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Abstract

Generalised CP transformations are the only known framework which allows to
predict Majorana phases in a flavour model purely from symmetry. For the first
time generalised CP transformations are investigated for an infinite series of finite
groups, ∆(6n2) = (Zn×Zn)oS3. In direct models the mixing angles and Dirac CP
phase are solely predicted from symmetry. ∆(6n2) flavour symmetry provides many
examples of viable predictions for mixing angles. For all groups the mixing matrix
has a trimaximal middle column and the Dirac CP phase is 0 or π. The Majorana
phases are predicted from residual flavour and CP symmetries where α21 can take
several discrete values for each n and the Majorana phase α31 is a multiple of π.
We discuss constraints on the groups and CP transformations from measurements
of the neutrino mixing angles and from neutrinoless double-beta decay and find
that predictions for mixing angles and all phases are accessible to experiments in
the near future.
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1 Introduction

The question of the origin of neutrino masses and mixing parameters is of fundamental
importance. One approach are so-called direct models of neutrino masses [1] where a
discrete non-Abelian family symmetry group is broken to a Z2×Z2 group in the Neutrino
sector, and a Z3 subgroup in the charged lepton sector. In such a model the lepton mixing
angles and the lepton Dirac CP phase are completely fixed by symmetry.

Recently such direct models have been analysed with the help of the group database
GAP [2, 3]. The only flavour groups that can produce viable mixing parameters in a
direct model belong to the group series ∆(6n2) or are subgroups of such groups. The
group theory of ∆(6n2) groups has been analysed in [4]. The consequences for neutrino
mixing from a ∆(6n2) flavour symmetry in direct models have been studied in detail in [5]
for arbitrary even n. Some examples of ∆(6n2) groups or subgroups have previously been
studied in [6–14].

In the Standard Model, violation of CP occurs in the flavour sector. Promoting CP
to a symmetry at high energies which is then broken allows to impose further constraints
on mass matrices of charged leptons and Majorana neutrinos. In this case the interplay
between CP and flavour symmetries has to be carefully discussed [15–29]. For direct
models, especially with a flavour group from ∆(6n2), CP symmetries have not been studied
in detail yet.

In this paper we examine a class of generalised CP (gCP) transformations consistent
with ∆(6n2) groups for arbitrary n. We will start by defining flavour and generalised CP
transformations and stating their effect on mass matrices. In the following section we
review and develop the general theory of gCP transformations in the presence of flavour
symmetries in a general context. Afterwards we specialise on direct models with ∆(6n2) as
a flavour group, where we compute the lepton mixing matrix including Majorana phases
for arbitrary even n for all possible breaking patterns of the flavour group and of gCP.
Here we also analyse the constraints from measurements of the mixing angles and from
neutrinoless double-beta-decay on these models. In the last section we conclude.

2 Generalised CP Transformations, Flavour Symme-

tries, Automorphisms and the Character Table

In this section we review the interplay between flavour symmetries and CP symmetries
which has especially been discussed in [15, 18, 20, 22, 25] and use general arguments to
show that for a class of groups G, of which G = ∆(6n2) is an example, physical CP
transformations correspond to Xr ∈ eiαG with α a real number.

2.1 Generalised CP transformations and flavour symmetries

Consider a theory where generations of fermions are assigned to multiplets of rep-
resentations r of a flavour group G and that is invariant under transformations of the
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multiplets ϕr under the group G
ϕr 7→ ρr(g)ϕr (2.1)

where ρr(g) is the representation matrix for g ∈ G in the representation r.
Further consider the group G being broken to a Klein subgroup Gν ' Z2×Z2 subgroup

in the neutrino sector and an abelian subgroup Ge ' Zm with m > 2 in the charged
lepton sector. If these subgroups remain unbroken at all energies, in the low-energy-limit
constraints on the mass matrices of charged leptons and neutrinos are imposed. Left-
handed doublets transform under the same representation r. The charged lepton mass
matrix M e has to fulfill

