows. 

1) Disabled JavaScript 
Eckersley [6] and Boda [8] conducted research in this field 

and strongly advised that an effective way to inhibit the 
fingerprinting tracking is to disable JavaScript. JavaScript is 
the primary mechanism used by a fingerprinting server to 
access a substantial amount of attributes within the user 
computer. If the fingerprinting technique is unable to access 
any attributes, the fingerprint ID cannot be created.  

Unfortunately, almost all websites (e.g. Facebook, Google, 
etc.) now make extensive use of JavaScript. Disabling 
JavaScript will directly impact the user browsing experience 
very significantly [3, 10]. 

2) Do not track 
“Do Not Track” is a W3C standard also supported by the 

EU Cookie Directive [25]. The concept of Do Not Track 
utilises an HTTP header field with three values: ‘1’ a user does 
not wish to be tracked, ‘0’ a user allows tracking or ‘null’ a 
user did not set a preference.  This value will be sent with a 
request message by the web browser to notify the web server to 
inhibit tracking. If the web server follows this standard, the 
web browser will not be tracked by the web server.  This 
feature is implemented in all modern web browsers (e.g., 
Chrome, Internet Explorer or Firefox). However, Acar [26] 
established that this method is unable to prevent fingerprinting 
tracking because many fingerprinting servers simply ignore the 
standard and any requests to inhibit. There is currently no 
enforcement [27], and this solution can only be effective if 
policymakers take a decision to require all websites to comply 
with the standard and an effective enforcement regime is 
imposed [28]. 

3) Allowing content  before execution 
This method allows a user to decide which scripts should 

be executed on their web browsers. The user can block active 
content such as Java, JavaScript, Flash and other plugins.  

When a user browses any web page, the active content is 
typically blocked by default. The user then decides which 
scripts should be executed on their computer.  For example, 
NoScript is a browser extension designed to block all scripted 

content automatically. The user must then take a decision as to 
which websites should be trusted.   

However, the functionalities of the web page are unlikely to 
operate properly while rendering a web page. Since scripts are 
blocked by default, a web page might not operate as smoothly 
as it should.  Another problem is that script running is blocked 
at the domain level, and many websites load scripts from a 
large number of different sources. Some websites load only 
from their own domain, but others load from third-party 
servers for various reasons (e.g. to display advertisements or to 
track the user). This complicated operation confuses Internet 
users without the necessary experience of website 
technologies. In addition, to recognise that a web page does not 
contain any threat is significantly more complicated than in the 
past. Mowery [29] established that some fingerprinting web 
servers could potentially exploit the utilisation of a whitelist by 
using the websites allowed in the whitelist as one attribute to 
create a fingerprinting ID. 

B. Creating an identical identity 

All computers usually have a different identity. However, if all 
computers had the same identity, the fingerprinting algorithm 
could not distinguish which computers belonged to any user. 
This technique will modify all attributes on the user computer 
to an identical identity. It does not resist any attempts to access 
the user data by the fingerprinting server.  The attribute values 
obtained will be faked, and thus the fingerprint ID created by 
the fingerprinting algorithm will be a  duplicated fingerprint ID 
that will no longer identify the user. 

1) Agreement to use common APIs. 
One mechanism that helps the fingerprinting web server 

identify the user computer is the use of a number of different 
engines for each web browser. There are many vendors 
involved in the improvement of JavaScript engines on a web 
browser, and all modern web browsers are equipped with 
different engines which result in different responses to the web 
server.  The web server can detect the rate of response to the 
web server and then use the different requests and replies as an 
additional attribute to fingerprint the user computer [11].   One 
way to tackle this problem is to force every web browser 
vendor to use the same set of APIs [12]. If all web browsers 
use the same standard APIs, the fingerprinting technique 
cannot distinguish any difference between the request and 
response messages which eliminates this source of potential 
fingerprinting.  However, this approach appears to be too 
difficult to implement. Many vendors are unwilling to follow 
this suggestion because they are concerned about such 
potential difficulties as the possible lower performance of their 
web browser [5]. 

