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Abstract

We consider a rather minimal extension of the Standard Model involving just one ex-

tra particle, namely a single SU(2)L singlet scalar S++ and its antiparticle S−−. We

propose a model independent effective operator, which yields an effective coupling

of S±± to pairs of same sign weak gauge bosons, W±W±. We also allow tree-level

couplings of S±± to pairs of same sign right-handed charged leptons l±Rl
′±
R of the

same or different flavour. We calculate explicitly the resulting two-loop diagrams in

the effective theory responsible for neutrino mass and mixing. We propose sets of

benchmark points for various S±± masses and couplings which can yield successful

neutrino masses and mixing, consistent with limits on charged lepton flavour viola-

tion (LFV) and neutrinoless double beta decay. We discuss the prospects for S±±

discovery at the LHC, for these benchmark points, including single and pair pro-

duction and decay into same sign leptons plus jets and missing energy. The model

represents a minimal example of the complementarity between neutrino physics

(including LFV) and the LHC, involving just one new particle, the S±±.
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1 Introduction

The origin of neutrino mass and mixing remains one of the most important unanswered

questions facing the Standard Model (SM) [1–4]. It seems likely that the charged quark

and lepton masses originate from Yukawa couplings to one or more Higgs doublets, a

belief bolstered by the recent discovery of a Higgs boson with SM properties at around

125.5 GeV [5,6]. However the exceedingly small values of neutrino masses, <∼ 1 eV, and the

unique possibility of having a Majorana mass for neutrinos, raises doubts that the same

mechanism is responsible for the neutrino mass. Although such Yukawa couplings might

play a role in the framework of the seesaw mechanism, where heavy right-handed neutri-

nos with large Majorana masses are responsible for small effective left-handed neutrino

masses, this mechanism is notoriously difficult to test experimentally. Other mechanisms

which have been proposed for neutrino mass include R-parity violating supersymme-

try [7], Higgs triplet models [8–10], or loop models involving additional Higgs doublets

and singlets (e.g. [11–13]), all of which can be tested experimentally (for a review of these

different mechanisms see for example [14], and Ref. [15] for a very systematic study). In

particular, such settings can yield very interesting connections between lepton number

violating physics and collider phenomenology [16–18], especially if doubly charged scalars

are involved (as in the Higgs triplet case [19,20]).
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Loop neutrino mass models are often characterised by additional Higgs doublets and

singlets. These extra scalar states can in principle be detected indirectly, via low energy

high precision experiments due to their contribution to charged lepton flavour violation

(LFV) or neutrinoless double beta decay (0νββ), providing a test of the underlying theory

of neutrino mass. For example, in the original Zee-Babu model [12, 13, 21], involving one

singly (H+) and one doubly charged (S++) extra scalar singlet, neutrino masses arise via

a two-loop diagram. The loop model of Ma [11] involves an inert Higgs doublet, odd

under a discrete symmetry, which does not develop a vacuum expectation value (VEV)

but has Yukawa couplings to some of the leptons (involving right-handed neutrinos) and

in turn couples to another Higgs doublet which gets a VEV, allowing neutrino mass via

a one-loop diagram. The inert Higgs doublet is a Dark Matter candidate, hence the

name “Scotogenic” [11]. More recently a “Cocktail” of the Zee-Babu and Ma models has

been proposed [22,23] involving an extra inert Higgs doublet and a doubly charged Higgs

singlet S++ but no right-handed neutrinos, where neutrino masses arise due to a three-loop

diagram involving also W -bosons. In summary, although such loop models do provide a

natural explanation for the smallness of neutrino mass and are phenomenologically rich,

having predictions for LFV as well new Higgs discovery at the LHC [24,25], they do involve

rather many new particles and parameters and are rather computationally complicated,

as compared for example to seesaw models.

In this paper we shall consider an effective theory of neutrino mass involving a rather

minimal extension of the Standard Model with just one extra particle, namely a single

SU(2)L singlet scalar S++ (and its antiparticle S−−). We shall propose an effective

operator, which yields an effective coupling of S±± to pairs of same sign weak gauge

bosons, W±W±, as in Fig. 1. As in the Zee-Babu model, for example, we also allow tree-

level couplings of S±± to pairs of same sign right-handed charged leptons la(lb)
c (where

la is a right-handed charged lepton of flavour a and (lb)
c is the charge-conjugate of a

right-handed charged lepton of flavour b). We calculate explicitly the resulting two-loop

diagrams in the effective theory responsible for neutrino mass and mixing as shown in

Fig. 2. The effective mechanism we propose has several known UV completions [22,26,27]

corresponding to various possible heavy particles responsible for generating the effective

vertex in Fig. 1. Although our effective theory does not account for Dark Matter, since

the only new particle is the S±± which is electrically charged and unstable, it is entirely

possible that a heavy particle appearing in one of these ultraviolet extensions could provide

such a stable Dark Matter candidate, such as [22,23].

In our approach, the key assumption is that the S±± is lighter than all the other

new particles which appear in the effective vertex, enabling us to develop an effective

theory involving just this one particle in addition to the SM, similar to what had been
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ΞS±±

W ±

W ±

Figure 1: Effective vertex that connects the doubly charged singlet scalar to two W -
bosons.

Ξ

W -W -

S++

la HlbLc
ΝLa HΝLbLc

Figure 2: Two-loop diagram for the neutrino mass in our effective model.

done e.g. in Ref. [28] for an effective operator connecting two leptons with four quarks.

This assumption dramatically reduces the number of input parameters, and enables us to

obtain analytic expressions for the two-loop diagrams in Fig. 2. The resulting neutrino

mass at the two-loop level thereby arises from a very simple setting featuring only one

additional particle compared to the SM, plus one effective coupling, together with the

Yukawa couplings to charged leptons. Due to the minimality of the extension of the SM,

this is one of the simplest neutrino mass models of all, in the sense that it only involves

one new particle. We shall focus on the essential connections between different areas of

phenomenology (i.e., low energy leptonic physics and high energy colliders), deriving solid

conclusions which hold for a large class of models. We shall propose sets of benchmark

points for various S±± masses and couplings which can yield successful neutrino masses

and mixing, consistent with limits on charged LFV and neutrinoless double beta decay.

We discuss the prospects for S±± discovery at the LHC for these benchmark points, in-

cluding single and pair production and decay into same sign leptons plus jets and missing

energy. The model represents a minimal example of the complementarity between neu-

trino physics (including LFV) and the LHC, involving just one new particle, the S±±.

The complementarity arises from the fact that one needs data from experiments at the

high intensity and high energy frontiers, taken together, in order to fully probe the model.

The layout of the remainder of the paper is as follows. In Sec. 2 we introduce the

3



effective on which we base our study. The resulting neutrino mass matrix is discussed in

Sec. 3, before we discuss lepton number violation and lepton flavour violation in Secs. 4

and 5, respectively. Afterwards, in Sec. 6, thirty example benchmark points are discussed

which are consistent with all experimental bounds available at low energies. We turn

to the collider phenomenology of the effective vertex in Sec. 7, where we will show the

complementarity between high and low energy tests of the class of models investigated in

this work. We finally conclude in Sec. 8. The appendices contain further technical details:

in Appendix A we explain how to calculate the 2-loop neutrino mass resulting from the

effective vertex in detail. In Appendix B we present a new correlation for elements of the

light neutrino mass matrix, which arises for a certain category of benchmark points and

which is, in principle, also testable. In the final Appendix C, we give the numerical values

of the branching ratios of the doubly charged scalar for all classes of benchmark points

found.

2 Obtaining the vertex SWW from effective field the-

ory

We aim to construct the vertex SWW in terms of an effective field theory involving only

SM-fields as well as the SU(2) singlet scalar S,

S = S−− ∼ (1,−2), (1)

using the Gell-Mann/Nishijma relation in the form Q = T3 + Y . It turns out that the

lowest mass dimension at which the desired vertex can be realised is by operators of mass

dimension 7,1

O(a)
7 = S (H ⊗H)3 [(DµH)⊗ (DµH)]3 ⊃ 1 ,

O(b)
7 = S [(DµH)⊗H]1 [(DµH)⊗H]1 ⊃ 1 ,

O(c)
7 = S [(DµH)⊗H]3 [(DµH)⊗H]3 ⊃ 1 , (2)

where H = (H+, H0)T ∼ (2,+1/2) is the SM Higgs field, and the subscripts indicate the

SU(2) contractions of the respective terms. Note that the hypercharge is automatically

1Note that the O7 operator discussed here is implicitly contained in the O9 effective operator discussed
in Refs. [23,29], where the doubly charged scalar S is replaced by the appropriate combination of charged
lepton SM fields. However, as will become clear in the text later on, it is interesting for phenomenology
not to integrate out the scalar.
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conserved, due to −2 + 4× 1/2 = 0. Using well-known SU(2) group theory, in connection

with the corresponding Clebsch-Gordan coefficients, one can show that the resulting ex-

plicit expressions from all three operators O(a,b,c)
7 are identical. It is easy to see that the

decisive Lagrangian term is given by

ξ

Λ3
S−−[H+H+(DµH

0)(DµH0)− 2H+H0(DµH
+)(Dµh0) +H0H0(DµH

+)(DµH+)] + h.c.,

(3)

where Λ denotes, as usual, the scale where the effective description breaks down. In

this paper, we will always assume that this scale Λ represents a physical cutoff, which in

particular means that any particles in the full theory beyond the scalar S are assumed

to be heavier than Λ. Note, however, that this might not necessarily be the case if the

UV-completion is done at loop-level. In that case, further “light” particles other than S

might exist which could lead to further diagrams. For our treatment to be applicable, it

may thus be necessary to pose some further assumptions on the particle spectrum of the

full theory.

We can write the covariant derivative explicitly [30],

DµH = [∂µ + i
g√
2

(τ+W+
µ + τ−W−

µ ) + ...]H =

(
∂µH

+ + igW+
µ H

0

∂µH
0 + igW−

µ H
+

)
+ ..., (4)

with τ± = (τ 1 + iτ 2)/
√

2. Parametrising the SM Higgs field as

H =

(
H+

H0

)
=

(
G+

v√
2

+ h0+iGZ√
2

)
, (5)

where (G+, G−, GZ) are the longitudinal components of the massive vectors (W+,W−, Z0)

and the VEV is given by v = 246 GeV, it is easy to see that the only relevant component

of Eq. (4) is given by

DµH
+ = ∂µG

+ + i
g√
2
vW+

µ . (6)

Inserting this into Eq. (3) and realising that only the third term H0H0(DµH
+)(DµH+)

plays a role, one can derive three relevant vertices:

Lrelevant = LSGG + LSGW + LSWW , (7)
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with the respective pieces given by

LSGG = − ξv
2

2Λ3
S−−(∂µG

+)(∂µG+) + h.c.,

LSGW = +
igξv3

√
2Λ3

S−−(∂µG
+)W+µ + h.c.,

LSWW = −g
2ξv4

4Λ3
S−−W+

µ W
+µ + h.c. (8)

Using the path integral method, it is easy to derive the corresponding Feynman rules:

ΞS--

G+

G+

p1

p2

p3

= − iξv2

Λ3 (p2p3)

ΞS--

G+

WΝ
+

p1

p2

p3

= − igξv3
√

2Λ3p2ν

ΞS--

WΜ
+

WΝ
+

p1

p2

p3

= − ig2ξv4

2Λ3 gµν

In general, all three vertices will contribute. However, for high energies as given in a

collider experiment, in fact the very first vertex involving two would-be Goldstone bosons

will by far dominate the cross section by virtue of the Goldstone boson equivalence the-

orem [31–34]. Hence, e.g. for LHC-related studies, effectively the whole relevant part of

the Lagrangian will in practice be LSGG from Eq. (8).
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Figure 3: Two-loop diagram for the neutrino mass (left) and momentum-assignments
for its computation (right).

3 Neutrino mass

The vertex SWW , together with the S coupling to pairs of like-sign right-handed charged

leptons, fabSlalb, where a, b = e, µ, τ , leads to a neutrino mass at 2-loop level, as displayed

in Fig. 3. This diagram has been estimated e.g. in Ref. [26], and it is intimately related

to the Zee-Babu integral [12,13,21,35]. A detailed computation of the neutrino mass can

be found in Appendix A, where we go far beyond the approximations applied in Ref. [26]

and for the first time present a very detailed computation of the integral (note that a

calculation beyond that in Ref. [26] had already been performed in Ref. [27], however, in

this work we will go even further). From this appendix, we quote the final formula for

the light neutrino mass matrix, see Eq. (A-41):

M2-loop
ν,ab =

2ξmambM
2
Sfab(1 + δab)

Λ3
· Ĩ(MW ,MS, µ). (9)

As shown in the appendix, the quasi exact evaluation of the integral results into a some-

what lengthy formula but, fortunately, it can be approximated by a relatively simple

expression, see Eq. (A-40):

Ĩ(MW ,MS, µ) ' −1

4(16π2)2

{(
1− 2

ρ

)[
2(Cγ − LW )2 +

π2

6
+ 1

]
+ (2Cγ − LW − LS)2 +

π2

3
+ 2

}
,

where ρ ≡ M2
S/M

2
W , LW ≡ log(M2

W/µ
2), LS ≡ log(M2

S/µ
2), and Cγ ≡ 1 − γ + log(4π)

with γ = 0.5771... being the Euler-Mascheroni constant. We show in Appendix A that

this is in fact a very good approximation, but more complete expressions could be found.

