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Abstract 
The description, composition, and execution of 
even logically simple scientific workflows are 
often complicated by the need to deal with 
“messy” issues like heterogeneous storage 
formats and ad-hoc file system structures. We 
show how these difficulties can be overcome 
via a typed, compositional workflow notation 
within which issues of physical representation 
are cleanly separated from logical typing, and 
by the implementation of this notation within 
the context of a powerful runtime system that 
supports distributed execution. The resulting 
notation and system are capable both of 
expressing complex workflows in a simple, 
compact form, and of enacting those 
workflows in distributed environments. We 
apply our technique to cognitive neuroscience 
workflows that analyze functional MRI image 
data, and demonstrate significant reductions in 
code size relative to other approaches. 

1 Introduction 
When constructing workflows that operate on large and 
complex datasets, the ability to describe the types of 
both datasets and workflow components can be 
invaluable, enabling discovery of datasets and 
procedures, type checking and composition of 
procedure calls, and iteration over compound datasets. 

Such typing should in principle be straightforward, 
because of the hierarchical structure of most scientific 
datasets. For example, in the functional Magnetic 
Resonance Imaging (fMRI) applications used for 
illustrative purposes in this paper, we find a hierarchical 
structure of studies, groups, subjects, experimental runs, 
and images (see Figure 1). A typical application might 
build a new study by applying a program to each image 
in each run for each subject in each group in a study.  

Unfortunately, we find that such clean logical 
structures are typically represented in terms of messy 
physical constructs (e.g., metadata encoded in directory 
and file names) employed in ad-hoc ways. For example, 

the fMRI physical representation is a nested directory 
structure, with ultimately a single 3D image (“volume”) 
represented by two files located in the same directory, 
distinguished only by file name suffix (Figure 1).  

Such messy physical representations make program 
development, composition, and execution unnecessarily 
difficult. While we can incorporate knowledge of file 
system layouts and file formats into application 
programs and scripts, the resulting code is hard to write 
and read, cannot easily be adapted to different 
representations, and is not clearly typed. 

 
Figure 1: fMRI structure, logical (left) & physical (right) 

We have previously proposed that these concerns be 
addressed by separating abstract structure and physical 
representation  [1]. (Woolf et al. [2] have recently 
proposed similar ideas.) We describe here the design, 
implementation, and evaluation of a notation that 
achieve this separation. 

We call this notation a virtual data language (VDL) 
because its declarative structure allows datasets to be 
defined prior to their generation and without regard to 
their location and representation. For example, consider 
a VDL procedure “foo_run” with the signature “Run 
Y=foo_run(Run X)” and with an implementation that 
builds and returns a new run Y by applying a program 
‘foo’ to each image in the run supplied as argument X 
(X and Y being dataset variables of type Run). We can 
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then specify via the VDL procedure invocation 
“run2=foo_run(run1)” that dataset “run2” is to be 
derived from dataset “run1.” Independence from 
location and representation is achieved via the use of 
XML Dataset Typing and Mapping (XDTM)  [3] 
mechanisms, which allow the types of datasets and 
procedures to be defined abstractly, in terms of XML 
Schema. Separate mapping descriptors then define how 
such abstract data structures translate to physical 
representations. Such descriptors specify, for example, 
how to access the physical files associated with “run1” 
and “run2.” 

VDL’s declarative and typed structure makes it easy 
to define increasingly complex procedures via 
composition. For example, a procedure “Subject Y = 
foo_subject(Subject X)” might apply the procedure 
“foo_run” introduced earlier to each run in a supplied 
subject. The repeated application of such compositional 
forms can ultimately define large directed acyclic 
graphs (DAGs) comprising thousands or even millions 
of calls to “atomic transformations” that each operate 
on just one or two image files.  

The expansion of dataset definitions expressed in 
VDL into DAGs, and the execution of these DAGs as 
workflows in uni- or multi-processor environments, is 
the task of an underlying virtual data system (VDS). 

We have applied our techniques to fMRI data 
analysis problems  [4]. We have modeled a variety of 
dataset types (and their corresponding physical 
representations) and constructed and executed 
numerous computational procedures and workflows 
that operate on those datasets. Quantitative studies of 
code size suggest that our VDL and VDS facilitate 
workflow expression, and hence improve productivity. 