2) Share fingerprinting with others 
The unique identity is one of the most significant attributes 

for the fingerprinting technique. In contrast, assuming if web 
browser A’s identity is indifferent from web browser B’s 
identity, the fingerprinting server is incapable of distinguishing 
web browser A and web browser B. This concept attempts to 
degrade the unique identity of the web browser by modifying 
and restricting attributes on the web browser until the web 
browser’s identity is homogenous.  This concept empowers the 



fingerprinting technique to access selective attributes − it did 
not restrict access to attributes so that fingerprinting technique 
can bring accessed information to create the fingerprinting ID.  
If all web browsers have the same identity, the fingerprinting 
technique cannot distinguish which users are browsing website 
due to the same identity.  Tor is a great example. The concept 
of Tor is to modify and restrict many attributes (e.g., a list of 
fonts, a list of plugins, User-Agent, etc.) on the web browser. 
The results of attribute modification and restriction cause all 
Tor users having the same identity [14].  The fingerprinting 
techniques cannot identify any web browsers because they will 
all appear to be the same browser.  Unfortunately, the speed of 
Tor is significantly slower than the speed of regular web 
browser due to nature of its connections. In addition, Tor hides 
user’s location and randomly pick server’s location which can 
cause problems of login system [15], and Tor users are treated 
as with the second class on the Web, frequently being denied 
services by many websites [16].  

Tor is an open network which was designed to secure the 
user privacy by concealing the user’s location [36]. Tor not 
only can hide the user's location but also can protect the entire 
information being transferred using encryption [17, 18].  Tor 
sends user information through a number of Tor servers located 
around the world, provided by a voluntary basis (to provide a 
public service).  Each server is designed to transfer information 
to another server – this is called a relay.  

  The Tor browser has been designed to be straightforward 
for the general user to use [19, 20] and modified many 
attributes on the Firefox browser in order to preserve the user 
privacy, below [21]. 

 Restricted JavaScript code and HTTP header 

 Size alteration of possible window dimensions 

 Reading browser history not supported 

 Clearing cookies and DOM storage 

 Changing user-agent and Plugins disabled 

Tor has been praised by many researchers because of the 
high levels of privacy provided.  For example, Eckersley [6] 
(who introduced the concept of fingerprint tracking on the 
Internet)    noted that the Tor browser provides an effective 
defence against fingerprinting.  

The low effective bandwidth of Tor (noted by Lenhard 
[15]) results in a slow speed which is the most significant 
problem when using Tor (Buder [22]). 

C. Degrading uniqueness of fingerprinting ID 

The uniqueness of the fingerprinting ID normally depends on 

attributes detected on the user computer and the fingerprinting 

web server will attempt to derive high-entropy values for the 

user computer.  If the uniqueness can be decreased, then the 

ability to track is also decreased. 

1) Decreasing use of plugins 
The list of plugins in a web browser provides a relatively-

high-entropy attribute,  around 15.4 bits of entropy as 
measured by Eckersley [6]. This list is significant not only 

because it makes an important contribution to the attributes 
available to a fingerprinting web server, but it also reveals 
underlying user information through plugin APIs, (e.g. a list of 
fonts, operating system, screen resolutions, etc.).       The Tor 
browser decreased the use of plugins by allowing only selected 
plugins, hence reducing leakage of user information.  Another 
example is a smartphone browser which typically allows only a 
few plugins. This implicitly reduces the entropy value, and it is 
harder for a fingerprinting website to create a unique tracking 
ID [6].  Boda [13] noted that the increasing number of plugins 
had improved the robustness of fingerprinting algorithms, 
hence decreasing the number of plugins should help to prevent 
fingerprint tracking. In addition, Natalia [34] explained that the 
inability to install plugins on a mobile phone makes 
fingerprinting harder as well as Nikiforakis [5] who concluded 
that regardless of the complexity of plugins there was an 
inability to control user data.   

Although degrading the stability of fingerprinting by 
decreasing the number of plugins appears to be an attractive 
method, the consequence of disabled plugins can produce 
adverse effects on the browsing experience. Any plugin 
deficiency can result in the problems affecting the smooth and 
proper running of the web page.  For example, installing a PDF 
plugin will assist the user to view PDF documents 
conveniently.  If the browser did not provide a built-in PDF 
facility, users would be unable to view PDF files easily. 

