
A Notation and System for Expressing and Executing
Cleanly Typed Workflows on Messy Scientific Data

Yong Zhao1 Jed Dobson2 Ian Foster1,3 Luc Moreau4 Michael Wilde3

1 Department of Computer Science, University of Chicago, Chicago, IL 60637, U.S.A.
2 Department of Psychology, Dartmouth College, Hanover, NH 03755, U.S.A.

3 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.
4 School of Electronics and Computer Science, University of Southampton, Southampton, U.K.

Abstract
The description, composition, and execution of
even logically simple scientific workflows are
often complicated by the need to deal with
“messy” issues like heterogeneous storage
formats and ad-hoc file system structures. We
show how these difficulties can be overcome
via a typed, compositional workflow notation
within which issues of physical representation
are cleanly separated from logical typing, and
by the implementation of this notation within
the context of a powerful runtime system that
supports distributed execution. The resulting
notation and system are capable both of
expressing complex workflows in a simple,
compact form, and of enacting those
workflows in distributed environments. We
apply our technique to cognitive neuroscience
workflows that analyze functional MRI image
data, and demonstrate significant reductions in
code size relative to other approaches.

1 Introduction
When constructing workflows that operate on large and
complex datasets, the ability to describe the types of
both datasets and workflow components can be
invaluable, enabling discovery of datasets and
procedures, type checking and composition of
procedure calls, and iteration over compound datasets.

Such typing should in principle be straightforward,
because of the hierarchical structure of most scientific
datasets. For example, in the functional Magnetic
Resonance Imaging (fMRI) applications used for
illustrative purposes in this paper, we find a hierarchical
structure of studies, groups, subjects, experimental runs,
and images (see Figure 1). A typical application might
build a new study by applying a program to each image
in each run for each subject in each group in a study.

Unfortunately, we find that such clean logical
structures are typically represented in terms of messy
physical constructs (e.g., metadata encoded in directory
and file names) employed in ad-hoc ways. For example,

the fMRI physical representation is a nested directory
structure, with ultimately a single 3D image (“volume”)
represented by two files located in the same directory,
distinguished only by file name suffix (Figure 1).

Such messy physical representations make program
development, composition, and execution unnecessarily
difficult. While we can incorporate knowledge of file
system layouts and file formats into application
programs and scripts, the resulting code is hard to write
and read, cannot easily be adapted to different
representations, and is not clearly typed.

Figure 1: fMRI structure, logical (left) & physical (right)

We have previously proposed that these concerns be
addressed by separating abstract structure and physical
representation [1]. (Woolf et al. [2] have recently
proposed similar ideas.) We describe here the design,
implementation, and evaluation of a notation that
achieve this separation.

We call this notation a virtual data language (VDL)
because its declarative structure allows datasets to be
defined prior to their generation and without regard to
their location and representation. For example, consider
a VDL procedure “foo_run” with the signature “Run
Y=foo_run(Run X)” and with an implementation that
builds and returns a new run Y by applying a program
‘foo’ to each image in the run supplied as argument X
(X and Y being dataset variables of type Run). We can

DBIC Archive
 Study_2004.0521.hgd
 Group 1
 Subject_2004.e024
 volume_anat.img
 volume_anat.hdr
 bold1_001.img
 bold1_001.hdr
 ...
 bold1_275.img
 bold1_275.hdr
 ...
 bold5_001.img
 ...
 snrbold*_*
 ...air*
 ...
 Group 5
 ...
 Study ...

DBIC Archive
 Study #’2004 0521 hgd’
 Group #1
 Subject #’2004 e024’
 Anatomy
 high-res volume
 Functional Runs
 run #1
 volume #001
 ...
 volume #275
 ...
 run #5
 volume #001
 ...
 volume #242
 …
 Group #5
 ...
 Study #...

Zhao, Y., Dobson, J., Foster, I., Moreau, L., Wilde, M., A Notation and System for Expressing and
Executing Cleanly Typed Workflows on Messy Scientific Data, SIGMOD Record, September 2005.

2

then specify via the VDL procedure invocation
“run2=foo_run(run1)” that dataset “run2” is to be
derived from dataset “run1.” Independence from
location and representation is achieved via the use of
XML Dataset Typing and Mapping (XDTM) [3]
mechanisms, which allow the types of datasets and
procedures to be defined abstractly, in terms of XML
Schema. Separate mapping descriptors then define how
such abstract data structures translate to physical
representations. Such descriptors specify, for example,
how to access the physical files associated with “run1”
and “run2.”