Note that Eq. (9) for the light neutrino mass matrix involves an approximate rescaling

symmetry, which we will make use of later on. The trick is to realise that the flavour struc-

ture of the matrix is only set by the relative magnitudes of the different Yukawa couplings

fab (all other ingredients which depend on flavour indices a and b cannot be varied). Thus,
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denoting fmax ≡ max |fab|, the light neutrino mass matrix stays approximately constant

when changing the parameters (ξ,MS, fmax,Λ), as long as

ξM2
Sfmax

Λ3
≡ b ' const. (10)

Of course, there is some variation of Ĩ(MW ,MS, µ) with MS, but first this is only loga-

rithmic2 and second it can be at least partially compensated by a corresponding variation

of µ when fitting to experimental data, see Appendix A and Sec. 6 for details. Thus,

once we have found a valid benchmark point which yields the correct light neutrino mass

matrix, we can find another point with the same neutrino mass matrix prediction but,

say, a smaller value of MS by rescaling the parameters (ξ,MS, fmax,Λ) but keeping the

ratio given in Eq. (10) constant.

We have to be a bit more careful though. In order to ensure that the EFT is sensible,

we need to keep

ξ ∼ O(1) and MS � Λ, (11)

which are two rough but nevertheless important conditions. Note that the latter condition

is in practice already fulfilled for, e.g., MS ≈ Λ/5, since this would effectively mean that

at most, even at colliders when the SWW vertex is used to produce a doubly charged

boson S±±, the squared momenta in the propagators of the decisive particles are of O(M2
S)

which, when neglected compared to Λ2 ≈ 25M2
S, only introduces an error of a few percent.

We will furthermore see in Sec. 4 that the bound bLNV arising from neutrinoless double

beta decay yields the constraint
ξfmax

M2
SΛ3

< bLNV, (12)

and in Sec. 5 that the various constraints arising from lepton flavour violating processes

and anomalous leptonic magnetic moments are all of the same form, so that the strongest

of them yields a final condition
f 2

max

M2
S

< bLFV. (13)

As long as the conditions from Eqs. (10) to (13) are fulfilled, any set of parameters

(ξ,MS, fmax,Λ) yields the same prediction for the light neutrino mass. This will turn

out extremely useful later on when we aim to investigate how one can use LHC data

to constrain or even exclude points with a different scalar mass MS leading to the same

predictions for what concerns neutrinos, cf. Sec. 7.

2This is true except for the dependence on 1/ρ, which is however only small number compared to the
O(1) summand in front of it.
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Figure 4: The non-standard contribution to 0νββ.

4 Non-standard contributions to neutrinoless double

beta decay

Since the boson S−− can couple to both, W−W− and e−e−, our setting can lead to non-

standard contributions to lepton number violating (LNV) processes, and in particular to

neutrinoless double beta decay (0νββ), cf. Fig. 4, which happens inside a nucleus. In

order to get a bound from this contribution, it is decisive to understand that 0νββ is

a low-energy process, to be precise, the typical momentum scale of nucleons inside the

nucleus is of O(100 MeV) (see Ref. [36] and references therein). The masses MW and MS

of the W -boson and the scalar S are much larger than the characteristic energy scale of

the process, which means that we can subsequently integrate out both of them to obtain a

point-like non-standard effective operator contributing to neutrinoless double beta decay.

The bounds on such point-like non-standard contributions have first been calculated in

Ref. [37], but they have been recently updated by Ref. [38], using in particular improved

values for the corresponding nuclear matrix elements associated with the short-range

contributions [39]. Integrating out S and W (in that order) from the Lagrangian from

Eq. (8), together with the contributions of the S-coupling to right-handed charged leptons,

LSll = fabS
−−laPLl

c
b + h.c., the ordinary weak interactions of quarks, and the mass terms

for both bosons, we obtain the following effective Lagrangian,

Leffective
0νββ =

ξfee
4M2

SΛ3
JLµJ

µ
LjL, (14)

where JµL ≡ uγµ(1− γ5)d and jL ≡ e(1− γ5)ec. The coefficient has to be compared with

the general coefficient
G2
F

2mp
εLLL3 , where GF = 1.166 · 10−5GeV−2 is the Fermi constant

and mp is the proton mass. In Ref. [38], a bound on the quantity εLLL3 has been found
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for the case (among others) where 0νββ-searches only yield a limit, which corresponds

to the situation today. Rescaling that bound to include the newest GERDA results of

T 0νββ
1/2 (Ge) > 2.1 · 1025 y at 90% C.L. [40], we obtain3

εLLL3 =
ξfeemp

2G2
FM

2
SΛ3

< 1.4 · 10−8 at 90% C.L. (15)

Getting rid of all known pieces, one obtains

ξfee
M2

SΛ3
<

4.0 · 10−3

TeV5 at 90% C.L. (16)

Indeed, this imposes a strong bound on the model. However, since 0νββ involves only

electrons, one can trivially fulfill it by choosing the LNV-couplings to two electrons to

vanish, fee ≡ 0.

5 Bounds from lepton flavour violation and dipole

moments

The doubly charged scalar can couple in a flavour violating way and thus lead to LFV

processes such as µ → eγ or µ → 3e. Furthermore, these particles can contribute to

the anomalous magnetic moment of leptons. This is very similar to what happens in the

Zee-Babu model, with the exception that for that case, also a singly charged scalar exists,

which can complicate things. An extensive collection of LFV-bounds in the Zee-Babu

model has been presented in Ref. [24],4 which we will update in the following. Due to

the similarities in formalism, we can even take some of the bounds at face value and only

need minor modifications.

In Tab. 1 we have in particular updated the limit on BR(µ → eγ), which is bound

to be smaller than 5.7 · 10−13 at 90% C.L. according to the newest results from the

MEG experiment [42]. Most of the other limits have been improved as well, but less

dramatically [41].

3Note that the upper bound on εLLL3 actually gets weaker compared to the hypothetical scenario
discussed in Ref. [38], which assumes no detection of 0νββ even after phase III of the GERDA experiment.

4Note that very recently, an update [25] of Ref. [24] became available. We nevertheless decided to use
the values that we ourselves had updated to ensure consistency in the process of updating the bounds.
However, our numbers do not differ in any significant way from the ones used in [25].
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Process (Tree) Experimental limit (90% C.L.) Resulting bound (90% C.L.)

µ− → e+e−e− BR< 1.0 · 10−12 [24] |feµf ∗ee| < 2.3× 10−5M2
S[TeV]

τ− → e+e−e− BR< 2.7 · 10−8 [41] |feτf ∗ee| < 0.0087M2
S[TeV]

τ− → e+e−µ− BR< 1.8 · 10−8 [41] |feτf ∗eµ| < 0.005M2
S[TeV]

τ− → e+µ−µ− BR< 1.7 · 10−8 [41] |feτf ∗µµ| < 0.007M2
S[TeV]

τ− → µ+e−e− BR< 1.5 · 10−8 [41] |fµτf ∗ee| < 0.007M2
S[TeV]

τ− → µ+e−µ− BR< 2.7 · 10−8 [41] |fµτf ∗eµ| < 0.007M2
S[TeV]

τ− → µ+µ−µ− BR< 2.1 · 10−8 [41] |fµτf ∗µµ| < 0.0081M2
S[TeV]

µ+e− → µ−e+ GMM < 0.003GF [24] |feef ∗µµ| < 0.2M2
S[TeV]

Process (Loop) Experimental limit (90% C.L.) Resulting bound (90% C.L.)

(g − 2)e δae = (1.2± 1.0) · 10−11 [24] |fee|2 + |feµ|2 + |feτ |2 < 1.4 · 103M2
S[TeV]

(g − 2)µ δaµ = (2.1± 1.0) · 10−9 [24] |feµ|2 + |fµµ|2 + |fµτ |2 < 2.0M2
S[TeV]

µ→ eγ BR< 5.7 · 10−13 [42] |f ∗eefeµ + f ∗eµfµµ + f ∗eτfµτ | < 3.2 · 10−4M2
S[TeV]

τ → eγ BR< 3.3 · 10−8 [41] |f ∗eefeτ + f ∗eµfµτ + f ∗eτfττ | < 0.18M2
S[TeV]

τ → µγ BR< 4.4 · 10−8 [41] |f ∗eµfeτ + f ∗µµfµτ + f ∗µτfττ | < 0.21M2
S[TeV]

Table 1: LFV-bounds resulting from various tree-level and 1-loop processes.

6 Benchmark points

The next step is to find benchmark scenarios where all bounds are fulfilled and a suitable

light neutrino mass matrix is reproduced. In general, this is not an easy task since the

model presented is in fact quite constrained for three reasons:

1. Due to the proportionality to products of charged lepton masses, the structure of

the light neutrino mass matrix, cf. Eq. (9), generically imposes a pattern that is

not close to an “anarchic” mixing scenario [43] as resembled by the leptonic mixing

parameters, which requires certain hierarchies in the couplings fab to compensate

for that. Furthermore, this structure (together with the power Λ−3) suppresses the

entries in whole light neutrino mass matrix. This makes it non-trivial to generate a

mass scale of O(
√

∆m2
31), as required by phenomenology.

2. The bound from 0νββ, cf. Eq. (16), poses a strong condition on the product ξfee.

In case fee is not small enough, this may require a very small ξ for this bound to

be fulfilled, which however also suppresses the light neutrino masses. Alternatively,

this bound may push MS to values so large that they are not desired if we want to

have visible phenomenology at LHC, cf. Sec. 7.

3. The bound from µ → eγ, cf. Tab. 1, poses a strong upper bound on a certain

combination of couplings, |f ∗eefeµ + f ∗eµfµµ + f ∗eτfµτ |. If this combination is not close
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to zero then again MS needs to be too large, thereby potentially destroying any

interesting collider phenomenology.

This problem has been investigated in a similar setting in Ref. [23]. One could, for

example, choose fee ' 0 5 and feµ ' 0 (or feτ ' 0)6 in order to avoid the strong bounds

mentioned in points 2 and 3. Indeed, if these conditions are at least approximately fulfilled,

then the tension on the parameter space can be considerably reduced. Alternatively, one

could in addition to fee ' 0 also require that

feµ ' −
f ∗µτ
f ∗µµ

feτ , (17)

in which case |f ∗eefeµ + f ∗eµfµµ + f ∗eτfµτ | ' 0 holds, too. Note that, by virtue of Eq. (9),

this also implies an interesting correlation between elements of the light neutrino mass

matrix and two of the charged lepton masses, which is briefly discussed in Appendix B.

In order to find suitable benchmark points, we have departed from these conditions.

To be precise, we have numerically found solutions based on the initial assumptions

(fee, feµ) ' (0,−f ∗µτfeτ/f ∗µµ), (fee, feµ) ' (0, 0), (fee, feτ ) ' (0, 0), (fee, fµµ) ' (0, 0),

and (fee, fµτ ) ' (0, 0),7 which have then been partially relaxed while keeping all exper-

imental constrains alive. By this procedure, we have been able to find 30 benchmark

points which all agree with the 3σ neutrino oscillation parameters as well as with all

bounds from low-energy charged lepton observables, neutrinoless double beta decay, and

with Eq. (11).

Note that the relations we started with do not necessarily need to be exactly fulfilled

(and in fact they are not for some of the points found), but being somewhat close to them

considerably reduces the tension in the parameter space. Of course one may criticise that

these relations, even if fulfilled only approximately, are at this stage only phenomenological

postulates. While this criticism is certainly justified, one could alternatively try to explain

them by, e.g., a flavour symmetry [1–4]. On the other hand, one could just take them for

granted since after all they are enforced by the experimental bounds.

In the following, we will have a detailed look at the low-energy phenomenology of the

30 benchmark points we have found. First of all, we have found three categories of points:

5Note that this condition also leads to Mν,ee ' 0, thereby simultaneously killing the light neutrino
exchange and the scalar contributions to 0νββ. It furthermore induces correlations between the neutrino
mixing parameters [44] and it also implies that normal ordering must be present.

6Also these conditions impose correlationsMν,eµ ' 0 orMν,eτ ' 0 on the neutrino mixing parameters,
which could also have observable consequences [45].

7Note that fττ ' 0 would not be a good option, since it would have a strong tendency to yield too
small neutrino masses.
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• red (light gray) points: two texture zeros fee ' 0 & feτ ' 0

This category of points features two couplings, fee and feτ , which are essentially

zero. Due to the m2
e-suppression in the Mν,ee-element of the neutrino mass matrix

from Eq. (9), this yields, practically, Mν,ee = 0. Note that this means nothing else

than that the standard light neutrino exchange contribution to neutrinoless double

beta decay, whose amplitude is proportional the so-called effective mass mee =

m1c
2
12c

2
13 +

√
m2

1 + ∆m2
�s

2
12c

2
13e

iα21 +
√
m2

1 + ∆m2
As

2
13e

i(α31−2δ) ≡Mν,ee, vanishes in

our case.8 A vanishing effective mass implies normal ordering (NO) of the light

neutrino masses, m1 < m2 < m3, and a lightest neutrino mass around 5 meV [44]

(see also Ref. [46] for a more recent version of the corresponding plot), which are

two clear predictions of this setting. Furthermore, feτ ' 0 implies that Mν,eτ ' 0,

too, which imposes further restrictions on the neutrino oscillation parameters and

Majorana phases but not on the light neutrino mass scale [45].

• purple (medium gray) points: one texture zero fee ' 0 & correlation Eq. (17)

This category of points also featuresMν,ee = 0 and thus NO and m1 ∼ 5 meV. How-

ever, the strong constraint from µ→ eγ is instead evaded by having feµf
∗
µµ+feτf

∗
µτ '

0. As we will see, this category of points is much more predictive than the red points

in what concerns lepton flavour phenomenology, due to the conditions imposed by

the correlation. For example, a sizable coupling feτ (which is not so strongly con-

strained by experiments) enforces a sizable coupling feµ if the above correlation is

to be fulfilled, and vice versa. It is non-trivial to see from the formulae how the neu-

trino oscillation parameters and phases are constrained, but our numerical analysis

presented below will easily reveal these tendencies. Note further that, just as for

the red points, 0νββ is not observable due to fee ' 0 suppressing both the standard

and non-standard contributions.

