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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES 

School of Chemistry 

Thesis for the degree of Doctor of Philosophy 

J-coupling predictor function building and large–scale NMR simulations of proteins 

and nucleic acids 

Zenawi Teklay Welderufael 

This thesis discusses large scale quantum mechanical NMR simulations and fitting works, and 

deals with biomolecular spin systems.  

Chapter one introduces the theoretical background that underpins the simulation work. It 

describes spin and it properties, the interactions of spin with the magnetic field, the 

environment and it self and the Hamiltonians that describe those interactions. It also covers the 

Bloch equations that is normally used to predict the longitudinal and transverse relaxations. It 

further briefly describes the common relaxation mechanisms that are available for a spin 

system. It also included NMR experiments that are often used in the study of protein and 

nucleic acid systems. 

Chapter 2 summarizes the building of J-coupling predictor function. It provides the detail on 

how the estimator function was built. The function is required for NMR simulations and 

incorporates the functionality of J-coupling estimation, which provides J-coupling values for 

proteins and nucleic acids. After building the estimator function NOESY spectra simulation of 

ubiquitin and RNA stem loops spin systems was performed. Chapter 3 then discusses our 

simulation method, treating the system quantum mechanically along with an advanced and 

detailed description of NOE using Redfield relaxation theory.    

Chapter 4 reports on large–scale simulations and fitting of an exchanging 1H-15N HSQC spectra 

of calmodulin (PDB: 1CLL) upon stepwise addition of a ligand, that was analysed using a 
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formalism that operates in the direct product of spin state space and chemical state space. It 

also presents the least squares technique for the fitting procedure and the Nelder-Mead simplex 

minimization technique used in the process. The chapter also highlights the data collated from 

the fitting work.   

Finally, chapter 5 concludes the thesis with the simulation of NOESY stem loops RNA spin 

system and fitting with respect to correlation time and frequency offset. It also explains how 

we fitted the data from theory to those from the experiment and why the diagonal peaks were 

eliminated from the fitting. 
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1 Introduction	
Spin dynamics simulation algorithms play a significant role in the design of experimental 

techniques, analysis of spectra and to extract structural and dynamic parameters. 

Spin dynamics focuses in simulating the evolution of a spin system over time. NMR simulation 

of systems containing over 20 spins is difficult, because the CPU time for simulation in 

Liouville space scales exponentially [1] with system size.  

A number of computational tools that simulate spin dynamics have emerged over the years [2-

5]. Spin dynamics simulation packages are categorized as analytical and numerical tools. 

Almost all analytical tools are written in Mathematica, while numerical tools are scripted and 

coded in FORTRAN, Python, C and/or Matlab [3]. A class of polynomially scaling algorithms 

that allow computationally efficient simulation of systems with a large number of coupled spins 

are developed [3]. The development of Spinach [3], a spin dynamics simulation package, opens 

the way to the simulation of large bio-molecules such as proteins and nucleic acid as a whole 

in one go. But, this requires a J-coupling predictor function.   

One bond and two bond coupling are largely known and available in literature [6-9]. Three 

bond couplings are known to depend at the intervening dihedral angle [10]. This relation is 

very well researched using Karplus equation. Thus, an electronic structure calculation package, 

DFT, is used to predict the change of J-couplings due to dihedral angle scan.  

Even though DFT is used for predicting spin-spin couplings, it fails to scale to very large 

systems like proteins. The reason for the lack of scalability among others, are the introduction 

of orbitals in DFT methods as proposed by Kohn-Sham [11, 12]. This makes the computation 

complex by increasing the calculation at least cubically due to the increase in number of 

variables from 3 to 3N–with N the number electrons. Thus DFT methods are useful to predict 

physical or chemical properties of moderately sized spin systems [13]. However scalar 

coupling computation for protein spin system would put very high strain on modern computer 

if not crash it. Moreover, spin-spin coupling is more expensive compared to the calculation of 

chemical shielding and quadrupolar coupling constants. This is due to the computational 

dependence of J-coupling on the second derivative of electronic energy which is calculated as 

a second-order time-independent property [14].  
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As it is already noticed and will witness from the main body of the thesis, the terms quantum 

mechanical and large–scale are used very often. The “quantum mechanical” term indicates that 

the formalism employed for the simulation is the quantum mechanical treatment of the spin 

system and the simulated systems for purposes of this thesis are proteins and nucleic acids, 

hence the term “large–scale”.  

This thesis reflects on how the J-coupling predictor function for proteins and nucleic acids 

were built and on large-scale simulations of NOESY NMR spectra for ubiquitin and stem loops 

RNA. It also considers large–scale NMR simulations and fitting of chemical exchange. It 

studied the simulation of 1H-15N HSQC spectra of calmodulin and of that with the subsequent 

addition of a ligand and least squarely fitted the data from theory to those from experiment as 

a function of exchange and transverse relaxation rates to investigate conformational change 

and calmodulin peptide binding.    
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2 Background	
 

2.1 Spin	and	its	properties	

Spin is an intrinsic property of elementary particles. Algebraically spin has similar properties 

to angular momentum although spin is not related to rotations in physical space. Spin theory 

can be introduced using angular momentum. Classically, angular momentum of a particle is 

defined as the cross product of the coordinate vector  , ,r x y z


 and momentum vector 

 x y z, p , pp p


  

 
z y x

x z y

x y z y x z

i j k yp zp L

L r p x y z zp xp L

p p p xp yp L

   
           
      

 
  

  (1) 

where i


, j


, and k


 are unit vectors.  

Replacing the classical quantities with the corresponding quantum mechanical operators; 

angular momentum operators for the three components of the angular momentum vectors are 

obtained 

 x y z
ˆ ˆ ˆ,     ,     .L i y z L i z x L i x y

z y x z y x

                              
  (2) 

Another two important angular momentum operators exists. One of these operators is the total 

angular momentum operator given as 

 2 2 2 2
x y z

ˆ ˆ ˆ ˆL L L L     (3) 

This operator appears when a system undergoes rotational diffusion. The other is the raising 

and lowering operators defined as  

 x y x y
ˆ ˆ ˆ ˆ ˆ ˆ    L L iL L L iL       (4)    

This operators are useful for the manipulation of angular momentum eigenfunctions.  

Similar to angular momentum, the state of a spin, ½, can be described as a linear combination 

of two state vectors: 
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1

2

1 1
2 2

1
2

c
c c

c
 

 
     

  (5) 

where   and   are the basis state vectors that represent the state space of the spin. The 

matrix representation of ẑI  in the Hilbert space spanned by   and   states is    

 z

1 2 0ˆ
0 1 2

I
 

   
  (6) 

Similarly, there exist an x- and y-component spin angular momentum operators ( xÎ  and yÎ ) 

for a spin. The matrix representation of these operators in the   and   basis is  

 x y

0 1 2 0 2ˆ ˆ,               
1 2 0 2 0

i
I I

i

   
    
   

  (7) 

Another important spin operator is the total spin angular momentum operator 2Î . The spin 

quantum number I , is associated to the 2Î operator via  2ˆ 1I I I   .  

The other operators of a spin are the raising and lowering operators 

 
0 1 0 0ˆ ˆ,                 
0 0 1 0

I I 

   
    
   

  (8) 

Î  acts on the spin down state (β) and raises the state into α and would give zero if it acts on 

the up state (α). Likewise Î  would only lower the upper state and gives zero when acting on 

the lower state.  

Spin is associated to magnetic moment, ̂ , by a proportionality constant,  , known as the 

gyromagnetic ratio. The relationship holds for the projection operators and is defined as: 

 x x y y z z
ˆ ˆ ˆˆ ˆ ˆ                    I I I          (9) 

The gyromagnetic ratio is distinct for each atomic nuclei type in the periodic table. Atomic 

nuclei are composite particles that involve atomic sub-particles known as quarks, with each 

quark having spin ½. The orientation of the quarks determines the magnetic dipole moment 

and the spin quantum number of the nuclei. For example 13C has spin ½. This arises from the 

seven antiparallel up and six parallel down alignment of the quarks. However, nuclei of the 
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same element can have different spin and dipole moment depending on the number of the 

quarks that makes up the nucleus. Finally, quark spin interaction is dependent on the magnetic 

field produced by the magnetic moment and the Pauli Exclusion Principle, which states that no 

two spins have the same quantum state at the same time. 

The expectation value of any operator, such as Â , is given by  

 ˆ ˆTr( )A A   (10) 

Tr  is the trace of the matrix and is given by the sum of the elements in the main diagonal. It 

is a requirement that   - the density matrix, has the following property: 

 It must be Hermitian 

 The trace of   the density matrix is one 

 The diagonal elements of   must be nonnegative 

The derivation of the density matrix is available in many text books including [15-17]. The 

diagonal elements of a density matrix are populations while the off-diagonal are coherences. 

The elements of density matrix contain statistically the behaviour of spin system, and the result 

of an experimental measurement can be obtained using Equation (10).  

The equation of motion, i.e. the development of   under a given Hamiltonian is determined 

by the Liouville-von Neumann equation:  

   ˆˆ ˆ, ( ) ( )t i H t iH t
t
        

  (11) 

The first line in Equation (11) is the representation of the equation in the Hilbert space, where 

the evolution of the density matrix is given by the commutation of   with the Hamiltonian 

operator, Ĥ . In the second line or the right part of Equation (11) we have relocated to the 

Liouville space, where   becomes a vector. The action of taking Hamiltonian superoperator, 

ˆ̂
H , is a commutation that transforms Ĥ  into a matrix in the Liouville space. Superoperators 

(recognized for their double hat) are defined as operations in the space of operators. In solving 

the Liouville-von Neumann equation, its representation in the Liouville space is convenient for 

the purposes of numerical computation. Detailed calculation of quantum dynamics in the 

Liouville space can be found in [18-20]. 
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2.2 Spin	interactions	and	their	Hamiltonians	

NMR mainly deals with nuclear spin interactions in diamagnetic systems; though there are 

areas of NMR that deals with paramagnetic samples, which are not part of the project work.  

Spin interacts with its environment and with other spins via the associated magnetic moment. 

Although there are many types of spin interactions in NMR, their spin Hamiltonians can 

broadly be classified into linear, bilinear and quadratic. The interactions that involve the spin 

and the external field are linear, for example Zeeman interaction: 

  
xx xy xz x

x y z yx yy yz y

zx zy zz z

ˆ ˆ ˆ ˆˆ
a a a B

H S B S S S a a a B

a a a B

  
        

    

A
 

  (12) 

where Ŝ


 is a vector of spin operators, B


 is magnetic field vector, and A  is the Zeeman 

interaction tensor.  

When the interaction is a coupling between spins, it is known as bilinear in spin 

  
xxx xy xz

x y z yx yy yz y

zx zy zz z

ˆ

ˆ ˆ ˆ ˆ ˆˆ ˆ

ˆ

Ia a a

H S I S S S a a a I

a a a I

  
  

      
     

Α
 

     (13)  

where Ŝ


 and Î


 are spin operator vectors, and A  is the coupling tensor. 

Interactions that are caused indirectly by other interactions, but manifest as a coupling of spin 

to itself, are quadratic in spin. Nuclear quadrupolar interaction belongs to this category: 

  
xxx xy xz

x y z yx yy yz y

zx zy zz z

ˆ

ˆ ˆ ˆ ˆ ˆ ˆˆ

ˆ

Sa a a

H S S S S S a a a S

a a a S

    
      

     

A
 

  (14)      

where Ŝ


 is a vector of spin operators and A  is the quadrupolar coupling tensor. 

The overall Hamiltonian is a sum of all the interaction Hamiltonians in the system.      

2.2.1 Chemical shielding Hamiltonian  
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This interaction arises [21] from the effect of electron motion in the vicinity of the nuclear spin. 

The electron motion is induced by the externally applied static magnetic field 0B


 of the NMR 

spectrometer. The magnetic field at an arbitrary nucleus k is  

    0 indB k B B k 
  

  (15)  

where the field indB


 is induced by the electronic structure surrounding the nucleus.  

Magnetic interactions are weak compared to the electronic ones, hence the induced field is a 

linear function of the applied magnetic field 0B


  

      ind 0 0 0B k B k B B    δ 1 δ
   

  (16) 

where δ  is the shielding tensor. 

The energy of magnetic dipole moment that results from this interaction is therefore  

     ind 0k kE B k B k       1 δ
  

  (17) 

The interaction is a coupling between the spin and the applied magnetic field. The Hamiltonian 

can be obtained by replacing the classical quantities by the quantum equivalents. It is given as 

a scalar product between the spin vector, the shielding tensor and applied magnetic field 

 
xx xy xz x

CS 0 x y z yx yy yz y

zx zy zz z

ˆ ˆ ˆ ˆ
k

K

k

B

H B I I I B

B

  
   

  

   
          
     

   (18) 

2.2.2 Nuclear dipolar interaction Hamiltonian  

To a very good approximation, nuclear spins can be considered point dipole moments [22]. 

The magnetic vector potential A


, of a dipole is 

 0
34

r
A

r

 





 
  (19) 

The magnetic field induced by the magnetic dipole 


 is the curl of the vector potential 

 
  2

0 0
3 5

3
    ...

4 4

r r rr
B A B

r r

  
 

        
 

      
  (20) 
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Therefore for two nuclear spins separated by a distance r , the interaction energy between their 

respective magnetic dipoles is given by  

 
    2

a b a b0
5

3

4

r r r
E B

r

   


   
    

     
  (21) 

where the constant 7 2 2
0 4 10 kg m s A         is the permeability constant and r


 is the vector 

that connects the two spins. The quantum mechanical energy operator can then be obtained by 

replacing the magnetic dipole vectors a


 and b


 by the corresponding spin operator vectors 

(a )Î


 and (b)Î


     

     20 a b
DD a b a b5

ˆ ˆ ˆ ˆˆ 3
4

H I r r I r I I
r

  


       
 

     
  (22) 

where a  and b  are the gyromagnetic ratio of the respective spins. The full dipolar 

Hamiltonian matrix is  

 
 

 

 

       
       
       

 

 

 

a0 b
DD 5

2 ba 2
xa a a a ax b b b b b

2 ba 2
y a a a a a yb b b b b

2a b2
z a a a a ab b b b b z

ˆ
4

ˆˆ 3 3 3

ˆ ˆ3 3 3

ˆ ˆ3 3 3

H
r

Ix x r x x y y x x z zI

I y y x x y y r y y z z I

I z z x x z z y y z z r I

 


  

             
         
   
           



  (23) 

where  a a a, ,x y z  and  b b b, ,x y z  are spin coordinates for (a )Î


 and (b)Î


 respectively. The trace 

i.e. the sum of diagonal elements of the interaction tensor and rhombicity, the difference 

between the smallest and second smallest eigenvalues, are zero making dipolar interaction 

traceless and axial. In solution state NMR nuclear dipolar interaction is averaged out by the 

tumbling of the molecules. In solids, however, it provides information on orientations and 

distances.    

2.2.3 J-coupling 

J-coupling is a bilinear through bond interaction. Being isotropic [23], spin-spin coupling does 

not average out upon molecular tumbling. Thus the interaction Hamiltonian takes the form 
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 

 

x

x y z y

z

x x y y z z

ˆ2 0 0
ˆˆ ˆˆ ˆ ˆ ˆ2 0 2 0

ˆ0 0 2

ˆ ˆ ˆˆ ˆ ˆ2

J

SJ

H I J S I I I J S

J S

J S I S I S I


 





               

  



  (24) 

This interaction is responsible for the multiplicity of resonance signals in an NMR spectrum 

and indicates the number of neighbouring nuclei. Its magnitude depends on dihedral angles. In 

contrast to chemical shift, the coupling constant does not depend on the strength of the static 

magnet of the spectrometer. Scalar coupling is mediated by bonding electrons. Hence the 

dominant contribution for the Hamiltonian comes from Fermi contact interaction: 

  FC

8 ˆˆˆ
3 k n kn k n

kn

H r I S
    

    (25) 

J-coupling values are related to molecular conformation and this is useful in structure 

determination by NMR spectroscopy [24, 25]. The magnitude of coupling constant normally 

but not always depends on the number of bond that separate the nuclei i.e. the higher the 

number of bond the smaller the coupling becomes. Spin-spin coupling (specifically 3J) 

dependence in dihedral angle is called Karplus equation [10]. 

2.2.4 Quadrupolar coupling 

Nuclei with spin quantum number 
1

2
I   possess non–symmetric charge distributions, which 

generates an electric quadrupolar moment that interacts with an electric field gradient (EFG). 

Quadrupolar moment is aligned with the nuclear spin. The interaction can be described as  

 
 

2
ˆ ˆˆ        

2 2 1 ij
i j

eQ
H I I V

I I r r


   

  
V

 
  (26) 

 where eQ  is the quadrupolar moment, I  is the nuclear spin, and V  is a symmetric and 

traceless second rank tensor of the EFG. The electric field gradients at the nucleus are generated 

by electronic charges present in the spin system outside the nuclei and are described as the 

second derivative of the electrostatic potential. In principal axis frame, an asymmetric 

parameter   and its magnitude eq  are  

 =        xx yy
zz

zz

V V
eq V

V



   (27) 
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The quadrupolar Hamiltonian in the above stated axis system is  

 
   

2
2 2 2 2

Q z x y
ˆ ˆ ˆ ˆ ˆ3

4 2 1 2

e qQ
H I I I I

I I

        
  (28)      

The coupling of the quadrupolar moment and EFG affects the line width of NMR signals and 

makes them broad. 

Detailed description of other spin interactions can be found in NMR books, in particular [22, 

26, 27].     

2.3 Bloch	equations	

The net magnetization vector, M , that comes into existence due to magnetic moments of 

nuclear spins in NMR experience moment in the presence of magnetic field. This is given by 

the cross product between the magnetization M  and the magnetic field B .  

 
     d t

t t
dt

 
M

M B   (29) 

Equation (29) is fundamental for the formulation of Bloch equations. After, application of an 

rf pulses, nuclear spins relax to equilibrium with the transverse and longitudinal relaxation rates 

along the x-y plane and z-axis respectively. It is assumed these relaxation rates follow first-

order kinetics. Thus, the full Bloch equations for free precession after the integration of the 

relaxation term is 

 
        0 .

d t
t t R t M

dt
   

M
M B M   (30) 

where 
 2 2

0
0

1

3 TB

I I B
M

k

 





 is the thermal equilibrium magnetization, and R  is the relaxation 

rate. For each of the components Equation (30) becomes  

 

   

 

 

Z 0Z
x y y x

1

x x
y z z y

2

y y
z x x z

2

,

,

.

M MdM
M B M B

dt T

dM M
M B M B

dt T

dM M
M B M B

dt T







 
    

 

  

  

  (31) 
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A convention in NMR is that the static field 0B


 is treated as applied along the z-axis that gives 

x y 0B B  , hence Equation (31) as of [28] simplifies to 

 

 Z 0Z

1

x x
y 0

2

y y
x 0

2

.

,

,

M MdM
dt T

dM MM B
dt T

dM M
M B

dt T






 

 

  





  (32) 

The first line of Equation (32) is used to predict the exponential relaxation of the longitudinal 

magnetization component zM  to its equilibrium value. The time that takes for this to happen 

is known as spin lattice relaxation time and is denoted as 1T . The solution for zM  after initial 

inversion of the longitudinal magnetization using 180o pulse at time 0t   is given as  

 z 0
1

1 2exp
t

M M
T

  
     

     (33)   

The second and third lines describes the coherent motion of the magnetization vector M and 

the exponential decay of the transverse magnetization respectively. The time process for the 

exponential decay of the transverse magnetization to happen is called spin-spin relaxation time 

and is abbreviated as 2T . After application of on-resonance 90o pulse, the evolution of the 

transvers magnetization can be expressed as 

 x,y 0
2

exp
t

M M
T

 
  

 
  (34) 

2

1

T
 is associated to the line width and can be described using Equation (35) 

 
2

1
ν

T
    (35) 

where ν  is the line width at half height of the peak. 

2.4 Brief	description	of	NMR	relaxation	mechanisms			

Nuclear spin systems experience five major relaxation mechanisms [29, 30]. These are dipolar, 

chemical shift anisotropy, scalar coupling relaxation of type one and two, quadrupolar 
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interactions, and spin rotation [25, 29-31]. Of all the available relaxation mechanisms for a spin 

system the dipolar relaxation mechanism is the most dominant for spin ½ systems. 

Dipolar interaction depends in internuclear separation, which falls as the inverse cube of ISr , 

and the angle of the vector that connects the interacting nuclei with the static field 0B


. Dipolar 

interaction can be described using Equation (36) 

 
    0 I S

IS 3 2
IS IS

ˆˆ3
ˆˆ

4

I S
D I S

r r

  


  
    
 
 

r r
  (36) 

While Equation (37) governs the relaxation of spin I  due to dipolar interaction with a nearby 

spin S .  

 

   

 

 

2 2 2
0 I S C C C

2 2DD 6 2 22 2
1 IS I CI S C I S C

C
C 2 22 2 2

I S C0 I S
DD 6

C C C2 IS
22 2 2 2 2

I C S C I S C

2

0 I
IS

3 61 1
,

10 4 11 1

4
11 1

,
3 6 620 4

1 1 1

1

10 4

T r

T r

     
       


    

  
      

 


              
                    

   
     

2 2
S

C 2 26 2 2
IS I S C I S C

6 1
.