VDL’s declarative and typed structure makes it easy
to define increasingly complex procedures via
composition. For example, a procedure “Subject Y =
foo_subject(Subject X)” might apply the procedure
“foo_run” introduced earlier to each run in a supplied
subject. The repeated application of such compositional
forms can ultimately define large directed acyclic
graphs (DAGs) comprising thousands or even millions
of calls to “atomic transformations” that each operate
on just one or two image files.

The expansion of dataset definitions expressed in
VDL into DAGs, and the execution of these DAGs as
workflows in uni- or multi-processor environments, is
the task of an underlying virtual data system (VDS).

We have applied our techniques to fMRI data
analysis problems [4]. We have modeled a variety of
dataset types (and their corresponding physical
representations) and constructed and executed
numerous computational procedures and workflows
that operate on those datasets. Quantitative studies of
code size suggest that our VDL and VDS facilitate
workflow expression, and hence improve productivity.

We summarize the contributions of this paper as
follows:
(1) the design of a practical workflow notation and

system that separate logical and physical
representation to allow for the construction of
complex workflows on messy data using cleanly
typed computational procedures;

(2) solutions to practical problems that arise when
implementing such a notation within the context of
a distributed system within which datasets may be
persistent or transient, and both replicated and
distributed; and

(3) a demonstration and evaluation of the technology
via the encoding and execution of large fMRI
workflows in a distributed environment.

The rest of the paper is as follows. In Section 2, we
review related work. In Section 3, we introduce the
XDTM model and in Section 4 we describe VDL, using
an fMRI application for illustration. In Section 5 we
describe our implementation, and in Section 6 we
conclude with an assessment of results and approach.

2 Related Work
The Data Format Description Language (DFDL)

 [5], like XDTM, uses XML Schema to describe abstract
data models that specify data structures independent
from their physical representations. DFDL is concerned
with describing legacy data files and complex binary
formats, while XDTM focuses on describing data that
spans files and directories. Thus, the two systems can
potentially be used together.

XPDL [6], BPEL, and WSDL also use XML
Schema to describe data or message types, but assume
that data is represented in XML; in contrast, XDTM can
describe “messy” real-world data by mapping from the
logical structure to arbitrary physical representations.
Ptolemy [7] and Kepler [8] provide a static typing
system; Taverna [9] and Triana [10] do not mandate
typing. The ability to map logical types from/to
physical representations is not provided by these
languages and systems.

 When composing programs into workflows, we
must often convert logical types and/or physical
representations to make data accessible to downstream
programs. XPDL employs scripting languages such as
JavaScript to select subcomponents of a data type, and
BPEL uses XPath expressions in Assign statements for
data conversion. Our VDL permits the declarative
specification of a rich set of data conversion operations
on composite data structures and substructures.

VDL’s focus on DAGs limits the range of programs
that can be expressed relative to some other systems.
However, we emphasize that workflows similar to those
presented here are extremely common in scientific
computing, in domains including astronomy,
bioinformatics, and geographical information systems.
VDL can be extended with conditional constructs (for
example) if required, but we have not found such
extensions necessary to date.

Many workflow languages allow sequential,
parallel, and recursive patterns, but do not directly
support iteration. Taverna relies on its workflow engine
to run a process multiple times when a collection is
passed to a singleton-argument process. Kepler adopts a
functional operator ‘map’ to apply a function that
operates on singletons to collections. VDL’s typing
supports flexible iteration over datasets—and also type
checking, composition, and selection.

3 XDTM Overview
In XDTM, a dataset’s logical structure is specified

via a subset of XML Schema, which defines primitive
scalar data types such as Boolean, Integer, String, Float,
and Date, and also allows for the definition of complex
types via the composition of simple and complex types.

A dataset’s physical representation is defined by a
mapping descriptor, which describes how each element

3

in the dataset’s logical schema is stored in, and fetched
from, physical structures such as directories, files, and
database tables. In order to permit reuse for different
datasets, mapping descriptors can refer to external
parameters for such things as dataset location(s).

In order to access a dataset, we need to know three
things: its type schema, its mapping descriptor, and the
value(s) of any external parameter(s). These three
components can be grouped to form a dataset handle.