ρr(g)†M e(M e)†ρr(g) = M e(M e)† (2.2)

with ρr(g) being the representation matrix of g ∈ Ge in the representation r. The Majo-
rana neutrino mass matrix is constrained by

ρr(g)TMνρr(g) = Mν (2.3)

with g ∈ Kν .
Define generalised CP (gCP) by

ϕr 7→ Xr(ϕ
∗
r(x

P )) (2.4)

where r is the representation of G according to which ϕr transforms. 1 Xr is a unitary
matrix. We need to find all matrices Xr that are “allowed” in coexistence with a flavour
group G. The aforesaid will be made a more precise statement in the following section,
where the conditions for the existence of gCP transformations as well as their properties
will be discussed.

If the theory at the low-energy end is invariant under residual gCP transformations
with matrices Xe

r for charged leptons and Xν
r for neutrinos then the mass matrices will

be constrained by
Xe†
r M

e(M e)†Xe
r = (M e)∗(M e)T (2.5)

for charged leptons and by
XνT
r MνXν

r = (Mν)∗ (2.6)

for Majorana neutrinos.
If Xν

r ∈ Gν (Xe
r ∈ Ge), no new constraints on the neutrino (charged lepton) mass

matrix follow but it being real. With g, h ∈ (Z2 × Z2) from ρr(g)Xrρr(h) only the same
constraints as for Xr follow for the mass matrix. This means only Xr that are not in
(Z2 × Z2) allow for a mass matrix that is not real and at the same time impose new
constraints on it.

1Other Authors consider transformations of the type ϕr 7→ ϕ∗r′ where r, r′ can be different. In [15] has
been shown that only gCP transformations where r = r′ actually make observables (e.g. particle decays)
conserve CP.
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2.2 The consistency equation

We would like to know which transformations of the type

ϕr 7→ Xrϕ
∗
r(x

P ) (2.7)

can be applied to the theory without destroying the invariance under G, i.e. which
matricesXr can appear in Eq.(2.7) that preserve symmetry underG? Consider performing
a gCP transformation followed by a flavour transformation followed by the inverse gCP
transformation. From invariance of the theory under G follows that the matrix Xr is
allowed in a gCP transformation if for every g ∈ G there is a g′ ∈ G such that

Xrρ
∗
r(g)X†r = ρr(g

′). (2.8)

Eq. (2.8) is called the consistency equation and an Xr that fulfills it is called consistent
with G.

If r is a faithful representation, which is equivalent to saying that ρr is injective, one
can define a bijective mapping uX : G→ G between the elements of the group:

uX(g) := ρ−1r (Xrρ
∗
r(g)X†r ). (2.9)

(One can drop the index r on uXr because for all faithfull irreps the mapping generated
by Eq.(2.9) will be the same). For faithful representations r, uX(g) is an automorphism
of the group G.

2.3 Inner and outer automorphisms

Group automorphisms come in two kinds: Inner and outer automorphisms. Inner
automorphisms Inn(G) are such automorphisms u : G → G where for all g ∈ G one
single group element hu exists such that

u(g) = h−1u ghu. (2.10)

All inner automorphisms are given by Inn(G) = G/Z(G), where Z(G) is the center of G,
i.e. all elements ofG that commute with every other group element. Outer automorphisms
Out(G) are all automorphisms that are not inner.

An inner automorphism will map each element into its original conjugacy class. An
outer automorphism however is not inner which means that there is at least one g′ ∈ G for
which with all h ∈ G u(g) 6= h−1g′h (compare with the definition of inner automorphisms
before Eq. (2.10)), i.e. there is at least one g′ ∈ G which is not mapped back into its
original conjugacy class. Also if g is in the class Ck and it is mapped onto u(g) which is
in the class Cl, every element in Ck is mapped on an element in Cl by u.

This proves also that an automorphism that maps each element back into its original
conjugacy class is inner, as well that an automorphism that maps elements from at least
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two conjugacy classes on each other is outer. 2

We will now return to the automorphism uX (2.9) that is induced by the consistency
equation (2.8). If ρr(g) is real and Xr ∈ G then uX will be an inner automorphism. This
is also true if Xr ∈ eiαG.