1 1r

 
     

 
 

     

  (37) 

Equation (37) includes spectral density component that couples the system to the stochastic 

rotational dynamics of the molecules. The detailed description and derivation of the spectral 

density function is available in chapter four. Molecular motions – such as translation, rotation 

and vibration causes ISr  and   to change in a complex manner over a period of time producing 

rapidly fluctuating magnetic fields. Dipolar interaction modulated by rotational tumbling in 

liquids induces fluctuating magnetic fields that causes a nearby nuclei to relax.   

Another common cause of spin relaxation is the chemical shift anisotropy (CSA). Chemical 

shift is associated to the electronic environment in the vicinity of a nucleus and is normally 

anisotropic, i.e. its value depends on the orientation of the molecule relative to the applied 

magnetic field. As the molecule rotates, the magnetic field that the nucleus experiences keeps 

changing. This makes the chemical shift direction dependent. Therefore, the variation of the 

field as a function of the rotation time stimulates relaxation that is proportional to the square 
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of the applied field strength and the gyromagnetic ratio. The relaxation rates from such 

interaction are  

 

 

 

2
2 2 C

0CSA 2 2
I1 C

2
2 2 C

0 CCSA 2 2
I2 C

1 2 ,
15 1

31 1 4 .
45 1

B
T

B
T

  
 

   
 





 
 
  
 
 
  

 


  









  (38) 

where     is the anisotropy parameter, 0B


 is the applied magnetic field, and    is the 

gyromagnetic ratio of the nucleus.  

Spins that possesses spin quantum number 1 2I   have quadrupolar moment. Their relaxation 

is dominated by quadrupolar relaxation mechanism. Electrons that surround such nuclei creates 

electric field gradient. The coupling between the electric field gradient and the quadrupolar 

moment is responsible for quadrupolar coupling. This interaction also couples the spin to the 

rotational motion of the molecule. The quadrupolar relaxation of a spin [32, 33] is given by  

 
 
 

22 2
2

CQ 2 2 2 2 2
1 Q C Q C

2 31 3 1 4
1

50 2 1 3 1 1 4

I e qQ

T I I h

 
   

    
            

  (39) 

where   is the field asymmetry parameter, q  is electric field gradient, Q  is the quadrupolar 

moment, and C  is the rotational correlation time.  

Quadrupolar relaxation is responsible for broad resonance signals. It effectively removes J-

couplings. NOE enhancements for quadrupolar nuclei are diminishingly small or impossible to 

measure. For perfectly symmetric molecules, i.e. systems of tetrahedral and octahedral 

structure, the electric field gradient is small.   

Spins can also relax by scalar coupling relaxation mechanism. Scalar coupling is an isotropic 

interaction, therefore its Hamiltonian is not affected by orientation of the molecule with respect 

to the external field. This interaction acts as a source of relaxation when its strength varies over 

time. The variation of the coupling strength over time on spin I , might be due to the relaxation 

of the coupling spin S . Therefore, the longitudinal and transverse relaxation of spin I , due to 

scalar coupling relaxation,  according [30] is  
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 
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  


 



  
 

  (40) 

When the scalar coupling relaxation arises from the time dependence of the J-coupling, which 

is the case for strongly coupled spins, the reader is recommended to read [32, 34] for a detailed 

discussion.  

2.5 Common	protein	and	nucleic	acid	NMR	experiments	

This project involves protein and nucleic acid NMR spectroscopy and modelling of exchange 

processes to extract kinetic information. Thus, it is sensible to include into the introduction 

some common protein and nucleic acid experimental methods along with experimental 

techniques that are necessary to study exchange processes. NOESY method for proteins and 

nucleic acids is covered in detail in chapters four and six respectively. HSQC for calmodulin 

is also discussed in chapter five. Here described are techniques used to study exchange 

processes in proteins and nucleic acids. Experimental methods employed to study exchange 

processes split into two [35]. These are magnetization transfer and lineshape analysis. 

Magnetization transfer experiments commonly applied to investigate systems with exchange 

process are: 

 Saturation transfer  [36, 37] 

 EXSY spectroscopy [35, 38] 

 CPMG relaxation dispersion [39-41] 

 Rotating frame relaxation dispersion [42-44] 

2.5.1 Saturation transfer experiment 

This is a technique used to study exchange processes that are an order of magnitude slower 

than the ones that can be studied using conventional lineshape analysis [37]. In such a slow 

exchanging system, signals from one of the exchanging species is saturated using rf pulses that 

oscillate at the resonance frequency of the spin; this destroys the signal from the spin [36, 37]. 

For two site exchange processes available in detail in chapter five; the observed change in 
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intensity in the neighbouring spin indicates the spins are connected by chemical exchange. The 

pulse sequence of the experiment as of [45] is depicted in Figure 1 (below) 

 

Figure 1 Saturation transfer experiment pulse scheme. Illustrating selective saturation of one spin i.e. the 

populations of the   and   energy levels are equalized. Then this is followed by a o90  pulse and detection of 

the signal.    

The time dependent longitudinal magnetization, ZBM ,  in site B , can be described by 

   ZB ZA
ZB 0B ZB

1B B A

1 M Md
M M M

dt T  
      (41) 

where ZAM  is the longitudinal magnetization at site A, A  and B  are the lifetimes of states A 

and B, 1BT  is the longitudinal relaxation of state B, and 0BM  is the equilibrium z magnetization 

in site B.  

After irradiation using an rf field that is sufficiently strong to saturate the magnetization at site 

A, the signal from state A, is destroyed, giving AM 0 . The last term in Equation (41)

disappears. After rearrangement Equation (41) becomes: 

 ZB 0B ZB
1B 1B B

1 1 1d
M M M

dt T T 
      

   
  (42) 

Integration and simplification of Equation (42) gives the signal from site B as [5]  

   1 1B
ZB oB 1B 1

1B 1 1B 1

exp
k R

M M R k t
R k R k




 

  
        

  (43) 

2.5.2 2D EXSY spectroscopy 

EXSY [35, 38, 46] is a technique employed to map exchange pathways in dynamic processes. 

The technique has identical pulse sequence as the nuclear Overhauser effect spectroscopy. The 

cross peak signals in EXSY indicate the exchanging species in a multisite exchange. Even 

though the technique has advantage in determining exchange processes qualitatively; rate 

extraction needs acquisition of a series of EXSY spectra at different mixing time (τm). In 

 o90

saturation
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addition intensity integrals and longitudinal relaxation times of the exchanging species is 

required. 

 

Figure 2 2D EXSY pulse sequence. Rectangular boxes are π/2 pulses. The pulse sequence is identical to the 

NOESY experiment. During mixing time both exchange processes and dipolar couplings can transfer polarization. 

An alternative approach to get rid of NOE effects is CLEAN-EXSY experiment [47, 48]. 

The solution to the Bloch-McConnell equation (covered in detail in chapter four) can be given  

by Equation (44) as of [35] 

    0
, m m ,

I expi j j i j
M R     (44) 

where ,Ii j  is the cross peak volume at position ωi  and ω j , m  –is the mixing time, and R  –is 

the term that contains exchange rate and relaxation rate constants. Equation (44) makes the 

following assumptions: 

 

A B

1 1

A B

M M M

k k k

R R R


 
 
    

This gives the solution to the diagonal and cross peak as  

 
    

    

A,A B,B m m

A,B B,A m m

1
I I 1 exp 2 exp

2
1

I I 1 exp 2 exp
2

k R

k R

 

 

      

      

  (45) 

The exchange rate can be obtained from the ratio of the diagonal to cross peak intensities at 

short mixing time.    

2.5.3 Carr-Purcell-Meiboom-Gill relaxation dispersion 

CPMG is an experimental technique that involves a spin-echo pulse sequence to investigate a 

change in transverse relaxation rate due to exchange process [39-41, 46, 49]. A series of spin-

echo pulses is applied to the magnetization. The magnetization evolves under resonance 

frequency that differs due to presence of exchange. In these type of experiments the pulsing 

t
1

mτ
t

290o
 90o

 90o
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frequency υCPMG is given by cycN T . Where cycN  is the number of cycle of the spin echoes, 

and T  is the total time of CPMG element given by cyc4 N , where τ - the time between 

consecutive refocusing pulses. The relaxation dispersion data are usually depicted by plotting 

2R  and the pulse reputation rate (υCPMG) in the vertical and horizontal dimension of a 2D plot 

respectively.  

 

Figure 3 CPMG pulse sequence.  

Experimentally the exchange process parameters such as exchange rate constant, populations, 

and resonance frequency are determined qualitatively by measuring the spin-spin relaxation 

rate at several different   values. Dynamic parameters can also be quantified by fitting the 

relaxation data to exchange equations. Loria et al [49] showed the dependence of 2R  on the 

pulse range of CPMG experiment in the fast regime as: 

  
2

0 A B
2 cp 2

ex cp

ex
ex cp

1

2 tanh
2

1

p p
R R

k

k
k







 

  
  

  
 
 
 

  (46) 

Ap  and Bp  are equilibrium populations, A B    , ex 1 -1k k k  , cp r2nτ   is the delay 

between two consecutive 180o pulses and 0
2R  is the transverse relaxation in the absence of 

exchange. The populations and frequency differences are only determined after additional 

independent measurements are performed.  

2.5.4 Rotating frame relaxation dispersion experiment R1ρ [42-44] 

The evolution of magnetization under the presence of rf fields spin locked parallel to the 

effective field in the rotating frame of reference is known as spin-lattice relaxation time T1ρ. 

Loop M�mes
(CPMG Loop)

nτr nτr nτr 

 o90  o180  o180
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Figure 4 Rotating frame relaxation rate R1ρ pulse sequence. 

The spin lattice relaxation rate R1ρ depends on the amplitude of the rf field hence the name 

relaxation dispersion [42]. Chemical exchange in the intermediate to fast regime is the effect 

that contributes to the R1ρ relaxation [43]. In R1ρ experiment, sample is subjected with rf field 

(B1) in the x-axis long enough to rotate magnetization vector M to the y-axis. At this field 

strength, M starts to precess around the y-axis with a precession frequency 1

2

B


g

. If we now 

change the phase of the B1 field by o90 (π/2) and align it to the y-axis, i.e. rf is applied along 

the y-axis, the two fields are parallel and no force to rotate vector away from that axis, thus 

magnetization is spin locked along that axis. If we now look to the evolution of magnetization 

from the rotating frame point of view, the B1 field would appear stationary and the relaxation 

of M appears similar to the spin lattice relaxation with rate R1ρ. In the fast limit the relaxation 

rate becomes [49] 

 
   2 2

A B ex A B ex2 2 2
2 2 2 2
ex e
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x

1
e e

cos sin sin
p p k p p

R
k k
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k
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 
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 

     
       

         
  (47) 

where 2 2
e 1    is the effective field, with  1arc tan    is the tilt angle. In the 

presence of R1 relaxation data measured independently, R2 can be extracted. The exchange 

parameters can be evaluated after R1ρ is measured at varying effective field strengths and tilt 

angles. Rotating frame relaxation dispersion experiment is useful in the study of physical 

processes such as loop motions, side chain motions, secondary structure element, and ligand 

binding.  
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Figure 5 Rotating frame representation, the effective field Beff arises from the vector sum of ΔB and B1, while the 

tilt angle, θ, is the angle between ΔB and Beff. 

Table 1 A comparisons between CPMG and R1ρ experimental techniques. These techniques are useful in study of 

exchange processes in the intermediate to fast exchange.  

 

2.6 A	review	of	the	recent	research	on	polynomially	scaling	algorithms		

A significant number of spin dynamics simulation methods cannot handle big spin systems 

[50-52]. This is due to the fact that the algorithms rely on numerical techniques such as matrix 

factorization and diagonalization [50-52]. These are well suited to study small systems and are 

not applicable to big systems that generate large matrices that are difficult to handle 

computationally. Numerical algorithms that depend on direct propagation of the density matrix 

in Liouville space scale exponentially with spin system size [3, 20]. 

Full Liouville space includes all correlations between all spins [3, 53]. But, in magnetic 

resonance simulation of large systems, it is found that a large number of spin states are not 

populated and can be left out of the state space. This led to the development of a numerical 
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algorithm that scales polynomially with the size of the spin system and makes use of the 

reduced state-space approximation method to identify and discard spin states that are not 

populated during spin dynamics [20]. Emsley et al also designed a similar algorithm that scales 

polynomially with the spin system for the simulation of strongly dipolar coupled spin ½ 

systems by using low-order correlation in Liouville space [53, 54]. The technique was 

implemented as a Suzuki-Trotter [55] numerical algorithm that avoids the storage of the 

Liouvillian and the propagator to make efficient use of memory. The idea of reduced space 

approximation is based on splitting spin system into clusters of connected spins, in which the 

Liouvillian matrix for each cluster is generated and recoupled during the recoupling stage to 

establish the overall reduced states. Hence the global Liouvillian works for the whole system. 

It is believed [18, 20, 56] that high order spin correlations and high order coherences of spins 

that are remote in the interaction graph relax very fast or do not accumulate enough to give an 

observable signal. This is one of the reasons for the elimination of high order correlations and 

coherences of large spin systems such as proteins and nucleic acids during quantum mechanical 

spin dynamics simulations. Coherence order is determined from the difference between the 

number of the raising and lowering operators, where the spin states are given in the direct 

product operator form. In addition, any two spins that are remote in the interaction graph would 

not contribute to an observable signal and can be dropped from the simulation process. The 

state space reduction technique is adaptive, and can simulate local tight and loose couplings by 

altering cluster size.   

The magnetic resonance simulations of large systems are further accelerated using on Krylov 

subspace technique [57] and zero track elimination [58]. This allows further compression of 

the state space and resulted into another algorithm been added to the package to further reduce 

simulation speed.   

2.7 Objectives	of	the	work		

Time domain spin dynamics simulation in Liouville space is complicated due to the exponential 

scaling [18, 28] of the operator matrices dimensions ( 2n  for spin ½ nuclei, with n  being the 

number of spins) involved that require large computational power and making it impractical to 

simulate spin dynamics of large biological systems. However emergence of algorithms [20, 58] 

that scale polynomially with system size makes it feasible for large-scale simulations of 

proteins and nucleic acids [3, 59].  The polynomial scaling algorithm is achieved by reducing 
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the dimension of the Liouvillian matrices accurately to significantly improve simulation time; 

making use of the reduced state space approximation technique to eliminate states that are not 

populated and insignificant. The exclusion of high order spin correlations and coherences is 

vindicated by the arguments that such states dephase or relax rapidly than the low order 

correlations does and do not accumulate to a significant extent. In addition two-spin order 

correlations that are topologically remote in the interaction graph accumulate slower; hence, 

excluded from the basis set.    

This was the first hypothesis that led to subsequent development of sophisticated algorithms 

that form the bases for SPINACH, a software library, for spin dynamics simulation of large 

systems such as proteins and nucleic acids. This has helped to make possible quantum 

mechanical NMR simulation of proteins and nucleic acids in one go and allowed modelling of 

important biomolecular NMR pulse sequences including NOESY, HSQC and HNCO. As an 

illustration the quantum mechanical NMR modelling of the NOESY spectra of 13C and 15N 

isotopically labelled protein ubiquitin with over thousand coupled spins is available in Chapter 

four. The detailed description of the simulation algorithm that carefully prunes the density 

operator space along with the  relaxation algorithm employed that implements the Bloch, 

Redfield, and Wangsness relaxation theory [60] is delineated in section three of chapter four 

and our published paper [59]. 
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3 J–coupling	 predictor	 function	 for	
proteins		

3.1 What	has	been	done?	

Three bond J-couplings of all the 20 standard amino acids are calculated using Gaussian. This 

was performed quantum mechanically using the DFT theory level B3LYP for structure 

optimization and M06 exchange correlation functional with basis set cc-pVTZ for the scalar 

couplings. The computation required the construction of the amino acid structure using Gauss 

View software - then optimize the structure before running the spin-spin coupling job. The 

Karplus coefficients [10] A, B, and C are then generated from the DFT calculations to establish 

the function that predicts J-couplings during protein NMR simulations. Such function did not 

exist before.  

All the backbone and sidechain dihedral angles of the 20 amino acids are scanned making a 

constraint at a particular dihedral angle to extract the Karplus coefficients from the J-couplings 

and the associated dihedral angles using Karplus equation  3 2=  cos  +  cos  + J A B C  . Each and 

every dihedral angle is scanned for 36 steps at a size of 10 degrees.  

When the scan of the energy is completed, the coordinates of each of the optimized 

conformations are extracted into a Gaussian input files to run the spin-spin coupling jobs and 

these were submitted to Southampton’s HPC cluster, Iridis4, for the computation of magnetic 

interactions.  

This produced a log files as an output of the calculation, which contains molecular properties 

along with the 3J coupling values. The coupling between two spins that are three bond apart 

are then extracted and fitted to Karplus equation as described in section 3.8. Karplus curves 

and coefficients are then generated from the fitting and all the results are given in the results 

section of this chapter.  

The dihedral angles computed using the DFT approach employed in the research work are the 

 ,  , and   of the main chain, and 1 , 2 , 3 , 4  and 5  of the sidechain torsion angles 

for all the 20 amino acids. From all the calculations and literature review, a J-coupling field 

was built and integrated into SPINACH as a J-coupling predictor function.  
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The scan of all the possible dihedral angles and computing of the 3J coupling values as 

mentioned above for all the essential 20 amino acids - is a huge task, and required a significant 

chunk of CPU time.  

To give an idea of the nature of the task, the ground state optimization of leucine, a 31 atom 

amino acid, elapsed 1128 CPU core hours. This gave 36 conformations of molecular structure 

from that single amino acid molecular structure; and are required to be optimized before 

running the computation of magnetic interactions for all the orientations of the molecular 

structure. 

3.2 NMR	methods	for	obtaining	J‐couplings	in	proteins		

Experiments to measure J-couplings in protein NMR has advanced rapidly and saw an increase 

in applications due to the advancement of isotope labelling in hetronuclear 2D NMR 

experiments in the study of proteins and nucleic acids [61]. The series of experiments used to 

measure J-couplings are splint into several groups depending on the underlying principles that 

are employed to record the data. Some of the experiments to mention are the in-phase anti-

phase (IPAP) [62] J-coupled technique, exclusive correlation spectroscopy [63] (E.COSY), 

and quantitative J correlation (QJ) [64]. In the in-phase and anti-phase (IPAP) [62] experiment, 

an in-phase and anti-phase NMR data are recorded and combined to provide an up-field and 

downfield component of a doublet in a spectrum. The time domain signals for the in-phase data 

are obtained from the evolution of an in-phase terms (operators) such as xI  and yI , hence the 

name in-phase. The anti-phase experiment, however, evolves under an anti-phase operators 

(e.g. x z2I S , z x2I S ), which are not observable, but over time evolve into an in-phase terms, 

which give an observable transverse magnetization in the time-domain signal. This shows the 

importance of the anti-phase components in multi-pulse and multi-dimensional experiments. 

The INEPT [65] technique is an example that makes use of anti-phase states to transfer 

coherences. The pulse sequence of the technique is heavily employed as a building block in a 

complex multi-pulse experiments. The IPAP technique is suitable to measure coupling constant 

for proteins and produces spin state separated spectra, which makes J-coupling splitting 

measurable. Unlike E.COSY discussed below, the IPAP is not sensitive to the size of the one 

bond coupling constant for separating the spin state signals.  

For larger systems spins of active coupling (responsible for cross peak) are passively coupled 

to other spins gives a broad linewidth that exceed the size of the coupling value. Hence to 
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resolve and measure coupling values in such cases a method known as E.COSY was 

introduced. The technique was first proposed by Griesinger et al in 1986 and is used to measure 

coupling values in proteins and nucleic acids that are isotopically enriched. It is also helpful to 

determine the sign of the couplings [63]. The method simplifies cross peak multiplets by 

transferring coherence between exclusively connected transitions for spins that are weakly 

coupled. The method requires three spins represented as ISX  in which one of the spins is 

actively coupled to the other two. Then excitation of the connected spins leaves the passive 

spins energy unperturbed and as a result the experiment generates reduced cross peak multiplets 

due to the actively coupled spins [66]. The utility of E.COSY experiment is hampered by the 

low sensitivity and limited digital resolution that the technique offers. To overcome the 

limitation of the E.COSY an experiment known as quantitative J-correlation have been 

developed. Quantitative J correlation experiments rely in the modulation of signal intensities 

due to the evolution of magnetization under the influence of J-coupling and are used to measure 

a large variety of couplings over two and three bond correlations [64]. There are a variety of 

this experiment. One type of the experiments quantitates the loss in signal that result when the 

coupling is active compared to the data obtained when the coupling is inactive. The second 

type of experiments runs in a series of measurements where the signal is modulated by the 

coupling evolution. In this type of experiments the coupling constant is extracted from the 

fitting of peak intensities from the 1JNH coupling modulated 2D spectra [67]. The other type of 

experiment determines the coupling constant from the intensity ratio of diagonal peak to that 

of the cross peak [68] in a 3D experiment. This was applied for the measurement of 3JHnHα 

coupling values for 15N labelled protein where the ratio of the intensity not affected by 

transverse relaxations of the amide and α proton spins, and are useful to determine intra-residue 

correlations. 