• blue (dark gray) points: only the correlation Eq. (17)

These points only obey the correlation feµf
∗
µµ + feτf

∗
µτ ' 0, but they do not feature

a tiny coupling fee. In fact, this coupling can be relatively large, of O(0.1), which

makes these points most interesting from the LNV point of view. First of all, note

that we can even for a sizable fee assume thatMν,ee ' 0, due to the m2
e-suppression

of that matrix element. This means that the standard light neutrino exchange

contribution to 0νββ still vanishes and thus NO and a lightest neutrino mass of

8Note that also the contribution comes from the non-standard diagram containing the doubly charged
scalar, discussed in Sec. 4, is also suppressed due to fee ' 0. Thus, this category of points yield Majorana
neutrinos with, however, 0νββ unfortunately not being observable.
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roughly 5 meV is implied, similar to the scenario discussed in Ref. [23]. However,

this time, the non-standard contribution from the doubly charged scalar S−−, cf.

Sec. 4, is sizable. In fact, as Eq. (16) reveals, the doubly charged scalar mass MS

and the cutoff Λ must be sizable in order to not be in conflict with the current

experimental upper bound on 0νββ. Thus, this category of points has a strong

tendency to be falsifiable by a dedicated experiment. However, since at the same

time a larger MS is required, these points are not so desirable from the point of view

of collider phenomenology, cf. Sec. 7.

After having explained the rough categories of points, we will now present a few exam-

ple points (in each category the one which fits the neutrino data best), before analysing

the benchmark points in more detail. The three example points are given in Tab. 2,

along with their predictions for the different LNV and LFV observables in Tab. 3. Some

remarks should be given on the numerical values:

• As to be expected, ξ is always of O(1), and we have ensured that all the benchmark

points have couplings ξ below the perturbativity limit of 4π.

• We also have found points with considerably larger scalar masses. However, we did

not include them in our plots because we wanted to focus on the points which are

at least potentially testable at LHC.

• The dimensional regularisation scale µ is meaningless in the sense that its actual

value does not decide in any way about the validity of a certain benchmark point [47],

and we only quote it in order to enable the inclined reader to reproduce our results.

Any observable Ô calculated at loop-level does in principle depend on some energy

scale p2, where p is some 4-momentum, and on the unknown scale µ: Ô = Ô(p2, µ).

If the value of the observable is known at some energy scale p0, Ô(p2
0, µ) = Ôobs, one

can in principle use this relation to compute µ as a function of p0, µ = µ0 ≡ µ(p2
0).

Then, the value of Ô at any other energy scale p can be computed as Ô(p2, µ0).

In our case, there is no explicit dependence of the neutrino mass matrix on the

momentum p2, cf. Eq. (9). However, there is an implicit dependence through the

observables involved, e.g., by the ∆m2-values obtained from a global fit [48]. Thus,

the values of µ presented in the table are simply the µ0’s derived from matching the

observables to their experimental values.

• We purposely present the figures in the Tab. 2 with a too good precision, in order to

make it easier to reproduce our results. We are confident that any potential reader

of this text will be able to round the numbers to a smaller precision if required.
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Best-fit point (red) Best purple point Best blue point

ξ 5.02 6.38 3.39
MS 164.5 GeV 364.6 GeV 626.0 GeV
Λ 905.9 GeV 2505.1 GeV 5094.7 GeV
µ 0.664 keV 1.36 · 103 TeV 33.5 eV
Refee 8.32 · 10−17 ' 0 7.21 · 10−16 ' 0 −0.0467
Imfee −4.62 · 10−17 ' 0 0 0.00881
Refeµ 0.00804 1.63 · 10−4 −9.25 · 10−6

Imfeµ −5.34 · 10−4 9.09 · 10−7 −1.64 · 10−5

Refeτ 4.25 · 10−20 ' 0 −4.08 · 10−3 −0.00562
Imfeτ 4.79 · 10−20 ' 0 3.55 · 10−4 −7.20 · 10−6

Refµµ 4.75 · 10−5 3.60 · 10−4 6.90 · 10−4

Imfµµ −2.09 · 10−5 −3.32 · 10−4 1.53 · 10−7

Refµτ 4.55 · 10−6 2.61 · 10−5 5.23 · 10−5

Imfµτ −2.44 · 10−6 −2.90 · 10−5 −1.18 · 10−8

Refττ 1.84 · 10−7 8.50 · 10−7 1.55 · 10−6

Imfττ −8.16 · 10−8 −7.17 · 10−7 7.86 · 10−10 ' 0

m1 5.32 meV 6.87 meV 6.84 meV
m2 10.2 meV 10.9 meV 10.9 meV
m3 49.9 meV 48.5 meV 48.2 meV
∆m2

� 7.64 · 10−5 eV2 ∈ 2σ 7.17 · 10−5 eV2 ∈ 2σ 7.19 · 10−5 eV2 ∈ 3σ
∆m2

A 2.47 · 10−3 eV2 ∈ 3σ 2.31 · 10−3 eV2 ∈ 2σ 2.28 · 10−3 eV2 ∈ 3σ
sin2 θ12 0.286 ∈ 2σ 0.345 ∈ 3σ 0.332 ∈ 3σ
sin2 θ13 0.0185 ∈ 3σ 0.0188 ∈ 3σ 0.0183 ∈ 3σ
sin2 θ23 0.493 ∈ 2σ 0.604 ∈ 2σ 0.612 ∈ 2σ
δ 1.88π 0.780π 0.999π
α21 0.968π 0.955π 1.00π
α31 0.857π 0.753π 1.00π

Table 2: Three example benchmark points, where from each category of points the best
one has been chosen.

From Tab. 2, the input parameters (upper part of the table) can be inserted into

Eq. (9) to yield the light neutrino mass basis in the non-diagonal basis. As the charged

lepton mass matrix is already diagonal (otherwise the formula for the neutrino mass

matrix would not contain the charged lepton mass eigenvalues), all the leptonic mixing

originates from the neutrino sector. The light neutrino mass matrix Mν can then be

brought to a diagonal form, Dν = diag(m1,m2,m3), as usual for a Majorana neutrino
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Best-fit point (red) Best purple point Best blue point

0νββ : T−1
1/2 [yrs−1] 1.61 · 10−48 ' 0 1.38 · 10−50 ' 0 2.76 · 10−26

BR(µ− → e+e−e−) 1.52 · 10−36 ' 0 1.48 · 10−39 ' 0 9.89 · 10−15

BR(τ− → e+e−e−) 1.81 · 10−71 ' 0 1.76 · 10−37 ' 0 1.66 · 10−10

BR(τ− → e+e−µ−) 2.62 · 10−43 ' 0 1.82 · 10−14 5.25 · 10−17

BR(τ− → e+µ−µ−) 5.23 · 10−48 ' 0 7.93 · 10−14 3.40 · 10−14

BR(τ− → µ+e−e−) 1.01 · 10−43 ' 0 1.37 · 10−41 ' 0 1.23 · 10−14

BR(τ− → µ+e−µ−) 1.30 · 10−15 1.26 · 10−18 3.48 · 10−21 ' 0
BR(τ− → µ+µ−µ−) 3.13 · 10−20 6.63 · 10−18 2.72 · 10−18

µ+e− → µ−e+ : GMM/GF 2.74 · 10−22 ' 0 3.99 · 10−21 ' 0 1.26 · 10−7

(g − 2)e 2.06 · 10−17 1.09 · 10−18 5.02 · 10−17

(g − 2)µ 2.52 · 10−12 2.12 · 10−15 1.29 · 10−15

BR(µ→ eγ) 1.33 · 10−15 2.02 · 10−18 2.69 · 10−17

BR(τ → eγ) 2.40 · 10−18 ' 0 2.76 · 10−22 ' 0 4.73 · 10−13

BR(τ → µγ) 9.83 · 10−23 ' 0 2.38 · 10−17 ' 0 1.06 · 10−19 ' 0

Table 3: LNV and LFV predictions of the three example benchmark points detailed in
Tab. 2. The values marked as “' 0” are always viewed to not be reachable with respect
to the current experimental bounds for the particular process under consideration.

matrix:

Dν = U †PMNSMνU
∗
PMNS, (18)

where the Pontecorvo-Maki-Nagakawa-Sakata matrix is explicitly given by its standard

form [41],

UPMNS =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12s13c23e
iδ −c12s23 − s12s13c23e

iδ c13c23

1 0 0

0 eiα21/2 0

0 0 eiα31/2

 ,

(19)

with sij ≡ sin θij and cij ≡ cos θij. In this formula, δ is the Dirac CP phase and α21,31 are

the two Majorana CP phases.

Using the values for the mixing angles given in Tab. 2, one can use Eq. (18) to diago-

nalise the (non-diagonal) light neutrino mass matrices obtained by the input parameters.

The result will in each case be the diagonal matrix Dν for NO such that ∆m2
� = m2

2−m2
1

and ∆m2
A = m3

2 −m2
1.

As already mentioned, the correlations discussed above can be translated into relations

between the mixing angles, the phases, the lightest neutrino mass, and the two mass-

square differences. For example, using Eqs. (18) and (19), it is easy to show thatMν,ee =
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Figure 5: The predictions of the different benchmark points for the known neutrino
oscillation parameters. As can be seen, all benchmark points lie within the 3σ ranges for
the parameters.
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i(α31−2δ) is the effective neutrino mass

measured in 0νββ. Similarly, Eq. (B-1) results in a correlation, some details of which are

given in Appendix B.

What do the benchmark points imply for phenomenology? Let us start with the

predictions for the known neutrino oscillation parameters, which are depicted in Fig. 5.

In this figure, we show the ratios of the different predictions to the best-fit values of the

corresponding neutrino observables [48]. As can be seen, all the points fit the neutrino

oscillation parameters within their 3σ ranges indicated by the light gray thick bars, and the

closer the points are to the vertical line at 1.0, the better they are; the points representing

the best-fit benchmark are indicated by the yellow (gray) circles. Note that, for θ23, we

have also indicated the position of the (only slightly worse) second minimum of the χ2-

function in the second octant, as well as the maximal value of θ23 = 45◦ to simplify the

orientation. Note that all the points drawn either yield maximal θ23 or a value of θ23 close

to the second minimum. Thus, the resulting fits would be improved if at some point the

second minimum was favoured by the data.

Starting with the points of the first category (fee,eτ ' 0), which are indicated by the

red (light gray) points which will from now on only be called “red points”, one can see that
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the spread of these points is quite large. Indeed, these points are least constrained, which

is also reflected by us having found many more points of this category than of any other.

However, even for the red points, a tendency for smaller values of θ13 and larger values of

θ23 can be seen. Furthermore, it seems that the atmospheric mass-square difference ∆m2
31

has a tendency to be larger than the best-fit value, while no such tendency can be seen

for ∆m2
21.

The second category of points (“purple points”), which fulfill fee ' 0 and Eq. (17),

are indicated by the purple (medium gray) points. Here, the picture is very different: the

purple points seem to have very solid predictions for nearly all the observables, which

allows to falsify these points with high precision neutrino oscillation experiments. The

first mixing angle θ12 should be quite large, close to the upper 3σ bound, while θ13 should

be rather small. Also θ23 should be large, but not quite at the upper 3σ edge. ∆m2
31

should be small, too, only for ∆m2
21 there is no clear tendency.

Finally, the third category of points (“blue points”), which only obey the correlation

from Eq. (17) and are indicated by the blue (dark gray) points yield equally solid predic-

tions. While there is no clear prediction visible for ∆m2
21, one can see that θ12,23 should

be large while θ13 should be small. ∆m2
31, in turn, should be small or at least close to its

best-fit value.

The next set of predictions is depicted in Fig. 6, where the Dirac and Majorana phases

are shown on the left, whereas the lightest neutrino mass m, the scalar mass MS, the cutoff

scale Λ, and the effective coupling ξ are presented on the right. Starting with the phases,

it is immediately visible that in particular the Dirac phase δ can be used to distinguish the

different types of points. While the red points prefer δ to be close to 0 (or, equivalently,

2π), the blue points clearly prefer δ ' π and the purple points cluster around δ ≈ 0.8π

or 1.2π. Thus, with a future improved measurement of δ or if the hint by T2K [49, 50]

persists, this would be very useful to distinguish the different categories of points. For the

Majorana phases, interestingly, all the benchmark points we have found seem to prefer

α21 ' π, which is particularly notable since the red and blue points have, in fact, nothing

in common in terms of the conditions leading to them. The explanation of this is that

some bound must push α21 to being close to this value, and indeed this value is needed

in order to make the required cancellation in Mν,ee possible [44]. For α31, in turn, there

seems to be no clear tendency for the red points. The purple points, however, seem to

enforce α31 ∼ δ, while the blue points cluster strongly around α31 = π, so that the blue

points seem to forbid CP violation (i.e., all phases are trivially equal to −1).

The mass/energy scales predicted as well as the predictions for the effective coupling

ξ are displayed on the right panel of Fig. 6. First of all, as we had already pointed out, all

the points found predict NO with a lightest neutrino mass m ≈ 5 meV, due to them being
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Figure 6: Predictions of the benchmark points for the neutrino-related phases (left) and
for the mass/energy scales as well as the coupling ξ (right).

the cancellation region of Mν,ee [44, 46]. The values predicted for MS and Λ are spread

over a slightly larger range, and we have also found points with considerably larger values

of MS which we however do not display here due to their bad detection prospects for

LHC. On the other hand, there is a clear tendency of the blue points to yield larger values

of MS and Λ, which arises from the requirement of fulfilling the 0νββ bound, Eq. (16), as

we had anticipated from observing that the coupling fee is sizable for these points. The

predictions for ξ are all roughly around 1 as they should be for the EFT to make sense [47]

– some are a bit larger, but always below the perturbativity limit. The only outliers are

two single purple points which yield ξ ∼ 0.1. The reason for ξ not to be too small is that

this would lead to an overall suppression of the light neutrino mass matrix, cf. Eq. (9),

which should not be too small in order to correctly reproduce the “large” mass-splitting

∆m2
31.

