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Abstract

Following the ground-breaking measurement of the tensor-to-scalar ratio r = 0.20+0.07
−0.05

by the BICEP2 collaboration, we perform a statistical analysis of a model that com-
bines Radiative Inflation with Dark Energy (RIDE) based on the M2|Φ|2 ln

(
|Φ|2/Λ2

)
potential and compare its predictions to those based on the traditional chaotic in-
flation M2|Φ|2 potential. We find a best-fit value in the RIDE model of r = 0.18 as
compared to r = 0.17 in the chaotic model, with the spectral index being nS = 0.96
in both models.
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1 Introduction

Recently the BICEP2 collaboration [1] has reported a measurement of the tensor-to-scalar
ratio r = 0.20+0.07

−0.05 which provides evidence for large-field (e.g. chaotic) inflationary models,
as opposed to small-field (e.g. hybrid) inflationary models (for a review of inflationary mod-
els see e.g. [2]). BICEP2 provides the first direct measurement of the large scale B-mode
polarisation power spectrum. This receives a contribution only from tensor perturbations
and, therefore, the detection of a non-vanishing B-mode polarisation is direct evidence for
the presence of tensor perturbations. More indirectly, temperature anisotropies can also
potentially give evidence of tensor perturbations. In this way, prior to BICEP2, the Planck
collaboration had placed an upper bound r < 0.11 (95% C.L.) assuming no running of the
scalar spectral index. The origin of this disagreement could either be some statistical or
systematic effect, or perhaps the first evidence for a running spectral index that would re-
lax the Planck limit to r < 0.26 (95% C.L.) [3], which is well compatible with the BICEP2
measurement.
The BICEP2 results [1] have, within a short time, triggered a series of papers on model

updates in the light of the new measurement. Among the models investigated are several
scenarios of chaotic inflation [4–6], broken primordial power spectrum models [7], gravity-
related scenarios [8–16], Higgs-related inflation [17–23], scenarios related to supersymme-
try [24–27], curvaton model [28], or natural inflation [29,30]. Furthermore, several general
analyses of collections of simple models have been presented [31, 32], general statements
about the properties of the inflationary potential are available [33–36] as well as studies
of the consistency of the Planck and BICEP2 data sets [37, 38], and a general discussion
about what we can learn from the exciting new results [39–41].
None of the above studied models of inflation is able to simultaneously account for both

inflation in the early Universe and the preponderance of Dark Energy in the Universe at
the current epoch [42, 43]. Motivated by the desire to account for both phenomena, some
time ago we proposed a model of Radiative Inflation and Dark Energy (RIDE) [44]. Earlier
attempts [45], based on the “schizon model” [46–48], were formulated in the framework
of ϕ4 chaotic inflation, which was subsequently essentially excluded by WMAP 5-year
data [49]. The question we considered was whether the nice feature of such models, namely
that they naturally generate a pseudo Nambu-Goldstone boson (PNGB), which receives a
potential via gravitational effects [50] and can then be used as quintessence field, could be
implemented within a viable model of inflation.
In this note, following the BICEP2 measurement, we revisit the RIDE model [44] based

on the idea of a massive complex scalar field Φ whose mass squared is driven negative
close to the Planck scale MP by radiative effects, leading to a potential of the form1

M2|Φ|2 ln (|Φ|2/Λ2) which may be compared to the traditional chaotic M2|Φ|2 potential.2

1This potential belongs to a class of scenarios recently studied in a systematic way in [51].
2We emphasise that both RIDE and chaotic ϕ2 inflation share the need to forbid a possible quartic

term (Φ†Φ)2, or at least suppress it sufficiently. As this cannot be achieved at the level of an effective
theory, it is necessary to resort to a concrete model realisation. This fact has already been commented
in [44], and an example of such a framework was also presented where the absence of the quartic term was
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The potential is invariant under a global U(1) symmetry, and the absolute value of the
complex field Φ plays the role of the inflaton field which rolls slowly down a simple potential
that resembles chaotic inflation for high field values. Similar to chaotic inflation, the
RIDE model leads to predictions for inflation which were fully consistent with WMAP
7-year data [52], but potentially threatened later on by Planck [3]. However, unlike the
chaotic model, at the end of inflation the inflation field settles at a non-trivial minimum,
thereby breaking the global U(1) and generating a PNGB which receives a small mass via
gravitational effects. The resulting effective potential for the PNGB is of a form which is
suitable for a quintessence field. Thus the PNGB can explain the existence of Dark Energy.
Here we perform a statistical analysis of the RIDE model and compare its predictions to
those of the chaotic inflation model. We find a best-fit value in the RIDE model of r = 0.18
as compared to r = 0.17 in the chaotic model, with the spectral index being nS = 0.96 in
both models.
The layout of the remainder of this paper is as follows. After reviewing the RIDE model

in Sec. 2, we perform a statistical analysis of inflation within the RIDE model in Sec. 3
and compare its predictions to those of chaotic inflation. We conclude in Sec. 4.