3.3 Why	are	we	doing	this	and	what	was	done	before?		

Large-scale quantum mechanical protein and nucleic acid spectra simulation requires J-

coupling predictor function. Protein and nucleic acid J-coupling predictor functions was built 

and implemented into Spinach. The functions incorporate the functionality of J-coupling 

estimation for protein and nucleic acid systems into Spinach, which will provide J-coupling 

values during NMR simulations of proteins, DNAs and RNAs. 

Several commercial [69-72]  and non-commercial [73, 74] J-coupling prediction methods are 

out there. The methods use different techniques to achieve the desired outcome. Lehtivarjo et 
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al. [73] for example have developed a universal J-coupling predictor method based on data 

driven approach. The method involves prediction parameters to take into account the effect of 

hydrogen bond and substituents, have on J-coupling. Juniper algorithm, developed as a result 

of the work, is designed to predict coupling for small molecules. The algorithm would take 

long time for proteins and would ruin structure, as the technique do geometry optimization 

based on small molecule force field. Due to conformational variability of proteins, the 3J-

couplings data Juniper algorithm have, might not estimate to a sufficient accuracy vicinal 

coupling for proteins,   as the coupling values are obtained from small molecules. Another 

similar package is SPINUS. It predicts proton J-couplings of small organic molecule along 

with chemical shifts using Associated Neural Networks (ASNN) [75] from a given structure. 

The program involves a method of data collection from literature and also experimental data 

from collaborators. For description purposes hydrogen atoms split into aromatic, nonaromatic 

π, rigid aliphatic, and non-rigid aliphatic depending to which the proton is bonded. The 

descriptors are physicochemical, geometrical, and topological descriptors. A data set of 

couplings categorized into several classes depending on the type and number of bonds between 

protons is entered into the ASNN memory. These are then used to predict couplings for a new 

pair of coupled protons.  

Wang et al. [76] also utilized DFT and computed 3J-couplings for GB3 protein using automated 

fragmentation quantum mechanics/molecular mechanics approach that integrates protein 

environment effect. The approach avoids the computational intensive quantum chemical 

calculations by splitting the entire protein into non-overlapping fragments in which residues 

within certain range are assigned as a buffer region. The fragment and the buffer region are 

then treated quantum chemically while the rest of the protein approached empirically by point-

charge model. 

Another accounts of J-coupling predictor functions are the works of Xia and Roy et al. who 

discussed the implementation of the technique in their papers [77, 78] and [79] respectively.  

3.4 Origin	and	theoretical	study	of	spin‐spin	coupling	

In electronic structure calculations, magnetic parameters, such as spin-spin coupling constants, 

can be computed using wave function methods and density functional methods. In this work 

we have investigated spin-spin coupling using density functional theory. The basic argument 

for density functional theory is that ground state energy is determined by electron density [80], 
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and the ground state electron density r  of a chemical system with interacting electrons in the 

presence of external potential can be used to predict the properties of the system. DFT theory 

significantly reduces the complexity of computing system properties by making the problem 

three-dimensional [12, 81].  

According to Hohenberg and Kohn [80], the energy functional of a system is given by 

   0 0
ˆ ˆ ˆ| |E T V U        (48) 

where   is the ground state electron density, T̂  is kinetic energy operator, V̂  is the electron-

nuclear attraction operator, and Û  is the electron-electron repulsion operator. The variational 

principle in quantum chemistry states that   0E E  , i.e. there exists a solution for the electron 

density function with a global minimum at the ground state density. Kohn-Sham theory mimics 

wave function theory in its usage of orbitals [12]. This allows choosing a basis set and set up 

one-electron orbitals, and to generate trial density to optimize against energy E .  
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where  χ k r


 are one electron orbitals, ( )n rj


 are the basis set functions and kna are 

coefficients.  

The model, introduced by Kohn and Sham [11], has similar mathematics to the Hartree-Fock 

(HF) method, possessing the same formula for kinetic, electron-nuclear, and Coulomb energies 

apart from the exchange-correlation term. The equation for a single electron orbital is 
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where 
2

2

2m
 


is the kinetic energy term,  V̂ r


 is the potential energy term and k  is the 

energy eigenvalue. The term which is not known in DFT is the exchange-correlation energy, 

in which the remaining energy is absorbed. This term may be written as  

      XC XC E r r dv      
 

  (51) 
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 where  r 
 is the density that indicates the number of electrons per unit volume and 

 XC r   


 is the exchange-correlation energy density which represents energy per electron.  

An important research area within DFT is to derive approximations to the exchange-correlation 

functional. A functional takes a function and returns a scalar. In quantum chemistry functionals 

are denoted as [ ].F f  There are a variety of exchange-correlation functionals in DFT that 

employ different approximations and all aim to increase the accuracy of the method. The spin 

systems structure was optimizated using hybrid XC functional B3LYP [12, 81-83], which is a 

three-parameter functional defined by  

    B3LYP LDA HF B LDA LYP
XC X X X C C1 1E a E aE b E c E cE          (52) 

with typical values for a ,b  and c  are 0.2, 0.7, and 0.8 respectively.  

The basis set employed in the calculation of the indirect spin-spin coupling magnetic 

parameters is cc-pVTZ, which stands for correlation consistent polarized Valence Triple Zeta 

[84]. By convention correlation consistent is denoted as (cc) lower case letters to avoid 

confusion with coupled cluster (CC) method. Correlation consistent [84, 85] basis sets are 

developed by Dunning et al. and employs a smaller set of primitives to achieve similar or better 

accuracy than the “STO-nG” type basis sets. STO-nG – stands for Slater Type Orbitals with n 

is the number of Gaussian Type Orbitals that are linearly combined to mimic an STO. The 

Slater Type and Gaussian Type functions for STO and GTO are 

 ( ) ( )
2

           gs e er rr rz z- -= =
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  (53) 

where r


 is coordinate vector and z  is zeta and controls the width of orbitals. Correlation 

consistent basis sets are designed in a way that recovers correlation energy of valence electrons. 

However, with the addition of core functions, nuclear properties such as magnetic shielding 

and spin-spin couplings, can also be calculated. The cc-pVTZ basis set incorporates the basis 

functions listed in Table 2 (below) for hydrogen, carbon, and nitrogen in the amino acids 

investigated for magnetic parameters in this work.  

Accurate spin-spin coupling requires large basis set [86]. This is partly due to the Fermi Contact 

contribution requirements of accurate nuclear regions that the normal basis set would not offer 

[86, 87]. The magnetic parameters were computed using the GIAO method, which stands for 

Gauge-Independent Atomic Orbitals. It is a method that employs basis functions that explicitly 
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possesses field dependence [88, 89]. As the NMR shielding calculation requires, the structure 

is optimized using B3LYP hybrid functional before the spin-spin coupling was computed using 

the option “spinspin=mixed” in Gaussian 09 that request a two-step coupling calculation to 

improve the accuracy of spin-spin coupling calculation [90, 91].  

In order to reflect the potential environment of proteins in biological systems the studied system 

was treated in polarizable continuum solvent water and using SMD model [92]. In quantum 

chemistry solvent models are broadly classified into two categories. These are implicit and 

explicit models. There are a variety of implicit methods. Generally implicit method is defined 

as the model in which explicit solvent model are removed and replaced by a polarizable 

continuum that considers the medium as a continuous isotropic and thermally averaged 

medium [93]. SMD model belongs to the implicit treatment.  

Table 2 The contracted correlation consistent basis set basis functions for hydrogen, carbon, and nitrogen 

employed in the computation of indirect spin-spin coupling. For comparison cc-pVDZ and cc-pVQZ basis sets 

are also included.   

Basis Hydrogen Carbon Nitrogen 

cc-pVDZ 2s1p 3s2p1d 3s2p1d 

cc-pVTZ 3s2p1d 4s3p2d1f 4s3p2d1f  

cc-pVQZ 4s3p2d1f 5s4p3d2f1g 5s4p3d2f1g 

 

3.5 Ramsey	theory:	spin‐spin	coupling	mechanism	

In non-relativistic DFT theory, spin-spin couplings are obtained from individual contributions 

of the following four mechanisms [14, 94]: 

1. Diamagnetic spin orbit (DSO) term 

2. Paramagnetic spin-orbit (PSO) term 

3. The spin-dipole term and 

4. Fermi contact term 
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Of all the mechanisms, the Fermi-contact term is the most prominent contribution. The spin-

spin coupling tensor is the second derivative of the total electronic energy with respect to 

magnetic moments of the nuclei 

 
2

0

;       
2 2

n m

n m
nm nm nm

n m

d E
J K K

d d
m m

g g
p p m m

= =

= =     (54) 

where nmJ  is the coupling tensor between the spins n  and m  that have magnetic moments of 

n


 and mm


. The experimentally observed coupling tensor in liquids and gases i.e. systems that 

tumble freely may be obtained using the trace as 

  1
Tr

3
J  J   (55) 

According to Ramsey’s non-relativistic theory, the coupling tensor may be calculated using 

second order perturbation theory [95, 96] 
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The first summation is over all excited singlet states with energy 
snE , while the second 

summation is over all triplet states with energy 
TnE . The operators for the four mechanisms in 

atomic units are:  
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where a is the fine structure constant [14], inr  is the position of electron with respect to nucleus, 

( )inrd  is the Dirac delta function, 3I is a three-by-three unit matrix, and is is spin of electron. 

All the summations in Equation (57) are over all electrons in the system. The superscript T  

shows that the vectors are transposed.  

3.6 Karplus	law	derivation	–	dependence	on	dihedral	angle	

Vicinal or three bond (3J(X, Z) = 3J (X-Y-W-Z)) spin-spin couplings in magnetic resonance are 

noted for their dependence on the local dihedral or torsion angle. The dihedral angle is defined 

as X W Y Zf= - - - , as depicted in Figure 6 (below). To obtain the dihedral angle, first, it 

is necessary to compute three intermediate vectors; na W X  , nb Y W   and nc Z Y  . 

Their unit vectors are obtained as 

 n n n

n n n

,        ,       ;
a b c

a b c
a b c

     (58) 

The dihedral angle   is then derived from the unit vectors using an inverse tangent function 

with two arguments as an input:  

 
 o arctan ,
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    (59) 

where    x b a b c     and    y a b b c    . The use of the atan2 function rather than the 

inverse cosine function method [97] is recommended, because this avoids a singularity. 

The dependence of NMR vicinal coupling values on dihedral angle is given to a good 

approximation by Karplus equation [10]: 

 3 2=  cos  +  cos  + J A B C    (60) 

This equation is useful in determining the geometry of spin systems from coupling constants 

and for deducing the coupling constants from atomic coordinates.  
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Figure 6 Visualization of dihedral angle that connects arbitrary nuclei X and Z.   

The coefficients A, B, and C of the Karplus equation are parameters that depend on the types 

of atoms that are coupled through the three bonds i.e. X and Z in this case and the substituents 

that are attached to atoms Y and W, atoms that define the torsion angle. Vicinal spin-spin 

coupling constants depend on the cosine of the angle f  and its square. Complicated relations 

between vicinal coupling constant and dihedral angle exist that include substituent effects [98, 

99]. In particular, Abraham and Pachler derived an expression that included the 

electronegativity effect [100]. In protein NMR spectroscopy the 3J coupling constant is linked 

to backbone and side chain angles. The backbone angle is described using  ,  , and   torsion 

angles, while the side chain conformation can be defined by up to five dihedral angles, namely 

1 , 2 , 3 , 4 and 5 . 

The fragment of a protein chain in Figure 7 (below) illustrates the 3J coupling network in the 

backbone and side-chain torsion angles that characterize the conformation.  

 

Figure 7 Schematic illustration protein backbone  ,  ,   and side-chain dihedral angles 1  through to 3 .   
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The   dihedral angle is associated with up to six 3J coupling constants. These are 3JHnHa, 3JHnCB, 

3JHnCO, 3JCOCB, 3JCOHA, and 3JCOCO. 

 

Figure 8    dihedral angle illustration – a rotation around the bond NH and Cα in protein backbone. This 

dihedral angle is associated with six 3J coupling constants. The spins connected by these coupling constants are 

spins of the circled atoms.       

The second most important backbone dihedral angle in the conformation of protein is the   

torsion angle. Although in principle there are six 3J values that are related to  , the coupling 

constants 3JHaiNi+1 and 3JCBiNi+1 are the only interactions with sufficient contribution that would 

provide information to describe dependence of the local geometry on the coupling values. 

Figure 7 (above) gives a schematic of the 1 , angle and the associated spins are indicated in 

Figure 9 (below). Glycine is the only amino acid, which has no   torsion angle.  

 

Figure 9 Side-chain angle 1  - a rotation around the bond between Cα and Cβ. Circled atoms illustrate 3J coupled 

spins that are affected by the rotation about the 1  dihedral angle.  
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Side chain sequence determines the unique properties of a particular protein. This includes the 

biological activity and the three dimensional structures of proteins [97]. Theoretically there 

exist up to five   dihedral angles to define the side chain conformations; in practice the 1  

and 2  are well studied. The dihedral angle 1 determines up to nine 3J coupling constants. 

The four atoms that define the dihedral angle are N, Cα, Cβ, and Cγ. 

Accurate parameterization of Karplus equation is necessary in order to associate 3J couplings 

to dihedral angle. However calibration of Karplus equation and determination of dihedral angle 

are complicated by relaxation induced self-decoupling, which reduces couplings in larger 

proteins and intra-molecular motions. It also averages 3J values over distribution of dihedral 

angle [25].    

3.7 Complexity	scaling	of	DFT	calculations			

The DFT approach for computing indirect spin-spin coupling is not realistic for proteins. As it 

is demonstrated in Figure 10 (below) the complexity increases steeply as the system size 

increases, hence it is not feasible to run coupling calculations even for small proteins such as 

ubiquitin and GB3. The main reason for this is the increase in the number of orbitals in DFT, 

which increases the complexity by increasing the calculation time at least cubically [11, 12, 

101]. Therefore, we have created an empirical parameterization that looks similar to a 

molecular dynamics force field.  

Table 3 List of the amino acids studied for J-coupling using GIAO B3LYP/ M06/cc-pVTZ and the total CPU time 

in hours elapsed for the computation of spin-spin coupling. B3LYP was employed for geometry optimization while 

M06 was used for the computation of spin-spin coupling. 

Amino acid number of 
Atoms 

Calculation time 
in hours 

CPU core 
count 

Total core-hours 

Glycine 19 10 12 120 

Alanine 22 15 12 180 

Arginine 36 35.5 24 852 

Asparagine 26 54 12 648 

Aspartic acid 25 69 12 828 
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Glutamine  29 73.5 12 882 

Glutamic acid 28 17.5 24 420 

Histidine 30 143.5 16 2296 

Isoleucine 31 90 12 1080 

Leucine  31 94 12 1128 

Lysine 34 28 24 672 

Methionine 29 20.5 24 492 

Phenylalanine 32 192 24 4608 

Proline 26 19 16 304 

Serine 23 20 12 240 

Threonine  26 79.5 16 1272 

Tryptophan 36 46 24 1104 

Tyrosine 33 31.5 24 756 

Valine 28 104.5 16 1672 
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Figure 10 Wall clock DFT time elapsed in the computation of spin-spin coupling constant for single amino acids 

using GIAO M06/cc-pVTZ in SMD water.  

3.8 Empirical	parameterization	of	J–couplings	

In Spinach protein module the function “protein.m” takes as input a PDB (Protein Data 

Bank) and BMRB (Biological Magnetic Resonance Bank) files. The PDB file should contain 

coordinates of all the atoms (along with those of protons). In a case where the file possesses 

multiple structures, Spinach by default reads the first geometry. The BMRB file should also 

contain chemical shift data of the spins assigned. If there are unassigned nuclear spins, these 

are used in the J-coupling prediction, but do not appear in the simulated spectrum. The function 

uses the command below to take the two files as input and spits out Spinach input data 

structures. 

[sys, inter]=protein(‘pdb_file’,’bmrb_file’) 

The following fields are returned from the command above: 

sys.isotopes 

sys.labels 

# of atoms 

3230282624222018
0

500

1000
D

F
T

 w
a

ll
 c

lo
ck

 t
im

e
, H

rs



36 

 

inter.zeeman.scalar 

inter.zeeman.matrix 

inter.coupling.scalar 

inter.coordinates 

The field names are user friendly and straightforward with each isotope names, PDB labels are 

assigned to sys.isotopes and sys.labels. The Zeeman interaction, chemical shift 

anisotropy (CSA), and estimated J-couplings are assigned to the inter.zeeman.scalar, 

inter.zeeman.matrix, and inter.coupling.scalar respectively. The Cartesian 

coordinates of the atoms from the PDB are placed into the inter.coordinates.  

The actions that undertaken by Spinach during protein data import are: 

I. PDB file is parsed, amino acid numbers and types along with PDB atom ids and 

coordinates are read in. 

II. BMRB file is parsed, amino acid numbers and types are extracted in addition to the 

BMRB atom ids and chemical shifts. 

The function removes atoms that are not required in the simulation processes oxygens, 

sulphurs, and terminal atoms such as hydroxyl groups. It then matches BMRB chemical 

shifts to the PDB coordinates. Then it prints out missing atoms that will not appear in 

the simulation. 

III. The J-couplings are estimated using the following procedure. 

The molecular bonding graph is split into connected sub-graphs. The angles and 

dihedrals are then computed from atomic coordinates.  

One bond coupling 

The molecular bonding graph is split into connected subgraphs of size two. The 

J-couplings are assigned from a complete database of nuclear pairs. One bond 

J-couplings are either found from literature or are estimated using DFT for 

individual amino acids.  

Two bond couplings 
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The molecular bonding graph is partitioned into connected subgraphs of size 

three, and two bond J-couplings are assigned from a database of connected 

triples of nuclei. The couplings are assigned from experimental data and DFT 

calculations.   

Three bond couplings 

The molecular bonding graph is split into subgraphs of sequentially connected 

four atoms and the dihedral angle is computed from atomic coordinates [59]. 

DFT calculations are used to compute 3J couplings, by scanning dihedrals and 

the data fitted to Equation (60) to extract the coefficients A, B, and C, which are 

then used in the simulation of proteins. 

Couplings across more than three bonds are ignored as the couplings are of 

vanishingly small size. However, care has been taken for amino acids that 

contain aromatic side chain where long range couplings would provide useful 

structural information. An estimated 4J coupling values between two proton 

spins in aromatic systems falls in the range of 2 to 3 Hz. Examples of these 

amino acids are tyrosine, tryptophan, histidine, and phenylalanine. Electrostatic 

environment was also left out as its effect is small enough to not affect the 

outcome to the accuracy required for the quantum mechanical simulations of 

protein [7, 102]. 

IV. CSA estimation procedure is run for amide nitrogen atoms only with the local 

directions determined from the coordinates of N, H, C and CA spins. CSA tensor is 

directed along ZZ, YY, and XX, which are assumed as collinear to the N-CO bond, 

perpendicular to the peptide plane, and perpendicular to the other two planes 

respectively.   

Once the import function completes running the sys and inter structures are outputted and used 

in the subsequent simulation of the protein system by Spinach.      

3.9 Results	and	dihedral	angle	scan	plots	for	all	amino	acids	

The Karplus coefficients A, B, and C are obtained by least squares fit of Equation (60) to the 

DFT computed J-coupling value scans. Least squares is a mathematical approach that 

minimizes the sum of the squares of the deviation of the data points from the line of best fit 
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[103]. Spinach function takes a series of J-coupling values from a Gaussian J-coupling 

calculation logs that differ in the value of dihedral angle and numbers of the four consecutive 

spins that make the dihedral angle.  The form of curve fitting employed in our work is the linear 

least squares fitting. 

The least square fitting of Karplus equation given by 3 2=  cos  +  cos  + J A B Cf f , where the 

solution for the constants A , B and C is given by the formulas: 
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  (61) 

If the matrix and the vector on the left are represented as W  and x , and the vector on the right 

as y ; Equation (61) would be of the form: 

 x yW =   (62) 

Thus the solution to Equation (62) is given by  

 1x y-=W   (63) 

where the pseudoinverse 1-W is computed using Matlab function.  