The sizes of the Yukawa couplings of the doubly charged scalar to pairs of right-handed

charged leptons are displayed in Fig. 7, left panel, with a blow-up of the region with the

larger couplings shown on the right. As can be seen, |fee| is trivially very tiny for the

red and purple points, and so is |feτ | for the red points. However, the blue points admit

quite large values of |fee|, which should translate into sizable rates for 0νββ. For the

red points, large values for |feµ| are required, as otherwise it would not be possible to
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Figure 7: The Yukawa couplings of the doubly charged scalar to like-sign right-handed
charged leptons. The full range is displayed on the left, while a more detailed view of the
more interesting regions (i.e., larger couplings) is displayed on the right.

obtain phenomenologically viable light neutrino masses, given that the mass matrices

corresponding to these points inherit two texture zeros from Yukawa coupling matrix fij.
9

Naturally, because the corresponding Yukawa matrices only have one (no) texture zero(s),

this requirement is not so strong for the purple (blue) points, such that smaller values

of |feµ| are possible. They need a small |feµ|, even though the correlation from Eq. (17)

does help considerably in order to avoid the strong bound from µ → eγ as well as the

tree-level decay µ→ 3e. That decay is also suppressed by a small |fee|, but this coupling

is large for the blue points so that they need |feµ| to be small enough.

Apart from some exceptionally strong LFV bounds, the general tendency of the values

for the couplings fij is that they tend to compensate for the mimj-suppressions present in

the light neutrino mass matrix, cf. Eq. (9). Put into a more intuitive form, m2
τ > mτmµ >

m2
µ > mτme > mµme > m2

e generically implies that |fee| > |feµ| > |feτ | > |fµµ| > |fµτ | >
|fττ |, in order to have large mixings as required in the neutrino sector, and this relation is

only altered by certain strong bounds requiring some couplings to be particularly small.

9As we will see in a minute, it might lead to phenomenological differences whether the neutrino mass
matrix inherits textures from the Yukawa coupling matrix or whether it only involves “effective” texture
zeros due to the mimj-suppressions being at work.
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Indeed, as can even be seen in the plot, one could draw an imaginary straight diagonal

line through the sets of points. The interesting region of the couplings is depicted in

greater detail on the right panel of Fig. 7. From this figure one can in particular see that,

for the blue and purple points, the correlation feµf
∗
µµ + feτf

∗
µτ ' 0 is another reason that

|fµµ| > |fµτ | is required, due to |feµ| being smaller than |feτ |.
For comparison, we have also displayed in Fig. 8 the sizes of the resulting mass matrix

entries (left panel: whole range, right panel: sizable entries only), by calculating their

flavour-dependent parts gij ≡ (1 + δij)mimjfij. These reveal the actual physical texture

zeros in what concerns the light neutrino mass matrix. As generic for phenomenologically

valid light neutrino mass matrices, most of the matrix elements are nearly of the same size,

with some additional structure imposed by certain texture zeros. This plot clearly reveals

that the physical differences between our three categories of benchmark points: while at

the level of the Yukawa matrices fij, the red [purple, blue] points were characterised by

two texture zeros [by one texture zero and the correlation from Eq. (17), only by the

correlation from Eq. (17)], we can see from Fig. 8 that, effectively, all categories of points

involve two texture zeros on the level of the mass matrix. For the red points, these are

trivially the elements Mν,ee ' 0 and Mν,eτ ' 0, while both the purple and blue points

are characterised byMν,ee 'Mν,eµ ' 0. Physically, this means that the purple and blue

points should look very similar in what concerns neutrino phenomenology, and this is

exactly confirmed by Figs. 5 and 6, which illustrate that all predictions of neutrino mass

and leptonic mixing parameters are essentially the same (the only small differences are

visible in the phases δ and α31). Thus, the purple and blue points indeed would need to

be distinguished by LNV/LFV data. This is well possible, as we will show in the next

few paragraphs.

Finally, the predictions of the different points for the relevant observables in low-energy

leptonic phenomenology are all depicted in Fig. 9. Let us start with LNV processes, the

only relevant of which being 0νββ. The predictions for this process, i.e., the predicted

amplitude divided by the experimental bound, cf. Sec. 4, can be found on the left panel.

Since too small predictions are of no interest, we have decided against plotting the whole

range of points. Instead, we only show the region somewhat close to the bounds, while we

indicate in the plots whenever there are some points left of that region and thus out of the

plot. Not surprisingly, in the row corresponding to 0νββ no red or purple points are visible,

which is a simple reflection of fee ' 0 holding for these types of points. However, the

blue points have sizable couplings fee and, although the standard light neutrino exchange

contribution is nevertheless suppressed, they hence yield a potentially sizable signal. In

fact, as can be seen from the plot, the blue points are very close to the current bound

and could potentially be ruled out completely by the next generation of experiments on
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whole range, right: only sizable entries). See text for details.

neutrinoless double beta decay.

The next category of bounds are those arising from the electron and muon anomalous

magnetic moments. However, as can be seen from the plot, these bounds are not really

competitive in our case, so that we will not discuss them further. The loop-level LFV

processes show a more interesting picture: first of all, as anticipated, it is clearly visible

from the plot that the bound coming from MEG’s non-observation of µ→ eγ [42] is by far

the strongest one in the game: indeed, most of the points are close to the bound within

one or two orders of magnitude in the amplitude, which shows that improved bounds on

this observable could potentially rule out many of the valid points. A handful of points

yields values that are smaller by about one more order, and only two purple points have

been found which seem fairly safe even from improved measurements of the process. The

radiative LFV decays of the τ do not seem so strong. This purely stems from the fact

that these experiments are much more difficult to perform due to the short lifetime of

the τ . On the other hand, there exist blue (purple) points which are only a bit more

than two orders of magnitude away from the current bound on τ → eγ (τ → µγ) and,

given that these bounds are relatively weak at the moment, it is not unthinkable that new

experimental techniques might be devised in the future which could considerably improve

the current values.
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Figure 9: The predictions for the different low-energy leptonic observables (lepton num-
ber/flavour violation and magnetic dipole moments).

Finally, let us look at the tree-level LFV processes, right panel of Fig. 9. Here, it is

clear that the red and purple points, with fee ' 0, are safe from any bounds involving

that coupling, so that only the blue points are of interest for µ → 3e, τ → 3e, and

τ− → µ+e−e−, if so at all. However, in particular µ→ 3e imposes a strong bound on the

blue points, so that all of them could probably be ruled out by an improved measurement.

Going down in the figure, the red points are also entirely safe from τ− → e+µ−e− and

τ → 3e, due to feτ ' 0. However, these processes are potentially dangerous for the

purple points, while the blue ones are fairly below the current bounds. The weakest

bounds exist on decay modes like τ− → µ+e−µ− and τ → 3µ, which is why from the

corresponding observables there originates no strong tension on the parameters. Thus,

couplings like fµµ or fµτ can easily be comparatively large from an LFV point of view,

and this is desired for the corresponding points to be interesting for phenomenology at

LHC, which we will investigate in Sec. 7. As sfinal remarks for this section note that, for

completeness, muonium conversion does not impose a strong bound and except for the

blue points all benchmark scenarios found are off the plot. However, what could yield an

interesting bound in the future would probably by µ-e conversion on nuclei [51, 52]. Due

to the difficulties involved with a detailed computation and because of the current limit
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Figure 10: Examples of pair and single production processes of S++, partially in associa-
tion with jets.

not being competitive with the one on µ→ eγ, we postpone an analysis of this particular

process to later work [53].

7 Collider phenomenology and bounds

The existence of doubly charged scalars being predicted in different scenarios of new

physics beyond the SM, analyses at the LHC have been designed to identify signatures of

these new particles. Searches by both ATLAS [54] and CMS [55] collaborations have been

undertaken, though no signal has been found so far. From the phenomenological side, a

large number of analyses have been performed to identify signatures of doubly charged

scalars [20, 56–68]. A quite extensive treament of the production and decay channels

of doubly charged scalars has recently been presented in [69]: in this paper the main

production processes and decay channels of doubly charged scalars are analysed from a

model-independent point of view; furthermore, a calculation of experimental efficiencies

for different masses and decay channels has been performed, also providing predictions for

future LHC energies. The results of this analysis will be extensively used in the following

sections, to pose bounds on the classes of scenarios treated in this work.

7.1 Production and decay channels

The doubly-charged scalars can be either produced in pairs or singly, as shown in Fig. 10,

with pair production being the dominant mechanism for a large range of S++ masses.

While pair production in association with jets through vector boson fusion (VBF) is

suppressed by the higher order of the process, single production is more model-dependent:

the coupling with the W -boson depends on two parameters, the cutoff Λ and the coupling

parameter ξ. The cross sections for pair production as well as pair production in asso-

ciation with jets are provided in Tab. 4. However, to understand the relevance of single

24



MS [GeV]
Cross section [fb]

pair production pair production + jets (VBF)
7 TeV 8 TeV 13 TeV 14 TeV 7 TeV 8 TeV 13 TeV 14 TeV

200 8.52 11.3 28.0 31.7 0.199 0.279 0.818 0.955

300 1.36 1.93 5.74 6.64 3.65×10−2 5.44×10−2 0.196 0.229

400 0.310 0.474 1.70 2.02 9.46×10−3 1.48×10−2 6.29×10−2 7.55×10−2

500 8.59×10−2 0.142 0.620 0.749 2.90×10−3 4.87×10−3 2.41×10−2 2.97×10−2

600 2.68×10−2 4.78×10−2 0.255 0.316 9.98×10−4 1.80×10−3 1.06×10−2 1.34×10−2

700 9.04×10−3 1.75×10−2 0.115 0.145 3.74×10−4 7.23×10−4 5.00×10−3 6.47×10−3

800 3.21×10−3 6.77×10−3 5.51×10−2 7.12×10−2 1.50×10−4 3.09×10−4 2.55×10−3 3.33×10−3

900 1.18×10−3 2.73×10−3 2.77×10−2 3.66×10−2 6.06×10−5 1.34×10−4 1.34×10−3 1.81×10−3

1000 4.43×10−4 1.13×10−3 1.44×10−2 1.95×10−2 2.52×10−5 6.15×10−5 7.41×10−4 1.02×10−3

Table 4: Cross sections (in fb) for S++ pair production and for pair production in asso-
ciation with jets for different S++ masses and LHC energies.

production with respect to pair production, the relevant parameters have been fixed to

the values Λ = 5MS or Λ = 10MS and ξ = 4π. These values are not related to any of

the benchmark points used in this analysis; they have been chosen to maximise the con-

tribution of single production, which increases for increasing ξ and decreasing Λ: ξ = 4π

is at the boundary of the perturbative region, while as the cutoff is concerned, in one

case (Λ = 5MS) the cutoff has been chosen to be in a region where the validity of the

EFT approach may appear questionable, while in the other case (Λ = 10MS) the EFT

approach is safer. In any case, the typical scale of the process for single production of the

doubly charged scalar is p2 ' M2
S, therefore the error given by the EFT approximation

scales as p2/Λ2 ∼M2
S/Λ

2, which for Λ = 5MS amounts to only about 4%. Smaller values

of the cutoff/mass ratio would enter a region where the approximation may not be ac-

ceptable anymore, and where the details of the UV completion of the model are required

to correctly describe the process. For this reason, in the following, the lower bound on the

cutoff will always be 5MS. The cross sections at different LHC energies for all production

mechanisms are provided in Tab. 5.10

An interesting feature of single production, which can be immediately noticed in

Fig. 11, is its peculiar scaling property: comparing the ratios between the cross sections

of single production with pair production (σVBF single/σs-channel pair) and of pair production

via VBF with pair production (σVBF pair/σs-channel pair), it can be noticed that single pro-

duction is more relevant at low S++ masses and becomes negliglible at high S++ masses.

The behaviour of pair production via VBF is complementary: the cross section grows

relatively to pair production for increasing S++ masses. In the production processes of

different states (such as quarks) at the LHC, single production usually becomes dominant

10The values for pair production have been obtained using the model files provided in [69] and per-
forming numerical simulations through MadGraph5 [70]. The cut on the minimum transverse momentum
of jets has been fixed to be 10 GeV. The new vertex for single production has been implemented in
dedicated model files.