2 Review of the RIDE model

The model is based on a complex scalar field

Φ =
1√
2
ϕ eiφ/f , (1)

with f = 〈ϕ〉, whose tree-level potential has a simple quadratic form, V0 ≈ M2Φ†Φ.
Including radiative corrections, the mass squared can be driven negative at some scale Λ
not too far below the Planck scale. The mechanism of radiative symmetry breaking is
well-known in the minimal supersymmetric standard model [53], where the Higgs mass
squared is driven negative at the TeV scale. Similarly, radiative symmetry breaking can
play an important role in different contexts [54,55], where a mass squared is driven negative
at a much higher scale. See also Ref. [56] for a recent treatment of radiative corrections
to inflationary potentials. Such a radiatively corrected potential may be parametrised
as [54, 55],

V (ϕ) ≈ C +M2Φ†Φ ln

(
Φ†Φ

Λ2

)
= C +

M2

2
ϕ2 ln

(
ϕ2

2Λ2

)
. (2)

This potential, schematically depicted in Fig. 1, generates a vacuum expectation value

(VEV) 〈ϕ〉 = f =
√

2
e
Λ for the real scalar field ϕ. The constant C = M2 f 2/2 is chosen in

a way to yield a potential with value V (f) = 0 at its minimum. This corresponds to having
a vanishing cosmological constant at the end of inflation. As will be discussed below, the
Dark Energy dominating today’s Universe is then realised through a quintessence field, one

achieved in a supersymmetric context where no D-terms arise. We refer the inclined reader to [44] for a
more detailed discussion.
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Figure 1: The shape of the RIDE potential Eq. (2) (with C = 0), for the inflaton field ϕ.
Adapted from Fig. 1a of [44].

of the key features of the RIDE model. Note that we could in principle have chosen a larger
value for C, too, which would however complicate the quintessence part. Note further that
the predictions for inflation are nearly independent of C as long as C � V (ϕN), i.e., the
constant is significantly smaller than the value of the potential N e-folds before the end of
inflation.
Interpreting ϕ as the inflaton field, inflation can completely take place in a region where
ϕ � Λ. With the ln-factor in Eq. (2) being well-behaved, ϕ feels a potential that is very
similar to the one used for quadratic inflation. Therefore, we expect only small differences
in the predictions for inflation in the RIDE model compared to ϕ2 chaotic inflation, see
Sec. 3.
The main advantage of the RIDE model versus a ϕ2 model of inflation lies in the possibility

to incorporate a quintessence field to explain Dark Energy. As the minimum of the RIDE
potential, Eq. (2), is displaced from 〈ϕ〉 = 0, the U(1) symmetry gets broken when the
inflaton field ϕ settles to its VEV. This results in a massless Nambu-Goldstone boson
φ = f arg(Φ), corresponding to the phase of the complex scalar field Φ. Gravitational
effects [45,50], called gravitational instantons, then generate a potential for φ which must
respect a discrete shift symmetry φ

f
→ φ

f
+ 2πn, with n ∈ N. It is possible to argue that,

see [57], the so-obtained potential for the quintessence field φ takes the form

Vq(φ) = m4

[
1 + cos

(
φ

f

)]
, (3)

where m denotes the Dark Energy scale, determined from the instanton action S ∼
πM2

P/M
2
string via m4 = fM3

P e
−S [50, 58–60] that can easily reproduce the smallness of

the observed scale of Dark Energy ∼ 10−3 eV. As discussed in [44], the dynamics of the
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inflaton field ϕ and the quintessence field φ separate. Therefore we are practically dealing
with single-field potentials, so that the RIDE model is expected to be safe from potentially
dangerous corrections due to (iso-)curvature fluctuations that can appear in multi-field
inflation models [61].

