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1 Introduction

Recently the BICEP2 collaboration [1] has reported a measurement of the tensor-to-scalar
ratio r = 0.20+0.07

−0.05 which provides evidence for large-field (e.g. chaotic) inflationary models, as
opposed to small-field (e.g. hybrid) inflationary models (for a review of inflationary models see
e.g. [2]). BICEP2 provides the first direct measurement of the large scale B-mode polarisation
power spectrum. This receives a contribution only from tensor perturbations and, therefore,
the detection of a non-vanishing B-mode polarisation is direct evidence for the presence of
tensor perturbations. More indirectly, temperature anisotropies can also potentially give
evidence of tensor perturbations. In this way, prior to BICEP2, the Planck collaboration
had placed an upper bound r < 0.11 (95% C.L.) assuming no running of the scalar spectral
index. The origin of this disagreement could either be some statistical or systematic effect,
or perhaps the first evidence for a running spectral index that would relax the Planck limit
to r < 0.26 (95% C.L.) [3], which is well compatible with the BICEP2 measurement.

The BICEP2 results [1] have, within a short time, triggered a series of papers on model
updates in the light of the new measurement. Among the models investigated are several sce-
narios of chaotic inflation [4–6], broken primordial power spectrum models [7], gravity-related
scenarios [8–16], Higgs-related inflation [17–23], scenarios related to supersymmetry [24–27],
curvaton model [28], or natural inflation [29, 30]. Furthermore, several general analyses of
collections of simple models have been presented [31, 32], general statements about the prop-
erties of the inflationary potential are available [33–36] as well as studies of the consistency
of the Planck and BICEP2 data sets [37, 38], and a general discussion about what we can
learn from the exciting new results [39–41].

None of the above studied models of inflation is able to simultaneously account for both
inflation in the early Universe and the preponderance of Dark Energy in the Universe at
the current epoch [42, 43]. Motivated by the desire to account for both phenomena, some
time ago we proposed a model of Radiative Inflation and Dark Energy (RIDE) [44]. Earlier
attempts [45], based on the “schizon model” [46–48], were formulated in the framework of ϕ4

chaotic inflation, which was subsequently essentially excluded by WMAP 5-year data [49].
The question we considered was whether the nice feature of such models, namely that they
naturally generate a pseudo Nambu-Goldstone boson (PNGB), which receives a potential via
gravitational effects [50] and can then be used as quintessence field, could be implemented
within a viable model of inflation.

In this note, following the BICEP2 measurement, we revisit the RIDE model [44]
based on the idea of a massive complex scalar field Φ whose mass squared is driven neg-
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ative close to the Planck scale MP by radiative effects, leading to a potential of the form1

M2|Φ|2 ln
(
|Φ|2

/
Λ2
)

which may be compared to the traditional chaotic M2|Φ|2 potential.2

The potential is invariant under a global U(1) symmetry, and the absolute value of the com-
plex field Φ plays the role of the inflaton field which rolls slowly down a simple potential that
resembles chaotic inflation for high field values. Similar to chaotic inflation, the RIDE model
leads to predictions for inflation which were fully consistent with WMAP 7-year data [52],
but potentially threatened later on by Planck [3]. However, unlike the chaotic model, at
the end of inflation the inflation field settles at a non-trivial minimum, thereby breaking the
global U(1) and generating a PNGB which receives a small mass via gravitational effects.
The resulting effective potential for the PNGB is of a form which is suitable for a quintessence
field. Thus the PNGB can explain the existence of Dark Energy. Here we perform a statisti-
cal analysis of the RIDE model and compare its predictions to those of the chaotic inflation
model. We find a best-fit value in the RIDE model of r = 0.18 as compared to r = 0.17 in
the chaotic model, with the spectral index being nS = 0.96 in both models.

The layout of the remainder of this paper is as follows. After reviewing the RIDE model
in section 2, we perform a statistical analysis of inflation within the RIDE model in section 3
and compare its predictions to those of chaotic inflation. We conclude in section 4.