A large database of amino acid specific of the Karplus coefficients A, B, C has been generated 

and incorporated into Spinach to predict the coupling between spins in magnetic resonance 

simulations of proteins. The result is presented below as Karplus curves and Boltzmann 

probability distribution histograms of all the dihedral angle scans for the sites designated as 

flexible. For the Boltzmann probability distribution histograms, the four atoms for which the 

dihedral angle is calculated, are exactly the same four atoms that the J-coupling is propagated 

across. Proline is not scanned as it has no part that deems to be scanned at a dihedral angle 

however, it has a five membered ring that do isomerize between cis and trans forms. Side chain 

scan for Alanine and Glycine was not performed as these amino acids possess no side chain 

with relevant dihedral angles.   
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3.9.1 Karplus coefficients, ALA 

Method: GIAO DFT B3LYP/M06/cc-pVTZ in SMD Water 

Atom 
1 

Atom 
2 

Atom 
3 

Atom 
4 

A, Hz ARMSD B, 
Hz 

BRMSD C, Hz CRMSD 

N C CA N 0.05 0.29 -0.04 0.17 0.02 0.15 

HA CA C N 1.09 0.38 -0.02 0.17 0.03 0.15 

HA CA C N -0.88   -0.61  -0.27 
[104] 

 

CB CA C N 0.18 0.33 0.03 0.14 0.18 0.18 

H N CA HA 10.80 0.36 -0.11 0.20 0.03 0.20 

H N CA HA 6.51  -1.76  1.60 
[105] 

 

C N CA HA 5.67 0.27 -1.68 0.13 0.70 0.15 

H N CA C 6.81 0.36 -1.23 0.16 -0.30 0.22 

H N CA CB 5.54 0.34 -0.65 0.30 -0.33 0.15 

H N CA CB 3.06  -0.07  0.13 
[106] 

 

C N CA C 2.64 0.26 -1.00 0.13 0.35 0.16 

C N CA C 1.33  -0.88  0.06 
[107] 

 

C N CA CB 2.04 0.26 -0.70 0.14 0.31 0.16 
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Figure 11 ALA   dihedral angle scan and the Karplus curves of all the torsion angles related to the dihedral 

angle (top panel) along with Boltzmann probability distribution graphs of the respective three bond coupled spins 

(bottom panel). References in the table indicate that the Karplus coefficient values that are obtained from that 

literature and integrated into Spinach as that values came from experiment, however all the Karplus curves in the 

graph are acquired from theory.   

The result of the fitting of 3J coupling data to Karplus curve for six torsion angles is given in 

Figure 11 (above). Top panel shows the Gaussian dihedral angle scan data nicely follow the 

function for all Karplus curves. The bottom panel Boltzmann probability distribution 

histograms are drawn as stairs. The probability distribution is determined using Equation (64) 

i.e. dividing the Boltzmann factor by the partition function: 
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where iP  and iE  are the probability and energy at state i , while R  and T  are the ideal gas 

constant and temperature of the system respectively.  

In the generation of the dihedral graphs in Matlab, all that was required were Spinach function 

“dihedral” to compute dihedral angles connecting an arbitrary binary spins and another 

function “karplus_fit” that fits Karplus equation to coupling data, from electronic 

structure calculation at the above mentioned method, at a specific dihedral angle and plots the 

Karplus curves, and the probability distribution as histograms.   

 

Figure 12 ALA   dihedral angle scan and the Karplus curves of all the torsion angles associated to the   

dihedral angle along with the Boltzmann probability distribution graphs of the respective coupled spins top and 

bottom panels respectively.  

Three bond scalar couplings (3J) between two nitrogen spins is not very well studied. The 

amplitudes are found to be very small. As it is depicted in Figure 12 (above) the 3J between 
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nitrogen and proton at alpha position shows the dependence of the coupling values on dihedral 

angle or the Karplus relation while the coupling between the above mentioned spins do not. 

Therefore, a pattern of under and over prediction specifically for the 3JNCb coupling data is 

clearly visible in Figure 12 (above). The probability density distribution graph shows, the 

probability distribution in the range of 10o to 60o and 170o to 250o for 3JNN of the   backbone 

dihedral angle. There is also probability distribution of just over 0.04 at 310o which goes down 

to around 0.01 that went up to nearly 0.05 at 360o. For the 3JNCb the distribution is mostly in 

the range 200o to 300o with another pronounced peak in between 50o and 150o along with a 

small blip from 180o to 200o. Similar pattern for the 3JNHb dihedral angle however the 

probability distribution is at different conformations, please refer to probability distribution 

graph in Figure 12 (above) to find out the range of coverage.                  

3.9.2 Karplus coefficients, ALA 

Method: GIAO DFT B3LYP/M06/cc-pVTZ in SMD Water M06/cc-pVDZ optimized structure  

Atom 1 Atom 2 Atom 3 Atom 4 A, Hz ARMSD B, Hz BRMSD C, Hz CRMSD

H N CA HA 10.88 0.41 -0.23 0.20 -0.03 0.22 

C N CA HA 5.82 0.27 -1.67 0.15 0.68 0.14 

H N CA C 7.01 0.37 -1.21 0.16 -0.35 0.23 

H N CA CB 5.51 0.27 -0.71 0.19 -0.33 0.16 

C N CA C 2.65 0.27 -1.01 0.13 0.40 0.16 

C N CA CB 2.10 0.29 -0.69 0.14 0.30 0.17 

3.9.3 Karplus coefficients, ARG 

Method: GIAO DFT B3LYP/M06/cc-pVTZ in SMD Water 

Atom 
1 

Atom 2 Atom 3 Atom 4 A, Hz ARMSD B, Hz BRMSD C, Hz CRMS

D 

N C CA N 0.01 0.37 -0.03 0.21 -0.02 0.23 

HA CA C N 1.03 0.32 0.06 0.15 -0.13 0.16 

HA CA C N -0.88   -0.61  -0.27 
[104] 

 

CB CA C N 0.13 0.36 -0.04 0.16 0.03 0.17 

HA CA CB CG 7.89 0.32 0.35 0.12 -0.08 0.22 

N CA CB CG 1.18 0.42 -0.08 0.17 -0.00 0.23 
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C CA CB CG  3.26 0.29 -0.67 0.12 0.12 0.19 

HA CA CB HB1 11.60 0.38 0.73 0.15 0.49 0.20 

HA CA CB HB1 9.5  -1.60  1.80 
[108] 

 

N CA CB HB1 2.77 0.35 -0.09 0.13 0.06 0.22 

C CA CB HB1 7.20 0.39 -0.53 0.17 0.09 0.22 

C CA CB HB1 7.2   -2.04   0.60 
[109] 

 

HA CA CB HB2 12.14 0.31 1.68 0.15 0.75 0.19 

N CA CB HB2 3.44 0.32 -0.36 0.11 0.06 0.22 

C CA CB HB2 7.51 0.31 -0.78 0.12 0.17 0.19 

H N CA HA 11.20 0.30 0.10 0.12 -0.40 0.20 

C N CA HA 5.81 0.38 -1.90 0.19 0.34 0.21 

H N CA CB 5.61 0.34 -0.61 0.17 -0.34 0.14 

C N CA CB 2.02 0.30 -0.87 0.15 0.13 0.15 

H N CA C 6.39 0.37 -1.24 0.18 -0.28 0.15 

C N CA C 2.73 0.25 -0.86 0.13 0.06 0.14 

CA CB CG CD 5.92 0.29 -0.11 0.16 0.14 0.16 

HB1 CB CG CD 12.54 0.39 0.02 0.22 -0.03 0.20 

HB2 CB CG CD 13.48 0.33 -0.10 0.22 -0.18 0.17 

CA CB CG HG1 7.93 0.40 -0.03 0.23 0.07 0.23 

HB1 CB CG HG1 13.12 0.31 1.08 0.13 0.32 0.17 

HB2 CB CG HG1 12.90 0.34 0.91 0.15 0.63 0.15 

CA CB CG HG2 7.65 0.38 0.31 0.15 0.08 0.26 

HB1 CB CG HG2 11.76 0.34 0.75 0.14 0.76 0.18 

HB2 CB CG HG2 13.09 0.31 1.57 0.12 0.50 0.22 

CB CG CD NE 1.49 0.32 -0.20 0.18 -0.01 0.15 

HG1 CG CD NE 5.18 0.28 -0.74 0.13 -0.02 0.18 

HG2 CG CD NE 4.25 0.34 -0.09 0.12 0.09 0.22 

CB CG CD HD1 7.45 0.35 -0.50 0.14 0.16 0.20 

HG1 CG CD HD1 12.79 0.36 0.41 0.15 0.83 0.18 

HG2 CG CD HD1 13.48 0.39 0.82 0.18 0.15 0.22 

CB CG CD HD2 6.74 0.33 -0.10 0.12 0.17 0.20 
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HG1 CG CD HD2 13.28  0.36 0.86 0.19 0.31 0.20 

HG2 CG CD HD2  11.31 0.35 0.38 0.13 0.83 0.18 

CG CD NE CZ 2.63 0.35 -0.76 0.20 0.22 0.23 

HD1 CD NE CZ 7.37 0.28 -2.24 0.15 0.41 0.15 

HD2 CD NE CZ 7.57 0.34 -2.65 0.19 0.58 0.12 

CG CD NE HE 5.46 0.33 -0.62 0.15 -0.38 0.22 

HD1 CD NE HE 11.93 0.42 -0.51 0.18 0.17 0.14 

HD2 CD NE HE 12.33 0.33 -0.24 0.14 0.17 0.19 

CD NE CZ NH1 0.55 0.42 0.22 0.22 0.20 0.16 

HE NE CZ NH1 1.47 0.47 -0.52 0.10 0.73 0.43 

CD NE CZ NH2 0.60 0.30 0.22 0.16 0.11 0.14 

HE NE CZ NH2 1.60 0.36 -0.52 0.11 0.57 0.32 
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Figure 13 ARG   backbone dihedral angle scan. Top panel Karplus curves for the torsion angles linked to the 

  dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective torsion 

angles.   

The Karplus curve for the 3JHaHn torsion angle is broken due to the presence of hydrogen bond. 

This also affected the appearance of the probability distribution histograms for all the torsion 

angles linked to the   backbone dihedral angle, making them look sharp.  

 

 

Figure 14 ARG   backbone dihedral angle scan. Top and bottom panels are Karplus curves and well behaved 

Boltzmann probability distribution histograms for the torsion angles associated to the   dihedral angle scan 

respectively.  

Three bond couplings between two nitrogen and between nitrogen and carbon spins is of 

vanishingly small values. This corresponds to small amplitude numerical noise, hence the 
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emergence of anomalous Karplus curve graphs. As it is depicted in Figure 14, the vicinal 

coupling between nitrogen and the proton at   position shows the Karplus relation between 

the coupling values and the dihedral angle i.e. couplings are largest at 0, 180, and 360 degrees 

with zero at 90 and 270 with the values in between the extremes reflecting the deduction of the 

values from Karplus equation.   

 

 

Figure 15 ARG 1  side-chain dihedral angle scan. Top panel Karplus curves for torsion angles linked to the 1  

dihedral angle scan and bottom panel Boltzmann probability distribution histograms for the respective torsion 

angles.     
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Figure 16 ARG 2  side-chain dihedral angle scan. Top panel fitting of Karplus curves associated to the 2
dihedral angle to theoretical NMR vicinal coupling data and bottom panel probability distribution histograms for 

the respective torsion angles.  

The existence of hydrogen bond is responsible for the jumps in the Karplus curves and sharp 

appearance of the Boltzmann’s probability distribution graphs.  
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Figure 17 ARG 3  side-chain dihedral angle scan. Top panel Karplus curves for torsion angles related to the 3   

dihedral angle scan and bottom panel Boltzmann probability distribution histograms for the respective torsion 

angles.    

Hydrogen bond effect is also responsible for the sharp appearance of the Boltzmann probability 

distribution histograms and for some of the Karplus curves that appear broken in Figure 17 

upper panel.   
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Figure 18 ARG 4  side-chain dihedral angle scan. Top panel Karplus curves for the torsion angles related to 

the 4  dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective torsion 

angles.   

The jump and discontinuity observed on the Karplus curves is due to hydrogen bond between 

a proton from the sidechain and oxygen from the backbone amino acid residue and also 

possibly from Van der Walls interactions from the presence of the large hydrocarbon sidechain 

of the amino acid arginine. It is thought that these effects are also likely to be responsible for 

the broad probability distribution histograms depicted in Figure 18 (above). The Karplus curve 

for the 3JCzCg couplings (blue colour legend) is broken and its Boltzmann probability 

distribution histogram along with that of the 3JCzHd1 torsion angle are broad. Arginine as basic 

amino acids favour charge-charge interactions.     
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Figure 19 ARG 5  side-chain dihedral angle scan. Top panel 5  Karplus curves for the torsion angles and 

bottom panel Boltzmann probability distribution histograms related to the 5  dihedral angle scan.    

The broken curve for 3JNh2He and 3JNh1He is likely due to the hydrogen bond being pulled away 

as a result of dihedral angle scan. This pulling of hydrogen bonded atoms disturbs the spatial 

arrangement and destroys the Karplus relation hence causes jumps in coupling values. The 

other two three bond couplings are 3JNh2Cd and 3JNh1Cd. The values for these couplings are small, 

and small amplitudes are numerical noise hence the breakage of the coupling curve.  
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3.9.4 Karplus coefficients, ASN 

Method: GIAO DFT B3LYP/ M06/cc-pVTZ in SMD Water 

Atom 
1 

Atom 2 Atom 
3 

Atom 
4 

A, Hz ARMSD B, Hz BRMSD C, Hz CRMSD

CG CB CA N 1.64 0.37 –0.60 0.27 –0.12 0.19 

CG CB CA C 3.40 0.36 –0.94 0.14 0.27 0.19 

CG CB CA HA 9.19 0.28 -0.57 0.13 0.01 0.20 

HA CA CB HB1 12.85 0.32 1.45 0.12 0.58 0.20 

HA CA CB HB2 12.37 0.33 0.70 0.12 0.88 0.22 

N CA CB HB1 3.65 0.27 0.31 0.14 0.14 0.14 

N CA CB HB2 4.19 0.49 -0.01 0.17 -0.07 0.36 

C CA CB HB1 7.86 0.33 0.21 0.12 -0.17 0.20 

C CA CB HB2 6.56 0.34 -0.18 0.13 0.31 0.20 

CA CB CG ND 0.26 0.34 –0.33 0.13 –0.04 0.20 

H1 CB CG ND 1.46 0.42 –0.41 0.22 –0.22 0.25 

H2 CB CG ND 1.36 0.34 –0.41 0.19 –0.30 0.20 

H N CA HA 11.48  0.34 -0.41 0.13 -0.09  0.22 

C N CA HA 5.83 0.45 -1.67 0.19 0.51 0.23 

H N CA C 6.26 0.46 -1.44 0.25 -0.34 0.18 

H N CA CB  5.62 0.36 -0.70 0.21 -0.34 0.16 

C N CA C 2.89 0.25 -1.03 0.14 0.08  0.14 

C N CA CB 1.93 0.29 -0.73 0.13 0.05  0.17 

N C CA N 0.09 0.29 -0.05 0.14 0.00 0.18 

 N C CA HA 0.94 0.35 -0.16 0.16 -0.16 0.17 

HA CA C N -0.88   -0.61  -0.27 
[104] 

 

CB CA C N 0.10 0.38 -0.14 0.21 0.00 0.17 
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Figure 20 ASN   backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann’s 

probability distribution graphs for torsion angles associated to the   backbone dihedral angle scan.    

The presence of hydrogen bond between the backbone amide proton and sidechain oxygen 

atom bonded to Cδ is very likely to be responsible for the broken Karplus curves that involve 

the backbone amide participated in couplings. The hydrogen bond breakage might also be 

responsible for the sharp appearance of the Boltzmann probability distribution histograms of 

the torsion angles that involved the backbone amide proton. The affected torsion angles are 
3JCHn, 3JHaHn and 3JCbHn coloured as green, cyan and yellow respectively. There, also exist other 

atoms that are involved in hydrogen bond interactions (example: backbone amide proton and 

backbone oxygen atom and sidechain amide proton and oxygen atoms), however these 

interactions are not affected by the scan of the   dihedral angle.  
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Figure 21 ASN   backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann 

probability distribution histograms for the torsion angles linked to   dihedral angle scan.   

The broken curves are due to the very small coupling values between two nitrogen atoms, and 

nitrogen and carbon nuclei separated by three bonds. Please note that these are very small 

amplitudes hence the numerical noise.    
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Figure 22 ASN 1  side-chain dihedral angle scan. Top panel Karplus curves for torsion angles linked to the 1  

dihedral angle scan and bottom panel Boltzmann probability distribution histograms for the respective torsion 

angles.   

Hydrogen bond between oxygen atom at Cγ position and the amide backbone proton is 

responsible for the jump in some of the Karplus curves and the thin appearance of the 

probability distribution histograms.   
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Figure 23 ASN 2  side-chain dihedral angle scan. Top panel Karplus curves associated to the 2  dihedral 

angle scan and bottom panel probability distribution graphs for the respective torsion angles.  

The 3JNdCa coupling values are of vanishingly small size hence the curve do not fit the data 

properly. The coupling between these nuclei is very small, hence the numerical noise. The other 

Karplus curves involve couplings between sidechain nitrogen atom at δ position and hydrogen 

atoms of Cβ.  
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3.9.5 Karplus coefficients, ASP 

Method: GIAO DFT B3LYP/M06/cc-pVTZ in SMD Water 

Atom 
1 

Atom 2 Atom 3 Atom 4 A, Hz ARMSD B, Hz BRMSD C, Hz CRMSD

CG CB CA N 1.39 0.32 -0.86 0.18 0.01 0.16 

CG CB CA C 4.13 0.30 -1.13 0.14 0.23 0.16 

CG CB CA HA 9.63 0.27 –0.94 0.16 -0.01  0.13 

HA CA CB HB1 12.53 0.36 1.13 0.15 1.09  0.20 

HA CA CB HB2 13.22 0.26 1.14 0.12 0.29 0.17 

N CA CB HB1 4.27 0.58 0.13 0.24 -0.09 0.40 

N CA CB HB2 3.76 0.37 0.21 0.12 0.09  0.23 

C CA CB HB1 7.96 0.33 0.13 0.14 -0.15 0.19 

C CA CB HB2 7.59 0.36 -0.11 0.13 0.10 0.22 

H N CA HA 10.81 0.44 -0.18 0.11 -0.08 0.31 

C N CA HA  5.52 0.44 -1.56 0.22 0.37 0.21 

H N CA C 6.82 0.35 -1.19 0.13 -0.45 0.23 

H N CA CB 5.72 0.34 -0.63 0.21 -0.52 0.18 

C N CA C 2.76 0.27 -0.94 0.13 0.07 0.18 

C N CA CB 2.18 0.28 -0.87 0.13 0.05 0.17 

N C CA N 0.09 0.35 -0.07 0.15 -0.06 0.24 

 N C CA HA 0.86 0.53 -0.20 0.20 -0.17 0.28 

HA CA C N -0.88   -0.61  -0.27 
[104] 

 

CB CA C N 0.05 0.34 -0.17 0.17 0.04 0.21 
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Figure 24 ASP   backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann 

probability distribution histograms for torsion angles related to the   dihedral angle respectively.  

The sharp appearance of the probability distribution graphs is attributed to hydrogen bond.   
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Figure 25 ASN   backbone dihedral angle scan. Top and bottom panels are Karplus curves and probability 

distribution graphs for torsion angles related to the   dihedral angle respectively.   

Karplus curve is broken for 3JNN and 3JNCb as these are very small couplings and the 3JNHa 

coupling curve has jumps likely to be due to the hydrogen bond breakage.   
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Figure 26 ASP 1  side-chain dihedral angle scan. Top panel Karplus curves for torsion angles associated to the 

1  dihedral angle scan and bottom panel Boltzmann probability distribution histograms for the respective torsion 

angles.  

3.9.6 Karplus coefficients, CYS 

Method: GIAO DFT B3LYP/M06/cc-pVTZ in SMD Water 

Atom 
1 

Atom 
2 

Atom 3 Atom 4 A, Hz ARMSD B, Hz BRMSD C, Hz CRMSD

N C CA N 0.03 0.26 -0.08 0.14 0.00 0.14 

HA CA C N 0.91 0.32 -0.14 0.12 -0.19 0.20 

HA CA C N -0.88   -0.61  -0.27 
[104] 

 

CB CA C N -0.07 0.32 -0.35 0.13 0.07 0.17 
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C CA CB HB1 7.30 0.34 -0.39 0.12 0.02 0.20 

C CA CB HB2 7.14 0.34 -0.28 0.12 0.16 0.21 

HA CA CB HB1 12.80 0.33 1.00 0.15 0.65 0.16 

HA CA CB HB2 11.89 0.39 0.96 0.17 0.80 0.24 

N CA CB HB2 4.06 0.45 0.16 0.18 -0.12 0.35 

N CA CB HB1 3.86 0.35 0.24 0.11 0.04 0.23 

H N CA HA 11.14 0.39 0.07 0.12 -0.19 0.27 

C N CA HA 5.69 0.29 -1.88 0.14 0.30 0.20 

H N CA C 6.57 0.44 -1.11 0.19 -0.36 0.23 

H N CA CB 6.90 0.30 -0.55 0.20 -0.66 0.15 

C N CA C 2.66 0.25 -1.00 0.13 0.10 0.16 

C N CA CB 2.41 0.26 -1.04 0.13 0.01 0.15 
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Figure 27 CYS   backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann 

probability distribution graphs for torsion angles associated to the   dihedral angle scan.   

