A Distributed Garbage Collector for
NeXeme

Luc Moreau* and David De Roure*

Abstract

The remote service request,a form of remote procedure call,and
the global pointer, a global naming mechanism, are two features
at the heart of Nexus, a library to build distributed systems.
NeXeme is an extension of Scheme that fully integrates both
concepts in a mostly-functional framework. This short paper
describes the distributed garbage collector that we implemented
in NeXeme.

Introduction

Scheme 7 is a mostly-functional language, i.e. it is a fully func-
tional language, which also supports imperative notions like
assignments and continuations, for efficiency and expressivity
reasons. We believe that a distributed extension of such a
language requires a mechanism to invoke functions remotely,
so that distribution becomes part of the most fundamental op-
eration of the language.

Nexus !, a library for building distributed systems, has two
salient features: a remote service request is a form of remote
procedure call, and global pointers provide for global naming in
a distributed environment. By offering a functionality close to
remote function invocation, Nexus is a suitable building block
for our distributed language. Furthermore, when designing a
distributed version of Scheme, our concerns were portability
and potential use of high-performance hardware or protocols
(e.g. supercomputers, ATM, UDP). Nexus also addresses these
concerns as it runs on a variety of platforms and protocols.

NeXeme integrates the Nexus approach, with its remote service
requests and global pointers, in a mostly functional language.
NeXeme is a novel approach of distribution in functional lan-
guages. It offers expressivity, development ease, and automatic
memory management (via a distributed garbage collector). Not
only does it provide very powerful abstractions to control dis-
tribution, but also it remains efficient. We believe that NeXeme
is an excellent medium to implement other forms of parallelism
like communication channels or futures 3-4. It is also an ideal
platform to develop distributed symbolic applications, based
for instance on distributed mobile agents.

In this paper, we describe the distributed garbage collector that
we implemented in NeXeme. An extended version of the paper
describes the semantics of remote service requests and gives
details about NeXeme?.

The Nexus Architecture

Nexus ! is structured in terms of five basic abstractions: nodes,
contexts, threads, global pointers, and remote service requests.
A computation executes on a set of nodes and consists of a

*This research was supported in part by EPSRC grant GR/K30773. Au-
thors’ address: Department of Electronics and Computer Science, Uni-
versity of Southampton, Southampton SO17 1BJ. United Kingdom. E-mail:
(L.Moreau,dder)@ecs.soton.ac.uk.

set of threads, each executing in an address space called a
context. (For the purposes of this article, it suffices to assume
that a context is equivalent to a process.) An individual thread
executes a sequential program, which may read and write data
shared with other threads executing in the same context.

The global pointer (GP) provides a global name space for
objects, while the remote service request (RSR) is used to
initiate communication and invoke remote computation. A
GP represents a communication endpoint: that is, it specifies a
destination to which a communication operation can be directed
by an RSR. GPs can be created dynamically; once created, a
GP can be communicated between nodes by including it in an
RSR. A GP can be thought of as a capability granting rights to
operate on the associated endpoint.

Practically, an RSR is specified by providing a global pointer, a
handler identifier, and a data buffer, in which data are serialised.
Issuing an RSR causes the data buffer to be transfered to the
context designated by the global pointer, after which the routine
specified by the handler is executed, potentially in a new thread
of control. Both the data buffer and pointed specific data are
available to the RSR handler.

Distributed Garbage Collection

NeXeme has a distributed garbage collector which takes care of
memory management automatically. Our working hypotheses,
provided by Nexus threaded handlers, are a reliable message-
passing and a FIFO ordering of messages between two sites.

Each site relies on a thread safe, conservative, mark and sweep
garbage collector % conservativeness is required as Scheme data
are passed to Nexus, written in C, and are pointed by Nexus
data structures. In addition, NeXeme maintains two tables for
each site. The exit table associates each global pointer with the
number of distinct remote copies of this pointer originating
from the site. The entry table contains all global pointers
received by a site, except those that point at itself. The exit
table, but not the entry table, is a root of the local garbage
collector. The role of the distributed collector it to update
counters in a safe and consistent way. To this end, it relies on
two types of control messages, called “decrement(gp)” and
“increment-decrement(gp, s)”, as described below.

Reference counters are updated according to the diffusion tree ©
of global pointers. The first time a global pointer gp is serialised,
an entry is added in the exit table of the current site with a
counter set to 1; afterwards, for every serialisation, this counter
is incremented. Symmetrically, the first time a global pointer
gp is deserialised, it is added to the entry table (if it points
at a remote host); if it is already present, NeXeme sends a
decrement message for this global pointer, “decrement(gp)”
to the site that sent the remote service request. When a site
receives a message “decrement(gp)”, the counter of gp in the
exit table is decremented. Once the counter reaches zero, the
global pointer may be removed from the table; only then, the
pointer itself and the local data may be reclaimed, if no longer
accessible.