3 RIDE vs. chaotic ϕ2 inflation

The RIDE potential of Eq. (2) depends on two mass parameters, M and Λ. Assuming Λ
close to the Planck scale, MP = 1.2× 1019 GeV, we define

Λ = κMP , (4)

where κ takes a particular value. However it will turn out that the results in what concerns
inflation are quite insensitive to values of κ in the range 0.01 − 1. In order to relate the
parameters of the potential to physical observables such as the scalar spectral index nS
as well as the tensor-to-scalar ratio r, it is convenient to define the slow-roll parameters.
There are two common versions of these parameters used in the literature, namely the “po-
tential slow-roll parameters” εV , ηV and the “Hubble slow-roll parameters” εH , ηH , which
are related as [62]

εV = εH + · · · , ηV = εH + ηH + · · · , (5)

where the dots indicate higher-order corrections to these relations. It is typically sufficient
to consider the first-order relations, so that one can easily convert from one convention to
the other. In the following we adopt the potential slow-roll parameters, which in the RIDE
model take the form3

εV ≡ M2
P

16π

(
V ′

V

)2

=
M2

P

4πϕ2

(
1 + L

ρ+ L

)2

, (6)

ηV ≡ M2
P

8π

V ′′

V
=

M2
P

4πϕ2

3 + L

ρ+ L
, (7)

ξ2
V ≡ M4

P

(8π)2

V ′V ′′′

V 2
=

M4
P

8π2ϕ4

1 + L

(ρ+ L)2
, (8)

where ρ = f 2/ϕ2 and L = ln [ϕ2/(2Λ2)], and the third derivative potential parameter ξ2
V

will be relevant for the running of the scalar spectral index. Note that these expressions
are independent of the parameter M .4 The end of inflation is reached when the Hubble
slow-roll parameter εH = 1. In our numerically calculation of the field value ϕe at the end
of inflation we make use of the corresponding (approximate) condition εV = 1. In practice,

3Note that in [44] we chose to work with the Hubble slow-roll parameters instead.
4Note that M should not be confused with the scale of inflation given by V 1/4 '

√
MϕN/2

1/4.
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ϕe is always well above f . Having determined ϕe, we have to find the field value ϕN , N
e-folds before the end of inflation. This is achieved by solving

N ' 8π

M2
P

∫ ϕN

ϕe

V (ϕ)

V ′(ϕ)
dϕ =

2π

M2
P

[
ϕ2
N − ϕ2

e − f 2
[
Ei(1 + LN)− Ei(1 + Le)− ln

(1 + LN
1 + Le

)]]
,

(9)

numerically, with Ei(z) being the exponential integral Ei(z) = −
∫∞
−z

e−t

t
dt, Li = ln

(
ϕ2
i

2Λ2

)
,

and N lying within the interval N ∈ [46, 60]. Using the so-obtained value of ϕN (for a
fixed value of N), the parameter M in Eq. (2) can be directly constrained by the observed
scalar perturbations in the Cosmic Microwave Background, as discussed in [44]. One finds
M ' [10−8MP , 10−7MP ] where this result is essentially independent of the scale Λ, thanks
to the logarithmic dependence of V on Λ.
Starting from certain values for κ = Λ

MP
and N , the two parameters of the potential in

Eq. (2), M and Λ, are thus fixed. Moreover, the field values at the end of inflation ϕe as
well as N e-folds before, ϕN , are determined via the procedure discussed above. It is now
straightforward to calculate the RIDE predictions for the scalar spectral index nS as well
as the tensor-to-scalar ratio r for different values of κ = Λ

MP
and N using the first order

expressions,

nS = 1− 6εV + 2ηV , (10)

r = 16εV . (11)

The running of the scalar spectral index is only important at second order in the small
parameters,

dnS
d ln k

= 16εV ηV − 24ε2V − 2ξ2
V , (12)

which is one of the reasons for not taking it into account explicitly in our simple analysis (we
will comment on the other reason in a second). For chaotic ϕ2 inflation the expressions for
the slow-roll parameters and the relation between the field values ϕN , ϕe and the number
of e-foldings N simplify to

εV = ηV =
M2

P

4πϕ2
, N ' 2π

ϕ2
N − ϕ2

e

M2
P

, (13)

Formally, this can be obtained from Eqs. (6,7,9) by dropping all terms involving L. Evi-
dently ξ2

V = 0 in chaotic ϕ2 inflation.
In our statistical study, we have performed a χ2 analysis of the RIDE model and of the

similar chaotic ϕ2 inflation model. In order to do this, we have extracted several “data”
points from the 1σ contour in the (nS, r)-plane from the BICEP2 paper [1] by fitting a
tilted ellipse to it. This fit resulted in a “best-fit” point of (nS,best, rbest) = (0.959, 0.184).
Note that this point is not identical to the best-fit point given in Ref. [1], which quotes
r = 0.20+0.07