2 Review of the RIDE model

The model is based on a complex scalar field

Φ =
1√
2
ϕeiφ/f , (2.1)

with f = 〈ϕ〉, whose tree-level potential has a simple quadratic form, V0 ≈M2Φ†Φ. Including
radiative corrections, the mass squared can be driven negative at some scale Λ not too far
below the Planck scale. The mechanism of radiative symmetry breaking is well-known in
the minimal supersymmetric standard model [53], where the Higgs mass squared is driven
negative at the TeV scale. Similarly, radiative symmetry breaking can play an important role
in different contexts [54, 55], where a mass squared is driven negative at a much higher scale.
See also ref. [56] for a recent treatment of radiative corrections to inflationary potentials.
Such a radiatively corrected potential may be parametrised as [54, 55],

V (ϕ) ≈ C +M2Φ†Φ ln

(
Φ†Φ

Λ2

)
= C +

M2

2
ϕ2 ln

(
ϕ2

2Λ2

)
. (2.2)

This potential, schematically depicted in figure 1, generates a vacuum expectation value

(VEV) 〈ϕ〉 = f =
√

2
eΛ for the real scalar field ϕ. The constant C = M2 f2

/
2 is chosen in

a way to yield a potential with value V (f) = 0 at its minimum. This corresponds to having
a vanishing cosmological constant at the end of inflation. As will be discussed below, the
Dark Energy dominating today’s Universe is then realised through a quintessence field, one

1This potential belongs to a class of scenarios recently studied in a systematic way in [51].
2We emphasise that both RIDE and chaotic ϕ2 inflation share the need to forbid a possible quartic

term
(
Φ†Φ

)2
, or at least suppress it sufficiently. As this cannot be achieved at the level of an effective

theory, it is necessary to resort to a concrete model realisation. This fact has already been commented in [44],
and an example of such a framework was also presented where the absence of the quartic term was achieved
in a supersymmetric context where no D-terms arise. We refer the inclined reader to [44] for a more detailed
discussion.
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Figure 1. The shape of the RIDE potential eq. (2.2) (with C = 0), for the inflaton field ϕ. Adapted
from figure 1a of [44].

of the key features of the RIDE model. Note that we could in principle have chosen a larger
value for C, too, which would however complicate the quintessence part. Note further that
the predictions for inflation are nearly independent of C as long as C � V (ϕN ), i.e., the
constant is significantly smaller than the value of the potential N e-folds before the end of
inflation.

Interpreting ϕ as the inflaton field, inflation can completely take place in a region where
ϕ � Λ. With the ln-factor in eq. (2.2) being well-behaved, ϕ feels a potential that is very
similar to the one used for quadratic inflation. Therefore, we expect only small differences
in the predictions for inflation in the RIDE model compared to ϕ2 chaotic inflation, see
section 3.

The main advantage of the RIDE model versus a ϕ2 model of inflation lies in the
possibility to incorporate a quintessence field to explain Dark Energy. As the minimum of
the RIDE potential, eq. (2.2), is displaced from 〈ϕ〉 = 0, the U(1) symmetry gets broken
when the inflaton field ϕ settles to its VEV. This results in a massless Nambu-Goldstone
boson φ = f arg(Φ), corresponding to the phase of the complex scalar field Φ. Gravitational
effects [45, 50], called gravitational instantons, then generate a potential for φ which must
respect a discrete shift symmetry φ

f →
φ
f + 2πn, with n ∈ N. It is possible to argue that,

see [57], the so-obtained potential for the quintessence field φ takes the form

Vq(φ) = m4

[
1 + cos

(
φ

f

)]
, (2.3)

where m denotes the Dark Energy scale, determined from the instanton action S ∼
πM2

P

/
M2

string via m4 = fM3
Pe
−S [50, 58–60] that can easily reproduce the smallness of

the observed scale of Dark Energy ∼ 10−3 eV. As discussed in [44], the dynamics of the in-
flaton field ϕ and the quintessence field φ separate. Therefore we are practically dealing with
single-field potentials, so that the RIDE model is expected to be safe from potentially dan-
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gerous corrections due to (iso-)curvature fluctuations that can appear in multi-field inflation
models [61].

3 RIDE vs. chaotic ϕ2 inflation

The RIDE potential of eq. (2.2) depends on two mass parameters, M and Λ. Assuming Λ
close to the Planck scale, MP = 1.2× 1019 GeV, we define

Λ = κMP, (3.1)

where κ takes a particular value. However it will turn out that the results in what concerns
inflation are quite insensitive to values of κ in the range 0.01–1. In order to relate the param-
eters of the potential to physical observables such as the scalar spectral index nS as well as
the tensor-to-scalar ratio r, it is convenient to define the slow-roll parameters. There are two
common versions of these parameters used in the literature, namely the “potential slow-roll
parameters” εV , ηV and the “Hubble slow-roll parameters” εH , ηH , which are related as [62]