2) Using multiple browsers 
This approach makes use of different browsers for different 

activities when surfing the Web.  User profiles will be more 
difficult to create if the user makes use of more than two 
browsers. For example, suppose one browser is used only for 
Facebook, Google+ and e-commerce, and another one is used 
for general browsing. This concept assumes that the user 
profile is more difficult to build up if users can change their 
web browser. Despite the seemingly-straightforward concept, it 
provides only a partial solution because a fingerprinting web 
server can select other attributes unrelated to a web browser 
(e.g. operating system, the underlying hardware, screen 
resolution or the IP Address) to fingerprint the user computer 
rather than relying on browser attributes [8]. 

D. Using extension 

Modern web browsers (e.g. Firefox, Internet Explorer and 
Chrome) have allowed developers to extend browser 
functionality for various purposes.  They provide online stores 
which permit users to find available extensions. Typically 
browser extensions are used for enhancing security, inhibiting 
advertisements, and adding new features. Browser extensions 
can be used to enhance user privacy by monitoring and 
intercepting activities (i.e., it can inject the Logger component 
into the Document Object Model (DOM)) on the web browser 
while the web page has begun loading.  A number of 
fingerprinting countermeasures with different techniques have 
been implemented using browser extensions as it is 
straightforward for the user to download and use them. 
Because each user computer has various attributes and each 
attribute has a different entropy value, this helps to classify the 
current fingerprint countermeasures used or proposed to the 
public. 



1) Selecting high entropy attribute 
High-entropy attributes are a significant factor when 

creating a unique tracker ID for fingerprinting. Several 
research studies have considered the characteristics of user-
computer attributes. The results all show [6, 8, 30] that the list 
of fonts, a list of plugins and user agent provide high-entropy 
attributes.  Using only a list of plugins, for example, has a 
sufficiently–high entropy (15.4 bits) to generate a 1-in-43,237 
fingerprint. The fingerprinting webserver will typically select 
additional attributes which might be low-entropy attributes 
(e.g. operating system, screen resolution, etc.) to create a 
unique tracker ID with sufficient stability.   This is a key 
reason why many countermeasures focus on reducing the value 
of high-entropy attributes. 

    It is highly likely that most fingerprintering websites will 
make use of these high-entropy attributes in their algorithms 
[5]. 

a) User-agent spoofing 

All Internet users who are browsing the web have their own 
user agent.  A user agent contains many attributes within one 
string of the user agent (e.g. browser name, version of browser, 
operating system, CPU, etc.)  Spoofing the user agent not only 
assists the user to view a website properly as originally 
designed, but it also helps a webmaster to test the web 
resources with other user agents.  Yen [31] suggests that 
changing the user agent is an approach to avoid fingerprint 
tracking as it makes fingerprinting less unique.  A number of 
extensions have been recently made available by developers 
(e.g., UserAgent Switcher, UserAgent RG, UAControl, 
UserAgentUpdater, etc.) for various purposes. One approach is 
to alter user agent information to inhibit fingerprint tracking. 
Nikiforakis [5] noted that using user agent spoofing often 
results in unwanted side-effects because it increases the risk of 
being fingerprinted by somebody.   If user agent spoofing 
reports inconsistent data continually, this can lead to an 
impossible configuration (e.g. mismatching of the user agent 
information with the JavaScript layer) which ironically could 
result in an easier identification of the web browser [6, 32]. 

b) Privaricator 

Privaricator [14] employs the principle of random policies. 
It assumes that the user will visit websites for the first time. 
Visiting a website with the same browser the information 
returned will be altered in a random fashion every time so that 
each visit appears to be from a new user. This technique 
focuses on the list of plugins and list of fonts by using the 
method of randomness to hide plugins and fonts and also adds 
some random noise to the offset properties. However, because 
it adds noise to the offset properties this may influence the 
rendering of the web page, and random plugins may involve 
the execution of code in the Internet page. For example, 
multimedia web pages often require the Flash plugin. If the 
web browser does not support Flash, it cannot render the web 
page correctly.   Moreover, Privaricator does not prevent the 
use of the Flash plugin which is capable of exposing the list of 
fonts [33]. In addition, this countermeasure pays attention to 
high-entropy attributes and the remaining attributes might 
provide a soft target for fingerprinting websites. 