The existence of hydrogen bond between the backbone amide proton and oxygen atom bonded 

to carbon next to Cα is likely to be responsible for the broken Karplus curves that involve the 

backbone amide participating in J-couplings. The hydrogen bond making and breaking as the 

  dihedral angle rotated might also be responsible for the anomalous appearance of the 

Boltzmann probability distribution histograms of the torsion angles that involved the backbone 

amide proton. 
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Figure 28 CYS   backbone dihedral angle scan. Top panel Karplus curves of the torsion angles associated to 

the   dihedral angle and bottom panel are the respective probability distribution histograms.   

Similar to the above mentioned, this dihedral angle affects three 3J couplings, namely 3JNN, 
3JNCb, and 3JNHa. The first two are very small, however 3JNHa has higher coupling values that 

shows a Karplus like pattern. The broken curves are attributed to the small coupling values. 

Hydrogen bond breakage could also be responsible for the anomalous coupling curves.      
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Figure 29 CYS 1  side-chain dihedral angle scan. Top panel Karplus curves for torsion angles associated to the 

1  dihedral angle scan and bottom panel Boltzmann probability distribution histograms for the respective torsion 

angles.   

1  dihedral angle scan brings the sidechain sulphur atom closer the backbone amide hydrogen 

to form a hydrogen bond. Thus, the making and breaking of the hydrogen bond affects the 

coupling data and fitting of Karplus curves that involved sulphur atom appears to be broken.  

3.9.7 Karplus coefficients, GLU 

Method: GIAO DFT B3LYP/M06/cc-pVTZ in SMD Water 

Atom 
1 

Atom 2 Atom 3 Atom 4 A, Hz ARMSD B, Hz BRMSD C, Hz CRMSD

N C CA N 0.04 0.30 -0.04 0.18 -0.03 0.19 

HA CA C N 1.18 0.32 -0.00 0.16 -0.18 0.17 

HA CA C N -0.88   -0.61  -0.27 
[104] 
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CB CA C N 0.23 0.35 -0.08 0.14 0.00 0.18 

CG CB CA N 2.03 0.32 0.09 0.13 -0.01 0.20 

CG CB CA C 3.63 0.35 -0.44 0.16 0.12 0.18 

CG CB CA HA 8.34 0.39 0.64 0.21 0.03 0.20 

C CA CB HB1 7.73 0.38 -0.20 0.22 -0.03 0.21 

C CA CB HB2 7.42 0.35 -0.38 0.12 0.24 0.22 

HA CA CB HB1 12.63 0.42 1.18 0.16 0.73 0.20 

HA CA CB HB2 12.67 0.34 1.76 0.13 0.63 0.24 

N CA CB HB2 4.59 0.46 0.16 0.12 -0.07 0.33 

N CA CB HB1 4.20 0.37 0.25 0.12 0.06 0.24 

H N CA HA 10.80 0.46 -0.16 0.12 -0.06 0.35 

C N CA HA 5.61 0.39 -1.62 0.23 0.33 0.20 

H N CA C 6.94 0.38 -1.09 0.14 -0.42 0.24 

H N CA CB 5.42 0.41 -0.60 0.38 -0.32 0.17 

C N CA C 2.73 0.27 -0.94 0.14 0.12 0.16 

C N CA CB 2.24 0.45 -0.64 0.20 0.04 0.24 

CA CB CG CD 5.17 0.95 -0.79 0.86 0.06 0.29 

H1 CB CG CD 9.52 0.61 -1.32 0.22 0.09 0.41 

H2 CB CG CD 9.99 1.87 -0.94 2.11 0.23 0.56 

CA CB CG HG1 8.12 2.50 -0.14 2.82 0.13 0.76 

H1 CB CG HG1 14.19 0.71 1.70 0.46 0.18 0.24 

H2 CB CG HG1 13.28 0.43 0.43 0.23 0.81 0.25 

CA CB CG HG2 8.29 0.50 -0.35 0.23 0.01 0.35 

H1 CB CG HG2 9.67 0.99 2.18 1.02 1.67 0.34 

H2 CB CG HG2 14.53 0.86 1.13 0.69 0.19 0.22 



65 

 

 

 

Figure 30 GLU   backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann 

probability distribution graphs for the torsion angles related to the   dihedral angle scan respectively.   

Torsion angles that involve the proton (Hα) bonded to Cα have broken Karplus curves and 

anomalous probability distribution graphs that are sharp. This may be, due to steric effects that 

come from longer methyl sidechain groups and the formation of zwitterion as a result of proton 

transfer from the carboxylic acid group.      
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Figure 31 GLU   backbone dihedral angle scan. Top panel Karplus curves for torsion angles associated to the 

  dihedral angle scan and bottom panel Boltzmann probability distribution histograms for the respective torsion 

angles.  

The Karplus curves for the torsion angles that involve carbon and nitrogen as well as nitrogen 

and nitrogen are numerically very small, thus the fitting of the Karplus curves to the vicinal 

coupling data looks random and noisy. The fitting of the Karplus curve for the torsion angle 

involving nitrogen and the Cα proton also shows jumps, which may be attributed to steric effect.       
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Figure 32 GLU 1  side-chain dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann   

probability distribution graphs for the torsion angles related to the 1  dihedral angle scan respectively.   

The sharp appearance and tiny bumps present in the Boltzmann probability distribution 

histograms might be down to the presence of longer hydrocarbon sidechains of the glutamic 

acid. There exist hydrogen bonds in the backbone chain, but this appears not to affect the 

Karplus curves and distribution graphs.       
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Figure 33 GLU 2  side-chain dihedral angle scan. Top panel Karplus curves for torsion angles related to 2  

dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective torsion angles.   

The scan of the 2  dihedral angle brings the sidechain oxygen atom attached to Cδ closer to 

the backbone amide proton to form a hydrogen bond. Thus, the making and breaking of the 

hydrogen bond is likely to be responsible for the unusual feature of the Boltzmann’s probability 

distribution graphs and jumps in the Karplus curves.     

3.9.8  Karplus coefficients, GLN 

Method: GIAO DFT B3LYP/M06/cc-pVTZ in SMD Water 
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Atom 
1 

Atom 2 Atom 3 Atom 4 A, Hz ARMSD B, Hz BRMSD C, Hz CRMSD

N C CA N 0.02 0.33 -0.12 0.15 0.00 0.20 

HA CA C N 1.21 0.32 -0.08 0.12 -0.22 0.21 

HA CA C N -0.88   -0.61  -0.27 
[104] 

 

CB CA C N 0.22 0.30 0.00 0.17 0.04 0.18 

CG CB CA N 1.37 0.26 -0.15 0.17 -0.04 0.13 

CG CB CA C 2.94 0.35 -0.42 0.19 0.18 0.19 

CG CB CA HA 8.40 0.28 0.74 0.13 0.25 0.16 

C CA CB HB1 7.53 0.33 -0.92 0.13 -0.19 0.18 

C CA CB HB2 6.80 0.34 -1.27 0.13 0.27 0.20 

HA CA CB HB1 13.20 0.34 1.52 0.13 0.27 0.18 

HA CA CB HB2 12.67 0.29 1.70 0.15 0.45 0.15 

N CA CB HB2 3.39 0.38 -0.35 0.19 0.09 0.24 

N CA CB HB1 3.36 0.34 -0.15 0.14 0.03 0.23 

H N CA HA 10.87 0.34 0.37 0.11 -0.17 0.26 

C N CA HA 5.45 0.29 -1.86 0.15 0.39 0.14 

H N CA C 6.44 0.48 -1.24 0.19 -0.33 0.22 

H N CA CB 5.54 0.31 -0.39 0.18 -0.36 0.13 

C N CA C 2.50 0.28 -0.89 0.13 0.16 0.18 

C N CA CB 2.07 0.28 -0.87 0.15 0.18 0.16 

CA CB CG CD 3.72 0.31 -0.97 0.17 0.13 0.13 

H1 CB CG CD 8.91 0.33 -0.90 0.14 0.01 0.18 

H2 CB CG CD 8.84 0.30 -0.62 0.15 -0.03 0.16 

CA CB CG HG1 8.65 0.40 -0.21 0.25 -0.14 0.18 

H1 CB CG HG1 12.75 0.30 1.28 0.13 0.41 0.17 

H2 CB CG HG1 11.92 0.36 1.4 0.34 0.94 0.16 

CA CB CG HG2 8.20 0.31 0.06 0.13 0.07 0.20 

H1 CB CG HG2 12.04 0.27 0.48 0.13 0.94 0.18 

H2 CB CG HG2 13.00 0.41 1.63 0.12 0.39 0.31 

CB CG CD NE 0.25 0.36 -0.17 0.18 -0.01 0.22 

HG1 CG CD NE 1.34 0.36 -0.30 0.23 -0.26 0.21 
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HG2 CG CD NE 1.37 0.35 -0.27 0.22 -0.24 0.21 

 

 

Figure 34 GLN   backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann’s 

probability distribution graphs for torsion angles associated to the   dihedral angle scan respectively.  
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Figure 35 GLN   backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann 

probability distribution histograms for the torsion angles related to the   dihedral angle scan respectively.   

The   dihedral angle is associated to three torsion angles with two of the J-couplings involving 

nitrogen with nitrogen and carbon nuclei. The vicinal coupling of these spins appears to have 

small amplitudes. The fitting of the Karplus curve to these data turns out to be random noise.     
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Figure 36 GLN 1  side-chain dihedral angle scan. Top panel Karplus curves for the torsion angles linked to the 

1  dihedral angle scan and bottom panel probability distribution histograms for the respective torsion angles.   

The staggered along the bumps appearance in the Boltzmann probability distribution 

histograms might be due to the presence of longer hydrocarbon sidechains of the glutamine 

amino acid. There also exist hydrogen bond interaction between the sidechain chain amide 

proton and oxygen attached to the Cδ, but this interaction appears not to affect the Karplus 

curves and distributions.       
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Figure 37 GLN 2  side-chain dihedral angle scan. Top panel Karplus curves of torsion angles associated to the 

2  dihedral angle scan and bottom panel Boltzmann probability distribution graphs of the respective torsion 

angles.    

Hydrogen bond between sidechain oxygen atom attached to the Cδ and the backbone amide 

proton that arises as the 2  dihedral angle is rotated along with the sidechain hydrocarbon 

steric effect is likely to be responsible for the presence of bumps in the probability distribution 

graph and jumps of the Karplus curves.   
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Figure 38 GLN 3  side-chain dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann 

probability distribution graphs for the torsion angles linked to the 3  dihedral angle scan respectively.  

The Karplus curves for the 3JNeCb coupling data involves very small amplitudes, hence the 

fitting of the curve resembles random noise. The curves for the other torsion angles involve J-

coupling between nitrogen and amide protons. The fitting of these Karplus curves over and 

under predicts the data.     

3.9.9 Karplus coefficients, GLY 

Method: GIAO DFT B3LYP/M06/cc-pVTZ in SMD Water 
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Atom 
1 

Atom 
2 

Atom 
3 

Atom 4 A, Hz ARMSD B, Hz BRMSD C, Hz CRMSD

N C CA N 0.00  0.00  0.00  

HA CA C N 0.91   -0.14   -0.19  

CB CA C N 0.00  0.00  0.00  

H N CA H3 13.07 0.51 -0.50 0.15 -0.21 0.35 

C N CA H3 6.97 0.29 -1.62 0.15 0.05 0.14 

H N CA C 7.73 0.33 -1.73 0.23 -0.72 0.14 

H N CA H2 13.25 0.40 -0.46 0.12 -0.47 0.31 

C N CA C 3.65 0.32 -0.99 0.17 -0.19 0.25 

C N CA H2 7.37 0.31 -1.78 0.16 -0.08 0.15 
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Figure 39 GLY   backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann 

probability distribution graphs for the torsion angles associated to the   dihedral angle scan respectively.   

Hydrogen bond between the backbone nitrogen nuclei part of the   dihedral angle and the 

oxygen atom bonded to carbon that is attached to the nitrogen is likely to be responsible for the 

anomalous appearance of the Boltzmann probability graphs and the jumps on the Karplus 

curves.  

3.9.10 Karplus coefficients, HIS 

Method: GIAO DFT B3LYP/M06/cc-pVTZ in SMD Water 
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Atom 
1 

Atom 2 Atom 3 Atom 4 A, Hz ARMSD B, Hz BRMSD C, Hz CRMS

D 

N C CA N -0.02 0.39 -0.04 0.25 -0.01 0.23 

HA CA C N 0.94  0.31 0.15 0.14 -0.18 0.17 

CB CA C N 0.09 0.35 -0.09 0.15 0.04 0.16 

H N CA HA 11.45 0.40 -0.27 0.11 -0.27 0.28 

C N CA HA 5.66 0.34 -1.65 0.13 0.37 0.22 

H N CA C 6.58 0.40 -0.84 0.13 -0.46 0.30 

H N CA CB 6.42 0.29 -0.70 0.12 -0.57 0.18 

C N CA C 2.46 0.33 -0.92 0.18 0.19 0.18 

C N CA CB 2.52 0.39 -0.60 0.26 -0.05 0.20 

HA CA CB CG 8.47 0.40 -0.79 0.12 0.34 0.25 

HA CA CB HB1 11.94 0.33 1.42 0.14 0.43 0.18 

HA CA CB HB2 11.55 0.33 1.31 0.14 0.70 0.16 

N CA CB CG 1.26 0.30 -0.24 0.13 0.01 0.17 

N CA CB HB1 2.82 0.30 -0.30 0.11 0.03 0.21 

N CA CB HB2 2.49 0.35 -0.07 0.12 0.08 0.22 

C CA CB CG 3.88 0.33 -0.59 0.13 0.09 0.18 

HA CA CB HB1 7.07 0.34 -0.39 0.13 0.03 0.20 

C CA CB HB2 6.62 0.32 -0.21 0.18 0.13 0.17 
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Figure 40 HIS   backbone dihedral angle scan. Top panel Karplus curves for the torsion angles associated to 

the   dihedral angle scan. Bottom panel Boltzmann probability distribution graphs for the respective torsion 

angles. 

The presence of hydrogen bond between amide backbone proton and oxygen attached to carbon 

that is bonded to Cα along with interaction between the amide proton of the cyclic sidechain 

group of histidine with oxygen attached to carbon atom next to amide nitrogen of the backbone 

are likely to be responsible for the anomaly of the Boltzmann energy probability distribution 
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graphs. The broken Karplus curves are those of the torsion angles that involved backbone 

amide proton as one of the three bond separating J-coupled nuclei. This is mainly due to the 

involvement of the amide proton in hydrogen bond interaction. Thus the breaking of hydrogen 

bond as the dihedral angle rotated breaks the coupling hence the fitting of the Karplus curves.       

 

Figure 41 HIS   backbone dihedral angle scan. Top panel Karplus curves for the torsion angles that are related 

to the   dihedral angle scan. Bottom panel Boltzmann probability distribution graphs for the respective torsion 

angles.   

As noted earlier, the amplitudes of the 3JNN and 3JNCb are small hence the fitting of the Karplus 

curves looks random noise. However, the fitting of the 3JNHa coupling data from electronic 
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structure calculation at the above mentioned theory approximated by Karplus curve that shows 

Karplus like pattern.       

  

 

Figure 42 HIS 1  side-chain dihedral angle scan. Top panel Karplus curve for the torsion angles associated to 

the 1  dihedral angle and bottom panel Boltzmann’s probability distribution graphs for the respective torsion 

angles.  

The making and breaking of a hydrogen bond between the cyclic sidechain amide proton and 

backbone oxygen atom attached to the carbon that is bonded to Cα on the other residue as the 
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1  dihedral scanned is likely to be responsible for the anomaly that is present in the Boltzmann 

probability distribution graphs. The fitting of some of the Karplus curves shows an under and 

over prediction due to the above mentioned hydrogen bond effect. There is another hydrogen 

bond present between atoms of the backbone chain and this appears not to influence the Karplus 

curves and distribution graphs.   

3.9.11 Karplus coefficients, ILE 

Method: GIAO DFT B3LYP/M06/cc-pVTZ in SMD Water 

Atom 
1 

Atom 2 Atom 3 Atom 4 A, Hz ARMSD B, Hz BRMSD C, Hz CRMSD

N C CA N 0.00  0.00  0.00  

HA CA C N 1.31  0.00  -0.11  

CB CA C N 0.00  0.00  0.00  

CG1 CB CA N 1.12 0.34 0.07 0.14 0.12 0.20 

CG1 CB CA N 2.64  0.26   -0.22 
[110] 

 

CG1 CB CA C 3.31 0.35 -0.12 0.14 0.12 0.23 

CG1 CB CA C 3.42  -0.59  0.17 
[110] 

 

CG1 CB CA HA 6.95 0.35 0.72 0.12 0.13 0.22 

C CA CB HB 7.01 0.34 -0.65 0.14 0.03 0.18 

C CA CB CG2 3.22 0.36 -0.31 0.14 0.16 0.24 

C CA CB CG2 3.42  -0.59  0.17 
[110]  

 

HA CA CB HB 10.75 0.30 1.92 0.13 0.68 0.17 

HA CA CB CG2 6.87 0.31 1.27 0.12 0.18  0.23 

N CA CB CG2 1.34 0.32 0.04 0.15 0.02 0.17 

N CA CB CG2 2.64  0.26   -0.22 
[110] 

 

N CA CB HB 2.93 0.34 0.04 0.11 0.05 0.23 

H N CA HA 11.92 0.29 0.07 0.13 -0.10 0.21 

C N CA HA 5.96 0.26 -1.87 0.15 0.51 0.15 

H N CA C 7.16 0.46 -1.47 0.32 -0.45 0.17 

H N CA CB 5.02 0.31 -0.76 0.17 -0.17 0.13 
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C N CA C 3.07 0.25 -1.05 0.13 -0.02 0.15 

C N CA CB 1.96 0.30 -0.74 0.15 0.03 0.15 

CA CB CG1 CD 3.51 0.32 -0.30 0.16 0.03 0.19 

HB CB CG1 CD 8.21 0.37 0.54 0.13 0.06 0.22 

CG2 CB CG1 CD 5.36 0.33 0.93 0.13 0.18 0.20 

CA CB CG1 HG1 7.57 0.36 -0.00 0.13 0.11 0.22 

HB CB CG1 HG1 10.85 0.35 1.39 0.13 0.73 0.19 

CG2 CB CG1 HG1 8.04 0.38 0.54 0.18 0.23 0.19 

CA CB CG1 HG2 7.33 0.32 -0.63 0.15 0.30 0.19 

HB CB CG1 HG2 11.17 0.40 1.57 0.25 0.57 0.22 

CG2 CB CG1 HG2 8.64 0.33 0.91 0.17 -0.08 0.18 
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Figure 43 ILE   backbone dihedral angle scan. Top and bottom panels are Karplus curves and probability 

distribution graphs for the torsion angles related to the   dihedral angle.   

Karplus curves of the nuclei that involved the backbone amide proton are broken, this is due to 

the participation of the atom in a hydrogen bond. This is the likely reason for the thin sharp 

appearance of the Boltzmann probability distribution graphs and jumps of the Karplus curves.  
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Figure 44 ILE 1  side-chain dihedral angle scan. Top panel Karplus curves for the torsion angles associated to 

the 1  dihedral angle. Bottom panel Boltzmann’s probability distribution graphs for the respective torsion 

angles.  
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Figure 45 ILE 2  side-chain dihedral angle scan. Top panel Karplus curves for the torsion angles related to the 

2  dihedral angle and bottom panel probability distribution for the respective torsion angles.  

3.9.12 Karplus coefficients, LEU 

Method: GIAO DFT B3LYP/M06/cc-pVTZ in SMD Water 

Atom 
1 

Atom 2 Atom 3 Atom 4 A, Hz ARMSD B, Hz BRMSD C, Hz CRMSD

N C CA N 0.04 0.30 -0.11 0.15 0.00 0.14 

HA CA C N 1.17 0.35 -0.25 0.16 -0.14 0.20 

CB CA C N 0.02 0.33 -0.36 0.14 0.02 0.18 
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CG CB CA N 1.86 0.40 0.14 0.21 -0.03 0.22 

CG CB CA C 3.00 0.52 -0.22 0.17 0.29 0.35 

CG CB CA HA 7.75 0.49 -0.23 0.39 0.19 0.23 

C CA CB HB1 6.94 0.54 -0.28 0.25 -0.09 0.30 

C CA CB HB2 7.76 0.66 -0.51 0.25 0.13 0.28 

HA CA CB HB1 12.06 0.62 1.96 0.38 0.54 0.22 

HA CA CB HB2 12.32 0.58 1.64 0.20 0.86 0.33 

N CA CB HB1 4.21 0.61 0.22 0.17 -0.05 0.45 

N CA CB HB2 4.27 0.47 0.16 0.29 0.29 0.27 

H N CA HA 11.98 0.33 0.05 0.14 -0.12 0.18 

C N CA HA 6.28 0.29 -1.62 0.17 0.44 0.14 

H N CA CB 5.16 0.31 -0.52 0.12 -0.27 0.20 

C N CA CB 1.95 0.32 -0.84 0.17 0.03 0.16 

H N CA C 6.48 0.44 -1.52 0.22 -0.38 0.20 

C N CA C 2.77 0.29 -1.09 0.15 0.12 0.15 

CA CB CG1 CD1 3.97 0.30 -0.80 0.12 -0.07 0.20 

HB1 CB CG1 CD1 8.98 0.35 0.67 0.23 -0.12 0.22 

HB2 CB CG1 CD1 8.51 0.40 0.28 0.22 0.23 0.20 

CA CB CG1 HG 7.59 0.32 -0.90 0.11 0.03 0.21 

HB1 CB CG1 HG 11.14 0.31 1.46 0.13 0.62 0.20 

HB2 CB CG1 HG 11.15 0.30 1.52 0.14 0.74 0.17 

CA CB CG1 CD2 3.77 0.48 -0.43 0.36 0.01 0.24 

HB1 CB CG1 CD2 8.31 0.42 0.49 0.21 0.22 0.20 

HB2 CB CG1 CD2 9.13 0.36 0.60 0.16 -0.05 0.19 
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Figure 46 LEU   backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann 

probability distribution for the torsion angles associated to the   dihedral angle. 