If on the other hand u is an outer automorphism it follows that a matrix Xr that could
mediate u á la Eq. (2.9) is not in eiαG (if it exists).

One could ask now if there can be a matrix X̃r that is not in eiαG for that uX̃
only connects elements within the same conjugacy class, i.e. that generates an inner
automorphism? As for an inner automorphism u there always is a single hu ∈ G such
that the automorphism is given by u(g) = h−1u ghu it follows that

X̃rρ
∗
r(gk)X̃

†
r = ρr(hu)ρr(gk)ρr(h

−1
u ). (2.16)

For a real matrix ρr(g) multiplying by X̃r from the right and by ρr(h
−1
u ) from the left

yields
ρr(h

−1
u )X̃rρr(gk) = ρr(gk)ρ(h−1u )X̃r. (2.17)

As gk can be every element of G, ρr(h
−1
u )X̃r commutes with every group element. One

can now apply Schur’s Lemma 3 to find that

X̃r = λρr(hu) (2.18)

where |λ| = 1 to keep X̃r unitary. As X̃r was supposed to not be in eiαG this is in
contradiction to the assumptions. For real ρr(g) this proves that inner automorphisms

2 An outer automorphism u also generates mappings between different representations of G. For two
representations ρr and ρs define

usr = ρs ◦ u ◦ ρ−1r (2.11)

with which follows
(usr ◦ ρr)(g) = ρs(u(g)). (2.12)

The outer automorphism u acting inside the group thus interchanges columns of the character table
while when acting between representations via usr interchanges rows of the character table. We call a
symmetry of the character table

χjk = trρj(gk), gk ∈ Ck (2.13)

any transformation of the type
χjk 7→ PijχklQkl (2.14)

with permutation matrices P and Q that leaves χ invariant, i.e.

PijχklQkl = χij (2.15)

and where only classes of the same size and element-order are interchanged, i.e |Cl| = |Cj | and ordgl =
ordgj for gl ∈ Cl and gj ∈ Cj . An outer automorphism will always generate a non-trivial symmetry of the
character table, just as a symmetry of the character table always gives rise to an outer automorphism:
Define the automorphism by the action on the conjugacy classes, a corresponding permutation of the
representations is always given by any outer automorphism via usr.

3To be precise one uses the second part of Schur’s Lemma which states that an operator that in some
representation commutes with every group element is proportional to the identity.
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correspond to X ∈ eiαG. For real representations, there is always a basis where this is
the case, i.e where ρr(g) is real for every g ∈ G.

If ρr(g) is complex one has to deal with complex conjugation: Assume there is a matrix
wr such that by applying complex conjugation and this matrix on an element of G, the
element is mapped into the class of its inverse, C(g−1):

ρr(g) 7→ w†rρr(g)∗wr ∈ C(g−1). (2.19)

This can be thought of as an automorphism mapping g 7→ g−1 followed by an automor-
phism that maps g−1 onto another element in the same class. As in the second step every
element is sent into the original class, this second mapping is an inner automorphism and
therefore by definition a single group element h exists which inverts this step such that

ρr(h)†(w†rρr(g)∗wr)ρr(h) = g−1. (2.20)

For this reason we assume in the following that the matrix wr maps elements directly
onto their inverses. Using this, the general mapping induced by the consistency equation
is given by:

uX(g) = ρ−1r (Xrwrρr(g
−1)w†rX

†
r ) (2.21)

This mapping can be seen as an automorphism mapping g on g−1 followed by an auto-
morphism given by Xrwr:

uX(g) = uXw(g−1). (2.22)

If both wr and Xr are contained in eiαG, uX will map g in the same conjugacy class as
g−1. For ∆(6n2), wr = ρr(b) maps elements into the class of the inverse and is contained
in the group. We will not consider wr /∈ G further.