Note that multiple mappings may be defined for the
same logical schema (i.e., for a single logical type). For
example, an array of numbers might in different
contexts be physically represented as a set of relations,
a text file, a spreadsheet, or an XML document.

XDTM defines basic constructs for defining and
associating physical representations with XML
structures. However, it does not speak to how we write
programs that operate on XDTM-defined data: a major
focus of the work described here.

4 XDTM-Based Virtual Data Language
Our XDTM-based Virtual Data Language (VDL)—
derived loosely from an earlier VDL [11], which dealt
solely with untyped files—allows users to define
procedures that accept, return, and operate on datasets
with type, representation, and location defined by
XDTM. We introduce the principal features of VDL via
an example from fMRI data analysis.

4.1 Application Example

fMRI datasets are derived by scanning the brains of
subjects as they perform cognitive or manual tasks. The
raw data for a typical study might consist of three
subject groups with 20 subjects per group, five
experimental runs per subject, and 300 volume images
per run, yielding 90,000 volumes and over 60 GB of
data. A fully processed and analyzed study dataset can
contain over 1.2 million files. In a typical year at the
Dartmouth Brain Imaging Center, about 60 researchers
preprocess and analyze about 20 concurrent studies.

Experimental subjects are scanned once to obtain a
high-resolution image of their brain anatomy
(“anatomical volume”), then scanned with a low-
resolution imaging modality at rapid intervals to
observe the effects of blood flow from the “BOLD”
(blood oxygenated level dependant) signal while
performing some task (“functional runs”). These
images are pre-processed and subjected to intensive
analysis that begins with image processing and
concludes with a statistical analysis of correlations
between stimuli and neural activity.

4.2 VDL Type System

VDL uses a C-like syntax to represent XML Schema
types. For example, the first twelve lines of Figure 2

include the VDL types that we use to represent the data
objects of Figure 1. (We discuss the procedures later.)
Some corresponding XML Schema type definitions are
in Figure 3. A Volume contains a 3D image of a
volumetric slice of a brain image, represented by an
Image (voxels) and a Header (scanner metadata). As
we do not manipulate the contents of those objects
directly within this VDL program, we define their types
simply as opaque (Any). A time series of volumes taken
from a functional scan of one subject, doing one task,
forms a Run. In typical experiments, each Subject has
multiple input and normalized runs, and anatomical
data, Anat.

Specific output formats involved in processing raw
input volumes and runs may include outputs from
various image processing tools, such as the automated
image registration (AIR) suite. The type Air
corresponds to one dataset type created by these tools.

Figure 2: VDL Dataset Type and Procedure Examples

type Volume { Image img; Header hdr; }
type Image Any;
type Header Any;
type Run { Volume v[]; }
type Anat Volume;
type Subject { Anat anat; Run run []; Run snrun []; }
type Group { Subject s[]; }
type Study { Group g[]; }
type Air Any;
type AirVector { Air a[]; }
type Warp Any;
type NormAnat {Anat aVol; Warp aWarp; Volume nHires;}
airsn_subject(// Main function on “Subject”
 Subject s, Volume atlas, Air ashrink, Air fshrink) {
 NormAnat a = anatomical(s.anat, atlas, ashrink);
 Run r, snr;
 foreach r in s.run {
 snr = functional (r, a, fshrink);
 s.snrun[name(r)] = snr;
 }
}
(Run snr) functional(Run r, NormAnat a, Air shrink) {
 Run yroRun = reorientRun(r , "y");
 Run roRun = reorientRun(yroRun , "x");
 Volume std = roRun[0];
 Run rndr = random_select(roRun, .1); //10% sample
 AirVector rndAirVec =
 align_linearRun(rndr, std, 12, 1000, 1000, [81,3,3]);
 Run reslicedRndr = resliceRun(rndr,rndAirVec,"o","k");
 Volume meanRand = softmean(reslicedRndr, "y", null);
 Air mnQAAir =
 alignlinear(a.nHires, meanRand,6,1000,4, [81,3,3]);
 Volume mnQA = reslice(meanRand, mnQAAir, "o","k");
 Warp boldNormWarp =
 combinewarp(shrink, a.aWarp, mnQAAir);
 Run nr = reslice_warp_run(boldNormWarp, roRun);
 Volume meanAll = strictmean (nr, "y", null)
 Volume boldMask = binarize(meanAll, "y");
 snr = gsmoothRun(nr, boldMask, 6, 6, 6);
}

4

4.3 Procedures

Datasets are operated on by procedures, which take
data described by XDTM as input, perform
computations on those data, and produce data described
by XDTM as output. An atomic procedure defines an
interface to an executable program or service (more on
this below); a compound procedure composes calls to
atomic procedures, compound procedures, and/or
foreach statements.