25



MS [GeV]
Single production cross section [fb]

Λ = 5MS Λ = 10MS
7 TeV 8 TeV 13 TeV 14 TeV 7 TeV 8 TeV 13 TeV 14 TeV

200 4.81 6.27 15.1 17.1 7.53×10−2 9.79×10−2 0.237 0.267

300 0.201 0.270 0.717 0.823 3.14×10−3 4.22×10−3 1.12×10−2 1.29×10−2

400 1.94×10−2 2.70×10−2 7.81×10−2 9.06×10−2 3.03×10−4 4.22×10−4 1.22×10−3 1.41×10−3

500 2.98×10−3 4.26×10−3 1.34×10−2 1.57×10−2 4.65×10−5 6.65×10−5 2.10×10−4 2.46×10−4

600 6.10×10−4 9.01×10−4 3.10×10−3 3.67×10−3 9.53×10−6 1.41×10−5 4.83×10−5 5.73×10−5

700 1.53×10−4 2.34×10−4 8.71×10−4 1.04×10−3 2.40×10−6 3.65×10−6 1.36×10−5 1.63×10−5

800 4.46×10−5 7.02×10−5 2.86×10−4 3.44×10−4 6.98×10−7 1.10×10−6 4.46×10−6 5.38×10−6

900 1.46×10−5 2.37×10−5 1.05×10−4 1.27×10−4 2.27×10−7 3.70×10−7 1.64×10−6 1.99×10−6

1000 5.19×10−6 8.72×10−6 4.20×10−5 5.16×10−5 8.10×10−8 1.36×10−7 6.56×10−7 8.07×10−7

Table 5: Cross sections (in fb) for S++ single production, given for different S++ masses
and LHC energies. The cross sections have been computed for different values of the
parameters that determine the SWW coupling: ξ = 4π and Λ = 5MS or Λ = 10MS.

at high masses. But, due to the peculiar scaling property of the WWS vertex, this is

not the case for the classes of models described here. However, this behaviour opens up

the possibility to develop dedicated strategies for searches of singly-produced light doubly

charged scalars. The number of signal events in the final state is not huge, of course, and

it strongly depends on the values of the SWW coupling parameters Λ and ξ. However,

as shown in Fig. 12, the numbers of events for single production can be large enough to

be detectable, especially at low masses. A dedicated analysis is in progress [71].

The search strategies for doubly-charged scalars depend on their decay channels, which

can be divided into WW and lalb, also accounting for LFV. Considering specific selections

and kinematic cuts, the number of expected signal events can be obtained by multiplying

the cross section by the integrated luminosity L, the branching ratios (BRs) of the S++

in all its possible decay channels, and the efficiencies ε corresponding to all channels as:

N events
ij = σ L BR(S++)i BR(S−−)j εij, (20)

where i and j run over all possible decay channels. The three categories of points iden-

tified in the previous sections are characterised by different patterns of branching ratios

into these channels. Rescaling (cf. Sec. 3) the benchmark points that comply with all

the bounds discussed in the previous sections, it is possible to obtain branching ratios

and total widths for different S++ masses. A sample of the results obtained for various

S++ masses between 200 GeV and 1000 GeV and for each category of points is given in

Appendix C. The BR values have been obtained using a MC generator (BRIDGE [72])

on our MadGraph model files, and therefore the samples shown in the tables are just

representative and they have the purpose to identify general features of the different

categories.

The results shown in the tables allow us to derive some consequences for the different
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Figure 11: Ratios of cross sections at 8 TeV for single and pair production of
S++ via VBF with respect to s-channel pair production (σVBF single/σs-channel pair and
σVBF pair/σs-channel pair). Single production cross sections have been computed for different
values of the Λ/MS ratio.

search strategies:

• For all points the balance between decays into leptons and WW is crucially de-

termined by the values of ξ and Λ. However, while ξ is constrained to be in the

perturbative region 0 < ξ < 4π, the value of Λ is only bounded from below by the

(rough) 5MS limit, which allows to describe the process of production of the doubly

charged scalar process with an accuracy of the order of (MS/Λ)2 ≈ 4%. Due to the

scaling of the SWW coupling (ξ/Λ3), the decays into WW will be more suppressed

as the mass of the scalar increases and indeed, for large masses MS ∼ 1000 GeV,

the decay into WW is almost always suppressed.

• For purple points, in all the range of masses considered, the doubly-charged scalar

decays either to WW or eτ , with a small fraction of events possibly decaying to

µµ when the leptonic decays dominate. This means that, to test purple points,

different channels can be explored, regardless of the value of MS in the explored

range (200 GeV – 1 TeV):
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Figure 12: Number of signal events for pair production and single production at 14 TeV,
with an integrated luminosity of 300 fb−1. The shaded region corresponds to less than one
event and therefore an undetectable signal. The curves for single production have been
drawn for different values of ξ and can be derived from Tab. 5 by taking into account that
σsingle(ξ) = σsingle(ξ = 4π)× [ξ/(4π)]2.

1. BR(WW ) = 100%, BR(eτ) = 0%, BR(µµ) = 0%: this scenario leads to the

only possible final state WWWW .

2. BR(WW ) = 50%, BR(eτ) = 50%, BR(µµ) = 0%: this scenario allows for

three different final states, namely WWWW , WWeτ , and eτeτ .

3. BR(WW ) = 0%, BR(eτ) = 98%, BR(µµ) = 2%: this scenario can be explored

in two final states, eτeτ and eτµµ, while the branching ratios are too small to

make the µµµµ final state relevant enough.

• For red points the only allowed decays are into WW or eµ. However, the leptonic

decay is always dominant for large masses, while the WW decay can dominate at

low masses depending on the parameters of the SWW coupling. Therefore, to test

red points, different channels can be explored at different masses:

1. BR(WW ) = 100%, BR(eµ) = 0%: this scenario leads to the only possible final

state WWWW and can be explored in the small mass region (MS ' 200 GeV).
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2. BR(WW ) = 50%, BR(eµ) = 50%: this scenario allows for three different final

states: WWWW , WWeµ, and eµeµ, and they can be explored up to the

medium-sized mass region (MS . 600 GeV).

3. BR(WW ) = 0%, BR(eµ) = 100%: this scenario leads to the only possible final

state eµeµ and can be explored in the full range of MS masses.

• For blue points it is only possible to define strategies for large masses, as it is not

feasible to determine any benchmark point that satisfies all the flavour constraints

in the low mass region. The preferred decay of the doubly charged scalar in this

scenario is almost always into ee, with a small fraction of events possibly decaying

to eτ . However, depending on the SWW coupling parameters, it is possible to have

sizable WW decays in the 600 GeV mass region. Therefore, the most interesting

channels for blue points are:

1. BR(WW )=40%, BR(ee)=50%, BR(eτ)=10%: this scenario leads to various

final states: WWWW , WWee, eeee, and eeeτ , while the WWeτ and eτeτ

final states are not very interesting due to the small branching ratios. However,

this scenario can only be explored in the medium mass region, MS ' 600 GeV.

2. BR(WW )=0%, BR(ee)=83%, BR(eτ)=17%: this scenario leads to three final

states: eeee, eeeτ , and eτeτ . It can be explored for all masses where blue

points can be defined (i.e., MS & 600 GeV).

3. BR(WW )=0%, BR(ee)=100%, BR(eτ)=0%: this scenario only leads to the

final state eeee and can only be explored in the large mass region (MS &
1000 GeV).

Due to the smallness of couplings, it could also be useful to understand if the S++ can be

long-lived enough to produce displaced vertices or different signatures, but the size of the

total widths in all the benchmarks analysed largely rules out this possibility: considering

a displaced vertex resolution of ∼ 10 µm [73], corresponding to a lifetime τ ∼ 10−13s, the

width of the S++ has to be Γ . 10−12GeV. However, the scenarios explored with widths

larger than 10−5 GeV are quite far from this regime.

The efficiencies associated to the decay channels can only be obtained running a full

simulation that also reproduces detector effects. This simulation has been performed

in [69] for different values of the LHC energy, and the values provided in this analysis will

be used in the following. The numbers of events for representative values of the branching

ratios and the exclusion confidence levels for the expected signal events in the different

channels are shown in Tab. 6. According to [69], no expected background and no observed

events have been assumed. The uncertainty on the signal events has been taken to be
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Purple Points

MS [GeV]
BR (%) Channels

WW eτ µµ
WWWW WWeτ eτeτ eτµµ

Events eCL (%) Events eCL (%) Events eCL (%) Events eCL (%)

200
100 0 0 0.04 3.9 - - - - - -
50 50 0 0.01 1.0 0.02 2.0 0.94 60.2 - -
0 98 2 - - - - 3.61 96.5 0.19 17.2

600
100 0 0 0.00 0.0 - - - - - -
50 50 0 0.00 0.0 0.00 0.0 0.00 0.0 - -
0 98 2 - - - - 0.02 2.0 0.00 0.0

Red Points

MS [GeV]
BR (%) Channels

WW eµ
WWWW WWeµ eµeµ

Events eCL (%) Events eCL (%) Events eCL (%)

200
100 0 0.04 3.9 - - - -
50 50 0.01 1.0 0.06 5.8 5.53 99.3
0 100 - - - - 22.1 100.0

600
50 50 0.00 0.0 0.00 0.0 0.02 2.0
0 100 - - - - 0.09 85.9

Blue Points

MS [GeV]
BR (%) Channels

WW ee eτ
WWWW WWee eeee eeeτ

Events eCL (%) Events eCL (%) Events eCL (%) Events eCL (%)

600
40 50 10 0.00 0.0 0.00 0.0 0.02 2.0 0.00 0.0
0 83 17 - - - - 0.06 5.8 0.00 0.0

Table 6: Numbers of signal events and exclusion confidence levels at 7 TeV and an inte-
grated luminosity of 4.9 fb−1, for different S++ masses and for the most relevant chan-
nels. The efficiencies used to determine the exclusion confidence levels are those computed
in [69]. If a specific final state is not allowed with the given BRs, it has been labelled by
the symbol “-”; on the other hand, if the number of events is numerically smaller than
0.01, the number of events has been set to 0.00 and the corresponding exclusion CL to
0.0. Scenarios which can be excluded at more than 95% CL have been highlighted.

as large as 20%. Exclusion confidence levels above 95% correspond to a 2σ exclusion;

it is already possible to see that some of the scenarios considered in our study, even if

complying with all the flavour bounds, are already excluded by LHC data, and they have

been highlited in the table. However, most of the points considered are well within the

allowed region, and we report all results for transparency and reproductibility.

Current experimental searches do not consider S++ decays into WW , and the selec-

tion and kinematic cuts are obsviously optimised for decays into leptons. It would be

interesting to understand which kind of strategies could be useful to explore the channels

fed by the decays into W ’s (see e.g. [58]). In our case, an example can be provided for
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Mass [GeV] Expected number of events

Scenario 1 Scenario 2 Scenario 3
8 TeV 14 TeV 8 TeV 14 TeV 8 TeV 14 TeV

200 26.22 367.72 12.20 171.18 5.88 82.42
300 4.48 77.02 2.08 35.86 1.00 17.26
400 1.10 23.43 0.51 10.91 0.25 5.25
500 0.33 8.69 0.15 4.04 0.07 1.95
600 0.11 3.67 0.05 1.71 0.02 0.82

Table 7: Expected number of events for the llWW channel considering W decays and
before any selection or kinematics cuts. The luminosity associated to the energy of 8 TeV
(14 TeV) is 20/fb (100/fb).

red points at low masses, for which we can consider the following process:

PP → S++S−− → (W±W±)(e∓µ∓). (21)

The branching ratios of the W -boson are BR(jj) ∼ 68% and
∑

i BR(liνi) ∼ 32%, so,

considering a scenario in which the doubly-charged scalar decays in 50% of all cases into

W -bosons, we obtain the following possible channels:

1) BR(e−µ− + 4j) . 0.5× 0.5× 0.682 ∼ 0.116 ,

2) BR(e−µ− + 2j + l+ + ν) . 0.5× 0.5× 0.68× 0.32 ∼ 0.054 ,

3) BR(e−µ− + 2l+ + 2ν) . 0.5× 0.5× 0.322 ∼ 0.026 .

(22)

The expected numbers of events for the three scenarios before any kinematics cut are

shown in Tab. 7.

The strategies we can propose to test the various final states are the following:

1) Require a final state with same-sign electron and muon and 4 jets. Furthermore,

impose that the invariant mass of same-sign eµ pair is in the S++ window and that

the invariant mass of the two jet pairs corresponds to two W -bosons.

2) Require a final state with same-sign electron and muon, 2 jets, and missing trans-

verse momentum. Furthermore, impose that the invariant mass of same-sign eµ pair

is in the S++ window and that the invariant mass of the jet pair corresponds to the

W -boson.

3) The identification of final states is quite challenging due to both the reduction in

the cross section by the branching ratios and the difficulty in reconstructing the
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invariant mass of the W because of the presence of 2 neutrinos, but it can be worth

exploring this final state for very low masses of the doubly-charged scalar.

In this analysis we have just provided an overview of the possible phenomenology of

this class of models; a more specific analysis will be performed in a forthcoming dedicated

study [71].

8 Conclusions and Outlook

We have considered the implications of a rather minimal extension of the Standard Model

involving just one extra particle, namely a single SU(2)L singlet scalar S++ and its an-

tiparticle S−−. In Sec. 2 we proposed a model independent effective operator, which

yields an effective coupling of S±± to pairs of same sign weak gauge bosons, W±W±.

We also allowed tree-level couplings of S±± to pairs of same sign right-handed charged

leptons l±Rl
′±
R of the same or different flavour. In Sec. 3 and Appendix A we calculated

explicitly the resulting two-loop diagrams in the effective theory responsible for neutrino

mass and mixing. We discussed lepton number violation and lepton flavour violation in

Secs. 4 and 5, then in Sec. 6, presented thirty example benchmark points for various S±±

masses and couplings which can yield successful neutrino masses and mixing, consistent

with limits on charged lepton flavour violation (LFV) and neutrinoless double beta decay.

We then turned to the high energy phenomenology of the effective vertex in Sec. 7,

where we showed that the particle S can also lead to very interesting phenomenology

at colliders. In particular, we showed that LHC searches at 7 TeV are already able to

exclude certain configurations otherwise allowed by flavour bounds. Furthermore, due

to the structure of the SWW vertex in this class of models, the yet experimentally

unexplored decays into theWW channel may be largely dominant, and the peculiar scaling

behaviour of single production mechanism makes it especially relevant at low S masses.