Analogous to real irreps above one can now ask if there can be matrices X̃r that are
not in eiαG but that with wr ∈ eiαG will map g in the conjugacy class of g−1? This would
be equivalent to uX̃w being an inner automorphism which would mean that for each group
element g ∈ G there is a single hu ∈ G such that

ρr(hu)ρr(g
−1)ρr(h

−1
u ) = Xrwrρr(g

−1)w†rX
†
r . (2.23)

Again we can use Schur’s Lemma and find there is λ ∈ C \ {0} such that

Xr = λρr(hu)w
†
r (2.24)

with |λ| = 1 to make Xr unitary. This contradicts Xr /∈ eiαG. We have proved now
that if wr ∈ eiαG then if and only if X ∈ eiαG uX(g) will be in the conjugacy class of
g−1. In [15] the authors show that only gCP transformations that map elements into the
class of its inverse element make observables conserve CP. We have proved here that such
transformations are given by Xr ∈ eiαG. 4 In the following we will specialise G to be
∆(6n2).

4 We would now be able to find all Xr /∈ eiαG by reading off all automorphisms from the symmetries
of the character table that do not map the class of g on the class of g−1. (This would often contain the
identity transformation on the character table.)
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3 gCP Symmetries and ∆(6n2) groups

In this section we consider gCP transformations where X ∈ eiαG for G = ∆(6n2).
First we derive the gCP transformations that are consistent with Gν = Z2 × Z2 and
G2 = Z3. Afterwards we state the constrained mass matrices and the lepton mixing
matrix. After this we discuss constraints from measurements of lepton mixing angles and
from neutrinoless double-beta decay for arbitrary n.

If we want to break the flavour symmetry to Gν = Z2 × Z2 and Ge = Z3 subgroups,
the residual flavour and residual gCP transformations are not independent, as they still
have to fulfill the consistency equation. If e.g. in one sector ρr(g) and Xr are unbroken,
then also Xrρr(g)∗X†r must be unbroken. Thus the allowed residual gCP transformations
have to map elements from the Klein group in consideration into said Klein group.

The Klein subgroups of ∆(6n2) are given by [5]

{1, cn/2, dn/2, cn/2dn/2}, (3.25)

{1, cn/2, abcγ, abcγ+n/2}, (3.26)

{1, dn/2, a2bdδ, a2bdδ+n/2}, (3.27)

{1, cn/2dn/2, bcεdε, bcε−n/2dε−n/2}, (3.28)

where γ, δ, ε = 1, . . . , n/2. The group Eq. (3.25) will produce a mixing matrix with
|Vij| = 1/

√
3, we will not consider it further. The bottom three Klein subgroups will

generate the same mixing matrix, thus it is sufficient to only consider the mixing matrices
generated by group Eq.(3.26). The allowed matrices Xr in the low-energy-limit have to
be contained in eiαGϕ. A matrix Xr is allowed if for a Klein subgroup K holds that for
each g ∈ K also u(g) ∈ K. For said Klein subgroup K = {1, cn/2, abcγ, abcγ+n/2} one finds
that the allowed matrices X ∈ eiαG are given by the representation matrices for

Xr = ρr(e
iαcxd2x+2γ), ρr(e

iαcxd2γ+2x+n/2), ρr(e
iαabcxd2x), ρr(e

iαabcxd2x+n/2) (3.29)

with α ∈ R and x = 0, . . . , n− 1.
Without loss of generality, left-handed doublets (νL, eL)T are assigned to the repre-

sentation 31
2 (c.f. [5]). Invariance of the mass matrix under the Klein subgroup in consid-

eration plus invariance under one of the transformations from Eq. (3.29) constrains the
Majorana neutrino mass matrix to

Mν =

|m22|e2iπ
γ
n eiϕ1 |m21|eiϕ1 0

|m21|eiϕ1 |m22|e−2iπ
γ
n eiϕ1 0

0 0 |m33|eiϕ3

 (3.30)

where the values of ϕ1 and ϕ3 can be found in table (1). In principle, several gCP
transformations can remain unbroken. However, the phases ϕ1, ϕ3 are already fixed by
one single unbroken transformation. Leaving a second gCP transformation unbroken with
incompatible constraints on the phase ϕi will force the corresponding mass parameters
|m..| to be zero. The masses of neutrinos are |m33| and ||m21| ± |m22||. Thus |m21| = 0
or |m22| = 0 will result in a pair of degenerate neutrino states. It is not possible to have
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|m33| = 0 without |m21| = 0 or |m22| = 0. Leaving a second gCP transformation unbroken
is never physically viable.