−0.05. This difference simply comes from the fact that the errors in the fitted ellipse
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are effectively symmetrised (in the basis where the tilt vanishes), but it is numerically not
very significant and the resulting error is acceptable in a simplified treatment.
Our simplified fit allows to determine the 2 × 2 covariance matrix F and to construct a
χ2 function from it as

χ2 = (nS − nS,best, r − rbest)F

(
nS − nS,best

r − rbest

)
, where F =

(
7736.6 184.2
184.2 211.6

)
. (14)

The numerical values of the matrix F are obtained from the semi-minor and semi-major
axes of the fitted ellipse, a ≈ 0.01137 and b ≈ 0.06948, by rotating the diagonal matrix
diag( 1

a2
, 1
b2

) by the angle of the tilt (≈ −1.4◦). Note that we have not taken into account the
information on the running in Eq. (14), since we have no way to extract the full covariance
matrix from Ref. [1], and thus we cannot know how a change in dnS/d ln k would affect the
other variables. However, if one would nevertheless like to at least approximately take into
account the running, one could do this by simply using the corresponding best-fit value
and 1σ range given in Ref. [1] and add this information to Eq. (14) as penalty term, which
results in the total χ2 function:

χ2
total = χ2 + χ2

running , with χ2
running =

[
dnS

d ln k
− (−0.022)

]2
0.0102

. (15)

χ2
total is the function we would then have to minimise. However, we will first focus on χ2

of Eq. (14) and postpone a discussion of the contribution from the running to the end of
this section.
Starting with RIDE, which involves the free parameter κ = MP/Λ, we can calculate the
χ2 function in the two-parameter (N, κ) plane. The result can be seen in Fig. 2, where we
have indicated the 1σ (2σ, 3σ) region by the dotted (dashed, solid) lines. The best-fit point
turns out to be (N, κ) = (51.1, 1.24), with a minimum of χ2 = 0.009 which signals a nearly
perfect fit. However, as visible in the plot, the χ2 function is nearly flat in κ-direction,
so that practically any value of κ would be allowed [as to be expected since the inflation
potential depends only logarithmically on κ, cf. Eq. (2)]. Note that quintessence imposes
a relatively general bound of κ & 0.5 [44] on this parameter, if too much fine tuning is to
be avoided. We will nevertheless display results also for κ = 0.01 in what follows, in order
to make the (weak) dependence of our results on κ more apparent in the plots. Clearly,
the ideal number N of e-folds clearly is an important parameter, so that we would expect
RIDE to fit best in the vicinity of N ≈ 51.
Thus, we can simply take different values of κ to find a simple comparison between RIDE

and ϕ2 inflation, which is displayed in Fig. 3. Glancing at the left panel, it can be seen that
all χ2 functions look pretty similar, at least up to the 2σ range (∆χ2 = 4), while they do
visibly differ at 3σ (∆χ2 = 9). Indeed when looking closer, see right panel, it is visible that
RIDE (for very different values of κ) fits marginally better than ϕ2 inflation. When aiming
at distinguishing the two models even only at 1σ level, one would require an improvement
on the knowledge on (nS, r) by more than about an order of magnitude. A distinction
at even higher confidence level (such as 3σ) is unlikely to happen within the foreseeable
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Figure 2: The 2-dimensional χ2 distribution for the RIDE model parameters. Note that
the χ2 function is nearly flat in the parameter κ, so that the (trans-Planckian) best-fit value
κ = MP/Λ ' 1.24 is practically arbitrary and the numerical minimisation could have found
a local minimum at any value of κ, as long as the number of e-folds is N ' 51.1.

future for nS. However, it is intriguing that a future CMB polarisation experiment that
covers the whole sky and very low instrumental noise might measure r with a precision
well below ∆r ∼ 0.01, as needed to distinguish RIDE from the ϕ2 model [39] (and surely
even more so from ϕ4 [32]). 5

We can display the predictions of both models in the (nS, r)-plane, which further indicates
their statistical similarity. This is done in Fig. 4, where also our simple elliptical fit to the
extracted “data” points is shown. Indeed, both models give predictions within the 1σ
region (except for ϕ2 inflation for values of N close to 60, but even that does not go far
out). The detailed predictions for the best-fit values are:

Model χ2
min N κ nS r

RIDE 0.009 51.1 1.24 0.958 0.179
ϕ2 inflation 0.064 46.7 — 0.958 0.169

5Note that, in principle, one could distinguish both models by the running of the scalar spectral index,
which is reported to be dnS/d ln k = −0.022± 0.010 (1σ level) [1], since the third derivative of the RIDE
potential does not vanish while the one of a ϕ2 potential trivially does. However, in practice both models
yield a running which seems too small by about an order of magnitude. We can estimate the running as
O(10ε2), which for RIDE is about 0.001 due to ε ∼ η ∼ 0.01, while ξ2 ∼ 10−5. A similar size is obtained
for ordinary chaotic ϕ2 inflation.
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Figure 3: The 1-dimensional χ2 distributions for RIDE (for different values of κ = MP/Λ)
and ϕ2 inflation (left panel: larger range for N , right panel: N ∈ [46, 60]).