εV = εH + · · · , ηV = εH + ηH + · · · , (3.2)

where the dots indicate higher-order corrections to these relations. It is typically sufficient
to consider the first-order relations, so that one can easily convert from one convention to
the other. In the following we adopt the potential slow-roll parameters, which in the RIDE
model take the form3

εV ≡
M2

P

16π

(
V ′

V

)2

=
M2

P

4πϕ2

(
1 + L

ρ+ L

)2

, (3.3)

ηV ≡
M2

P

8π

V ′′

V
=

M2
P

4πϕ2

3 + L

ρ+ L
, (3.4)

ξ2
V ≡

M4
P

(8π)2

V ′V ′′′

V 2
=

M4
P

8π2ϕ4

1 + L

(ρ+ L)2
, (3.5)

where ρ = f2
/
ϕ2 and L = ln

[
ϕ2
/(

2Λ2
)]

, and the third derivative potential parameter ξ2
V

will be relevant for the running of the scalar spectral index. Note that these expressions are
independent of the parameter M .4 The end of inflation is reached when the Hubble slow-roll
parameter εH = 1. In our numerical calculation of the field value ϕe at the end of inflation
we make use of the corresponding (approximate) condition εV = 1. In practice, ϕe is always
well above f . Having determined ϕe, we have to find the field value ϕN , N e-folds before the
end of inflation. This is achieved by numerically solving

N ' 8π

M2
P

∫ ϕN

ϕe

V (ϕ)

V ′(ϕ)
dϕ =

2π

M2
P

[
ϕ2
N − ϕ2

e − f2

[
Ei(1 + LN )− Ei(1 + Le)− ln

(
1 + LN
1 + Le

)]]
,

(3.6)

with Ei(z) being the exponential integral Ei(z) = −
∫∞
−z

e−t

t dt, Li = ln
(
ϕ2
i

2Λ2

)
, and N lying

within the intervalN ∈ [46, 60]. Using the so-obtained value of ϕN (for a fixed value ofN), the

3Note that in [44] we chose to work with the Hubble slow-roll parameters instead.
4Note that M should not be confused with the scale of inflation given by V 1/4 '

√
MϕN

/
21/4 .

– 4 –



J
C
A
P
0
8
(
2
0
1
4
)
0
4
0

parameter M in eq. (2.2) can be directly constrained by the observed scalar perturbations in
the Cosmic Microwave Background, as discussed in [44]. One finds M '

[
10−8MP, 10−7MP

]
where this result is essentially independent of the scale Λ, thanks to the logarithmic depen-
dence of V on Λ.

Starting from certain values for κ = Λ
MP

and N , the two parameters of the potential in
eq. (2.2), M and Λ, are thus fixed. Moreover, the field values at the end of inflation ϕe as
well as N e-folds before, ϕN , are determined via the procedure discussed above. It is now
straightforward to calculate the RIDE predictions for the scalar spectral index nS as well
as the tensor-to-scalar ratio r for different values of κ = Λ

MP
and N using the first order

expressions,

nS = 1− 6εV + 2ηV , (3.7)

r = 16εV . (3.8)

The running of the scalar spectral index is only important at second order in the small
parameters,

dnS
d ln k

= 16εV ηV − 24ε2V − 2ξ2
V , (3.9)

which is one of the reasons for not taking it into account explicitly in our simple analysis (we
will comment on the other reason in a second). For chaotic ϕ2 inflation the expressions for
the slow-roll parameters and the relation between the field values ϕN , ϕe and the number of
e-foldings N simplify to

εV = ηV =
M2

P

4πϕ2
, N ' 2π

ϕ2
N − ϕ2

e

M2
P

, (3.10)

Formally, this can be obtained from eqs. (3.3), (3.4), (3.6) by dropping all terms involving
L. Evidently ξ2

V = 0 in chaotic ϕ2 inflation (cf. eq. (3.5)).

In our statistical study, we have performed a χ2 analysis of the RIDE model and of
the similar chaotic ϕ2 inflation model. In order to do this, we have extracted several “data”
points from the 1σ contour in the (nS , r)-plane from the BICEP2 paper [1] by fitting a tilted
ellipse to it. This fit resulted in a “best-fit” point of (nS,best, rbest) = (0.959, 0.184). Note that
this point is not identical to the best-fit point given in ref. [1], which quotes r = 0.20+0.07

−0.05.
This difference simply comes from the fact that the errors in the fitted ellipse are effectively
symmetrised (in the basis where the tilt vanishes), but it is numerically not very significant
and the resulting error is acceptable in a simplified treatment.