In Appendix B we presented a new correlation for elements of the light neutrino mass

matrix, which arises for a certain category of benchmark points and which is, in principle,

also testable. In Appendix C, we gave the numerical values of the branching ratios of

the doubly charged scalar for all classes of benchmark points found. A more detailed

phenomenological study of the experimental reach for the most interesting channels of

this class of models is under way.

In conclusion, we have studied the different phenomenological aspects of a class of

models involving a single doubly charged scalar S±±, with an effective coupling to two

W -bosons and flavour violating couplings to right-handed charged leptons. This very basic

setting leads to a huge variety of phenomena, starting from a viable neutrino mass matrix

generated at 2-loop level, and extending over a variety of lepton number/flavour changing
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processes, through to the S±± discovery prospects in various channels at the LHC. We

have shown that it is possible to find benchmark points which are consistent with all the

low and high energy data available, demonstrating the complementarity between neutrino

and LFV experiments and the LHC.
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Appendix A: The neutrino mass in detail

Even though it is based on a 2-loop diagram, the neutrino mass generated by the vertex

displayed can be calculated analytically and the resulting expression are still somewhat

economic in the simple approximation of neglecting the squared charged lepton masses in

the denominators of the propagators inside the loop. This allows to write down a fully

analytic expression for the neutrino mass, if some tricks are used. We will detail the

calculation in this Appendix A.

First if all, depending on the Rξ gauge used, there can be more diagrams than displayed

in Fig. 3. In particular, one can replace one of the W -bosons (or both of them) by their

longitudinal modes, i.e., the corresponding would-be Goldstone bosons. It is only in

unitary gauge (ξW = ∞) that only the diagram with W -bosons contributes, and this

gauge is known to suffer from complicated and unfortunate forms of the gauge boson

propagators and resulting divergences. We have instead decided to use Feynman-’t Hooft

gauge, ξW = 1, where it is easy to show that the two diagrams involving exactly one

W -boson and one Goldstone boson cancel.11 The remaining two diagrams are displayed

in Fig. 13 with the corresponding momentum assignments.

11More generally, these diagrams must cancel in any gauge because of the form of the second vertex
in Eq. (8). The corresponding coupling is proportional to the momentum of the Goldstone boson, which
is exactly opposite for the two diagrams involving exactly one W -boson and one Goldstone boson, while
all other factors are identical. Thus, these diagrams have to cancel in any gauge, which also includes the
special case of both being exactly zero in unitary gauge.
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Figure 13: Momentum-assignments for the two relevant Feynman diagrams.

Using the Feynman rule ifab(1+δab)CPR for the Slalb vertex,12 one can easily compute

the resulting self-energy corrections:

− iΣW
ab =

ig4ξv4mambfab(1 + δab)

4Λ3
CPL

∫
d4k

(2π)4

d4q

(2π)4
γµγν

1

(p+ k)2 −m2
a

1

(p+ k + q)2 −m2
b

· 1

q2 −M2
S

1

k2 −M2
W

1

(k + q)2 −M2
W

[
gµα − (1− ξW )kµkα

k2 − ξWM2
W

] [
gνα −

(1− ξW )kαk
ν

k2 − ξWM2
W

]
,

−iΣG
ab =

−ig2ξv2mambfab(1 + δab)

2Λ3M2
W

CPL

∫
d4k

(2π)4

d4q

(2π)4
(/p+ /k)(/p+ /k + /q) k · (k + q)

· 1

(p+ k)2 −m2
a

1

(p+ k + q)2 −m2
b

1

q2 −M2
S

1

k2 − ξWM2
W

1

(k + q)2 − ξWM2
W

, (A-1)

where a and b are flavour indices, ξ is the coupling of the effective vertex from Eq. (8), and

Λ is the high energy cutoff of the EFT. Obviously, ΣW
ab denotes the self-energy corrections

coming from the diagram with two W -bosons and ΣG
ab does the same for the one with two

Goldstone bosons, while the mixed diagrams cancel.

As already explained, we can greatly simplify the calculation if we use Feynman-

’t Hooft gauge (ξW = 1) and neglect m2
a,b in the denominators. We can also use the fact

that the external momentum can be set to zero, p = 0, if we are only interested in a mass

correction. Furthermore, substituting the q-integration by an integration over r ≡ k + q,

it is easy to see that the denominators are symmetric under the exchange k ↔ r, which

also forces the numerators to have the same symmetry property. This symmetrisation

gets rid of most of the γ-matrices. Using the fact that MW = 1
2
gv, the 2-loop neutrino

12The origin of the δab is the additional factor 2 arising in the Feynman rule from the 2nd derivative
of the path integral, in case the two charged leptons are identical in flavour. Note that this detail was
not explicitly displayed in Ref. [22] which, however, does not play any role since it can be compensated
by a simple redefinition of the corresponding couplings fab.
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mass matrix, M2-loop
ν,ab CPL = ΣW

ab + ΣG
ab, can be written as follows:

M2-loop
ν,ab =

2ξmambfab(1 + δab)

Λ3
· I, (A-2)

where the remaining integral looks comparatively simple and is given by

I ≡
∫

d4k

(2π)4

d4r

(2π)4

(kr)2 − 8M2
W

k2(k2 −M2
W )r2(r2 −M2

W )[(k − r)2 −M2
S]
. (A-3)

Note that the basic structure of Eq. (A-2) is in perfect agreement with e.g. the result

obtained in Ref. [22], which is no surprise as that model contains an explicit realisation

of the effective vertex displayed in Fig. 1. Our remaining task in this appendix is to

explicitly calculate the integral I.

To tackle the integration, it is best to make use of dimensional regularisation [74],13

d4p→ µεddp and (2π)4 → (2π)d where d = 4− ε is the number of dimensions and µ is an

arbitrary energy scale. This is the most appropriate regularisation scheme for EFTs [76],

since it does not lead to any problems with summing up the lowest order contributions

correctly. Then, the basic trick is to rewrite the numerator in Eq. (A-3) in order to obtain

a series of simpler integrals:

(kr)2 =
1

4
[(k − r)2 −M2

S]2 − 1

2
[(k − r)2 −M2

S](k2 + r2) +
M2

S

2
[(k − r)2 −M2

S]

+
1

4
[k4 + r4 + 2k2r2 − 2M2

S(k2 + r2) +M4
S]. (A-4)

The next point is to restore the charged lepton mass scale. This is not strictly important

for the final result, but it will make it easier to do the integral decomposition, as it avoids

artificial infrared divergences on the way to the final result which could make it very

difficult to perform a clean computation of the limit m → 0. Thus, the denominator of

the integral from Eq. (A-3) is changed to:

k2(k2−M2
W )r2(r2−M2

W )[(k−r)2−M2
S]→ (k2−m2)(k2−M2

W )(r2−m2)(r2−M2
W )[(k−r)2−M2

S].

(A-5)

We will finally take the limit m→ 0, but if the reader would like to keep the dependence

on the charged lepton mass, one could for example take m =
√
m2
e +m2

µ +m2
τ ' mτ or

m = (me + mµ + mτ )/3. The exact value does not matter as long as the charged lepton

masses are indeed negligible compared to the other masses involved, since the result only

13See, e.g., Ref. [75] for a very detailed treatment.
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depends logarithmically on it. In the calculation presented, however, we have to be careful

to take m to be the same in both factors in the denominator, in order not to spoil the

symmetry k ↔ r of the integrand.

Adopting the method of dimensional regularisation, the integral to solve is then:

I ≡ µ2ε

∫
ddk

(2π)d
ddr

(2π)d
(kr)2 − 8M2

W

(k2 −m2)(k2 −M2
W )(r2 −m2)(r2 −M2

W )[(k − r)2 −M2
S]
. (A-6)

The next step is to make use of the following decomposition:

1

(p2 −M2)(p2 −m2)
=

1

M2 −m2

(
1

p2 −M2
− 1

p2 −m2

)
, (A-7)

which allows to rewrite the denominator D ≡ (k2−m2)(k2−M2
W )(r2−m2)(r2−M2

W )[(k−
r)2 −M2

S] as

1

D
=

1

(M2
W −m2)2

∑
(4)

1

(k2 −m2
1)(r2 −m2

2)[(k − r)2 −M2
S]
, (A-8)

with the sum
∑

(4) being defined as∑
(4)

F (m1,m2) ≡ F (MW ,MW )− F (MW ,m)− F (m,MW ) + F (m,m). (A-9)

Using Eq. (A-4), one can rewrite the numerator N ≡ (kr)2 − 8M2
W as

N =
N1 +N2 +N3 +N4 +N5

4
, where N1 = [(k − r)2 −M2

S]2 − 2[(k − r)2 −M2
S](k2 + r2 −M2

S),

N2 = k4 + r4, N3 = 2k2r2, N4 = −2M2
S(k2 + r2), N5 = M4

S − 32M4
W . (A-10)

Thus, we have to compute five different integrals which add up to the total integral,

I = I1 + I2 + I3 + I4 + I5, where Ii ≡
µ2ε

4

∫
ddk

(2π)d
ddr

(2π)d
Ni

D
, (A-11)

with the integrands explicitly given by

Ni

D
=

1

(M2
W −m2)2

∑
(4)

Ni

(k2 −m2
1)(r2 −m2

2)[(k − r)2 −M2
S]
. (A-12)
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One can determine the different contributions to the integral to be

(M2
W −m2)2 I1 =

∑
(4)

[
(M2

S −m2
1 −m2

2)J1(m1)J1(m2)︸ ︷︷ ︸
=(1)

−J0(0)[J1(m1) + J1(m2)]︸ ︷︷ ︸
=(2)

]
,

(M2
W −m2)2 I2 =

∑
(4)

[
[J1(m1) + J1(m2)]J ′1(MS)︸ ︷︷ ︸

=(3)

+ [J ′1(m1) + J ′1(m2)]J1(MS)︸ ︷︷ ︸
=(4)

+ [m2
1J1(m1) +m2

2J1(m2)]︸ ︷︷ ︸
=(5)

+ (m4
1 +m4

2)K(m1,m2,MS)︸ ︷︷ ︸
=(6)

]
,

(M2
W −m2)2 I3 =

∑
(4)

2J0(0)J1(MS)︸ ︷︷ ︸
=(7)

+ 2[m2
1J1(m1) +m2

2J1(m2)]J1(MS)︸ ︷︷ ︸
=(8)

+ 2m2
1m

2
2 K(m1,m2,MS)︸ ︷︷ ︸

=(9)

,

(M2
W −m2)2 I4 =

∑
(4)

[
−2M2

S[J1(m1) + J1(m2)]J1(MS)︸ ︷︷ ︸
=(10)

−2M2
S(m2

1 +m2
2)K(m1,m2,MS)︸ ︷︷ ︸

=(11)

]
,

(M2
W −m2)2 I5 =

∑
(4)

(M4
S − 32M4

W )K(m1,m2,MS)︸ ︷︷ ︸
=(12)

, (A-13)

where the integral functions introduced are given by

Js(M) ≡ µε

2

∫
ddp

(2π)d
1

(p2 −M2)s
, J ′s(M) ≡ µε

2

∫
ddp

(2π)d
p2

(p2 −M2)s
,

K(M1,M2,M3) ≡ µ2ε

4

∫
ddk

(2π)d
ddr

(2π)d
1

(k2 −M2
1 )(r2 −M2

2 )[(k − r)2 −M2
3 ]
. (A-14)

Performing the summation explicitly, cf. Eq. (A-9), one can see that the contributions

(2), (3), (4), (7), (8), and (10) all vanish identically. For example, the contribution (7) is

independent of m1,2, such that the summation leads to∑
(4)

(7) =
∑
(4)

2J0(0)J1(MS) = 2J0(0)J1(MS) · (1− 1− 1 + 1) = 0. (A-15)

Thus, only the contributions (1), (5), (6), (9), (11), and (12) survive, and we only need

the two integrals J1 and K in Eq. (A-14), where the former is an effective 1-loop integral

that appears always in products with other 1-loop integrals in the final 2-loop expression.
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Putting all the pieces together, it is easy to show that the final result will be of the form

I ≡ 1

(M2
W −m2)2

∑
(4)

[(1) + (5) + (6) + (9) + (11) + (12)] =

=
[
(M2

S − 2M2
W ) J 2

1 (MW ) + (M2
S − 2m2) J 2

1 (m)− (M2
S −M2

W −m2) J1(MW )J1(m)

+2(M2
W −m2)[J1(MW )− J1(m)]J1(MS) + [(M2

S − 2M2
W )2 − 32M4

W ] K(MW ,MW ,MS)

−2[(M2
S −M2

W −m2)2 − 32M4
W ] K(m,MW ,MS) + [(M2

S − 2m2)2 − 32M4
W ] K(m,m,MS)

]
× 1

(M2
W −m2)2

, (A-16)

since K(M1,M2,M3) = K(M2,M1,M3).

We remain with the calculation of the two integrals. Starting with J1, one can make

use of Wick rotation and integration in d dimensions to show∫
ddp

(2π)d
1

(p2 −∆)s
=

iΓ(s− d
2
)

2dπd/2(−1)s

(
1

∆

)s−d/2
, (A-17)

where Γ(x) is the Gamma function. Thus, the full integral is given by

J1(M) =
i

16π2

M2

2

{2

ε
+ [Cγ − LM ] +

ε

4

[
(Cγ − LM)2 +

π2

6
+ 1
]}
, (A-18)

where we have used the abbreviations

Cγ = 1− γ + log(4π) and LM ≡ log

(
M2

µ2

)
, (A-19)

and γ = 0.5771... is the Euler-Mascheroni constant. What we actually need are products

of J1’s, which is to be expected since these integrals arise from contributions to the 2-loop

integrations which can be factorised into products of two 1-loop integrals. The relevant
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combinations are

J 2
1 (M) =

−1

(16π2)2

M4

4

[ 4

ε2
+

4

ε
(Cγ − LM) + 2(Cγ − LM)2 +

π2

6
+ 1 +O(ε)

]
,

J1(M)J1(m) =
−1

(16π2)2

M2m2

4

[ 4

ε2
+

2

ε
(2Cγ − LM − Lm) +

1

2
(2Cγ − LM − Lm)2 +

π2

6
+ 1 +O(ε)

]
,

where Lm ≡ log

(
m2

µ2

)
. (A-20)

Now, it is very easy to perform the limit m→ 0:

lim
m→0
J 2

1 (m)→ 0 and lim
m→0

[J1(M)J1(m)]→ 0, (A-21)

such that the final resulting contributions are given by∑
(4)

[(1) + (5)]|m→0 = (M2
S − 2M2

W ) J 2
1 (MW ) + 2M2

WJ1(MW )J1(MS). (A-22)

Note that this contribution vanishes in the limit MW �MS.