We summarize the contributions of this paper as 
follows:  
(1) the design of a practical workflow notation and 

system that separate logical and physical 
representation to allow for the construction of 
complex workflows on messy data using cleanly 
typed computational procedures;  

(2) solutions to practical problems that arise when 
implementing such a notation within the context of 
a distributed system within which datasets may be 
persistent or transient, and both replicated and 
distributed; and  

(3) a demonstration and evaluation of the technology 
via the encoding and execution of large fMRI 
workflows in a distributed environment. 

The rest of the paper is as follows. In Section 2, we 
review related work. In Section 3, we introduce the 
XDTM model and in Section 4 we describe VDL, using 
an fMRI application for illustration. In Section 5 we 
describe our implementation, and in Section 6 we 
conclude with an assessment of results and approach. 

2 Related Work 
The Data Format Description Language (DFDL) 

 [5], like XDTM, uses XML Schema to describe abstract 
data models that specify data structures independent 
from their physical representations. DFDL is concerned 
with describing legacy data files and complex binary 
formats, while XDTM focuses on describing data that 
spans files and directories. Thus, the two systems can 
potentially be used together. 

XPDL  [6], BPEL, and WSDL also use XML 
Schema to describe data or message types, but assume 
that data is represented in XML; in contrast, XDTM can 
describe “messy” real-world data by mapping from the 
logical structure to arbitrary physical representations. 
Ptolemy  [7] and Kepler  [8] provide a static typing 
system; Taverna  [9] and Triana  [10] do not mandate 
typing. The ability to map logical types from/to 
physical representations is not provided by these 
languages and systems. 

 When composing programs into workflows, we 
must often convert logical types and/or physical 
representations to make data accessible to downstream 
programs. XPDL employs scripting languages such as 
JavaScript to select subcomponents of a data type, and 
BPEL uses XPath expressions in Assign statements for 
data conversion. Our VDL permits the declarative 
specification of a rich set of data conversion operations 
on composite data structures and substructures. 

VDL’s focus on DAGs limits the range of programs 
that can be expressed relative to some other systems. 
However, we emphasize that workflows similar to those 
presented here are extremely common in scientific 
computing, in domains including astronomy, 
bioinformatics, and geographical information systems. 
VDL can be extended with conditional constructs (for 
example) if required, but we have not found such 
extensions necessary to date. 

Many workflow languages allow sequential, 
parallel, and recursive patterns, but do not directly 
support iteration. Taverna relies on its workflow engine 
to run a process multiple times when a collection is 
passed to a singleton-argument process. Kepler adopts a 
functional operator ‘map’ to apply a function that 
operates on singletons to collections. VDL’s typing 
supports flexible iteration over datasets—and also type 
checking, composition, and selection. 

3 XDTM Overview 
In XDTM, a dataset’s logical structure is specified 

via a subset of XML Schema, which defines primitive 
scalar data types such as Boolean, Integer, String, Float, 
and Date, and also allows for the definition of complex 
types via the composition of simple and complex types.  

A dataset’s physical representation is defined by a 
mapping descriptor, which describes how each element 
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in the dataset’s logical schema is stored in, and fetched 
from, physical structures such as directories, files, and 
database tables. In order to permit reuse for different 
datasets, mapping descriptors can refer to external 
parameters for such things as dataset location(s). 

In order to access a dataset, we need to know three 
things: its type schema, its mapping descriptor, and the 
value(s) of any external parameter(s). These three 
components can be grouped to form a dataset handle. 

Note that multiple mappings may be defined for the 
same logical schema (i.e., for a single logical type). For 
example, an array of numbers might in different 
contexts be physically represented as a set of relations, 
a text file, a spreadsheet, or an XML document.  

XDTM defines basic constructs for defining and 
associating physical representations with XML 
structures. However, it does not speak to how we write 
programs that operate on XDTM-defined data: a major 
focus of the work described here. 

4 XDTM-Based Virtual Data Language 
Our XDTM-based Virtual Data Language (VDL)—
derived loosely from an earlier VDL [11], which dealt 
solely with untyped files—allows users to define 
procedures that accept, return, and operate on datasets 
with type, representation, and location defined by 
XDTM. We introduce the principal features of VDL via 
an example from fMRI data analysis. 

4.1 Application Example 

fMRI datasets are derived by scanning the brains of 
subjects as they perform cognitive or manual tasks. The 
raw data for a typical study might consist of three 
subject groups with 20 subjects per group, five 
experimental runs per subject, and 300 volume images 
per run, yielding 90,000 volumes and over 60 GB of 
data. A fully processed and analyzed study dataset can 
contain over 1.2 million files. In a typical year at the 
Dartmouth Brain Imaging Center, about 60 researchers 
preprocess and analyze about 20 concurrent studies.  