Our simplified fit allows to determine the 2× 2 covariance matrix F and to construct a
χ2 function from it as

χ2 = (nS−nS,best, r−rbest)F

(
nS − nS,best

r − rbest

)
, where F =

(
7736.6 184.2
184.2 211.6

)
. (3.11)

The numerical values of the matrix F are obtained from the semi-minor and semi-major
axes of the fitted ellipse, a ≈ 0.01137 and b ≈ 0.06948, by rotating the diagonal matrix
diag

(
1
a2
, 1
b2

)
by the angle of the tilt (≈ −1.4◦). Note that we have not taken into account the

information on the running in eq. (3.11), since we have no way to extract the full covariance
matrix from ref. [1], and thus we cannot know how a change in dnS/d ln k would affect the

– 5 –
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N=51.1
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Figure 2. The 2-dimensional χ2 distribution for the RIDE model parameters. Note that the χ2

function is nearly flat in the parameter κ, so that the (trans-Planckian) best-fit value κ = MP/Λ ' 1.24
is practically arbitrary and the numerical minimisation could have found a local minimum at any value
of κ, as long as the number of e-folds is N ' 51.1.

other variables. However, if one would nevertheless like to at least approximately take into
account the running, one could do this by simply using the corresponding best-fit value and
1σ range given in ref. [1] and add this information to eq. (3.11) as penalty term, which results
in the total χ2 function:

χ2
total = χ2 + χ2

running , with χ2
running =

[
dnS
d ln k − (−0.022)

]2

0.0102
. (3.12)

χ2
total is the function we would then have to minimise. However, we will first focus on χ2 of

eq. (3.11) and postpone a discussion of the contribution from the running to the end of this
section.

Starting with RIDE, which involves the free parameter κ = MP/Λ, we can calculate the
χ2 function in the two-parameter (N,κ) plane. The result can be seen in figure 2, where we
have indicated the 1σ (2σ, 3σ) region by the dotted (dashed, solid) lines. The best-fit point
turns out to be (N,κ) = (51.1, 1.24), with a minimum of χ2 = 0.009 which signals a nearly
perfect fit. However, as visible in the plot, the χ2 function is nearly flat in κ-direction, so that
practically any value of κ would be allowed [as to be expected since the inflation potential
depends only logarithmically on κ, cf. eq. (2.2)]. Note that quintessence imposes a relatively
general bound of κ & 0.5 [44] on this parameter, if too much fine tuning is to be avoided.
We will nevertheless display results also for κ = 0.01 in what follows, in order to make the
(weak) dependence of our results on κ more apparent in the plots. The ideal number N of
e-folds clearly is an important parameter, so that we would expect RIDE to fit best in the
vicinity of N ≈ 51.

– 6 –
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Figure 3. The 1-dimensional χ2 distributions for RIDE (for different values of κ = MP/Λ) and ϕ2

inflation (left panel: larger range for N , right panel: N ∈ [46, 60]).

Thus, we can simply take different values of κ to find a simple comparison between RIDE
and ϕ2 inflation, which is displayed in figure 3. Glancing at the left panel, it can be seen that
all χ2 functions look pretty similar, at least up to the 2σ range (∆χ2 = 4), while they do
visibly differ at 3σ (∆χ2 = 9). Indeed when looking closer, see right panel, it is visible that
RIDE (for very different values of κ) fits marginally better than ϕ2 inflation. When aiming
at distinguishing the two models even only at 1σ level, one would require an improvement
on the knowledge on (nS , r) by more than about an order of magnitude. A distinction at
even higher confidence level (such as 3σ) is unlikely to happen within the foreseeable future
for nS . However, it is intriguing that a future CMB polarisation experiment that covers
the whole sky and very low instrumental noise might measure r with a precision well below
∆r ∼ 0.01, as needed to distinguish RIDE from the ϕ2 model [39] (and surely even more so
from ϕ4 [32]).5

We can display the predictions of both models in the (nS , r)-plane, which further indi-
cates their statistical similarity. This is done in figure 4, where also our simple elliptical fit
to the extracted “data” points is shown. Indeed, both models give predictions within the 1σ
region (except for ϕ2 inflation for values of N close to 60, but even that does not go far out).
The detailed predictions for the best-fit values are:

Model χ2
min N κ nS r

RIDE 0.009 51.1 1.24 0.958 0.179

ϕ2 inflation 0.064 46.7 — 0.958 0.169

Again we can see that the predictions are very similar, if not nearly identical.