The integral K(M1,M2,M3), in turn, is discussed in great detail in Ref. [77]. In terms

of the expressions used there, our integral is given by14

K(M1,M2,M3) =
µ2ε

4(2π)2d
I(1, 1, 1;M1,M2,M3) ≡ P × C. (A-23)

The easiest way to obtain a reasonable expression for K(M1,M2,M3) is to expand the

prefactor P ≡ µ2ε

4(2π)2d

π4−εM
2(1−ε)
3

Γ(2−ε/2)
and the remaining body C of the expressions separately

in ε. We obtain

P = P0 + P1ε+ P2ε
2 +O(ε3) and C =

C−2

ε2
+
C−1

ε
+ C0 +O(ε), (A-24)

such that the final expression for the integral reads

K(M1,M2,M3) =
∆−2

ε2
+

∆−1

ε
+ ∆0 +O(ε), (A-25)

14In order to translate the conventions, one has to perform the replacement ε→ ε/2 in the expressions
from Ref. [77].
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where

∆−2 = P0C−2,

∆−1 = P0C−1 + P1C−2,

∆0 = P0C0 + P1C−1 + P2C−2. (A-26)

In full generality, the different pieces Pi can be written as

P0 =
M2

3

4(16π2)2
,

P1 =
M2

3

4(16π2)2
(Cγ − L3),

P2 =
−M2

3

8(16π2)2

[
π2

6
− [Cγ − 2(1− γ)− L3]2

]
, (A-27)

where L3 ≡ log(M2
3/µ

2). Note that we can set M3 = MS in the final result. The pieces

Ci turn out to be

C0 =
−2w(z − 2) + 4z − 2

(1− w)(1− z)
,

C−1 =
1

(1− w)(1− z)

{
− 2 + 8(w + z)− 6wz + γ(1− 2w − 2z + wz)− 2w log

(
−w

(1− w)(1− z)

)

−2z log

(
−z

(1− w)(1− z)

)
+ 2(1− wz) log(1− wz) + 2(1− wz) log

(
1− wz

(1− w)(1− z)

)

−2(1− wz) log

(
(1− wz)2

(1− w)(1− z)

)]
,
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C−2 =
1

(1− w)(1− z)

{
− 2− 7π2

24
+ 16w +

π2

4
w + γ − 4wγ − γ2

4
+
w

2
γ2

+z

[
2(8− 7w) +

π2

24
(6 + w)− (4− 3w)γ + (2− w)

γ2

4

]

+
w

2
log2

(
−w

(1− w)(1− z)

)
+
z

2
log2

(
−z

(1− w)(1− z)

)
+ 2 log

(
1− wz

(1− w)(1− z)

)

+ log

(
−w

(1− w)(1− z)

)[
w(−4 + γ) + wz log

(
−z

(1− w)(1− z)

)

−(1− wz) log(1− wz) + (1− wz) log

(
1− wz
1− w

)]
− 4 log

(
(1− wz)2

(1− w)(1− z)

)

+ log

(
−z

(1− w)(1− z)

)(
z(−4 + γ)− (1− wz) log(1− wz) + (1− wz) log

(
1− wz
1− z

))
+(1− wz)(4− γ) log(1− wz) + (−1 + wz) log2(1− wz)

−[wz(2− γ) + γ] log

(
1− wz

(1− w)(1− z)

)
− (1− wz) log2

(
1− wz

(1− w)(1− z)

)

+ log

(
1− wz
1− w

)[
− wz(−4 + γ) + γ + (1− wz) log

(
1− wz
1− w

)]

+(−wz(−4 + γ) + γ) log

(
1− wz
1− z

)
+ (1− wz) log2

(
1− wz
1− z

)

+(1− wz)

[
Li2

(
−w 1− z

1− w

)
+ Li2

(
−z1− w

1− z

)
− Li2(wz)

]}
, (A-28)

where w = (−1 + x+ y + λ)/(2y), z = (−1 + x+ y + λ)/(2x), λ =
√

(1− x− y)2 − 4xy,

x = M2
1/M

2
3 , and y = M2

2/M
2
3 , and the dilogarithm is given by

Li2(y) = −
1∫

0

log(1− yt)
t

dt. (A-29)

Glancing at Eq. (A-16), we need to compute the three limits M1 = M2(= 0) and M1 = 0 6=
M2 [since we need K(MW ,MW ,MS), K(m,MW ,MS), and K(m,m,MS) and take the limit
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m→ 0]. The limit M1 = M2 6= 0 implies x = y = M2
W/M

2
S, w = z = (−1 + 2x+ λ)/(2x),

and λ =
√

1− 4x, which leads to

C0(MW ,MW ,MS) = −2(1− 4z + z2)

(1− z)2
,

C−1(MW ,MW ,MS) =
1

(1− z)2

[
− 2 + γ + z(16− 6z − 4γ + zγ)− 2(1− z2) log(1− z)

+2(1− z2) log(1− z)− 4z log

(
−z

(1− z)2)

)]
,

C−2(MW ,MW ,MS) =
1

(1− z)2

[π2

24
(−7 + 12z + z2)− 2(1− 16z + 7z2) + (1− 8z + 3z2)γ

−(1− 4z + z2)
γ2

4
− (1− z2) log2(1− z)− 2 log(1 + z)

+(1− z2) log(1− z)[−2 + γ + 2 log(1 + z)]− (1− z2) log2(1− z)

−(1− z2) log(1− z)

{
−4 + γ + 2 log

(
−z

(1− z)2

)
+ 2 log(1 + z)

}

+z(2(−4 + γ) log

(
−z

(1− z)2

)
+ (1 + z) log2

(
−z

(1− z)2

)

+2z log(1 + z))− 2(1− z2)Li2(z)
]
. (A-30)

Things get even easier when M1 = 0 (i.e., M1 = m → 0). Carefully taking the limits

allows to derive that x = 0, y = M2
W/M

2
S, w = 0, z = − y

λ
, and λ = 1− y, which implies

C0(0,MW ,MS) = −2(1 + y),

C−1(0,MW ,MS) = −2− y(6− γ) + γ + 2y log y,

C−2(0,MW ,MS) =
π2

24
(−7 + y)− 1

4
[8 + (−4 + γ)γ + 56y − (12− γ)γy] (A-31)

−(1− y) log(1− y)(2− log y)− y

2
log y(−8 + 2γ + log y) + (1− y)Li2(y).

Finally, the limit M1 = M2 = 0, where x = y = 0, w = z = 0, and λ = 1, yields the
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simplest expressions:

C0(0, 0,MS) = −2,

C−1(0, 0,MS) = −2 + γ,

C−2(0, 0,MS) = −2 + γ − 7π2

24
− γ2

4
. (A-32)

Thus, the final resulting contributions are given by

I ≡
∑
(4)

[(6) + (9) + (11) + (12)] = [(M2
S − 2M2

W )2 − 32M4
W ] K(MW ,MW ,MS)

−2[(M2
S −M2

W )2 − 32M4
W ] K(0,MW ,MS) + [M4

S − 32M4
W ] K(0, 0,MS). (A-33)

After having extracted the divergences, the next question is how to renormalise the

2-loop neutrino mass. The simple answer to this question is that, after having calculated

the ε-expansion of the total integral I from Eq. (A-6), we can simply drop all the diver-

gent terms and only keep the ones which are finite in the limit ε → 0. This is easy to

understand when taking into account that we can split all the divergent (denoted by ∆)

and finite (denoted by F ) pieces into their high-energy (“UV”) and low-energy (“EFT”)

contributions, such that any observable quantity Q can be written as follows:

Q = FEFT + FUV +
N∑
n=1

∆EFT
n

εn
+

N∑
m=1

∆UV
m

εm
, (A-34)

where the divergences go up to O(1/εN). The decisive point is that the low-energy EFT

can only give us the low-energy finite (FEFT) and divergent (∆EFT
n ) pieces. However, as

long as we know that a renormalisable UV-completion exists, we know that the divergent

pieces have to cancel at each order in 1/ε [in the so-called minimal subtraction (MS)

scheme]:

∆EFT
n + ∆UV

n = 0, ∀n. (A-35)

For our effective model, we are aware of at least two renormalisable UV-completions [22,

23,26], so that we can savely assume Eq. (A-35) to hold and thus drop the divergent pieces

only (MS scheme). Furthermore, at low energies, practically all the relevant physics are

covered by the EFT, so that one can safely neglect the suppressed finite terms from the

high-energy part of the theory:

FUV ' 0. (A-36)
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Thus, one finally remains with the EFT finite piece Qphysical ' FEFT, which will be a good

approximation of the true result for energies below the UV-cutoff Λ of the EFT. This is

the simplest way to obtain sensible results.

Taking only the finite pieces, the renormalised result for the integral I, which only

depends on the masses MW and MS as well as the unknown energy scale µ, is given by

− 4(16π2)2IMS
finite(MW ,MS, µ) = (M2

S − 2M2
W )

[
2(Cγ − LW )2 +

π2

6
+ 1

]

+2M2
S

[
1

2
(2Cγ − LW − LS)2 +

π2

6
+ 1

]
+[(ρ− 2)2 − 32] (P0C0 + P1C−1 + P2C−2)|(A-27),(A-30)

−2[(ρ− 1)2 − 32] (P0C0 + P1C−1 + P2C−2)|(A-27),(A-31)

+[ρ2 − 32] (P0C0 + P1C−1 + P2C−2)|(A-27),(A-32) , (A-37)

where ρ ≡ M2
S/M

2
W , LW ≡ log(M2

W/µ
2), and LS ≡ log(M2

S/µ
2). The first (second)

subscript refers to the equation from which the expressions for the Pi (Ci) should be

taken. Extracting the overall dependence on M2
S, we finally arrive at the following decisive

integral

Ĩ(MW ,MS, µ) = Ĩ1 + Ĩ2 + Ĩ3 + Ĩ4 + Ĩ5, (A-38)

with the different pieces given by

Ĩ1 ≡
−1

4(16π2)2

(
1− 2

ρ

)[
2(Cγ − LW )2 +

π2

6
+ 1

]
,

Ĩ2 ≡
−1

4(16π2)2

[
(2Cγ − LW − LS)2 +

π2

3
+ 2

]
,

Ĩ3 ≡
−1

4(16π2)2
[(ρ− 2)2 − 32]

(
P̃0C0 + P̃1C−1 + P̃2C−2

)∣∣∣
(A-27),(A-30)

,

Ĩ4 ≡
+1

4(16π2)2
2[(ρ− 1)2 − 32]

(
P̃0C0 + P̃1C−1 + P̃2C−2

)∣∣∣
(A-27),(A-31)

,

Ĩ5 ≡
−1

4(16π2)2
[ρ2 − 32]

(
P̃0C0 + P̃1C−1 + P̃2C−2

)∣∣∣
(A-27),(A-32)

, (A-39)
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Figure 14: The size of the integral Ĩ(MW ,MS, µ). Apparently, the decisive contribution
comes from the products of effective 1-loop integrals. As can be seen from the plot, the
variation with the dimensional regularisation scale µ is extremely mild.

where P̃i ≡ Pi/M
2
S. The variation of Ĩ(MW ,MS, µ) with the energy scale µ is displayed in

Fig. 14. As can be seen, the contributions arising from products of effective 1-loop integrals

(Ĩ1,2) by far dominate the contributions from irreducible 2-loop integrals (Ĩ3,4,5).15 This

allows to find an easy analytical approximation to the full integral,

Ĩ(MW ,MS, µ) ' Ĩ1(MW ,MS, µ) + Ĩ2(MW ,MS, µ) (A-40)

=
−1

4(16π2)2

{(
1− 2

ρ

)[
2(Cγ − LW )2 +

π2

6
+ 1

]
+ (2Cγ − LW − LS)2 +

π2

3
+ 2

}
.

Then, the final result for the 2-loop neutrino mass matrix, as obtained in the MS

15This is physically motivated, since on the one hand the large logarithms of the two individual effective
1-loop diagrams have a tendency to enhance each other and on the other hand there is an enhancement

of these contributions stemming from the fact that the constant term π2

6 + 1 [cf. Eq. (A-18)], which is of
O(ε) and thus usually negligible in generic 1-loop integrals, can in the product lead to a finite contribution
when multiplied with the divergent contribution 2/ε.
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scheme, is given by

M2-loop
ν,ab =

2ξmambM
2
Sfab(1 + δab)

Λ3
· Ĩ(MW ,MS, µ). (A-41)

Note that the final result still carries a dependence on the unknown energy scale µ, which

is typically taken to be the energy scale of the problem. This comes from the fact that

an EFT necessarily neglects some finite but small contributions which would allow to

cancel the µ-dependence, which is a typical phenomenon in effective pictures (see, e.g.,

Refs. [76, 78]). However, this dependence is only logarithmic and, furthermore, it can be

used to estimate the running of the neutrino mass.