Experimental subjects are scanned once to obtain a 
high-resolution image of their brain anatomy 
(“anatomical volume”), then scanned with a low-
resolution imaging modality at rapid intervals to 
observe the effects of blood flow from the “BOLD” 
(blood oxygenated level dependant) signal while 
performing some task (“functional runs”). These 
images are pre-processed and subjected to intensive 
analysis that begins with image processing and 
concludes with a statistical analysis of correlations 
between stimuli and neural activity. 

4.2 VDL Type System 

VDL uses a C-like syntax to represent XML Schema 
types. For example, the first twelve lines of Figure 2 

include the VDL types that we use to represent the data 
objects of Figure 1. (We discuss the procedures later.) 
Some corresponding XML Schema type definitions are 
in Figure 3. A Volume contains a 3D image of a 
volumetric slice of a brain image, represented by an 
Image (voxels) and a Header (scanner metadata). As 
we do not manipulate the contents of those objects 
directly within this VDL program, we define their types 
simply as opaque (Any). A time series of volumes taken 
from a functional scan of one subject, doing one task, 
forms a Run. In typical experiments, each Subject has 
multiple input and normalized runs, and anatomical 
data, Anat. 

Specific output formats involved in processing raw 
input volumes and runs may include outputs from 
various image processing tools, such as the automated 
image registration (AIR) suite. The type Air 
corresponds to one dataset type created by these tools.  
 

 
Figure 2: VDL Dataset Type and Procedure Examples 

type Volume { Image img; Header hdr; } 
type Image Any; 
type Header Any; 
type Run { Volume v[ ]; } 
type Anat Volume; 
type Subject { Anat anat; Run run [ ]; Run snrun [ ]; } 
type Group { Subject s[ ]; } 
type Study { Group g[ ]; } 
type Air Any; 
type AirVector { Air a[ ]; } 
type Warp Any; 
type NormAnat {Anat aVol; Warp aWarp; Volume nHires;} 
airsn_subject(    // Main function on “Subject” 
              Subject s, Volume atlas, Air ashrink, Air fshrink ) { 
      NormAnat a = anatomical(s.anat, atlas, ashrink); 
      Run r, snr; 
      foreach r in s.run { 
            snr = functional ( r, a, fshrink ); 
            s.snrun[ name(r) ] = snr; 
      } 
} 
(Run snr) functional( Run r, NormAnat a, Air shrink ) { 
     Run yroRun  = reorientRun( r , "y" ); 
     Run roRun  = reorientRun( yroRun , "x" ); 
     Volume std  = roRun[0]; 
     Run rndr  = random_select(roRun, .1); //10% sample 
     AirVector rndAirVec = 
            align_linearRun(rndr, std, 12, 1000, 1000, [81,3,3]); 
     Run reslicedRndr = resliceRun( rndr,rndAirVec,"o","k"); 
     Volume meanRand = softmean(reslicedRndr, "y", null ); 
     Air mnQAAir =  
            alignlinear(a.nHires, meanRand,6,1000,4, [81,3,3]); 
     Volume mnQA = reslice(meanRand, mnQAAir, "o","k"); 
     Warp boldNormWarp =  
             combinewarp(shrink, a.aWarp, mnQAAir); 
     Run nr = reslice_warp_run( boldNormWarp, roRun ); 
     Volume meanAll = strictmean ( nr, "y", null ) 
     Volume boldMask = binarize( meanAll, "y" ); 
     snr = gsmoothRun( nr, boldMask, 6, 6, 6); 
}
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4.3 Procedures 

Datasets are operated on by procedures, which take 
data described by XDTM as input, perform 
computations on those data, and produce data described 
by XDTM as output. An atomic procedure defines an 
interface to an executable program or service (more on 
this below); a compound procedure composes calls to 
atomic procedures, compound procedures, and/or 
foreach statements.  