A VDL procedure can be viewed as a named
workflow template. It defines a workflow comprising
either a single node (atomic procedure) or multiple
nodes (compound procedure). It is a template in that its
arguments are formal not actual parameters; a call to a
VDL procedure instantiates those arguments to define a
concrete workflow. Shared variables in the body of a
compound procedure specify data dependencies and
thus the directed arcs for the DAG corresponding to the
compound procedure’s workflow.

Figure 3: Type Definitions in XML Schema

We use as our illustrative example a workflow,
AIRSN, that performs spatial normalization for pre-
processing raw fMRI data prior to analysis. AIRSN
normalizes sets of time series of 3D volumes to a
standardized coordinate system and applies motion
correction and Gaussian smoothing. Figures 4 and 5
show two views of the most data-intensive segment of
the AIRSN workflow, which processes the data from
the functional runs of a study. Figure 4 is a high-level
representation in which each oval represents an
operation performed on an entire Run. Figure 5 expands

the workflow to the Volume level, for a dataset of 10
functional volumes. (The alert reader may note that the
random_select call is missing; this is an unimportant
artefact.) In realistic fMRI science runs, Runs might
include hundreds or thousands of volumes.

reorientRun

reorientRun

reslice_warpRun

random_select

alignlinearRun

resliceRun

softmean

alignlinear

combinewarp

strictmean

gsmoothRun

binarize

Figure 4: AIRSN workflow high-level representation

reorient/01

reorient/02

reslice_warp/22

alignlinear/03 alignlinear/07alignlinear/11

reorient/05

reorient/06

reslice_warp/23

reorient/09

reorient/10

reslice_warp/24

reorient/25

reorient/51

reslice_warp/26

reorient/27

reorient/52

reslice_warp/28

reorient/29

reorient/53

reslice_warp/30

reorient/31

reorient/54

reslice_warp/32

reorient/33

reorient/55

reslice_warp/34

reorient/35

reorient/56

reslice_warp/36

reorient/37

reorient/57

reslice_warp/38

reslice/04 reslice/08reslice/12

gsmooth/41

strictmean/39

gsmooth/42gsmooth/43gsmooth/44 gsmooth/45 gsmooth/46 gsmooth/47 gsmooth/48 gsmooth/49 gsmooth/50

softmean/13

alignlinear/17

combinewarp/21

binarize/40

reorient

reorient

alignlinear

reslice

softmean

alignlinear

combine_warp

reslice_warp

strictmean

binarize

gsmooth

Figure 5: AIRSN workflow expanded to show all atomic
file operations, for a 10 volume run

We present a subset of the VDL for AIRSN in Figure 2.
The procedure functional expresses the steps in Figure
4; airsn_subject calls both functional and procedure
anatomical (not shown) to process a Subject.

The VDL foreach statement allows programs to
apply an operation to all components of a compound

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
targetNamespace="http://www.fmri.org/schema/airsn.xsd"
 xmlns="http://www.fmri.org/schema/airsn.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:complexType name="Image">
 <xs:complexContent>
 <xs:extension base="xs:anyType"/>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="Header">
 <xs:complexContent>
 <xs:extension base="xs:anyType"/>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="Volume">
 <xs:sequence>
 <xs:element name="img" type="Image"/>
 <xs:element name="hdr" type="Header"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="Run">

<xs:sequence minOccurs="0 maxOccurs="unbounded">
 <xs:element name="v" type="Volume"/>

5

data object. For example, airsn_subject creates in the
Subject dataset a new spatially normalized Run for each
raw Run. Such procedures define how the workflow is
expanded as in Figure 5.

To apply a VDL procedure to a specific physical
dataset, we simply pass a reference to that dataset as an
actual parameter. The resulting call will execute
correctly regardless of the physical representation of a
passed dataset (assuming that the dataset and procedure
have matching logical types). Internally, dataset
references take the form of handles, which, as described
in Section 3, contain type, mapping, and location
information. Handles are never seen by the user.