Xr ϕ1 ϕ3

ρr(e
iαcxd2x+2γ) −α− 2π(γ + x)/n −α + 4π(γ + x)/n

ρr(e
iαcxd2γ+2x+n/2) −α− π/2− 2π(γ + x)/n −α + π + 4π(γ + x)/n

ρr(e
iαabcxd2x) −α− 2πx/n −α + 4πx/n

ρr(e
iαabcxd2x+n/2) −α− π/2− 2πx/n −α + π + 4πx/n

Table 1: Values of ϕ1 and ϕ3 for gCP transformations consistend with the residual Klein symmetry

The neutrino mass matrix Eq.(3.30) will be diagonalised by a unitary matrix Uν via
UT
ν MνUν . A matrix Uν such that the diagonalised mass matrix is real and positive is

given by

U (+)
ν =


− e

i(−πγ
n −ϕ1

2 )
√
2

e
i(−πγ

n −ϕ1
2 )

√
2

0

e
i(πγn −ϕ1

2 )
√
2

e
i(πγn −ϕ1

2 )
√
2

0

0 0 e−
iϕ3
2

 (3.31)

for |m21| > |m22| and by

U (−)
ν =


− e

i(−πγ
n −ϕ1

2 +π2 )
√
2

e
i(−πγ

n −ϕ1
2 )

√
2

0

e
i(πγn −ϕ1

2 +π2 )
√
2

e
i(πγn −ϕ1

2 )
√
2

0

0 0 e−
iϕ3
2

 (3.32)

for |m21| < |m22|.
For charged leptons, the allowed gCP transformations with Xr ∈ eiαG have to be

consistent with Ge = {1, a, a2} and are given by

Xr = cyd−y, acyd−y, a2cyd−y, bcyd−y, abcyd−y, a2cyd−y (3.33)

where 3y = 0 mod n. Especially when 3 divides n there is a huge number of allowed X
matrices. But, as the charged lepton mass matrix is already invariant under transforma-
tions with a and transformations with cyd−y force it to be zero (for 3y 6= 0 mod n) or
produce no new constraint (for 3y = 0 mod n), the only transformations that produce
physical constraints are given by

Xr = ρr(1), ρr(b). (3.34)

For Xr = ρr(1) the mass matrix of charged leptons is restrained to

Ml1M
†
l1 =

me
3 me

1 me
2

me
2 me

3 me
1

me
1 me

2 me
3

 (3.35)
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with all parameters being real or for Xr = ρr(b) to

MlbM
†
lb =

 me
3 me

1 (me
1)
∗

(me
1)
∗ me

3 me
1

me
1 (me

1)
∗ me

3

 (3.36)

with me
1 complex and me

3 real. Both charged lepton mass matrices can be diagonalised by

U e =
1√
3

 1 1 1
ω ω2 1
ω2 ω 1

 . (3.37)

Above charged lepton mass matrices only differ by unphysical phases which can be ab-
sorbed into the charged lepton fields.