Hydrogen bod making and breaking as the   dihedral angle is rotated might be responsible for 

unusual feature of the probability distribution graphs and jumps of the Karplus curves. 
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Figure 47 LEU   backbone dihedral angle scan. Top and bottom are Karplus curves and probability distribution 

graphs for torsion angles linked to the   dihedral angle. 

The broken Karplus curves are due the small amplitudes of the J-couplings between the atoms 

involved in the respective torsion angles (3JNN and 3JNC).  
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Figure 48 LEU 1  side-chain dihedral angle scan. Top panel Karplus curves for torsion angles associated to the 

1  dihedral angle and bottom panel probability distribution graphs for the respective torsion angles.  

The effect from the presence of branched sidechain hydrocarbon is more pronounced for the 

1  dihedral angle. The amplitudes of the interaction energy are smaller compared to the 

unbranched amino acids, thus the appearance of small bumps in the probability distribution 

graphs and jumps in Karplus curves are mainly due to this effect and may be also due to tiny 

contribution from hydrogen bond effect.      
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Figure 49 LEU 2  side-chain dihedral angle scan. Top panel Karplus curves for torsion angles associated to 

the 2  dihedral angle and bottom panel probability distribution graphs for the respective torsion angles.  

3.9.13 Karplus coefficients, LYS 

Method: GIAO DFT B3LYP/M06/cc-pVTZ in SMD Water 

Atom 
1 

Atom 2 Atom 3 Atom 4 A, Hz ARMSD B, Hz BRMSD C, Hz CRMSD

N C CA N -0.01 0.31 -0.14 0.16 -0.03 0.14 

HA CA C N 0.86 0.32 -0.25 0.14 -0.37 0.17 

CB CA C N -0.04 0.36 -0.23 0.14 -0.06 0.18 

HA CA CB CG 8.93 0.37 0.04 0.13 0.06 0.20 

N CA CB CG 1.46 0.28 -0.21 0.16 -0.10 0.15 

C CA CB CG  3.09 0.35 -0.67 0.15 -0.04 0.21 
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HA CA CB HB1 13.30 0.32 1.97 0.17 0.73 0.20 

N CA CB HB1 3.48 0.35 -0.39 0.11 0.05 0.26 

C CA CB HB1 6.81 0.35 -0.73 0.13 0.37 0.19 

HA CA CB HB2 12.22 0.36 1.02 0.17 0.55 0.18 

N CA CB HB2 3.31 0.37 -0.25 0.17 0.01 0.25 

C CA CB HB2 7.44 0.36 -0.82 0.12 -0.30 0.23 

H N CA HA 10.36 0.30 0.48 0.11 -0.23 0.22 

C N CA HA 5.38 0.30 -1.73 0.15 0.34 0.16 

H N CA CB 6.26 0.27 -0.61 0.12 -0.55 0.18 

C N CA CB 2.22 0.29 -0.83 0.16 0.08 0.15 

H N CA C 6.48 0.44 -1.12 0.19 -0.45 0.23 

C N CA C 2.53 0.25 -0.86 0.12 0.09 0.16 

CA CB CG CD 5.12 0.34 -0.08 0.15 0.08 0.19 

HB1 CB CG CD 11.52 0.32 0.27 0.15 -0.03 0.16 

HB2 CB CG CD 10.72 0.43 -0.09 0.22 0.13 0.17 

CA CB CG HG1 8.23 0.34 -0.25 0.16 0.02 0.19 

HB1 CB CG HG1 11.92 0.37 1.27 0.16 0.73 0.17 

HB2 CB CG HG1 13.07 0.37 1.34 0.20 0.29 0.16 

CA CB CG HG2 7.67 0.31 0.08 0.16 0.18 0.17 

HB1 CB CG HG2 12.67 0.30 1.51 0.11 0.45 0.21 

HB2 CB CG HG2 12.27 0.34 0.78 0.13 0.68 0.19 

CB CG CD CE 7.70 0.30 0.80 0.14 0.01 0.17 

HG1 CG CD CE 14.37 0.46 -0.19 0.32 0.12 0.28 

HG2 CG CD CE 14.07 0.36 -0.03 0.15 0.03 0.18 

CB CG CD HD1 7.27 0.31 -0.43 0.16 0.06 0.17 

HG1 CG CD HD1 13.17 0.43 1.12 0.22 0.30 0.21 

HG2 CG CD HD1 12.13 0.31 1.14 0.13 0.71 0.17 

CB CG CD HD2 7.97 0.36 0.20 0.17 0.05 0.23 

HG1 CG CD HD2 12.46 0.36 1.59 0.16 0.59 0.20 

HG2 CG CD HD2 12.93 0.42 1.50 0.16 0.42 0.19 

CG CD CE NZ 2.32 0.34 0.12 0.16 -0.04 0.23 

HD1 CD CE NZ 6.48 0.37 0.17 0.15 -0.02 0.19 
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HD2 CD CE NZ 6.83 0.39 0.11 0.17 -0.05 0.20 

CG CD CE HE1 7.45 0.36 0.04 0.14 -0.00 0.19 

HD1 CD CE HE1 13.60 0.45 1.13 0.32 0.00 0.23 

HD2 CD CE HE1 12.62 0.35 0.59 0.13 0.60 0.19 

CG CD CE HE2 7.33 0.39 -0.02 0.15 0.00 0.20 

HD1 CD CE HE2 12.06 0.35 0.78 0.13 0.64 0.18 

HD2 CD CE HE2 13.75 0.61 0.97 0.56 0.05 0.25 

 

 

Figure 50 LYS   backbone dihedral angle scan. Top and bottom panels are Karplus curves and probability 

distribution histograms for the torsion angles associated to the   dihedral angle respectively.   
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Hydrogen bond making and braking as the   dihedral angle rotated is responsible for the jumps 

in the Karplus curves and the sharp appearance of the probability distribution graphs.  

 

Figure 51 LYS   backbone dihedral angle scan. Top and bottom are Karplus curves and Boltzmann probability 

distribution graphs for torsion angles linked to   dihedral angle scan respectively.   

Small amplitude vicinal coupling of nitrogen with nitrogen and carbon atoms of the   dihedral 

angle is responsible for the broken curves. Steric effect, that arise from the longer chain of 

hydrocarbons, coupled to hydrogen bond effect  are responsible for the presence of the tiny 

bumps in the energy probability distribution graphs and breaks of the 3JNHa Karplus curve.        
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Figure 52 LYS 1  side-chain dihedral angle scan. Top panel Karplus curves for the torsion angles linked to the 

1  dihedral angle and bottom panel Boltzmann probability distribution graphs for the respective torsion angles.  
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Figure 53 LYS 2  side-chain dihedral angle scan. Top panel Karplus curves for the torsion angles associated 

to the 2  dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective 

torsion angles.  
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Figure 54 LYS 3  side-chain dihedral angle scan. Top panel Karplus curves for the torsion angles associated 

to the 3  dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective 

torsion angles.  

Three bond J-couplings that involved CE nuclei show an unusual character in which its Karplus 

coefficients have bigger values than the ones that arise from J-couplings between two proton 

atoms. This may be attributed to the extra amine present in the sidechain and the charge of the 

nitrogen atom of that amine group which is bonded to the CE atom. The two Karplus curves 

(3JCeHg2 and 3JCeHg1) showed larger coefficients than the Karplus curves that involved vicinal 

couplings between proton atoms such as 3JHg1Hd1, 3JHg2Hd1, 3JHg1Hd2, and 3JHg2Hd2. In addition 

steric effect from the presence of large chain of methyl hydrocarbons in the amino acids 

sidechain might likely have a contribution to the jump in the Karplus curve of the 3JCeHg1.    
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Figure 55 LYS 4  side-chain dihedral angle scan. Top panel Karplus curves of the torsion angles associated to 

the 4  dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective torsion 

angles.  

The Karplus curves of the dihedral angle appear to split into three groups depending on the 

magnitude of the amplitude of the spins involved in vicinal coupling. The presence of an extra 

amide and steric effect resulting from the larger hydrocarbon chain are likely to be responsible 

the staggered appearance of the energy probability distribution graphs.    

3.9.14 Karplus coefficients, MET 
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Method: GIAO DFT B3LYP/M06/cc-pVTZ in SMD Water 

Atom 
1 

Atom 2 Atom 3 Atom 4 A, Hz ARMSD B, Hz BRMSD C, Hz CRMSD

N C CA N 0.03 0.41 -0.10 0.18 0.00 0.25 

HA CA C N 1.17 0.35 -0.08 0.14 -0.20 0.22 

CB CA C N 0.20 0.32 0.00 0.18 0.03 0.20 

HA CA CB CG 9.24 0.34 1.02 0.14 0.18 0.19 

N CA CB CG 1.48 0.26 -0.12 0.14 -0.04 0.15 

C CA CB CG  3.05 0.36 -0.9 0.18 0.25 0.20 

HA CA CB HB1 12.39 0.34 1.77 0.14 0.69 0.19 

N CA CB HB1 3.39 0.37 -0.33 0.14 0.16 0.22 

C CA CB HB1 7.35 0.40 -0.16 0.19 -0.14 0.19 

HA CA CB HB2 12.68 0.30 1.09 0.15 0.53 0.17 

N CA CB HB2 3.44 0.47 -0.15 0.13 0.02 0.37 

C CA CB HB2 6.16 0.35 -0.89 0.13 0.42 0.21 

H N CA HA 11.70 0.31 -0.54 0.12 -0.11 0.21 

C N CA HA 5.65 0.31 -1.67 0.13 0.53 0.23 

H N CA CB 5.83 0.34 -0.33 0.20 -0.40 0.14 

C N CA CB 2.13 0.27 -0.92 0.14 0.13 0.15 

H N CA C 6.20 0.49 -1.32  0.29 -0.29 0.18 

C N CA C 2.79 0.29 -1.00 0.15 0.07 0.15 

CA CB CG SD 3.63 0.49 0.64 0.41 0.00 0.30 

HB1 CB CG SD 7.08 0.45 -0.15 0.32 -0.26 0.29 

HB2 CB CG SD 7.15 0.35 -0.09 0.17 -0.03 0.18 

CA CB CG HG1 8.87 0.34 -0.72 0.18 -0.09 0.19 

HB1 CB CG HG1 13.25 0.32 0.89 0.16 0.51 0.20 

HB2 CB CG HG1 13.02 0.29 0.58 0.15 0.84 0.15 

CA CB CG HG2 8.17 0.38 -0.24 0.18 0.18 0.21 

HB1 CB CG HG2 12.46 0.34 0.48 0.12 0.81 0.21 

HB2 CB CG HG2 13.91 0.25 1.00 0.13 0.42 0.16 

CB CG SD CE 5.59 0.37 1.33 0.26 -0.05 0.14 

HG1 CG SD CE 8.52 0.38 0.52 0.15 -0.03 0.20 



99 

 

HG2 CG SD CE 8.50 0.37 0.45 0.13 0.03 0.22 

   

 

Figure 56 MET   backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann 

probability distribution graphs for the torsion angles related to the   dihedral angle scan.   

Though there exists a hydrogen bond that does not involve nuclei that participated in vicinal J-

couplings associated to the scan of the   dihedral angle, the Karplus curves looks fit the data 

nicely in a Karplus like pattern. Thus, hydrogen bond coupled with steric effect from longer 

chain of the sidechain may be likely to affect the appearance of the Boltzmann probability 

distribution graphs.  
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Figure 57 MET   backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann 

probability distribution graphs for the torsion angles associated to the   dihedral angle scan respectively. 

3JNN and 3JNCb vicinal couplings have small amplitudes, making the fitting of the Karplus curve 

difficult. The other torsion angle Karplus curve i.e. 3JNHa shows a break in the fitting curve, 

which is likely down to hydrogen bond making and breaking as well as steric effect of the 

longer chains of methyl groups of the amino acid sidechain.      
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Figure 58 MET 1  side-chain dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann 

probability distribution graphs for the torsion angles associated to the 1  dihedral angle scan. 

All the Karplus curves in Figure 58 (above) nicely fitted to the vicinal coupling data. This 

shows the absence of hydrogen interactions in the scan of the 1  dihedral angle.     
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Figure 59 MET 2  side-chain dihedral angle scan. Top panel Karplus curve of the torsion angles associated to 

the 2  dihedral angle scan and bottom panel Boltzmann probability distribution graphs of the respective torsion 

angles.  

The scan of the 2  dihedral angle scan brings the sidechain sulphur atom closer the backbone 

amide hydrogen to form hydrogen bond. Sulphur is known to form noncovalent interactions 

such as hydrogen bond [111].     
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Figure 60 MET 3  side-chain dihedral angle scan. Top panel Karplus curves of the torsion angles related to the

3  dihedral angle scan and bottom panel Boltzmann probability distribution for the respective torsion angles. 

3.9.15 Karplus coefficients, PHE 

Method: GIAO DFT B3LYP/M06/cc-pVTZ in SMD Water 

Atom 
1 

Atom 2 Atom 3 Atom 4 A, Hz ARMSD B, Hz BRMSD C, Hz CRMSD

N C CA N -0.03 0.53 -0.04 0.23 0.01 0.33 

HA CA C N 1.13 0.49 0.18 0.16 -0.22 0.35 

CB CA C N 0.08 0.45 -0.14 0.27 0.08 0.17 

HA CA CB CG 6.37 0.36 -0.43 0.14 0.31 0.20 

N CA CB CG 1.07 0.29 -0.23 0.12 0.02 0.18 

C CA CB CG 3.21 0.36 -0.46 0.13 0.06 0.22 

HA CA CB HB1 11.31 0.35 1.58 0.13 0.67 0.20 

N CA CB HB1 2.78 0.37 0.00 0.13 0.09 0.20 

C CA CB HB1 6.93 0.30 -0.26 0.15 0.19 0.17 

HA CA CB HB2 11.52 0.32 1.77 0.13 0.57 0.19 
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N CA CB HB2 2.96 0.39 -0.11 0.14 0.03 0.27 

C CA CB HB2 6.96 0.35 -0.40 0.13 0.14 0.20 

H N CA HA 11.93 0.37 0.64 0.11 0.02 0.30 

C N CA HA 6.67 0.32 -2.19 0.14 -0.07 0.17 

H N CA CB 7.03 0.49 -0.40 0.28 -0.63 0.25 

C N CA CB 2.77 0.30 -0.74 0.18 -0.20 0.18 

H N CA C 7.27 0.44 -1.49 0.28 -0.31 0.18 

C N CA C 3.36 0.25 -1.01 0.12 -0.22 0.18 
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Figure 61 PHE   backbone dihedral angle scan. Top and bottom are Karplus curves and Boltzmann probability 

distribution graphs for torsion angles associated to the   dihedral angle scan respectively.  

Karplus curves that involve backbone amide proton as one of the J-coupled nuclei, are broken. 

This is due to fact that the atom is involved in a hydrogen bond with oxygen atom attached to 

the carbon bonded to the Cα. Thus the scan of the   dihedral angle breaks that bond hence that 

jumps and breaks are observed in the torsion angles that are associated to the above mentioned 

nuclei.        
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Figure 62 PHE   backbone dihedral angle scan. Top and bottom are Karplus curves and Boltzmann probability 

distribution graphs for the torsion angles associated to the   dihedral angle scan respectively.  

As mentioned above the scanning of the Karplus curve to the small amplitude J-coupling data 

of the 3JNN and 3JNCb torsion angles appears to produce random noise. The jumps in the other 

Karplus curve are likely due to the effect of hydrogen bond making and breaking together with 

the steric effect.      
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Figure 63 PHE 1  side-chain dihedral angle scan. Top panel Karplus curves for the torsion angles related to 

the 1  dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective torsion 

angles.  

3.9.16 Karplus coefficients, PRO 

Method: GIAO DFT B3LYP/M06/cc-pVTZ in SMD Water 

Atom 1 Atom 2 Atom 3 Atom 4 A, Hz B, Hz C, Hz 

HA CA N CD 0.00 0.00 0.00 

CA N CD HD3 0.00 0.00 2.50 

HG2 CG CD N 0.00 0.00 0.00 
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C N CD CG 0.00 0.00 2.50 

C CA N CD 0.00 0.00 1.10 

C N CD HD2 0.00 0.00 1.00 

C N CD HD3 0.00 0.00 1.00 

CB CA N CD 0.00 0.00 0.00 

N CD CG CB 0.00 0.00 1.10 

CA N CD HD2 0.00 0.00 2.50 

CA N CD CG 0.00 0.00 0.00 

HG3 CG CD N 0.00 0.00 0.00 

 

This amino acid deemed to have no parts that are flexible and thus not considered for a relaxed 

dihedral angle scan. However, proline does isomerise between cis and trans forms and plays a 

central role in protein folding and function.   

3.9.17 Karplus coefficients, SER 

Method: GIAO DFT B3LYP/M06/cc-pVTZ in SMD Water 

Atom 
1 

Atom 2 Atom 3 Atom 4 A, Hz ARMSD B, Hz BRMSD C, Hz CRMSD

N C CA N 0.02 0.33 -0.07 0.13 0.00 0.21 

HA CA C N 1.03 0.35 -0.26 0.14 -0.15 0.20 

CB CA C N 0.12 0.34 -0.30 0.13 0.01 0.20 

HA CA CB HB1 10.89 0.44 1.72 0.36 0.51 0.18 

N CA CB HB1 3.34 0.47 0.29 0.32 0.03 0.29 

C CA CB HB1 5.99 0.35 -0.64 0.13 0.43 0.20 

HA CA CB HB2 9.32 0.37 1.72 0.14 1.00 0.20 

N CA CB HB2 2.75 0.37 0.42 0.13 0.24 0.22 

C CA CB HB2 6.48 0.34 -0.21 0.12 0.05 0.21 

H N CA HA 10.81 0.45 0.31 0.14 -0.14 0.29 

C N CA HA 0.33 0.33 -1.20 0.20 2.76 0.13 

H N CA CB 7.00 0.39 -1.43 0.17 -0.48 0.22 

C N CA CB -0.27 0.30 0.43 0.14 1.54 0.17 

H N CA C 7.02 0.35 -1.77 0.16 -0.44 0.21 
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C N CA C -0.76 0.34 0.65 0.17 1.76 0.23 

 

 

Figure 64 SER   backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann 

probability distribution graphs for the torsion angles associated to the   dihedral angle scan respectively.  

The presence of hydroxyl ion attached to the carbon at the   position results in hydrogen bond 

formation. Thus, the rotation of the dihedral angle breaks the bond and is responsible for the 

scatter of the data. The fitting of Karplus curve to vicinal coupling data however looks fine. 

The hydrogen bond effect appears to affect all Karplus curves and the probability distribution 

graphs of the torsion angles related to the   dihedral angle.  
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Figure 65 SER   backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann 

probability distribution graphs for the torsion angles associated to the respective torsion angles respectively.  

Although the fitting of the 3JNN and 3JNCb Karplus curves appears random and noisy due to 

small amplitude of the coupling values, hydrogen bond effect is likely to be responsible for the 

broken Karplus curve of the 3JNHa torsion angle and the probability distribution graphs.   
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Figure 66 SER 1  side-chain dihedral angle scan. Top panel Karplus curves for the torsion angles associated to 

the 1  dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective torsion 

angles.  

All the Karplus curves are affected by hydrogen interaction as the dihedral angle scanned. The 

Karplus curves have either jumps or are broken as depicted in Figure 66 (above). 