A VDL procedure can be viewed as a named 
workflow template. It defines a workflow comprising 
either a single node (atomic procedure) or multiple 
nodes (compound procedure). It is a template in that its 
arguments are formal not actual parameters; a call to a 
VDL procedure instantiates those arguments to define a 
concrete workflow. Shared variables in the body of a 
compound procedure specify data dependencies and 
thus the directed arcs for the DAG corresponding to the 
compound procedure’s workflow. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Type Definitions in XML Schema 

We use as our illustrative example a workflow, 
AIRSN, that performs spatial normalization for pre-
processing raw fMRI data prior to analysis. AIRSN 
normalizes sets of time series of 3D volumes to a 
standardized coordinate system and applies motion 
correction and Gaussian smoothing. Figures 4 and 5 
show two views of the most data-intensive segment of 
the AIRSN workflow, which processes the data from 
the functional runs of a study. Figure 4 is a high-level 
representation in which each oval represents an 
operation performed on an entire Run. Figure 5 expands 

the workflow to the Volume level, for a dataset of 10 
functional volumes. (The alert reader may note that the 
random_select call is missing; this is an unimportant 
artefact.) In realistic fMRI science runs, Runs might 
include hundreds or thousands of volumes. 
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Figure 4: AIRSN workflow high-level representation 
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Figure 5: AIRSN workflow expanded to show all atomic 
file operations, for a 10 volume run 

We present a subset of the VDL for AIRSN in Figure 2. 
The procedure functional expresses the steps in Figure 
4; airsn_subject calls both functional and procedure 
anatomical (not shown) to process a Subject. 

The VDL foreach statement allows programs to 
apply an operation to all components of a compound 

<?xml version="1.0" encoding="UTF-8"?> 
<xs:schema 
targetNamespace="http://www.fmri.org/schema/airsn.xsd" 
           xmlns="http://www.fmri.org/schema/airsn.xsd" 
           xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
 
  <xs:complexType name="Image"> 
    <xs:complexContent> 
      <xs:extension base="xs:anyType"/> 
    </xs:complexContent> 
  </xs:complexType> 
 
  <xs:complexType name="Header"> 
    <xs:complexContent> 
      <xs:extension base="xs:anyType"/> 
    </xs:complexContent> 
  </xs:complexType> 
 
  <xs:complexType name="Volume"> 
    <xs:sequence> 
      <xs:element name="img" type="Image"/> 
      <xs:element name="hdr" type="Header"/> 
    </xs:sequence> 
  </xs:complexType> 
 
  <xs:complexType name="Run"> 

<xs:sequence minOccurs="0 maxOccurs="unbounded"> 
      <xs:element name="v" type="Volume"/> 
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data object. For example, airsn_subject creates in the 
Subject dataset a new spatially normalized Run for each 
raw Run. Such procedures define how the workflow is 
expanded as in Figure 5. 

To apply a VDL procedure to a specific physical 
dataset, we simply pass a reference to that dataset as an 
actual parameter. The resulting call will execute 
correctly regardless of the physical representation of a 
passed dataset (assuming that the dataset and procedure 
have matching logical types). Internally, dataset 
references take the form of handles, which, as described 
in Section  3, contain type, mapping, and location 
information. Handles are never seen by the user. 

4.4 Invoking Programs and Services 

A workflow such as Figure 2 must ultimately invoke 
external executable programs and/or Web Services. 
VDL atomic procedures define the necessary 
interfaces, specifying the name of the program or 
service to be invoked, how to set up its execution 
environment, how program arguments or service 
messages should be mapped from and to VDL 
procedure arguments, and what physical data objects 
need to be moved to and from remote execution sites. 

 
 
 
 
 
 
 
 
 
 

Figure 6: Program Invocation 

For example, the procedure alignlinear called in 
Figure 2 defines a VDL interface to the AIR utility of 
the same name. The statements in the body assemble 
the command to invoke the program, so that for 
example the VDL call: 

Air a = alignlinear(t1a, t3, 12, 1000, 1000, [81 3 3]) 
requests the execution of the following command: 

alignlinear a.air t1a.hdr t3.hdr -m 12 \ 
                                 -t1 1000 -t2 1000 -s 81 3 3 

This command may be executed on a remote 
computer, in which case the VDS ensures that the 
physical representations of datasets passed as input 
arguments are transferred to the remote site, thus 
ensuring that the executable can access the required 
physical files. Thus, in the example call, the physical 
representations of the datasets “t1a” and “t3” are 
transferred to the remote site. 

Similarly, in the case of output data (e.g., “Air a” in 
the example call), the physical data is left on the remote 
site, registered in a replica location service, and 

optionally copied to another specified site to create an 
additional replica (which often serves as an archival 
copy). 