2) Ignoring actual entropy values 
One of the most significant current discussions is how to 

prevent different types of fingerprinting technique as much as 
possible. As a consequence of the previous method, it appears 
that changing only the high-entropy attributes might not be 
sufficient to prevent fingerprint tracking.   On the application 
layer, JavaScript might allow the user to be fingerprinted 
effectively even without the use of high-entropy attributes such 
as canvas fingerprinting, JavaScript objects, etc.   This 
countermeasure seeks to address this problem by altering all 
attributes irrespective of the entropy value. 

a) RubberGlove 

RubberGlove is a Chrome extension which can be installed 
from the Chrome web store.  It finds JavaScript objects within 
a web page (navigator and screen) and then replaces them with 
null values.  This method blocks the access of JavaScript 
objects which cannot then be used to create a fingerprinting ID. 
However, the initial study had noted that the Rubberglove has a 
significant impact to the user browsing experience [37].  

3) Selecting appropriate attributes 
During browsing web pages, the browsing experience is a 

crucial factor for the user.  The two previous approaches 
(selecting high-entropy attributes and ignoring entropy values) 
did not consider the consistent combination after changing 
attributes.  There is some evidence from Eckersley [6] that 
inconsistent combinations of web browser attributes may result 
in a web browser being easily fingerprinted. 

a) FP-Block  

FP-Block uses randomization, blocking, and spoofing 
techniques to change the identity of the user computer.   FP-
block allows separation of web identities by changing the 
identity of the user computer if the user browses to a different 
website. In addition, it offers a model to change the identity of 
the user computer by requiring a consistent combination after 
the user computer identity change and also examines the 
relationship between the HTTP header and JavaScript APIs.  
However, FP-Block is not designed to protect at runtime - 
users have to make the decision to alter the identity of their 
computers before they first visit any websites. 

b) Fireglove 

Fireglove   is a Firefox extension specifically designed to 
prevent browser fingerprinting. Fireglove spoofs the user agent 
and platform, returns a random value for the offsetWidth and 
offsetHeight parameters and disables both plugins and 
mimeType.  Fireglove restricts loading of fonts and offset 
value by intention to prevent font fingerprinting.  All of this is 
done in order to obfuscate fingerprinting algorithm at runtime.  
However, Acar [26] discovered that they could use another 
instruction (getBoudingclientRect) to disclose the value of 
offsetWidth and offsetHeight and the fix of a number of loaded 
fonts is not workable as suggested. 

c) CanvasFingerprintBlock 

CanvasFingerprintBlock is a Chrome extension which is 
specifically designed to block canvas fingerprinting by 
detecting canvas script with finding keywords. It detects 
.toDataURL() which is an instruction to write a canvas 



element. If it finds a suspicious keyword, it will send a 
message to notify the background page and display a deleted 
symbol on the Chrome browser. 

d) FPGuard 

FPGuard [30] implements a number of algorithms to 
analyse fingerprinting at runtime. Different techniques are then 
used to prevent each type of fingerprinting by randomization 
and blocking techniques. This system will examine each type 
of fingerprinting and then attempt to change attributes using 
various techniques.  For example, if it discovers fingerprinting 
with object fingerprinting, it will randomise the attributes. 
Another example is if it detects fingerprinting with a list of 
plugins, it will generate virtual plugins to confuse the 
fingerprint detection. It is possible that some of these 
techniques might be counterproductive if they permit easier 
fingerprinting by ignoring the consistency of attributes. 

III. CONCLUDE  POSSIBLE WAYS 

Users are not certain which countermeasures are 
appropriate to prevent the loss of privacy from fingerprint 
tracking with a minimum impact on their browsing experience.  
This section will propose an optimal approach to inhibit 
fingerprinting tracking.  