3.9.18 Karplus coefficients, THR 

Method: GIAO DFT B3LYP/M06/cc-pVTZ in SMD Water 

Atom 
1 

Atom 2 Atom 3 Atom 4 A, Hz ARMSD B, Hz BRMSD C, Hz CRMSD 

N C CA N -0.01 0.66 -0.12 0.36 0.03 0.45 

HA CA C N 0.97 0.50 -0.07 0.25 -0.12 0.34 

CB CA C N -0.04 0.82 -0.29 0.73 0.01 0.23 

HA CA CB CG1 6.33 0.41 0.65 0.13 0.53 0.21 

N CA CB CG1 1.14 0.38 -0.10 0.21 0.01 0.22 
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N CA CB CG1 2.01   0.21   -0.13 
[110] 

 

C CA CB CG1 3.02 0.29 -0.42 0.14 -0.15 0.16 

C CA CB CG1 2.76   -0.67   0.19 
[110] 

 

HA CA CB HB 11.23 0.33 2.26 0.14 0.41 0.23 

N CA CB HB 2.71 0.46 0.04 0.20 0.09 0.24 

C CA CB HB 5.29 0.36 -0.92 0.12 0.30 0.22 

H N CA HA 11.77 0.36 -0.14 0.10 -0.00 0.30 

C N CA HA 5.89 0.26 -1.54 0.13 0.41 0.15 

H N CA CB 6.45 0.36 -1.08 0.17 -0.40 0.15 

C N CA CB 1.88 0.27 -0.88 0.15 0.11 0.13 

H N CA C 6.41 0.39 -1.09 0.19 -0.45 0.15 

C N CA C 2.54 0.28 -0.97 0.14 0.09 0.16 
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Figure 67 THR   backbone dihedral angle scan. Top panel Karplus curves for torsion angles associated to the 

  dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective torsion 

angles.  
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Figure 68 THR   backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann 

probability distribution graphs for the torsion angles associated to the   dihedral angle scan respectively.  

As normal, the 3JNN and 3JNCb J-coupling interaction amplitudes is small, hence the scan of the 

Karplus curves resembles random noise. However the presence of multiple hydrogen bond 

making and breaking is likely to be responsible for the breaking of the curve and broad 

appearance of the distribution histograms. 
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Figure 69 THR 1  side-chain dihedral angle scan. Top panel Karplus curves for the torsion angles related to 

the 1  dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective torsion 

angles.  

Though the atoms involved in the three bond separated J-couplings do not have any hydrogen 

bond, there are hydrogen bonds that involves an oxygen atom attached to the Cβ and backbone 

amide proton. Thus the scan of the 1  dihedral angle breaks the hydrogen bond and causes the 

couplings of the spins to have jumps, hence the breaks of the Karplus curves. The effect is also 

likely to be responsible for the under and over prediction pattern evident in some of the curves.    

3.9.19 Karplus coefficients, TRP 

Method: GIAO DFT B3LYP/M06/cc-pVTZ in SMD Water 
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Atom 
1 

Atom 2 Atom 3 Atom 4 A, Hz ARMSD B, Hz BRMSD C, Hz CRMSD

N C CA N 0.01 0.33 -0.15 0.13 0.02 0.20 

HA CA C N 1.30 0.30 -0.06 0.12 -0.21 0.18 

CB CA C N 0.22 0.29 -0.01 0.16 0.05 0.17 

H N CA HA 11.75 0.30 -0.58 0.13 -0.14 0.21 

C N CA HA 5.69 0.34 -1.70 0.15 0.52 0.24 

H N CA CB 5.93 0.30 -0.36 0.18 -0.39 0.12 

C N CA CB 2.26 0.28 -0.86 0.14 0.14 0.17 

H N CA C 6.14 0.56 -1.38 0.30 -0.21 0.20 

C N CA C 2.80 0.29 -0.98 0.15 0.04 0.15 

HA CA CB CG 7.71 0.36 0.06 0.20 0.26 0.21 

N CA CB CG 1.31 0.28 -0.29 0.15 0.01 0.15 

C CA CB CG 2.89 0.33 -0.80 0.15 0.21 0.19 

HA CA CB HB1 12.62 0.28 1.09 0.12 0.73 0.18 

N CA CB HB1 3.47 0.51 -0.08 0.12 -0.01 0.39 

C CA CB HB1 5.95 0.34 -0.73 0.13 0.49 0.19 

HA CA CB HB2 12.45 0.36 1.76 0.13 0.61 0.19 

N CA CB HB2 3.13 0.37 -0.32 0.14 0.15 0.22 

C CA CB HB2 7.05 0.35 -0.20 0.15 -0.14 0.18 
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Figure 70 TRP   backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann 

probability distribution graphs for the torsion angles associated to the   dihedral angle scan respectively.   

The three bond J-coupled nuclei associated to the   dihedral angle do not engage in hydrogen 

bond, however the jumps in some of the Karplus curves and the thin appearance of the 

probability distribution graphs might be due to steric effect that arise from the presence of large 

sidechain of the tryptophan amino acid.    
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Figure 71 TRP   backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann 

probability distribution graphs for the torsion angles related to the   dihedral angle scan respectively.  

Similar to the previous description of the Karplus curves related   dihedral angle, the 

amplitude of three bond J-couplings between nitrogen and another nitrogen and carbon atoms 

is small. The scan of the Karplus curves to these data appears to be random and noisy. 
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Figure 72 TRP 1  side-chain dihedral angle scan. Top panel Karplus curves for the torsion angles related to the 

1  dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective torsion 

angles. 

The Karplus curves that relates two proton spins appears to show higher amplitudes compared 

to curves constructed from dihedral angle that connects a proton and another spin (carbon and 

nitrogen). 3JNCg however has small intensity hence its Karplus curve appears to have the 

smallest amplitude of all curves in Figure 72 (above).   

3.9.20 Karplus coefficients, TYR 

Method: GIAO DFT B3LYP/M06/cc-pVTZ in SMD Water 

Atom 
1 

Atom 2 Atom 3 Atom 4 A, Hz ARMSD B, Hz BRMSD C, Hz CRMSD

N C CA N -0.18 0.74 -0.25 0.53 0.03 0.14 

HA CA C N 1.04 0.38 -0.20 0.20 -0.23 0.24 
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CB CA C N 0.18 1.30 -0.15 1.42 0.09 0.42 

HA CA CB CG 7.74 0.40 -0.34 0.14 0.21 0.23 

N CA CB CG 1.78 0.57 -0.11 0.32 -0.00 0.33 

C CA CB CG 3.14 0.37 -0.67 0.14 0.20 0.20 

HA CA CB HB1 12.41 0.37 1.70 0.13 0.90 0.23 

N CA CB HB1 4.65 0.42 0.28 0.18 -0.09 0.29 

C CA CB HB1 6.47 0.36 -0.48 0.14 0.48 0.20 

HA CA CB HB2 12.64 0.36 2.13 0.14 0.88 0.20 

N CA CB HB2 3.98 0.33 0.38 0.14 0.12 0.19 

C CA CB HB2 7.70 0.41 0.01 0.13 -0.05 0.23 

H N CA HA 11.72 0.27 -0.48 0.12 -0.21 0.18 

C N CA HA 5.85 0.29 -1.74 0.12 0.45 0.18 

H N CA CB 5.47 0.37 -0.56 0.21 -0.31 0.18 

C N CA CB 2.03 0.26 -0.75 0.14 0.16 0.15 

H N CA C 6.44 0.41 -1.50 0.22 -0.34 0.15 

C N CA C 2.84 0.25 -0.98 0.13 0.03 0.14 
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Figure 73 TYR   backbone dihedral angle scan. Top and bottom are Karplus curves and Boltzmann probability 

distribution graphs for the torsion angles associated to the   dihedral angle scan respectively.  

The nuclei involved in the J-couplings across the torsion angles associated to the   dihedral 

angle do not engage in hydrogen bonds. However, there is hydrogen bond between oxygen 

atom attached to the backbone amide nitrogen and to the backbone amide proton of the other 

residue that might be responsible for the jumps in the Karplus curves.   
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Figure 74 TYR   backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann 

probability distribution graphs for the torsion angles associated to the   dihedral angle scan respectively.  

As noted above, the amplitude of the vicinal coupling of the 3JNN and 3JNCb is small hence the 

scan of the Karplus curve appears as a random noise.   
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Figure 75 TYR 1  side-chain dihedral angle scan. Top panel Karplus curves for the torsion angles related to the 

1  dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective torsion 

angles.  

3.9.21 Karplus coefficients, VAL 

Method: GIAO DFT B3LYP/M06/cc-pVTZ in SMD Water 

Atom 
1 

Atom 2 Atom 3 Atom 4 A, Hz ARMSD B, Hz BRMSD C, Hz CRMSD

N C CA N 0.06 0.31 -0.06 0.20 -0.03 0.16 

HA CA C N 1.39 0.37 -0.03 0.16  -0.14 0.19 

CB CA C N 0.13 0.33 -0.19 0.14 0.03 0.16 
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HA CA CB CG1 6.91 0.38 0.74 0.14 0.18 0.23 

N CA CB CG1 1.15 0.34 0.04 0.14 0.11 0.21 

N  CA CB CG1 2.64   0.26   -0.22 
[110] 

 

C CA CB CG1 3.40 0.31 -0.13 0.13 0.11 0.21 

C CA CB CG1 3.42   -0.59    0.17 
[110] 

 

HA CA CB CG2 6.77 0.34 1.07 0.12 0.23 0.25 

N CA CB CG2  1.35 0.37 -0.00 0.17 -0.00 0.16 

C CA CB CG2 3.25 0.37 -0.39 0.13 0.12 0.24 

HA CA CB HB 10.69 0.43 1.93 0.20 0.62 0.17 

N CA CB HB 2.84 0.43 0.05 0.21 0.07 0.28 

C CA CB HB 6.94 0.35 -0.61 0.16 0.05 0.18 

H N CA HA 11.98 0.29 0.14 0.14 -0.14 0.21 

C N CA HA 5.94 0.26 -1.93 0.14 0.50 0.15 

H N CA CB 5.17 0.33 -0.72 0.17 -0.19 0.13 

C N CA CB 1.99 0.29 -0.73 0.14 0.05 0.15 

H N CA C 7.21 0.46 -1.49 0.32 -0.48 0.19 

C N CA C 3.06 0.25 -1.04 0.14 0.00 0.14 
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Figure 76 VAL   backbone dihedral angle scan. Top panel Karplus curve for the torsion angles linked to the   

dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective torsion angles. 

The backbone amide proton is involved in hydrogen bond interactions, thus the rotation of the 

  dihedral angle breaks the hydrogen bond and disturbs the coupling data. As a result, the 

fitting of the Karplus curves to the coupling data that participate the amide proton turns out to 

be just fine. The affected Karplus curves are 3JHaHn, 3JCHn and 3JCbHn coloured magenta, green, 

and yellow respectively. The Boltzmann probability distribution graphs for those torsion angles 

also appear sharp, which might be due to the hydrogen bond interaction.      
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Figure 77 VAL   backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann 

probability distribution graphs for the torsion angles associated to the   dihedral angle scan respectively. 

As mentioned above, the 3JNN and 3JNCb have very small amplitudes. Thus the scan looks 

random and noisy. However the Karplus curve i.e. 3JNHa appears to fit the data from theory and 

preserve the Karplus like pattern where maximum values of vicinal coupling observed at 180o, 

0o and 360o and minimum at 90o and 270o, while the values in between are related to the torsion 

angles between those angles.    
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Figure 78 VAL 1  side-chain dihedral angle scan. Top panel Karplus curves for the torsion angles associated 

to the 1  dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective 

torsion angles.  

There appears to be some hydrogen bond effect from the backbone groups that are not affected 

by the scan of the dihedral angle.      

3.10 Comparison	with	experimental	data	

Overall, the J-coupling values obtained from DFT agree well to those measured 

experimentally. From extensive protein 3J coupling data set that are available in litrature [24, 

112-115], a recently published paper [116]  for 3JHαHβ1 and [112, 113, 115] for the 3Jαβ dihedral 
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angles are selected and the reported values are compared to the results from our DFT 

calculation. An example of the coupling data set is given in Table 4 and Table 5 (below) 

presented in Figure 79 and Figure 80 (below). The data shows the dependence of the spin-

spin coupling of α proton to the amide proton for   and the protons at the carbonyl positions α 

and β for 1 .  

For demonstration, GB3 protein 2N7J is used to show the relationship between theory and 

experiment for the   dihedral angle. And the coupling values from theory for alpha and amide 

protons are within 95% prediction limit correlations to that from the experiment.  

Most of the amino acids have two β protons. However, ILE, THR, VAL residues possesses 

only one β proton. An exception to both rules is GLY and PRO, which involve no β protons. 

Note that, as depicted in Figure 80, the 3JHαHβ1 of ARG and 3JHαHβ2 of HIS 2.00 and 0.95 Hz 

shows a considerable deviation from the experimental values of 5.7 and 2.6 Hz respectively. 

The dihedral angle χ1 as of reference [24] is defined by the average dihedral angle and 

computed to be as 104 35  for 3JHαHβ1 of ARG and 283 27 for 3JHαHβ2 of HIS. While the 

respective theoretical dihedral angles are computed from atomic coordinates by scanning at the 

torsion angle. Chi1 dihedral angles where extracted from PDB. In this example hen lysozyme 

[112], FKBP bound ascomycin [113] and an unfolded urea denatured protein G [115] are used 

to demonstrate the correlation with the couplings from the theory. 

Reported values from theory are for dihedral angles of phi and chi1 with ±47 degrees. This is 

because the calculations was performed by specifying the angles at a specific dihedral angles 

but the geometry optimization step refreshs the geometry to a ground state structure hence the 

disturbance of the specified angles by about ±47 degrees. The dihedral angles used for input 

setup were derived from PDB for the corresponding spin pairs.     

J-coupling predictions better approximated using an ensemble structure [117], but the current 

DFT calculations are carried out on single amino acids due computational complexity. 
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Table 4 An example that shows the comparison of predicted and experimentally determined [116] 3JHαHn-coupling 

values for the main-chain dihedral angle phi.  

Amino acids and  

residue number 

Single letter 

amino acid 

code.   

3JHαHn coupling value 

in Hz from experiment

3JHαHn 

coupling 

value in 

Hz from 

theory  

Dihedral 

angle 

extracted 

from 

structure 

PDB (2N7J) 

GLN 2 Q2 7.55 6.82 0 

LEU 5 L5 9.34 8.93 180 

ILE 7 I7 9.46 11.19 0 

GLY 9 G9 12.96 11.28 -0  

GLY 9 G9 12.96 11.28  -0 

LYS 10 K10 4.70 6.63 180 

THR 11 T11 10.06 8.11 180 

LEU 12 L12 7.84 8.93 180 

LYS 13 K13 9.34 6.63 -180 

GLU 15 E15 8.23 8.54 180 

THR 16 T16 6.58 8.11 180 

THR  17 T17 8.88 8.11 180 

THR 18 T18 6.62 7.12 0 

ALA 20 A20 7.41 9.58  0 

ALA 26 A26 4.32 4.28 180 

LYS 28 K28 3.78 4.81 0 

ALA 29 A29 4.52 4.28 180 

LYS 31 K31 3.96 4.81 180 

GLN 32 Q32 4.68 6.82 0 

ASN 37 N37 9.33 11.02 180 

GLY 38 G38 12.05 11.28 0 

GLY 41 G41 9.28 11.28 180 

GLY 41 G41 9.28  6.85 180 
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VAL 42 V42 8.81 6.32  180 

THR 44 T44 8.81 8.11 180 

TYR 45 Y45 8.92 6.30 180 

ASP 46 D46 9.91 11.79 180 

ALA 48 A48 4.28 4.28 180 

THR 49 T49 9.86 8.11 180 

LYS 50 K50 7.17 4.81 180 

THR 51 T51 10.07 8.11 180 

PHE 52 F52 9.47 9.44 0 

THR 53 T53 9.46 7.12 0 

THR 55 T55 9.95 8.11 0 

GLU 56 E56 8.49 8.73 0 

 

 

Figure 79 Correlation of predicted and experimentally obtained coupling values for Hα and HN for different   

dihedral angles. 
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Table 5 An example that shows the comparison of predicted and experimentally determined 3Jαβ-coupling values 

of the side-chain dihedral angle Chi1.  

Amino 

acid and 

residue 

number 

Single 

letter 

amino 

acid 

code 

Scalar 

coupling 

over 

three 

bond 

Alpha 

proton 

Beta protons 3JHαHxβ 

coupling 

value in Hz 

from 

experiment 

3JHαHxβ 

coupling 

value in Hz 

from theory  

Dihedral 

angle from 

PDB; 5JXV, 

1E8L, 1FKR 

and 9PCY 

TYR 3 Y3 3J HA HB2 8.25 [115] 8.82 0 

TYR 3 Y 3 3J HA HB3 5.47 [115] 5.18 0 

ASN 8 N 8 3J HA HB3 5.50 [115] 5.15 0 

PHE 52 F 52 3J HA HB3 5.52 [115] 4.60 0 

TYR 33  Y 33  3J  HA  HB2  8.61 [115]  8.82  0 

CYS 6 C6 3J HA HB1 11.5 [112] 12.78 73.57 

CYS 6 C6 3J HA HB2 3.5 [112] 4.88 -50.16 

PHE 3 F3 3J HA HB1 10 [112] 10.39 76.38 

PHE 3 F3 3J HA HB2 3.0 [112] 5.01  161.21 

HIS 15 H15 3J HA HB1 11.2 [112] 10.09 70.18 

HIS 15 H15 3J HA HB2 2.6 [112] 0.95  12.41 

ASP 18 D18 3J HA HB1 4.2 [112] 5.04 48.14 

ASP 18 D18 3J HA HB2 11.0 [112] 13.18 -98.43 

TYR 20 Y20 3J HA HB1 2.3 [112] 5.19 48.03 

TYR 20 Y20 3J HA HB2 11.7 [112] 12.15 -73.52 

ASN 27 N27 3J HA HB1 10.3 [112] 13.10 75.40 

ASN 27 N27 3J HA HB2 2.4 [112] 5.29 -50.64 

ARG 61 R61 3J HA HB1 5.7 [112] 2.00 -176.79 

ARG 61 R61 3J HA HB2 10.8 [112] 10.53  49.65 

TRP 123 W123 3J HA HB1 10.6 [112] 11.30 69.73 

TRP 123 W123 3J HA HB2 2.9 [112] 5.20  -1.17 

GLN 3 Q3 3J HA HB1 9.2 [113] 11.31 45.91 

GLN 20 Q20 3J HA HB2 4.1 [113] 7.15 -88.61  
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SER 8 S8 3J HA HB2 2.0 [113] 2.83  -66.53 

SER 8 S8 3J HA HB1 4.0 [113] 3.32 47  

LEU 50 L50 3J HA HB1 10.0 [113] 8.56 46.44 

LEU 50 L50 3J HA HB2 3.0 [113] 2.03  153.73  

LYS 17 K17 3J HA HB1 11.0 [113] 11.95 72.40 

LYS 17 K17 3J HA HB2 3.2 [113] 3.79  152.91  

GLU 61 E61 3J HA HB1 13.0 [113] 12.20 46.08  

GLU 61 E61 3J HA HB2 4.1 [113] 2.98 162.09 

MET 49 M49 3J HA HB1 11.0 [113] 11.36  44.34 

MET 49 M49 3J HA HB2 3.0 [113] 4.67 143.49 

PRO 58 P58 3J HA HB1 8.9 [114] 8.16 65.24 

PRO 58 P58 3J HA HB2 8.0 [114] 8.95 -13.64 

 

 

Figure 80 Correlation of predicted and experimentally obtained coupling values for Hα and Hβx for different 1  

dihedral angles, Hβx stands for Hβ1 or Hβ2.  
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3.11 Concluding	remarks	on	applicability	and	limitations	

This work on spin-spin coupling constants has focused in NMR simulation work of protein 

systems. The work primarily involved the compilation of data to simulate NMR spectra of 

ubiquitin specifically, and biologically important molecules in general. The objective of the 

work was to theoretically compute spin-spin coupling values. To obtain the coupling values for 

a protein system, the spin-spin coupling constant of each of the 20 amino acids must be 

considered. This was done quantum mechanically using DFT with B3LYP/ cc-pVTZ method 

for structure optimization and GIAO M06/cc-pVTZ method for magnetic interactions 

computation. Practically, the computation required entering the amino acid structure using 

Gauss View software followed by a relaxed scan before running the spin-spin coupling job. 

The computationally predicted value of the spin-spin interactions involve isotropic 

contributions form Fermi contact (FC), spin-dipolar (SD), paramagnetic spin-orbit (PSO), and 

the diamagnetic spin-orbit (DSO) terms [94].  

The focus of this research work was to determine the coefficients A, B, and C of the Karplus 

equation that aids in building an estimator function in Spinach software library [3], which 

estimates coupling constants in proteins during protein NMR simulation. 