4.4 Invoking Programs and Services

A workflow such as Figure 2 must ultimately invoke
external executable programs and/or Web Services.
VDL atomic procedures define the necessary
interfaces, specifying the name of the program or
service to be invoked, how to set up its execution
environment, how program arguments or service
messages should be mapped from and to VDL
procedure arguments, and what physical data objects
need to be moved to and from remote execution sites.

Figure 6: Program Invocation

For example, the procedure alignlinear called in
Figure 2 defines a VDL interface to the AIR utility of
the same name. The statements in the body assemble
the command to invoke the program, so that for
example the VDL call:

Air a = alignlinear(t1a, t3, 12, 1000, 1000, [81 3 3])
requests the execution of the following command:

alignlinear a.air t1a.hdr t3.hdr -m 12 \
 -t1 1000 -t2 1000 -s 81 3 3

This command may be executed on a remote
computer, in which case the VDS ensures that the
physical representations of datasets passed as input
arguments are transferred to the remote site, thus
ensuring that the executable can access the required
physical files. Thus, in the example call, the physical
representations of the datasets “t1a” and “t3” are
transferred to the remote site.

Similarly, in the case of output data (e.g., “Air a” in
the example call), the physical data is left on the remote
site, registered in a replica location service, and

optionally copied to another specified site to create an
additional replica (which often serves as an archival
copy).

Alternative atomic procedure definitions can be
provided to specify Web Service interfaces utilities.
These alternative procedures would implement the
same procedure prototype, but provide a different body.

5 Implementation
We have developed a prototype system that can process
VDL type definitions and mappings, convert a typed
workflow definition into an executable DAG, expand
DAG nodes dynamically to process sub-components of
a compound dataset, and submit and execute the
resulting DAG in a Grid environment. The separation
of dataset type and physical representation that we
achieve with VDL can facilitate various runtime
optimizations and graph rewriting operations [12].

Our prototype does not yet include a parser for the
syntax presented here. However, the prototype does
implement the runtime operations needed to support
typed VDL dataset processing and execution, which is
the principal technical challenge of implementing VDL.
We have also verified that we can invoke equivalent
services and applications from the same VDL.

The prototype extends an earlier VDS
implementation with features to handle data typing and
mapping. We use the VDS graph traversal mechanism
to generate an abstract DAG in which transformations
are not yet tied to specific applications or services, and
data objects are not yet bound to specific locations and
physical representations. The extended VDS also
enhances the DAG representation by introducing
“foreach” nodes (in addition to the existing “atomic”
nodes) to represent foreach statements in a VDL
procedure. These nodes are expanded at runtime (see
Section 5.2), thus enabling datasets to have a
dynamically determined size.

The abstract DAG is concretized by a Grid planner
called Euryale, which produces a concrete DAG that,
for each node in the input abstract DAG, performs the
following steps. (See Sections 5.1 and 5.2 for details on
how Euryale performs data mapping during these steps,
and expands foreach statements, respectively.)

1. Preprocess:
if (atomic procedure node) {
 identify node inputs and outputs;

 choose Grid site that meets job requirements;
 locate and transfer inputs to that site;
 }
 else if (foreach node)
 expand foreach statement(s) into sub-dag(s);
2. Execute: Submit job or sub-DAG; wait for it to

execute.
3. Postprocess: Check job exit status; transfer and

register outputs; cleanup.

(Air out) alignlinear(Volume std, Volume v,
 Int m, Int t1, Int t2, Int s[]) {
 argument = out;
 argument = get_member(std, hdr);
 argument = get_member (v, hdr);
 argument = "-m " m;
 argument = "-t1" t1;
 argument = "-t2" t2;
 argument = "-s " s[0] s[1] s[2];
}

6

The resulting concrete DAG is executed by the
DAGman (“DAG manager”) tool. DAGman provides
many necessary facilities for workflow execution, such
as logging, job status monitoring, workflow persistence,
and recursive fault recovery. DAGman submits jobs to
Grid sites via the Globus GRAM protocol.

5.1 Data Mapping

The Euryale planner needs to operate on the physical
data that lies behind the logical types defined in VDL
procedures. Such operations are accessed via a mapping
descriptor associated with the dataset, which controls
the execution of a mapping driver used to map between
physical and abstract representations. In general, a
mapping driver must implement the functions create-
dataset, store-member, get-member, and get-member-
list. Our prototype employs a table-driven approach to
implement a mapping driver for file-system-stored
datasets. Each table entry specifies:
 name: the data object name
 pattern: the pattern used to match file names
 mode: FILE (find matches in directory)

 RLS (find matches via replica location service),
 ENUM (dataset content is enumerated)
 content: used in ENUM mode to list content

When mapping an input dataset, this table is
consulted, the pattern is used to match a directory or
replica location service according to the mode, and the
members of the dataset are enumerated in an in-
memory structure. This structure is then used to expand
foreach statements and to set command-line arguments.