Alternative atomic procedure definitions can be 
provided to specify Web Service interfaces utilities. 
These alternative procedures would implement the 
same procedure prototype, but provide a different body. 

5 Implementation 
We have developed a prototype system that can process 
VDL type definitions and mappings, convert a typed 
workflow definition into an executable DAG, expand 
DAG nodes dynamically to process sub-components of 
a compound dataset, and submit and execute the 
resulting DAG in a Grid environment. The separation 
of dataset type and physical representation that we 
achieve with VDL can facilitate various runtime 
optimizations and graph rewriting operations  [12]. 

Our prototype does not yet include a parser for the 
syntax presented here. However, the prototype does 
implement the runtime operations needed to support 
typed VDL dataset processing and execution, which is 
the principal technical challenge of implementing VDL. 
We have also verified that we can invoke equivalent 
services and applications from the same VDL. 

The prototype extends an earlier VDS 
implementation with features to handle data typing and 
mapping. We use the VDS graph traversal mechanism 
to generate an abstract DAG in which transformations 
are not yet tied to specific applications or services, and 
data objects are not yet bound to specific locations and 
physical representations. The extended VDS also 
enhances the DAG representation by introducing 
“foreach” nodes (in addition to the existing “atomic” 
nodes) to represent foreach statements in a VDL 
procedure. These nodes are expanded at runtime (see 
Section 5.2), thus enabling datasets to have a 
dynamically determined size. 

The abstract DAG is concretized by a Grid planner 
called Euryale, which produces a concrete DAG that, 
for each node in the input abstract DAG, performs the 
following steps. (See Sections 5.1 and 5.2 for details on 
how Euryale performs data mapping during these steps, 
and expands foreach statements, respectively.) 

1. Preprocess: 
if (atomic procedure node) { 
   identify node inputs and outputs; 

          choose Grid site that meets job requirements; 
          locate and transfer inputs to that site; 
       } 
       else if (foreach node) 
           expand foreach statement(s) into sub-dag(s); 
2. Execute: Submit job or sub-DAG; wait for it to 

execute. 
3. Postprocess: Check job exit status; transfer and 

register outputs; cleanup. 

(Air out) alignlinear(Volume std, Volume v, 
                                    Int m, Int t1, Int t2, Int s[ ] ) { 
    argument = out; 
    argument = get_member(std, hdr); 
    argument = get_member (v, hdr); 
    argument = "-m " m; 
    argument = "-t1" t1; 
    argument = "-t2" t2; 
    argument = "-s " s[0] s[1] s[2]; 
} 
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The resulting concrete DAG is executed by the 
DAGman (“DAG manager”) tool. DAGman provides 
many necessary facilities for workflow execution, such 
as logging, job status monitoring, workflow persistence, 
and recursive fault recovery. DAGman submits jobs to 
Grid sites via the Globus GRAM protocol. 

5.1 Data Mapping 

The Euryale planner needs to operate on the physical 
data that lies behind the logical types defined in VDL 
procedures. Such operations are accessed via a mapping 
descriptor associated with the dataset, which controls 
the execution of a mapping driver used to map between 
physical and abstract representations. In general, a 
mapping driver must implement the functions create-
dataset, store-member, get-member, and get-member-
list. Our prototype employs a table-driven approach to 
implement a mapping driver for file-system-stored 
datasets. Each table entry specifies: 
  name: the data object name 
  pattern: the pattern used to match file names 
  mode: FILE (find matches in directory) 

 RLS (find matches via replica location service), 
 ENUM (dataset content is enumerated) 
  content: used in ENUM mode to list content 

When mapping an input dataset, this table is 
consulted, the pattern is used to match a directory or 
replica location service according to the mode, and the 
members of the dataset are enumerated in an in-
memory structure. This structure is then used to expand 
foreach statements and to set command-line arguments. 