After removing an overall phase e−iϕ1/2 to render the top left entry real, the physical
mixing matrix is given by U

(+)/(−)
PMNS = (Ue)

†U
(+)/(−)
ν (For U

(+)
ν and U

(−)
ν c.f. Eq.(3.31) and

Eq.(3.32)):

U
(+)/[(−)]
PMNS =


√

2
3

cos
(
πγ
n

)
ei(ϕ1−ϕ3)/2√

3
[i]i
√

2
3

sin
(
πγ
n

)
−
√

2
3

sin
(
π
(
1
6

+ γ
n

))
ei(ϕ1−ϕ3)/2√

3
[i]i
√

2
3

cos
(
π
(
1
6

+ γ
n

))√
2
3

sin
(
π
(
1
6
− γ

n

))
− ei(ϕ1−ϕ3)/2√

3
[i]i
√

2
3

cos
(
π
(
1
6
− γ

n

))
 (3.38)

where the factor i on the last column only appears in U
(−)
PMNS. As the ordering of the

mixing matrix is arbitrary at this point, we would like to fix it by requiring that the
smallest entry of the matrix has to be the top-right entry, i.e. U13. For small γ/n the first
row and third column are in the right place in the above matrix.

As this matrix is now in the PDG convention, the values of Majorana phases α21 and
α31 as well as the Dirac CP phase δCP for this ordering of the mixing matrix can be
read off the matrix. Recall that the PDG convention is UPMNS = R23U13R12P in terms
of sij = sin(θij), cij = cos(θij), the Dirac CP violating phase δCP and further Majorana

phases contained in P = diag(1, ei
α21
2 , ei

α31
2 ).

The Majorana phase α21 is then given by

α21 = ϕ1 − ϕ3 (3.39)

With table [1] follows that

ϕ1 − ϕ3 = −6π(γ + x)

n
for X = cxd2x+2γ, abcxd2x (3.40)

or

ϕ1 − ϕ3 = −3π

2
− 6π(γ + x)

n
for X = cxd2x+2γ+n/2, abcxd2x+n/2. (3.41)

The values of all CP phases depend on the ordering of Eq.(3.38) which needs to be changed
for higher values of γ/n. The possible values of the CP phases can be found in table (2).
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There, U ′ denotes the mixing matrix after reordering such that the entry with the smallest
absolute value is in the top right corner. As for every γ/n the second and third row can
be interchanged, which results in changing δCP by π while changing the prediction for U23

and U33 and thus the prediction for θ23. The Dirac CP phase is hence predicted to be 0
or π, and since the lepton mixing matrix has the tri-maximal form for the second column,
referred to as TM2, this leads to the mixing sum rules θ23 = 45◦∓ θ13/

√
2 for δCP = 0, π,

respectively, as previously noted in [5] (for a review of sum rules see [1]).
The prediction of α31 also depends on the order of these rows. In the table (2) the

second row of the mixing matrix after reordering it is indicated in the column U ′23. Im-
proved measurements of θ23 will constrain this freedom of interchanging the second and
third row.

γ/n U ′13 U ′23 δ
(−)/(+)
CP α

(−)
21 α

(+)
21 α

(−)
31 α

(+)
31

0/12 . . . 1/12 U13 U23 0 ϕ1 − ϕ3 ϕ1 − ϕ3 2π −π
U13 U33 −π ϕ1 − ϕ3 ϕ1 − ϕ3 0 π

1/12 . . . 2/12 U31 U21 0 ϕ1 − ϕ3 ϕ1 − ϕ3 − π 2π π
U31 U11 −π ϕ1 − ϕ3 ϕ1 − ϕ3 − π 0 −π

2/12 . . . 3/12 U31 U11 0 ϕ1 − ϕ3 ϕ1 − ϕ3 − π 0 −π
U31 U21 −π ϕ1 − ϕ3 ϕ1 − ϕ3 − π 2π π

3/12 . . . 4/12 U23 U13 0 ϕ1 − ϕ3 + 2π ϕ1 − ϕ3 + 2π 0 π
U23 U33 −π ϕ1 − ϕ3 + 2π ϕ1 − ϕ3 + 2π 2π −π

4/12 . . . 5/12 U23 U33 0 ϕ1 − ϕ3 + 2π ϕ1 − ϕ3 + 2π 2π −π
U23 U13 −π ϕ1 − ϕ3 + 2π ϕ1 − ϕ3 + 2π 0 π

5/12 . . . 6/12 U11 U31 0 ϕ1 − ϕ3 + 2π ϕ1 − ϕ3 + π 2π π
U11 U21 −π ϕ1 − ϕ3 + 2π ϕ1 − ϕ3 + π 0 −π

Table 2: Values of CP phases after reordering for different values of γ/n in U
(−)/[(+)]
PMNS . In each row, γ/n

can take arbitrary values in the interval indicated. U ′ denotes the matrix after reordering.