For example, recall from Figure 1 that a Volume is
physically represented as an image/header file pair, and
a Run as a set of such pairs. Furthermore, multiple Runs
may be stored in the same directory, with different
Runs distinguished by a prefix and different Volumes
by a suffix. To map this representation to the logical
Run structure, the pattern ‘boldN*’ is used to identify
all pairs in Run N at a specified location. Thus, the
mapper, when applied to the following eight files,
identifies two runs, one with three Volumes (Run 1) and
the other with one (Run 2).

bold1_001.img bold1_001.hdr
bold1_002.img bold1_002.hdr
bold1_003.img bold1_003.hdr
bold2_007.img bold2_007.hdr

5.2 Dynamic Node Expansion

A node containing a foreach statement must be
expanded prior to execution into a set of nodes: one per
component of the compound data object specified in the
foreach. This expansion is performed at runtime: when
a foreach node is scheduled for execution, the
appropriate mapper function is called on the specified
dataset to determine its members, and for each member
of the dataset identified (e.g., for each Volume in a Run)
a new job is created in a “sub-DAG.”

The new sub-DAG is submitted for execution, and
the main job waits for the sub-DAG to finish before
proceeding. A post-script for the main job takes care of
the transfer and registration of all output files, and the
collection of those files into the output dataset. This
workflow expansion process may itself recurse further
if the subcomponents themselves also include foreach
statements. DAGman provides workflow persistence
even in the face of system failures during recursion.

5.3 Optimizations and Graph Transformation

Since dataset mapping and node expansion are carried
out at run time, we can use graph transformations to
apply optimization strategies. For example, in the
AIRSN workflow, some processes, such as the reorient
of a single Volume, only take a few seconds to run. It is
inefficient to schedule a distinct process for each
Volume in a Run. Rather, we can combine multiple such
processes to run as a single job, thus reducing
scheduling and queuing overhead.

As a second example, the softmean procedure
computes the mean of all Volumes in a Run. For a
dataset with large number of Volumes, this stage is a
bottleneck as no parallelism is engaged. There is also a
practical issue: the executable takes all Volume
filenames as command line arguments, which can
exceed limits defined by the Condor and UNIX shell
tools used within our VDS implementation. Thus, we
transform this node into a tree in which leaf nodes
compute over subsets of the dataset. The process
repeats until we get a single output. The shape of this
tree can be tuned according to available computing
nodes and dataset sizes to achieve optimal parallelism
and avoid command-line length limitations.

6 Evaluation
We have used our prototype system to execute a range
of fMRI workflows with various input datasets on the
Dartmouth Green Grid, which comprises five 12-node
clusters. The dataset mapping mechanism allowed us to
switch input datasets (e.g., from a Run of 80 volumes to
another Run of 120 volumes) without changing either
the workflow definition or the execution system. All
workflows run correctly and achieve speedup.

The primary focus of our work is to increase
productivity [13]. As an approximate measure of this,
we compare in Table 1 the lines of code needed to
express five different fMRI workflows, coded in our
new VDL, with two other approaches, one based on ad-
hoc shell scripts (“Script,” able to execute only on a
single computer) and a second (“Generator”) that uses
Perl scripts to generate older, “pre-XDTM” VDL.

The new programs are smaller and more readable—
and also provide for type checking, provenance
tracking, parallelism, and distributed execution.

7

Table 1: Lines of code with different workflow encodings

Workflow Script Generator VDL
GENATLAS1 49 72 6
GENATLAS2 97 135 10
FILM1 63 134 17
FEAT 84 191 13
AIRSN 215 ~400 37

7 Conclusions
We have designed a typed workflow notation and
system that allows workflows to be expressed in terms
of declarative procedures that operate on XML data
types and then executed on diverse physical
representations and on distributed computers. We show
that this notation and system can be used to express
large amounts of distributed computation easily.