Many proposed tracking countermeasures appear to be 
difficult to implement in practice and also lack efficient 
prevention. Firstly, blocking access to the user data has a very 
significant adverse impact on the browsing experiences, 
relying only on the web server and is effectively impossible to 
use in the real world. For example, disabling JavaScript is very 
hard to achieve in practice [3, 10] because almost all websites 
require JavaScript to run. Even though users can prevent 
fingerprinting tracking, if JavaScript is disabled users will face 
the inevitable consequences of serious loss of functionality. 
Acer [26] conducted an experiment (Do not Track, DNT) 
which confirmed that DNT is ignored by fingerprinting 
websites. Any agreement to use common APIs will take a long 
time to achieve because each modern web browser wishes to 
develop their own browser in their own way [5]. Decreasing 
use of plugins did not solve the entire problem of fingerprint 
tracking, it just decreased the uniqueness of fingerprinting 
while the fingerprinting web servers still fingerprint the user 
computer. Using multiple browsers is still vulnerable to attack 
by fingerprinting techniques because fingerprinting websites 
can use other attributes unconnected with browser attributes to 
create a unique tracker ID [13]. Sharing a fingerprinting ID 
with other users seems to be a useful idea but none of the 
research currently shows a definitive result that this is a useful 
method to prevent fingerprinting. In addition, the efficiency of 
fingerprinting prevention depends on the number of users 
sharing the same fingerprint. If the number of users using this 
method decreased, the users have a renewed risk of being 
fingerprinted.  All of these problems with the current method 
can be addressed using a browser extension and there are 
several reasons to support this proposal. 

1) It is unnecessary to disable JavaScript  
Loading of web pages can be intercepted and detected by 

using the browser extension.  The web page modified can run 
JavaScript as same as an unmodified web page.  This is a 

excellent solution to enhance the browsing experience and still 
prevent the fingerprint tracking as user are using.  

2) Solving the fingerprinting problem with a custom method 
As pointed out earlier, it is unrealistic to expect modern 

web browser implementers to negotiate and agree to use a 
common API [5].  The proposal is to implement a custom 
method rather than expecting someone else to tackle the 
problem of fingerprinting. 

3) Possibility of  addressing all fingerprinting problems  
Many countermeasures have been made based on using a 

browser extension [14, 30] to deal with the problems of the 
fingerprinting technique.  This solution seems to tackle entire 
problems of the fingerprinting technique rather than reducing 
plugins on the web browser.  

4) Improving the browsing experience 
Installing a browser extension does not affect the services 

of typical websites. A user will be treated exactly as a normal 
user. It contrasts with the Tor browser which provides a 
“second class” service to users when browsing the Internet. 

IV. DISCUSSION  ABOUT FUTURE COUNTERMEASURES 

Surprisingly, almost all of the countermeasures that have been 

proposed based on browser extensions do not provide detailed 

results and discuss how to measure the efficiency of 

fingerprinting prevention as well as how to measure any web 

browser side-effects.  Almost all methods pay attention only to 

fingerprinting prevention and overlook any impact on the user 

experience. In practice, both the measurement of 

fingerprinting prevention and the impact on the user 

experience are very important, especially when a minimum 

impact to the user is required.  The FP-block approach is the 

only method to consider both prevention and user experience. 

Therefore, the new countermeasures should enhance the 

principle of randomising attributes on the web browser before 

the fingerprinting algorithm gain the user data in order to 

avoid the web browser stand out rather than arbitrary 

randomness.  In addition, attributes on the HTTP header field 

should be reviewed according to attributes on the JavaScript in 

assisting to circumvent the information paradox.  

      It should be noted that it is extremely difficult to predict 

all possible events which could lead to the generation of the 

same fingerprint ID. Different countermeasure approaches can 

bring their countermeasures to test with the real fingerprinting 

websites.  If the fingerprint ID changes, the assumption will be 

that they can prevent fingerprint tracking. However, it is not 

clear how many fingerprinting websites need to be tested to 

determine that technique can completely prevent 

fingerprinting tracking.  This is a more controversial issue 

which requires further research. 

 

V. CONCLUSION 

A number of possible methods to prevent browser 

fingerprinting have been proposed in this paper.  

Implementing the recommended options depends on the 

individual preference of the Internet user.  This paper proposes 



the use of a browser extension that could potentially achieve 

more than the other countermeasures currently available. In 

addition, the paper proposes that the new countermeasures 

based on the browser extension should address the important 

issues of preventing all types of fingerprinting and reducing 

any adverse side-effects on the user browsing experiences. 

 

REFERENCES 

 [1] BlueCava. "BlueCava Opt-out Preferences," 10/05/2015; 
http://bluecava.com/opt-out/. 