The key observable for Majorana phases is neutrino-less double beta decay (0νββ). The
effective mass of neutrinoless double-beta decay is given by

|mee| = |
2

3
m1 cos2(

πγ′

n
) +

1

3
m2e

iα21 +
2

3
m3 sin2(

πγ′

n
)ei(α31−2δ)| (3.42)

with

m1 = ml , m2 =
√
m2
l + ∆m2

21 , m3 =
√
m2
l + ∆m2

31 (3.43)

for normal ordering and

m1 =
√
m2
l + ∆m2

31 , m2 =
√
m2
l + ∆m2

21 + ∆m2
31 , m3 = ml (3.44)
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for inverted ordering, where ml is the mass of the lightest neutrino and

γ′ = γ mod
1

6
. (3.45)

The absolute values of the entries of the mixing matrix after reordering are periodic in
γ/n which is why one can simplify the analysis by defining γ′ in this way.

There are 8 cases to distinguish for combinations of phases. Adding a multiple of 2π
will not change the effect of α21 or α31 − 2δ. For this reason, for both Eq.(3.40) and
Eq.(3.41) the 12 cases in table (2) reduce to 8 cases of values for

ᾱ21 = α21 + 6π
γ + x

n
, ᾱ31 = α31 − 2δ (3.46)

that are given by

(ᾱ21, ᾱ31) = (0, 0), (π/2, 0), (π, 0), (3π/2, 0), (0, π), (π/2, π), (π, π), (3π/2, π). (3.47)

The by far most stringent constraint on γ/n comes from the measurement of θ13. The
current 3 sigma range for θ13 from [30] yields values of γ′/n in the range 0.0460 . . . 0.0627.

It is generally fine to not only consider γ′/n in this range but even γ/n because
changing γ by 1/6 only changes α21 by π, which is included in the four cases discussed
above.

In order to understand predictions of ∆(6n2) groups for 0νββ decay on a general level,
in figure (1) the effective mass |mee| of 0νββ is plotted against the mass of the lightest
neutrino ml for all combinations of ᾱ21 and ᾱ31. In these plots, models defined by some
values of γ/n and x/n correspond to single fine lines. γ/n takes 11 values, starting with
the 3 sigma lower bound and increases in 10 equal steps until it reaches the 3 sigma upper
bound. x/n takes values 0, 0.1, 0.2, . . . , 1.

∆m2
21 and ∆m2

31 are not varied, as doing so only would almost unnoticeably broaden
each single line. Instead we used the best fit value from [30]:

∆m2
21 = 7.54× 10−5 eV2, (3.48)

∆m2
31 = 2.41× 10−3 eV2. (3.49)

In figure (1), Magenta lines correspond to predictions assuming inverted hierarchy,
red lines to normal hierarchy. Dashed blue and yellow lines indicate the currently allowed
three sigma region for normal and inverted hierarchy, respectively. The three sigma ranges
for mixing angles are taken from [30]. The upper bound |mee| < 0.140 eV is given from
measurements by the EXO-200 experiment [31]. Planck data in combination with other
CMB and BAO measurements [32] provides a limit on the sum of neutrino masses of
m1 +m2 +m3 < 0.230 eV from which the upper limit on the mass of the lightes neutrino
can be derived.

The main features of the results from figure (1) are as follows:

• For inverted hierarchy there is no particular structure visible. Additionally, the
predicted values for |mee| are well within the reach of e.g. phase III of the GERDA
experiment of |mexp

ee | ∼ 0.02 . . . 0.03 eV [33].
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Figure 1: Effective Mass of 0νββ decay. γ/n is varied between the lower and upper 3 sigma bound,
x/n = 0, 0.1, 0.2, . . . , 1. For the definition of ᾱ21 and ᾱ31 c.f. Eqs.(3.40), (3.41).
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• For normal ordering, it follows from figure (1) that for the values of γ/n and x/n
considered is always a lower limit on |mee| which means that these parameters are
accessible to future experiments.