In Nexus, a global pointer contains the site it is pointing at,
and not the site it is arriving from. Therefore, once a global
pointer gp pointing at a site s; becomes inaccessible on a site
s2, s> sends a message “decrement(gp)” to s1. This naive
implementation of the reference counter technique is sound
if causality is preserved in the system ©. This is ensured

T

(gp o, s1) (gpa, s1)

52 3

(gpa, s1) {gp @, s1)
so in s3 in
1: RSR
\ L
= [1]
{(gpa, s1)
o
. []

4
K4

‘\DEC(gp) ¢ INC-DEC(gp, s2)

; ’
NG o)
Y ’
AY
y—

@ (gpa, s1)

Figure 1: Distributed Reference Counters (1) after Remote Service Requests (2) after Control Messages

by a reorganisation of the diffusion tree, as explained in the
following scenario illustrated in Figure 1.

Let us consider that gp, a global pointer pointing to address a
in $1, is migrated to s», and then migrated to s3. Figure 1 part
1 shows that the reference counters in s; and s2 are equal to 1,
meaning that there are 14+ 1 = 2 active remote references of gp.
Once s3 deserialises gp, the global pointer received from s2, a
reorganisation can be initiated, as illustrated in Figure 1 part 2.
(i) Site ss sendsan “increment-decrement(gp, s2)” message
to s1; (ii) when the message is received by s, the counter for
gp is incremented on s1; (iii) afterwards, a “decrement(gp)”
message is sent to s2; (iv) when the message is received, the
counter for gp is decremented on s2.

Race conditions are avoided between s; and s3 by giving
priority to “increment-decrement” over “decrement” messages.

The simplicity and portability of the solution is unfortunately
counter-balanced by its inability to collect distributed cycles.
Our approach differs from “Indirect Reference Counting” ©
because it can reclaim “zombie” pointers, i.e. gp can be
freed on s, even though it remains active on s3. Several
optimisations are possible. First, control messages of the
same type may be grouped in a single message. Second, an
“increment-decrement(gp, s2)” tobe sentto s1 , followed by
a “decrement(gp)” to the same destination, may be replaced
by a “decrement(gp)” to s2.

The entry table should be designed carefully. If a global
pointer entered in an entry table remains accessible to the gc,
it will never be collected, nor the object on the origin host.
Therefore, entries of global pointers in an entry table should
be masked so that their inaccessibility can be detected. Once
such a global pointer becomes inaccessible, it must also be
removed from the entry table. Inaccessibility is detected after
a local collection by installing finalizers on global pointers. A
finalizer is a procedure called by the gc on an object once it is
detected to be inaccessible. In NeXeme, such finalizers remove
global pointers from the entry table and prepare a “increment-
decrement” message. The message itself cannot be sent at
garbage-collection time because such an operation requires
memory not necessarily available at that moment: instead,
inaccessible global pointers are queued (without allocation) by
finalizers, and only after the end of the garbage collection,
messages are sent to their destination sites.

Conclusion

This paper presents the distributed garbage collector of NeX-
eme, a distributed dialect of Scheme, based on remote service
requests and global pointers provided by the library for dis-
tribution Nexus. The functional interface to remote service
requests of NeXeme is a perfect abstraction to build a Scheme
with futures 4; in addition, NeXeme is used for programming
multimedia distributed applications.

References

—_

Ian Foster, Carl Kesselman, and Steven Tuecke. The Nexus Approach to
Integrating Multithreading and Communication. Journal of Parallel and
Distributed Computing,37:70-82,1996.

2 H.-JBoehm and M. Weiser. Garbage Collection in an Uncooperative Envir-
onment. Software — Practice and Experience, 18(9):807-820,1988.

3 Robert H. Halstead, Jr. Parallel Symbolic Computing. IEEE Computer, pages
35-43, August 1986.

4 Luc Moreau. Correctness of a Distributed-Memory Model for Scheme. In
Second International Europar Conference (EURO-PAR’96), number 1123 in
Lecture Notes in Computer Science, pages 615-624, Lyon, France, August
1996. Springer-Verlag.

5 LucMoreau, David DeRoure, and Ian Foster. NeXeme: a Distributed Scheme
Based on Nexus. Technical report, University of Southampton, 1997.

6 José M. Piquer. Indirect Distributed Garbage Collection: Handling Object
Migration. ACM Transactions on Programming Languages and Systems,
18(5):615-647, September 1996.

7 Jonathan Rees and William Clinger, editors. Revised? Report on the Al-
gorithmic Language Scheme. Lisp Pointers,4(3):1-55,July-September 1991.