[2] Iovation. "Multifactor Authentication and Online Fraud Prevention 
Solutions | iovation," https://www.iovation.com/. 

[3] F. Roesner, T. Kohno, and D. Wetherall, "Detecting and defending 
against third-party tracking on the web," in Proceedings of the 9th 
USENIX conference on Networked Systems Design and 
Implementation, 2012, pp. 12-12. 

 [4] J. Caldera, J. M. Hain, and K. Sherlock, "Enhanced Automated Anti-
Fraud and Anti-Money-Laundering Payment System," ed: US Patent 
20,160,071,108, 2016. 

 [5] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and 
G. Vigna, "Cookieless monster: Exploring the ecosystem of web-based 
device fingerprinting," in Security and Privacy (SP), 2013 IEEE 
Symposium on, 2013,  pp. 541-555. 

 [6] P. Eckersley, "How unique is your web browser?," in PETS'10 
Proceedings of the 10th international conference on Privacy enhancing 
technologies Springer-Verlag Berlin, Heidelberg, 2010,  pp. 1-18. 

 [7] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda, "Defending browsers 
against drive-by downloads: Mitigating heap-spraying code injection 
attacks," in Detection of Intrusions and Malware, and Vulnerability 
Assessment, 2009, pp. 88-106. 

 [8] K. Boda, Á. M. Földes, G. G. Gulyás, and S. Imre, "User tracking on the 
web via cross-browser fingerprinting," in Information Security 
Technology for Applications, ed: Springer, 2012, pp. 31-46. 

[9] D. Fifield and S. Egelman, "Fingerprinting web users through font 
metrics," in In: Proceedings of the 19th international conference on 
Financial Cryptography and Data Security., 2015,  10 pages. 

[10] P. Chairunnanda, N. Pham, and U. Hengartner, "Privacy: Gone with the 
typing! identifying web users by their typing patterns," in Privacy, 
Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational 
Conference on Social Computing (SocialCom), 2011 IEEE Third 
International Conference on, 2011, pp. 974-980. 

 [11] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham, “Fingerprinting 
information in JavaScript implementations,” Proceedings of W2SP, vol. 
2,  11 pages, 2011. 

[12] R. Upathilake, Y. Li, and A. Matrawy, "A classification of web browser 
fingerprinting techniques," in New Technologies, Mobility and Security 
(NTMS), 2015 7th International Conference on, 2015, pp. 1-5. 

[13] K. Boda, Á. M. Földes, G. G. Gulyás, and S. Imre, “User tracking on the 
web via cross-browser fingerprinting,” Information Security Technology 
for Applications, vol. 7161,  pp. 31-46, 2012. 

[14] N. Nikiforakis, W. Joosen, and B. Livshits. "Privaricator: Deceiving 
fingerprinters with little white lies," 25/06/2015; 
http://research.microsoft.com/pubs/209989/tr1.pdf. 

[15] J. Lenhard, K. Loesing, and G. Wirtz, "Performance measurements of 
Tor hidden services in low-bandwidth access networks," in Applied 
Cryptography and Network Security, 2009, pp.  324-341. 

 [16] S. Khattak, D. Fifield, S. Afroz, M. Javed, S. Sundaresan, V. Paxson, et 
al., "Do you see what i see? differential treatment of anonymous users," 
in Network and Distributed System Security Symposium, 2016. 

 [17] A. Ruiz-Martínez, "A survey on solutions and main free tools for 
privacy enhancing Web communications," Journal of Network and 
Computer Applications, vol. 35, pp.  1473-1492, 2012. 

 [18] D. M. Goldschlag, M. G. Reed, and P. F. Syverson, "Hiding routing 
information," in Information Hiding, 1996, pp.  137-150. 

 [19] J. Clark, P. C. Van Oorschot, and C. Adams, "Usability of anonymous 
web browsing: an examination of tor interfaces and deployability," in 
Proceedings of the 3rd symposium on Usable privacy and security, 
2007,  pp. 41-51. 

 [20]  D. Abou-Tair, L. Pimenidis, J. Schomburg, and B. Westermann, 
"Usability inspection of anonymity networks," in Privacy, Security, 
Trust and the Management of e-Business, 2009. CONGRESS'09. World 
Congress on, 2009, pp.  100-109. 