The productivity leverage of this approach is
apparent: a small group of developers can define VDL
interfaces to the utility packages used in a research
domain and then create a library of dataset-iteration
functions. This library encapsulates low-level details
concerning how data is grouped, transported,
catalogued, passed to applications, and collected as
results. Other scientists can then use this library to
construct workflows without needing to understand
details of physical representation, and furthermore are
protected by the XDTM type system from forming
workflows that are not type compliant. In addition, the
data management conventions of a research group can
be encoded in XDTM mapping functions, thus making
it easier to maintain order in dataset collections that
may include tens of millions of files.

We next plan to automate the parsing steps that
were performed manually in our prototype, and to
create a complete workflow development and execution
environment for our XDTM-based VDL. We will also
investigate support for services, automation of type
coercions between differing physical representations,
and recording of provenance for large data collections.

Acknowledgements.
This work was supported by the National Science
Foundation GriPhyN Project, grant ITR-800864, the
Mathematical, Information, and Computational
Sciences Division subprogram of the Office of
Advanced Scientific Computing Research, U.S.
Department of Energy, and by the National Institutes of
Health, grants NS37470 and NS44393. We are grateful
to Scott Grafton of the Dartmouth Brain Imaging
Center, and to Jens Voeckler, Doug Scheftner, Ewa
Deelman, Carl Kesselman, and the entire Virtual Data
System team for discussion, guidance, and assistance.

References
[1] Foster, I., Voeckler, J., Wilde, M., Zhao, Y. The Virtual

Data Grid: A New Model and Architecture for Data-
intensive Collaboration. Conference on Innovative Data
Systems Research, Asilomar, CA, January 2003.

[2] Woolf, A., Cramer, R., Gutierrez, M., van Dam, K.,
Kondapalli, S., Latham, S., Lawrence, B., Lowry, R.,
O'Neill, K., Semantic Integration of File-based Data for
Grid Services. Workshop on Semantic Infrastructure for
Grid Computing Applications, 2005.

[3] Moreau, L., Zhao, Y., Foster, I., Voeckler, J. Wilde, M.,
XDTM: XML Dataset Typing and Mapping for
Specifying Datasets. European Grid Conference, 2005.

[4] Van Horn, J.D., Dobson, J., Woodward, J., Wilde, M.,
Zhao, Y., Voeckler, J., Foster, I. Grid-Based Computing
and the Future of Neuroscience Computation, Methods in
Mind, Cambridge: MIT Press (In Press).

[5] Beckerle, M., Westhead, M. GGF DFDL Primer.
Technical report, Global Grid Forum, 2004.

[6] XML Process Definition Language (XPDL) (WFMCTC-
1025). Technical report, Workflow Management
Coalition, Lighthouse Point, Florida, USA, 2002.

[7] Eker, J., Janneck, J., Lee, E., Liu, J., Liu, X., Ludvig, J.,
Neuendorffer, S., Sachs, S., Xiong, Y. Taming
Heterogeneity – the Ptolemy Approach. Proceedings of
the IEEE, 91(1):127-144, January 2003.

[8] Altintas, I., Berkley, C., Jaeger, E., Jones, M.,
Ludäscher, B. and Mock, S., Kepler: An Extensible
System for Design and Execution of Scientific
Workflows. 16th Intl. Conference on Scientific and
Statistical Database Management, 2004.

[9] Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M.,
Greenwood, M., Carver, T., Glover, K., Pocock, M.,
Wipat, A., Li, P. Taverna: A Tool for the Composition
and Enactment of Bioinformatics Workflows.
Bioinformatics Journal, 20(17):3045-3054, 2004.

[10] Churches, D., Gombas, G., Harrison, A., Maassen, J.,
Robinson, C., Shields, M., Taylor, I. Wang, I.
Programming Scientific and Distributed Workflow with
Triana Services. Concurrency and Computation:
Practice and Experience, 2005 (in press).

[11] Foster, I., Voeckler, J., Wilde, M., Zhao, Y. Chimera: A
Virtual Data System for Representing, Querying and
Automating Data Derivation. 14th Conference on
Scientific and Statistical Database Management, 2002.

[12] Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta,
G., Vahi, K., Blackburn, K., Lazzarini, A., Arbree, A.,
Cavanaugh, R., Koranda, S. Mapping Abstract
Workflows onto Grid Environments. Journal of Grid
Computing, 1(1). 2003.

[13] Gray, J., Liu, D., Nieto-Santisteban, M., Szalay, A.
Scientific Data Management in the Coming Decade.
Microsoft Research, MSR-TR-2005-10. 2005.