• Further for normal ordering, in the very low mlightest region, predicted values of |mee|
are closer to the upper end of the blue three sigma range.

• With the current data, no combination of ᾱ21 and ᾱ31 is favoured. Only for values of
|mee| . 0.0001 eV and mlightest . 0.01 . . . 0.001 eV it would be possible to distinguish
different values of ᾱ21 and ᾱ31.

The necessary precisions on |mee| and mlightest are unfortunately outside of the range
of any projected experiments known to the authors. Nevertheless, the red curves corre-
sponding to fixed values of γ/n and x/n are often close to the blue dashed three sigma
range. With increasingly precise knowledge of the values of the mixing angles, especially
θ13, the three sigma ranges will shrink, perhaps making it possible to draw conclusions
about γ/n and x/n without an overly precise measurement of |mee| or of the mass of the
lightes neutrino.

To recapitulate, the following assumptions went into producing these results: There
are 3 left-handed doublets of leptons, which in turn transform as a triplet under a ∆(6n2)
group. The neutrinos are Majorana fermions and ∆(6n2) is broken to a Z2×Z2 subgroup in
the neutrino sector and to Z3 in the charged lepton sector. The mixing angles are solely
predicted from the aforementioned assumptions. There is a generalised CP symmetry
which is consistent with ∆(6n2) which is broken to one element in each sector. From this
gCP symmetry the Majorana phases are predicted.

If one of the mixing angles would be found to be incompatible with any of the pre-
dictions this would mean that either ∆(6n2) is not broken to Z2 × Z2 (or to Z2, as the
predictions for the mixing angles would be the same) or that the flavour group is not
∆(6n2) or that one of the more fundamental assumptions is wrong. The neutrinos could
still be Majorana fermions as ∆(6n2) could still be broken completely.

4 Conclusions

In this paper we have examined the interplay of ∆(6n2) groups and generalised CP
transformations (gCP) in a direct model for three generations of Dirac charged leptons
and Majorana neutrinos. We find that gCP transformations that actually are physical
CP transformations have Xr ∈ eiα∆(6n2). Leaving a single gCP transformation unbroken
will constrain the mixing matrix such that all phases, Dirac and Majorana are predicted
and depend only on the ∆(6n2) group, the residual Z2 × Z2 group (parametrised by γ)
and the residual gCP transformation (parametrised by x) in the neutrino sector. Leaving
two or more gCP transformations unbroken is not physically viable.

Comparing the predictions for the mixing angles with experimental data we find that
the strongest constraint on γ/n is imposed by the relatively precise measurement of θ13.
The smallest group where θ13 lies within three sigma of the central value has n = 14.
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Furthermore, since the Majorana CP violating phases are predicted, we have studied
predictions for neutrinoless double-beta decay. We find that for inverted ordering, the
predicted |mee| is within the reach of upcoming experiments like GERDA III. For normal
ordering, measuring |mee| down to 10−4eV could exclude large regions of γ/n and x/n,
depending on the value of δCP .

In conclusion, this paper represents the first time that an infinite series of finite groups
has been examined for generalised CP transformations that are consistent with it. We
emphasise the important role of ∆(6n2) among the subgroups of SU(3) with triplet ir-
reducible representations and hope that this study will help to shed some light on the
mystery of neutrino mixing. If the Dirac CP phase is measured to differ from 0 or π,
or the mixing angles deviate from the sum rules θ23 = 45◦ ∓ θ13/

√
2, respectively, then

this would mean that in general a potential flavour group ∆(6n2) cannot be broken to
Z2 × Z2, as in the case of the direct approach assumed here. However the semi-direct
approach, in which a Z2 subgroup is preserved, would remain a possibility for theories
based on ∆(6n2).
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