For example, recall from Figure 1 that a Volume is 
physically represented as an image/header file pair, and 
a Run as a set of such pairs. Furthermore, multiple Runs 
may be stored in the same directory, with different 
Runs distinguished by a prefix and different Volumes 
by a suffix. To map this representation to the logical 
Run structure, the pattern ‘boldN*’ is used to identify 
all pairs in Run N at a specified location. Thus, the 
mapper, when applied to the following eight files, 
identifies two runs, one with three Volumes (Run 1) and 
the other with one (Run 2). 

bold1_001.img    bold1_001.hdr 
bold1_002.img    bold1_002.hdr 
bold1_003.img    bold1_003.hdr 
bold2_007.img    bold2_007.hdr 

5.2 Dynamic Node Expansion 

A node containing a foreach statement must be 
expanded prior to execution into a set of nodes: one per 
component of the compound data object specified in the 
foreach. This expansion is performed at runtime: when 
a foreach node is scheduled for execution, the 
appropriate mapper function is called on the specified 
dataset to determine its members, and for each member 
of the dataset identified (e.g., for each Volume in a Run) 
a new job is created in a “sub-DAG.” 

The new sub-DAG is submitted for execution, and 
the main job waits for the sub-DAG to finish before 
proceeding. A post-script for the main job takes care of 
the transfer and registration of all output files, and the 
collection of those files into the output dataset. This 
workflow expansion process may itself recurse further 
if the subcomponents themselves also include foreach 
statements. DAGman provides workflow persistence 
even in the face of system failures during recursion. 

5.3 Optimizations and Graph Transformation 

Since dataset mapping and node expansion are carried 
out at run time, we can use graph transformations to 
apply optimization strategies. For example, in the 
AIRSN workflow, some processes, such as the reorient 
of a single Volume, only take a few seconds to run. It is 
inefficient to schedule a distinct process for each 
Volume in a Run. Rather, we can combine multiple such 
processes to run as a single job, thus reducing 
scheduling and queuing overhead. 

As a second example, the softmean procedure 
computes the mean of all Volumes in a Run. For a 
dataset with large number of Volumes, this stage is a 
bottleneck as no parallelism is engaged. There is also a 
practical issue: the executable takes all Volume 
filenames as command line arguments, which can 
exceed limits defined by the Condor and UNIX shell 
tools used within our VDS implementation. Thus, we 
transform this node into a tree in which leaf nodes 
compute over subsets of the dataset. The process 
repeats until we get a single output. The shape of this 
tree can be tuned according to available computing 
nodes and dataset sizes to achieve optimal parallelism 
and avoid command-line length limitations. 

6 Evaluation 
We have used our prototype system to execute a range 
of fMRI workflows with various input datasets on the 
Dartmouth Green Grid, which comprises five 12-node 
clusters. The dataset mapping mechanism allowed us to 
switch input datasets (e.g., from a Run of 80 volumes to 
another Run of 120 volumes) without changing either 
the workflow definition or the execution system. All 
workflows run correctly and achieve speedup.  

The primary focus of our work is to increase 
productivity [13]. As an approximate measure of this, 
we compare in Table 1 the lines of code needed to 
express five different fMRI workflows, coded in our 
new VDL, with two other approaches, one based on ad-
hoc shell scripts (“Script,” able to execute only on a 
single computer) and a second (“Generator”) that uses 
Perl scripts to generate older, “pre-XDTM” VDL. 

The new programs are smaller and more readable—
and also provide for type checking, provenance 
tracking, parallelism, and distributed execution. 
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Table 1: Lines of code with different workflow encodings 

Workflow  Script Generator VDL 
GENATLAS1 49 72 6 
GENATLAS2 97 135 10 
FILM1 63 134 17 
FEAT 84 191 13 
AIRSN 215 ~400 37 

7 Conclusions 
We have designed a typed workflow notation and 
system that allows workflows to be expressed in terms 
of declarative procedures that operate on XML data 
types and then executed on diverse physical 
representations and on distributed computers. We show 
that this notation and system can be used to express 
large amounts of distributed computation easily.  

The productivity leverage of this approach is 
apparent: a small group of developers can define VDL 
interfaces to the utility packages used in a research 
domain and then create a library of dataset-iteration 
functions. This library encapsulates low-level details 
concerning how data is grouped, transported, 
catalogued, passed to applications, and collected as 
results. Other scientists can then use this library to 
construct workflows without needing to understand 
details of physical representation, and furthermore are 
protected by the XDTM type system from forming 
workflows that are not type compliant. In addition, the 
data management conventions of a research group can 
be encoded in XDTM mapping functions, thus making 
it easier to maintain order in dataset collections that 
may include tens of millions of files. 

We next plan to automate the parsing steps that 
were performed manually in our prototype, and to 
create a complete workflow development and execution 
environment for our XDTM-based VDL. We will also 
investigate support for services, automation of type 
coercions between differing physical representations, 
and recording of provenance for large data collections. 
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