5Note that, in principle, one could distinguish both models by the running of the scalar spectral index,
which is reported to be dnS/d ln k = −0.022 ± 0.010 (1σ level) [1], since the third derivative of the RIDE
potential does not vanish while the one of a ϕ2 potential trivially does. However, in practice both models yield
a running which seems too small by about an order of magnitude. We can estimate the running as O

(
10ε2

)
,

which for RIDE is about 0.001 due to ε ∼ η ∼ 0.01, while ξ2 ∼ 10−5. A similar size is obtained for ordinary
chaotic ϕ2 inflation.
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Figure 4. The predictions of RIDE vs. the chaotic ϕ2 inflation model for the spectral index nS and
tensor-to-scalar ratio r.

Digesting these results, one could question whether any of the two models has any
advantage. Indeed there is at least a “theoretical advantage” to the RIDE model: as described
in ref. [44], this model also includes the possibility to explain Dark Energy in terms of a cosine
quintessence potential. But, more realistically, it is simply a viable alternative to ϕ2 inflation,
and thus one of only a few working examples combining inflation with Dark Energy.6 If the
parameter space shrinks around those two models, both of them would probably have to be
viewed as more or less equally good competitors for the true theory behind inflation, since
at the moment they are not distinguishable on a statistical basis, as we have shown.

The results on (nS , r) by combining the BICEP2 results with those from Planck tem-
perature anisotropies data, WMAP polarisation, and high` experiments as shown in fig-
ure 4 are obtained allowing for a non-vanishing running of the scalar spectral index and
find dnS/d ln k = −0.022 ± 0.010. As mentioned already, without running BICEP2 re-
sults always give r ' 0.2, while the Planck+WP+high` data lead to an upper bound
r < 0.11(95% C.L.) in tension with BICEP2 results. This seems to strengthen the already
existing hint for a non-vanishing value of dnS/d ln k ∼ −0.01 both from WMAP7 [52] and
Planck [3] temperature anisotropies data. The best-fit for the absolute value would be too
large compared to the values from single-field inflationary models, including RIDE, predicting
|dnS/d ln k| ∼ (nS − 1)2 ∼ 1

/
N2 ∼ 10−3. Including errors, the contribution from running to

χ2
total in eq. (3.12) gives χ2

total−χ2 ∼ 4, quantifying the ∼ 2σ tension. It should be said, how-

6It should be noticed that BICEP2 resurrected ϕ4 models as well, though more marginally [32].
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ever, that such a tension might be resolved by a better account of foreground contamination
or by other systematics. Future data, in particular those expected from Planck on B-mode
polarisation, will be able to strongly reduce the systematic uncertainties and lead to a much
higher statistically significant measurement of the running. Therefore, they will be a crucial
test for RIDE, as for all other simple single field inflationary models, that might be (more
strongly supported) ruled out if large values of |dnS/d ln k| ∼ 10−2 will (not) be confirmed.

4 Conclusions

We have revisited the RIDE model based on radiative symmetry breaking that combines
inflation with Dark Energy. We have performed a χ2 analysis for the RIDE model parameters
and have compared the predictions of RIDE vs. the chaotic ϕ2 inflation model for the spectral
index nS and tensor-to-scalar ratio r. The RIDE model gives a slightly better fit to the data
than the chaotic ϕ2 inflation model. To be precise we find a best-fit value in the RIDE model
of r = 0.18 as compared to r = 0.17 in the chaotic model, with the spectral index being
nS = 0.96 in both models. In addition, RIDE has the additional advantage that it accounts
for the Dark Energy of the universe via the PNGB quintessence field generated at the end of
inflation.

Note added. After completion of our work, refs. [63, 64] appeared where the authors
point out how the B-mode polarisation signal reported by the BICEP2 collaboration could
be partially, if not entirely, due to a foreground contamination effect. In light of this possible
effect, much lower values of r, even a vanishing one, cannot be currently excluded and new
results from Planck or ground based telescopes, such as future Keck Array observations,
measuring the signal at different frequencies are needed in order to resolve this ambiguity.
As discussed above, our RIDE model fits very well with the BICEP2 determination of r ' 0.2,
and gives a best fit value of r ' 0.18. As can be inferred from figure 3, a determination of
r ∼ 0.10, at the level of the current 95% C.L. Planck upper bound, with an error ∆r ' 0.05
as for BICEP2, would start to be in tension with the RIDE model, but still compatible.
Measuring r ∼ 0.10 with a smaller error ∆r ∼ 0.01, as expected from future observations,
would, however, strongly disfavour our RIDE model.
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