[21] N. Schmücker, "Web Tracking," in SNET2 Seminar Paper. Berlin 
University of Technology, 2011, p. 12 pages. 

[22] G. Aggarwal, E. Bursztein, C. Jackson, and D. Boneh, "An Analysis of 
Private Browsing Modes in Modern Browsers," in USENIX Security'10 
Proceedings of the 19th USENIX conference on Security 2010, pp.  79-
94. 

[23] H. Said, N. Al Mutawa, I. Al Awadhi, and M. Guimaraes, "Forensic 
analysis of private browsing artifacts," in Innovations in information 
technology (IIT), 2011 International conference on, 2011, pp.  197-202. 

 [24] U. Fiore, A. Castiglione, A. De Santis, and F. Palmieri, "Countering 
Browser Fingerprinting Techniques: Constructing a Fake Profile with 
Google Chrome," in Network-Based Information Systems (NBiS), 2014 
17th International Conference on, 2014, pp.  355-360. 

 [25]  H. Tschofenig and R. van Eijk. (2011, 21/06/2015). DO NOT TRACK.  
Available: http://www.w3.org/2011/track-privacy/papers/Tschofenig.pdf 

 [26] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses, F. Piessens, et 
al., "FPDetective: dusting the web for fingerprinters," in Proceedings of 
the 2013 ACM SIGSAC conference on Computer & communications 
security, 2013, pp. 1129-1140. 

 [27] R. Balebako, P. Leon, R. Shay, B. Ur, Y. Wang, and L. Cranor, 
"Measuring the effectiveness of privacy tools for limiting behavioral 
advertising," in WEB 2.0 SECURITY & PRIVACY 2012, 2012,  10 
pages. 

 [28] R. Broenink, "Using Browser Properties for Fingerprinting Purposes," in 
16th biennial Twente Student Conference on IT, Enschede, Holanda, 
2012. 

.[29] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham, “Fingerprinting 
information in JavaScript implementations,” in Proceedings of W2SP 
2011, vol. 2,  pp. 1-11, May, 2011, 2011. 

[30] A. FaizKhademi, M. Zulkernine, and K. Weldemariam, "FPGuard: 
Detection and Prevention of Browser Fingerprinting," in Data and 
Applications Security and Privacy XXIX, 2015, pp.  293-308. 

 [31] T.-F. Yen, Y. Xie, F. Yu, R. P. Yu, and M. Abadi, "Host Fingerprinting 
and Tracking on the Web: Privacy and Security Implications," in NDSS, 
2012,  16 pages. 

 [32] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and 
G. Vigna, "On the Workings and Current Practices of Web-Based 
Device Fingerprinting," in Security & Privacy, IEEE, 2014, pp.  28-36. 

 [33] P. Laperdrix, W. Rudametkin, and B. Baudry, "Mitigating browser 
fingerprint tracking: multi-level reconfiguration and diversification," in 
Proceedings of the International Symposium on Software Engineering 
for Adaptive and SelfManaging Systems (SEAMS’15), 2015, pp.  98-
108. 

 [34] N. Karbasova. (2013). Your browser’s ‘fingerprints’ and how to reduce 
them | Digital Safety. Available: 
http://akademie.dw.de/digitalsafety/your-browsers-fingerprints-and-
how-to-reduce-them/  

[35] J. Samuel and B. Zhang, "RequestPolicy: Increasing web browsing 
privacy through control of cross-site requests," in International 
Symposium on Privacy Enhancing Technologies Symposium, 2009, pp. 
128-142. 

 [36] TOR. 2015. Tor Project: Anonymity Online [Online]. Available: 
https://www.torproject.org/ [Accessed 27/04/2015]. 

[37] E. Z. Sakchan Luangmaneerote, Leslie Carr, "Survey of existing 
fingerprint countermeasures," presented at the Information Society (i-
Society), 2016 International Conference on, Dublin, Ireland 2016. 

http://akademie.dw.de/digitalsafety/your-browsers-fingerprints-and-how-to-reduce-them/
http://akademie.dw.de/digitalsafety/your-browsers-fingerprints-and-how-to-reduce-them/