Again we can see that the predictions are very similar, if not nearly identical.
Digesting these results, one could question whether any of the two models has any advan-

tage. Indeed there is at least a “theoretical advantage” to the RIDE model: as described
in Ref. [44], this model also includes the possibility to explain Dark Energy in terms of a
cosine quintessence potential. But, more realistically, it is simply a viable alternative to
ϕ2 inflation, and thus one of only a few working examples combining inflation with Dark
Energy6. If the parameter space shrinks around those two models, both of them would
probably have to be viewed as more or less equally good competitors for the true theory
behind inflation, since at the moment they are not distinguishable on a statistical basis,
as we have shown.
The results on (nS, r) by combining the BICEP2 results with those from Planck temper-

ature anisotropies data, WMAP polarisation, and high` experiments as shown in Fig. 4
are obtained allowing for a non-vanishing running of the scalar spectral index and find
dnS/d ln k = −0.022 ± 0.010. As mentioned already, without running BICEP2 results
always give r ' 0.2, while the Planck+WP+high` data lead to an upper bound r <
0.11(95% C.L.) in tension with BICEP2 results. This seems to strengthen the already
existing hint for a non-vanishing value of dnS/d ln k ∼ −0.01 both from WMAP7 [52] and
Planck [3] temperature anisotropies data. The best-fit for the absolute value would be too
large compared to the values from single-field inflationary models, including RIDE, pre-
dicting |dnS/d ln k| ∼ (nS − 1)2 ∼ 1/N2 ∼ 10−3. Including errors, the contribution from
running to χ2

total in Eq. (15) gives χ2
total−χ2 ∼ 4, quantifying the ∼ 2σ tension. It should be

said, however, that such a tension might be resolved by a better account of foreground con-
tamination or by other systematics. Future data, in particular those expected from Planck

6It should be noticed that BICEP2 resurrected ϕ4 models as well, though more marginally [32].
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Figure 4: The predictions of RIDE vs. the chaotic ϕ2 inflation model for the spectral index
nS and tensor-to-scalar ratio r.

on B-mode polarisation, will be able to strongly reduce the systematic uncertainties and
lead to a much higher statistically significant measurement of the running. Therefore, they
will be a crucial test for RIDE, as for all other simple single field inflationary models, that
might be (more strongly supported) ruled out if large values of |dnS/d ln k| ∼ 10−2 will
(not) be confirmed.

4 Conclusions

We have revisited the RIDE model based on radiative symmetry breaking that combines
inflation with Dark Energy. We have performed a χ2 analysis for the RIDE model pa-
rameters and have compared the predictions of RIDE vs. the chaotic ϕ2 inflation model
for the spectral index nS and tensor-to-scalar ratio r. The RIDE model gives a slightly
better fit to the data than the chaotic ϕ2 inflation model. To be precise we find a best-fit
value in the RIDE model of r = 0.18 as compared to r = 0.17 in the chaotic model, with
the spectral index being nS = 0.96 in both models. In addition, RIDE has the additional
advantage that it accounts for the Dark Energy of the universe via the PNGB quintessence
field generated at the end of inflation.
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Note added

After completion of our work, Refs. [63,64] appeared where the authors point out how the
B-mode polarisation signal reported by the BICEP2 collaboration could be partially, if not
entirely, due to a foreground contamination effect. In light of this possible effect, much
lower values of r, even a vanishing one, cannot be currently excluded and new results from
Planck or ground based telescopes, such as future Keck Array observations, measuring the
signal at different frequencies are needed in order to resolve this ambiguity. As discussed
above, our RIDE model fits very well with the BICEP2 determination of r ' 0.2, and
gives a best fit value of r ' 0.18. As can be inferred from Fig. 3, a determination of
r ∼ 0.1, at the level of the current 95% C.L. Planck upper bound, with an error ∆r ' 0.05
as for BICEP2, would start to be in tension with the RIDE model, but still compatible.
Measuring r ∼ 0.1 with a smaller error ∆r ∼ 0.01, as expected from future observations,
would, however, strongly disfavour our RIDE model.
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