This is, to our knowledge, the first time that a fully analytic expression for the 2-loop

neutrino mass has been obtained for the class of models under consideration.

Appendix B: Correlations for the purple and blue points

As shown in Tab. 1, the LFV transition µ → eγ depends on a very specific combination

of Yukawa couplings, |f ∗eefeµ + f ∗eµfµµ + f ∗eτfµτ |. The red and purple points presented in

this paper, cf. Sec. 6, fulfill fee ' 0, so that for µ → eγ the strong bound only pushes

|f ∗eµfµµ+f ∗eτfµτ | to have small values. If this combination of parameters is zero or close to

zero, cf. Eq. (17), then the form of the light neutrino mass matrix as detailed in Eqs. (9)

and (A-41), allows to translate the above condition into a correlation of light neutrino

mass matrix elements,

Mν,eµ ' −
m2
µ

m2
τ

M∗
ν,µτ

M∗
ν,µµ

Mν,eτ , (B-1)

which induces a connection between neutrino oscillation parameters and phases.

Expressing the light neutrino mass matrix in terms of mass eigenvalues m1,2,3 and the

complete set of mixing parameters, cf. Eqs. (18) to (19), allows to express the mass matrix
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elements appearing in Eq. (B-1) in terms of physical parameters:

Mν,eµ = c13

(√
m2

1 + ∆m2
�s12e

iα21
(
c12c23 − s12s13s23e

iδ
)
−m1c12

(
c23s12 + c12s13s23e

iδ
)

+
√
m2

1 + ∆m2
As13s23e

i(α31−δ)

)
,

Mν,eτ = c13

(
−
√
m2

1 + ∆m2
�s12e

iα21
(
c12s23 + c23s12s13e

iδ
)

+
√
m2

1 + ∆m2
Ac23s13e

i(α31−δ)

+m1c12

(
s12s23 − c12c23s13e

iδ
))

,

M∗
ν,µµ =

√
m2

1 + ∆m2
�e
−iα21

(
c12c23 − s12s13s23e

−iδ)2
+
√
m2

1 + ∆m2
Ac

2
13s

2
23e
−iα31

+m1

(
c23s12 + c12s13s23e

−iδ)2
,

M∗
ν,µτ = c13

(
−
√
m2

1 + ∆m2
�s12e

−iα21
(
c12s23 + c23s12s13e

−iδ)+
√
m2

1 + ∆m2
Ac23s13e

−i(α31−δ)

+m1c12

(
s12s23 − c12c23s13e

−iδ)). (B-2)

Apparently, the complex Eq. (B-1) translates into two real equations which allow to

constrain two of the unknown neutrino-related parameters, e.g., the lightest neutrino

mass and one of the Majorana phases.
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Appendix C: Branching ratios for the different classes

of benchmarks

Purple Points

MS [GeV] ξ Λ/MS
Branching ratios

width [GeV]
WW ee eµ eτ µµ µτ ττ

200

small
(ξ & 0)

0.1 5 0 0 0.002 0.984 0.014 0 0 0.00132847
0.1 6 0 0 0.002 0.984 0.014 0 0 0.0039821
0.2 7 0 0 0.002 0.984 0.014 0 0 0.00249862
0.2 8 0 0 0.002 0.984 0.014 0 0 0.0056342
0.3 9 0 0 0.002 0.984 0.014 0 0 0.00507809
0.4 10 0 0 0.002 0.984 0.014 0 0 0.00534624

medium
(ξ ' 2π)

6 5 1 0 0 0 0 0 0 0.00105002
6 6 0.997 0 0 0.003 0 0 0 0.000350831
6 7 0.98 0 0 0.019 0 0 0 0.000142106
6 8 0.908 0 0 0.09 0.001 0 0 0.0000682291
6 9 0.712 0 0 0.283 0.004 0 0 0.000043683
6 10 0.412 0 0 0.579 0.008 0 0 0.000039957

large
(ξ . 4π)

12 5 1 0 0 0 0 0 0 0.00418131
12 6 1 0 0 0 0 0 0 0.00138856
12 7 0.999 0 0 0.001 0 0 0 0.000555644
12 8 0.994 0 0 0.006 0 0 0 0.000251118
12 9 0.975 0 0 0.024 0 0 0 0.000127217
12 10 0.893 0 0 0.105 0.002 0 0 0.0000735477

364.6
(best-fit)

6.38 6.87 0.310 0 0.001 0.679 0.010 0 0 0.000178094

600

small
(ξ & 0)

0.1 5 0 0 0.002 0.984 0.014 0 0 0.0479347
0.1 6 0 0 0.002 0.984 0.014 0 0 0.106938
0.2 7 0 0 0.002 0.984 0.014 0 0 0.0679208
0.2 8 0 0 0.002 0.984 0.014 0 0 0.151055
0.3 9 0 0 0.002 0.984 0.014 0 0 0.136088
0.4 10 0 0 0.002 0.984 0.014 0 0 0.144131

medium
(ξ ' 2π)

6 5 0.899 0 0 0.1 0.001 0 0 0.0000975578
6 6 0.5 0 0 0.492 0.007 0 0 0.0000595187
6 7 0.104 0 0.001 0.882 0.013 0 0 0.000112445
6 8 0.03 0 0.002 0.954 0.014 0 0 0.000173764
6 9 0.007 0 0.002 0.977 0.014 0 0 0.000344195
6 10 0.002 0 0.002 0.982 0.015 0 0 0.000854768

large
(ξ . 4π)

12 5 0.993 0 0 0.007 0 0 0 0.00035147
12 6 0.628 0 0 0.366 0.005 0 0 0.000185544
12 7 0.711 0 0 0.285 0.004 0 0 0.0000650648
12 8 0.335 0 0 0.654 0.01 0 0 0.0000626024
12 9 0.108 0 0.002 0.877 0.013 0 0 0.0000955724
12 10 0.034 0 0.002 0.951 0.014 0 0 0.000164169

1000

small
(ξ & 0)

0.1 5 0 0 0.002 0.984 0.014 0 0 0.165629
0.1 6 0 0 0.002 0.984 0.014 0 0 0.500951
0.2 7 0 0 0.002 0.984 0.014 0 0 0.312644
0.2 8 0 0 0.002 0.984 0.014 0 0 0.70179
0.3 9 0 0 0.002 0.984 0.014 0 0 0.835827
0.4 10 0 0 0.002 0.984 0.014 0 0 0.667518

medium
(ξ ' 2π)

6 5 0.302 0 0.001 0.687 0.01 0 0 0.0000667239
6 6 0.047 0 0.001 0.938 0.013 0 0 0.000145385
6 7 0.008 0 0.002 0.977 0.014 0 0 0.000351838
6 8 0.002 0 0.002 0.983 0.014 0 0 0.000779377
6 9 0 0 0.002 0.984 0.014 0 0 0.00156814
6 10 0 0 0.002 0.984 0.014 0 0 0.00296203

large
(ξ . 4π)

12 5 0.876 0 0 0.122 0.002 0 0 0.0000925977
12 6 0.366 0 0 0.625 0.009 0 0 0.0000733874
12 7 0.11 0 0.001 0.876 0.013 0 0 0.00009764
12 8 0.018 0 0.001 0.965 0.015 0 0 0.000262922
12 9 0.006 0 0.002 0.978 0.014 0 0 0.000396615
12 10 0.001 0 0.001 0.983 0.014 0 0 0.000992832

Table 8: Branching ratios and total widths for “purple” points at different S++ masses
and different values of ξ and Λ/MS.
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Red Points

MS [GeV] ξ Λ/MS
Branching ratios

width [GeV]
WW ee eµ eτ µµ µτ ττ

164.5
(best-fit)

5.02 5.50 0.581 0 0.418 0 0 0 0 0.000506941

200

small
(ξ & 0)

0.5 5 0.001 0 0.999 0 0 0 0 0.00618056
0.8 6 0 0 0.999 0 0 0 0 0.00719317
- 7,. . . ,10 - - - - - - - -

medium
(ξ ' 2π)

6 5 0.904 0 0.096 0 0 0 0 0.00115604
6 6 0.558 0 0.442 0 0 0 0 0.000628695
6 7 0.22 0 0.78 0 0 0 0 0.000633603
6 8 0.035 0 0.965 0 0 0 0 0.00179675
6 9 0.008 0 0.992 0 0 0 0 0.00379126
6 10 0.002 0 0.998 0 0 0 0 0.00710341

large
(ξ . 4π)

12 5 0.995 0 0.005 0 0 0 0 0.00422159
12 6 0.945 0 0.055 0 0 0 0 0.00149688
12 7 0.729 0 0.271 0 0 0 0 0.000765041
12 8 0.35 0 0.65 0 0 0 0 0.0007174128
12 9 0.116 0 0.884 0 0 0 0 0.0010678
12 10 0.038 0 0.962 0 0 0 0 0.00171308

600

small
(ξ & 0)

0.5 5 0 0 1 0 0 0 0 0.166463
0.8 6 0 0 1 0 0 0 0 0.19421
- 7,. . . ,10 - - - - - - - -

medium
(ξ ' 2π)

6 5 0.029 0 0.971 0 0 0 0 0.00307804
6 6 0.003 0 0.997 0 0 0 0 0.00891094
6 7 0 0 0.999 0 0 0 0 0.0225216
6 8 0 0 1 0 0 0 0 0.0500959
6 9 0 0 1 0 0 0 0 0.0855915
6 10 0 0 1 0 0 0 0 0.113601

large
(ξ . 4π)

12 5 0.318 0 0.682 0 0 0 0 0.00110414
12 6 0.05 0 0.95 0 0 0 0 0.00236156
12 7 0.014 0 0.986 0 0 0 0 0.00337974
12 8 0.002 0 0.998 0 0 0 0 0.0125286
12 9 0 0 1 0 0 0 0 0.0254247
12 10 0 0 1 0 0 0 0 0.0243301

1000

small
(ξ & 0)

0.5 5 0 0 1 0 0 0 0 0.773024
0.8 6 0 0 1 0 0 0 0 0.903931
- 7,. . . ,10 - - - - - - - -

medium
(ξ ' 2π)

6 5 0.001 0 0.998 0 0 0 0 0.0138926
6 6 0 0 1 0 0 0 0 0.0246002
6 7 0 0 1 0 0 0 0 0.0618494
6 8 0 0 1 0 0 0 0 0.233317
6 9 0 0 1 0 0 0 0 0.471533
6 10 0 0 1 0 0 0 0 0.883051

large
(ξ . 4π)

12 5 0.023 0 0.977 0 0 0 0 0.00352694
12 6 0.003 0 0.997 0 0 0 0 0.010437
12 7 0 0 1 0 0 0 0 0.0260958
12 8 0 0 1 0 0 0 0 0.0582806
12 9 0 0 1 0 0 0 0 0.11688
12 10 0 0 1 0 0 0 0 0.221718

Table 9: Branching ratios and total widths for “red” points at different S++ masses and
different values of ξ and Λ/MS.
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Blue Points

MS [GeV] ξ Λ/MS
Branching ratios

width [GeV]
WW ee eµ eτ µµ µτ ττ

200 any ξ 5,. . . ,10 - - - - - - - -

600

small
(ξ & 0)

0.4 5 0 0.828 0 0.169 0.003 0 0 0.00789999
0.5 6 0 0.829 0 0.168 0.003 0 0 0.0152079
0.7 7 0 0.83 0 0.168 0.003 0 0 0.0196076
- 8,9,10 - - - - - - - -

medium
(ξ ' 2π)

- 5 - - - - - - - -
6 6 0.218 0.648 0 0.132 0.002 0 0 0.000133869
6 7 0.042 0.794 0 0.162 0.002 0 0 0.000277175
6 8 0.009 0.821 0 0.168 0.003 0 0 0.000596307
6 9 0.002 0.827 0 0.168 0.003 0 0 0.00121088
6 10 0 0.827 0 0.17 0.003 0 0 0.00225081

large
(ξ . 4π)

- 5,6 - - - - - - - -
12 7 0.41 0.489 0 0.099 0.002 0 0 0.000113483
12 8 0.124 0.725 0 0.148 0.002 0 0 0.000169039
12 9 0.033 0.801 0 0.163 0.002 0 0 0.000311038
12 10 0.01 0.821 0 0.166 0.003 0 0 0.000570635

626.01
(best-fit)

3.39 8.14 0 0.986 0 0.014 0 0 0 0.0285773

1000

small
(ξ & 0)

0.3 5 0 0.829 0 0.169 0.003 0 0 0.0652925
0.5 6 0 0.829 0 0.168 0.003 0 0 0.0703724
0.7 7 0 0.83 0 0.168 0.003 0 0 0.0907368
- 8,9,10 - - - - - - - -

medium
(ξ ' 2π)

6 5 0 0.999 0 0 0 0 0 0.0343403
6 6 0 0.999 0 0 0 0 0 0.10269
6 7 0 0.991 0 0.009 0 0 0 0.0297808
6 8 0 0.998 0 0.002 0 0 0 0.104177
6 9 0 0.827 0 0.17 0.003 0 0 0.00552482
6 10 0 0.828 0 0.169 0.003 0 0 0.010444

large
(ξ . 4π)

12 5 0.009 0.99 0 0 0 0 0 0.00862917
12 6 0.001 0.998 0 0 0 0 0 0.0256054
12 7 0 0.999 0 0 0 0 0 0.0648168
12 8 0 0.999 0 0 0 0 0 0.143218
12 9 0 0.934 0 0.065 0.001 0 0 0.00858164
12 10 0 0.998 0 0.002 0 0 0 0.0986548

Table 10: Branching ratios and total widths for “blue” points at different S++ masses
and different values of ξ and Λ/MS.
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