Most one and two-bond couplings are known already [14, 25]. Therefore, the focus turned into 

computing the 3J-coupling values of all the possible conformations making a constraint at a 

particular dihedral angle. This was useful to construct the relationship between the J-coupling 

values and the associated dihedral angle. When the scan of the energy was completed, a script 

was used to extract the coordinates of each of the optimized conformations in to a Gaussian 

files to run spin-spin coupling job. This was done using Matlab. Another script was then used 

to extract the 3J coupling constant values and draw a graph against the angles of rotation. The 

A, B and C parameters were extracted from the Karplus equation. 
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4 Quantum	 mechanical	 simulation	
of	protein	NOESY	spectra	

 

4.1 Nuclear	Overhauser	effect	

NOE is one of the oldest and most researched NMR techniques that is widely used by structural 

biologists and organic chemists for structure determination and conformational studies [25, 29, 

31] . The phenomenon is credited to Albert Overhauser [118] who initially proposed and 

derived detailed mathematical equations for nuclear spin polarization enhancement by 

polarizing conduction electron spins in metals. Carver and Slichter [119] experimentally 

verified the theory by observing lithium nuclear polarization enhancement as a result of 

electron saturation. Ronald Kaiser [120] has later extended the application of polarization 

enhancement technique to the analysis of NMR spectra. In his paper he showed the effect of 

saturating nuclear spin has on the spin polarization of the neighbouring nuclei. 

NOE phenomenon arises from dipolar interaction between spins that are in close proximity, it 

is caused by population change that is brought about by cross-relaxation. The strength of NOE 

signal is proportional to the inverse sixth power of the distance between the interacting spins. 

The phenomenon is detectable for inter-nuclear distances up to about 6 Angstrom.   

4.2 Basic	NOE	description	using	energy	level	diagrams	

Consider a system with two spins I and S, which are neither magnetically equivalent nor J-

coupled, but are dipolar coupled through space. The experimental manifestation of the nuclear 

Overhauser effect is that irradiation of the S spin would either increase, or decrease, or even 

invert the intensity of the signal from spin I. The mechanism involves cross-relaxation and 

spin-lattice relaxation pathways for the two spins. The effect of cross relaxation and signal 

intensity transfer between the spins can be understood from the energy level diagram shown in 

Figure 81 (below). The diagram shows that four relaxation pathways involve single spin with 

a rate W1, while the other two pathways involve two spins either flipping in the same direction 

(rate W2) or in opposite directions (rate W0). 
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Figure 81 Energy level diagram depicting relaxation pathways for two spins I  and S  in an NOE experiment. 

Black arrows indicate spin lattice relaxation pathways that involve single spin flips while red and green arrows 

show cross relaxation between the spins that involve two spin flipping either in the same or opposite direction.  

Rates W2 and W0 determine the sign of the enhancement. The equation of motion for the 

populations is an instance of Solomon equations, which were known before the Overhauser 

effect was discovered [121]. Solomon equations describe the evolution of energy level 

populations: 

 

( )

( )

( )

( )

αα
1I 1S 2IS αα 1I βα 1S αβ 2IS ββ

αβ
1I 1S 0IS αβ 1I ββ 1S αα 0IS βα

βα
1I 1S 0IS βα 1S ββ 1I αα 0IS αβ

ββ
1S 1I 2IS ββ 1I αβ 1S βα 2IS αα

dn
W W W n W n W n W n

dt
dn

W W W n W n W n W n
dt

dn
W W W n W n W n W n

dt
dn

W W W n W n W n W n
dt

=- + + + + +

=- + + + + +

=- + + + + +

=- + + + + +

  (65) 

In NOE experiments, the observable quantity is the longitudinal magnetization zI  and zS . 

These are proportional to the difference in the number of spins between the α and β  state and 

are given by 
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Inserting Equation (66) in Equation (65) and rearranging the result produces a system of 

coupled differential equations for zI  and zS  :   

 
( ) ( )

( ) ( )

z
I z IS z

z
S z IS z

dI
I S

dt
dS

S I
dt

r s

r s

=- -

=- -
  (67) 

where 

I 0IS 1I 2IS

S 0IS 1S 2IS

IS 2IS 0IS

2

2

W W W

W W W

W W

r
r
s

= + +

= + +

= -  

After correcting for the finite-temperature thermal equilibrium, we obtain: 

 
( ) ( )

( ) ( )

0 0z
I z z IS z z

0 0z
S z z IS z z

dI
I I S S

dt
dS

S S I I
dt

r s

r s

=- - - -

=- - - -
  (68) 

where 0
zI  and 0

zS  are the Boltzmann equilibrium values. NOE enhancement can be quantified 

as 

 0

0

I I

I
 
   (69) 

where 0I  is the thermal equilibrium magnetization intensity and I is the perturbed 

magnetization. The pair of interacting spins may belong to different molecules (intermolecular 

NOE), or the same molecule (for example, in the amino acid chain of polypeptide) – this is 

called intramolecular NOE.      

4.3 Advanced	NOE	description	using	Redfield	theory	

Relaxation theory, formulated by Bloch, Wangsness and Redfield (also known as Redfield 

theory) is one of the hardest and most important topics in the field of magnetic resonance [122, 

123]. Relaxation theory is widely employed in structural biology and is useful for protein 

structure determination, conformational analysis, and ligand binding with a profound reliance 

in nuclear Overhauser effect, which is useful in determining inter-nuclear separation. The 

relevant relaxation theory in our case is the rotationally modulated relaxation theory in liquids. 
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A detailed derivation that follows broadly the argument of Ilya Kuprov's Spin Dynamics lecture 

course, and also keeps to the same notation, is presented in this section. 

The Liouville - von Neumann equation for the density matrix ˆ( )t  is 

      ˆ ˆ ˆ, ( )
ˆ

)ˆ ˆ (t t tt i H H
t

t i      
    (70) 

where 
ˆ̂

H  is the Hamiltonian commutation superoperator. In solution state NMR, there are two 

types of contributions to the Hamiltonian superoperator, one that is static and predictable such 

as the chemical shift, J-coupling, and the other that arises due to the stochastic Brownian 

motion in liquid, which is assumed to be rotational diffusion. As a result, the Hamiltonian of 

the spin system is split into two – the static Hamiltonian 0Ĥ , which acts on the spin system 

and the dynamic Hamiltonian that perturbs the system  1Ĥ t : 

    0 1
ˆ ˆ ˆ  H t H H t    (71) 

The result is as follows: 

     0 1
ˆ ˆ ( )

ˆ ˆˆ ˆ t i H tt
t

H  





  (72) 

This equation has the large time-independent Hamiltonian, 0Ĥ , and the small time-dependent 

stochastic Hamiltonian  1Ĥ t .  

Such systems can efficiently be treated in a formalism in which the noise is stationary, and its 

statistical properties are predictable. Our first assumption is that the ensemble average of the 

perturbing interaction vanishes i.e.  1

ˆ̂
0H t   [124, 125]. If it is not zero, then that value is 

put back into the static Hamiltonian. The second assumption is that the norm of the noise is 

much smaller than that of the main Hamiltonian: 

  1 0
ˆ ˆH t H   (73) 

This is the perturbation theory approximation. The next step is to move into the interaction 

representation with respect to 0Ĥ . This is achieved by introducing the following relations:    

      0 0 0
ˆ ˆ ˆˆ ˆ ˆR

1 1

ˆˆˆ ( )       ˆ ˆ=
ˆiH t iH t iH tt e H t e H t et     (74) 
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Plugging Equation (74) into the derivative of Equation (72) we obtain the following expression  

             0 0 0 0 0 0
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆR

0 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆiH t iH t iH t iH t iH t iH te i
t

t e t iH e t e H t e e t
t

       
 

  
 

  (75) 

This simplifies into: 

           0 0 0 0 0 0
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆR

0 0 1

ˆ ˆˆ ˆ ˆ ˆˆˆ ˆ ˆiH t iH t iH t iH t iH t iH tiH e t e t iH e t e H ti e e t
t

        
    


  (76) 

A lot of terms cancel and Equation (76) simplifies to  

      R
1

ˆ̂ˆ ˆt Hi
t

t t 
 


  (77) 

where 0Ĥ  has formally disappeared. It has gone into the definition of  ˆ t . This significantly 

accelerates the convergence under the time dependent perturbation theory (TDPT).  

After formally integrating Equation (77), we obtain 

        R
1 11 10

ˆˆ ˆ0 ˆˆ
t

t tH ti dt        (78) 

After moving  ˆ 0  over to the right hand side and substituting it back into Equation (77) the 

following expression is obtained 

            R R R
1 11 1 1 10

ˆ ˆ ˆ0
ˆ ˆ ˆˆ ˆ ˆt

t H t H t H t
t

ti dt  
  

    (79) 

We will now apply ensemble averaging on both sides and denote it with angle brackets. 

Ensemble average is a linear operation, thus the average of a derivative is equivalent to the 

derivative of the average. Moreover  ˆ 0  is a constant, therefore it can be taken out of the 

average.  

            R R R
1 11 1 1 10

ˆ ˆ ˆ0
ˆ ˆ ˆˆ ˆ ˆt

t H t H t H t
t

ti dt  
  

    (80) 

As per our assumption at the beginning, the ensemble average of the noise is zero i.e.

 R
1

ˆ̂
0H t  . Therefore the whole first term on the right vanishes, giving a simpler expression: 

        R R
1 1 10 1 1

ˆ ˆˆ ˆ ˆ ˆ
t

dtt H H t
t

t t 
 

    (81) 
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The time dependent rotating frame Hamiltonian operator can be factorized into time dependent 

coefficients with time independent operators. This is possible because time dependent matrices 

can be written as constant matrices with time dependent coefficients.  

      1
* †ˆ ˆ̂

 
ˆ̂ ˆ

k k m m
k m

H t t tq Q q Q     (82) 

where  kq t  and  *
mq t  are the coefficients while 

ˆ̂
kQ  and †ˆ̂

mQ  are the time independent basis 

matrices.  The second equality is the complex conjugate transpose. Thus, transforming 

Equation (82) into the interaction representation and plugging it into Equation (81) we obtain 

the following expression 

            R
1 1 1 1

* R †
10

ˆ ˆˆ ˆˆ ˆ
t

k m m
km

t t t t t tq q Q Q dt
t
 

 
     (83) 

It is necessary for later to paste one of the Hermitian superoperators R
1

ˆ̂
H in a conjugated form. 

The perturbation is rotationally modulated and in such cases the coefficients  kq t  are Wigner 

functions and 
ˆ̂

kQ  are spherical tensor operators.  

We will now remember our assumption at the very beginning. Equation (73) states that the 

amplitude of the perturbing Hamiltonian is much smaller than that of 0
ˆ .H Thus, the dynamics 

of the system is effectively uncorrelated with the noise in  1Ĥ t . The average of a product can 

be separated into product of averages if the functions are uncorrelated i.e. the noise is so weak 

that it does not drive the system, but is strong enough to relax it. This allows taking the average 

separately for the state vector and the perturbing Hamiltonian: 

                    R R
1 1 1 1 1 1 1 1

* R † * R †ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆk m m k m mq q Q Qt t t t t t t t t tq q Q Q    (84) 

The time dependence in the    R †R
1 1

ˆ ˆˆ ˆ
mQt tQ  term is not stochastic. They are therefore not 

affected by the ensemble average. Mathematically the ensemble average of the remaining term 

   1
*

k mq t q t  is a correlation function: 

      1
*

1,k m kmq gtq tt t   (85) 
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The noise in the system is assumed to be stationary, therefore the statistical properties of the 

noise do not depend on time. Therefore the correlation function can only depend on the 

difference of the time  1t t  instead of the absolute times t  and 1t : 

    1 1,km kmg t t g t t    (86) 

After modifying Equation (83) using Equations (86) and (84) the following is obtained: 

          R †
1 1 1 10

R
1

ˆ ˆˆ ˆˆ ˆ
t

km m
km

t t tg t t Q Q dtt
t
 

  
     (87) 

A further assumption is that the decay of the correlation function in small and non-viscous 

solvents is so fast that the spin dynamics of the system hardly occurs; hence the density matrix 

can be taken out of the integral to obtain  

          R †
1 1 10 11

Rˆ ˆˆ ˆˆ ˆ
t

km m
km

t t tg t t Q Q dt t
t
 

  
     (88) 

Because the implicit coarse-graining schemes are known to be more stable than the explicit 

ones, we take  ˆ t  out of the integral, rather than  ˆ 0 . In the remaining integral we will 

perform a variable substitution 1t t    and then turn the integration limits around to get: 

          R R †

0

ˆ ˆˆ ˆˆ ˆ
t

km k m
km

t g Q t Q t d t
t
    

  
    (89) 

The second consequence of our assumption about the very rapid decay of the correlation 

functions is that it is permissible to extend the upper integration limit to infinity without 

affecting the value of the integral. We shall also drop the angular brackets on the density matrix 

for convenience: 

          R R †

0

ˆ ˆˆ ˆˆ ˆkm k m
km

t g Q t Q t d t
t
    

 
     

   (90) 

After using Equations (74) to return back to the Schrödinger representation, we get: 

 
       0 0

ˆ ˆˆ ˆ†
0

0

ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆiH iH
km k m

km

t
iH t g Q e Q e d t

t
 

  



  

    (91) 

The equation now has the following form: 
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     0

ˆ ˆ ˆˆ ˆˆ ˆ
t

iH t R t
t


 


  


  (92) 

In which the relaxation superoperator is: 

   0 0
ˆ ˆˆ ˆ†

0

ˆ ˆˆ ˆ ˆˆ iH iH
km k m

km

R g Q e Q e d  


    (93) 

Equation (92) is the “master equation”. In practice the master equation requires a correction to 

drive the system towards equilibrium instead to zero, which the currently derived equation 

does. The derivation of the correction term is beyond the scope of the project work. 

An important bit of the relaxation superoperator that needs special attention is the correlation 

function. Mathematically, the correlation function is followed by the multiplication of two 

functions ensemble average. The Hamiltonian for a rotationally modulated interaction is: 

      
2

2

2

ˆˆ
km km

km

H t t Q


  D   (94) 

where  2
kmD  are second rank Wigner D-functions that depend on the angles of rotation which 

further depend on time and ˆ
kmQ  are the rotational basis set. 

The correlation function between two Wigner functions is given by Equation (95) with the 

angle bracket denoting ensemble average: 

                  2 2 * 2 2 *0kmpq km pq km pqG t     D D D D   (95) 

It only depends on the time difference, hence the second equality in which the function is 

translated to the origin. Correlation function analysis is similar to the analysis of probability 

distributions thus Equation (95) can be expressed in probability distributions 

              2 2 *
0 0 0 0, | ,0kmpq km pqG P P d d         D D   (96) 

Our first assumption is that the sample is in equilibrium, the molecules are spherical and 

undergo isotropic rotational diffusion [25]. For systems that involve anisotropic rotational 

diffusion detailed description is given in [126, 127]. Thus  0P   is a constant and equal to 

2

1

8
 due to normalization. Thus, Equation (96) simplifies to  
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            2 2 *
0 0 02

1
, | , 0

8kmpq km pqG P d d 


       D D   (97) 

The term  0, | ,0P    is not known. Hence for the moment the focus would be to determine 

this term and substitute it into Equation (97). The system obeys the isotropic rotational 

diffusion equation in space. The equation is: 

        2 2 2 2
0 X Y Z 0 0

ˆ ˆ ˆ ˆ, | , 0 , | , 0 , | , 0P D L L L P DL P  



           


  (98) 

where D  is the rotational diffusion constant and 2
XL̂ , 2

YL̂ , and 2
ZL̂  are infinitesimal diffusion 

generators along the respective directions.  2 2 2
X Y Z

ˆ ˆ ˆL L L   is the angular momentum operator 

and its eigenfunctions are Wigner functions    2̂ ( 1)l l
mk mkL l l D D .  

The solution to Equation (98) can be achieved by standard variable separation in terms of linear 

combination of Wigner functions. If we now partition the probability function into sum of 

products of space and time, we find a solution of the form 

          0 0
0 ,

, | , 0 | ,0
l

l l
km km

l k m l

P A 


 

      D   (99) 

After substituting Equation (99) into Equation (98) we get 

                  0 0
0 , 0 ,

| ,0 | ,0 ( 1)
l l

l l l l
km km km km

l k m l l k m l

A A Dl l 


 

   


      

   D D   (100) 

Wigner functions are orthogonal. Therefore, after multiplying both sides of Equation (100) 

with    '
' '

l
k m D  and integrating, we get:  

        0 0| ,0 ( 1) | ,0l l
km kmA Dl l A 




    


  (101) 

This is a large set of equations but the equations are independent. They may be solved in the 

standard way: 

        ( 1)
0| , 0 0l lDl l

km kmA e A      (102) 

Replacing    0l
kmA  with    0l

kmC  to emphasize that they are constants, the general solution for 

Equation (99) would be 
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           D ( 1)
0

0 ,

, | , 0 0  
l

l l l l
km km

l k m l

P C D e 


 

 

       (103) 

If we now apply the initial condition, the solution at time 0   would be of the form  

          ( 1)
0

0 ,

0
l

l l Dl l
km km

l k m l

C e  


 

 

     D    (104) 

We now need to multiply again by the Wigner function    '
' '

l
k m D  to extract  l

kmC . Using the 

orthogonality condition of the Wigner functions from the literature:     

      *
02

2 1

8
l l

km km

l
C




 D   (105) 

and plugging Equation (105) into Equation (103) we obtain   

            * ( 1)
0 02

0 ,

2 1
, | , 0

8

l
l l D l l

km km
l k m l

l
P e 




 

 


      D D   (106) 

        1 2

1 1 2 2 1 2 1 2 1 2

2
* 8

2 1
l l

k m k m l l k k m md
l

      
D D   (107) 

So, to compute the correlation function, Equation (106) should be substituted into Equation 

(97) and, after taking the sum out of the integral for simplicity, we get 

 
 

                 ( 1) 2 2 * *
0 0 02 2

0 ,

1 2 1

8 8

abcd

l
D l l l l

ab cd km km
l k m l

G

l
e d d



 


 

 




        D D D D

  (108) 

The double integrals can now be partitioned into two single integrals with one integrating over 

0  and the other over  . The two integrals resemble Equation (107) which gives the 

orthogonality condition, and so the integrals can be replaced with the answers in Equation (107)

: 
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 
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


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

 

      
 

   


 
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
 
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




            

   
        

 

   

 

D D D D

  (109) 

where c  is the characteristic decay time of the correlation function: 

 C

1

6D
    (110) 

and the rotational diffusion coefficient D is defined [128] from hydrodynamics using the 

following expression 

 
3

T

8

k
D

r
   (111) 

where T  is the temperature,   viscosity of solvent, k  and r are the Boltzmann’s constant and 

molecular radius respectivley. 

The rotational correlation time can be determined from the ratio of the longitudinal to 

transverse relaxation times [129, 130]. For small to medium sized biomolecules, such as 

proteins and nucleic acids, c  is obtained from the ratio of 15N longitudinal and transverse rates 

[130, 131]. However this approach cannot be employed for the analysis of larger proteins due 

to local motion contribution to the longitudinal relaxation [130]. Lee et al. have proposed a 

method for the determination of correlation time which is suitable for rapid estimation of c  

based on the TROSY principle [132, 133]. Correlation time value varies depending on 

molecular size and shape, solvent viscosity, and temperature. c  is in picoseconds for small 

organic molecules and nanoseconds for biological macromolecules.    

Our next step in the derivation is to define the spectral power density as the Fourier transform 

of the correlation function derived above. If we now calculate an element of the relaxation 

superoperator from state ˆ
a  to state ˆ

b   

   0 0† †
ˆ ˆ

0

ˆ ˆˆ ˆˆ ˆ ˆˆˆ ˆ ˆ ˆTr , ,Hi i
a ab b km a km p b

H
q

kmpq

R G Q e Q e d      
           

    (112) 
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Equation (112) involves commutators, which can be reordered by applying the cyclic 

permutation rule to facilitate the derivation 

 

 

 

   

i† ( , )

0

† ( , )

i

0

ˆ ˆˆ ˆˆ ˆ

ˆ ˆ

,           

ij

ij

a b
a ab b pq km kmpq

jiij
ijkmpq

a b
pq km kmpq ij

jiij
ijkmpq

kmpq kmpq ij i j

R Q P G e d

Q P J

J G e d

 

 

   



     





       

       

  

 





  (113) 

Equation (113) involves a complex exponential that depends on 
ij

  and the time  , †ˆ
pqQ  is a 

constant matrix, and  ,ˆ a b
kmP is also a constant matrix. Hence integration of Equation (113) clearly 

gives a number of Fourier transforms. For the approximation that we employed to derive the 

correlation function i.e. the isotropic tumbling approximation, the spectral density function 

would be given as  

   CC

1

0 0

C

1
1

ij
i

iJ e e d e d
i

  
    




     
   


    (114) 

For mathematical reasons it is not convenient to have a complex number in the denominator, 

thus the spectral density function is split into real and imaginary part to give 

  
2

C C
2 2 2 2

C C1 1

i
J

 
   

 
 

  (115) 

The real part is a Lorentzian curve. The imaginary part is fairly small and is commonly ignored, 

reducing the spectral density function to  

   C
2 2

C1
J


 




  (116) 

Physically, the spectral density function gives the energy density of stochastic perturbations at 

a given frequency. If the molecular motion is rapid, which means short correlation times, this 

gives rise to a broad spectral density function and samples a wide range of the frequencies. 

This limit is known as extreme narrowing limit. Mathematically expressed as 2 2
C 1    then

   0J J .  
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The final step in our derivation is to use the relaxation theory obtained above specifically for 

the dipolar interaction. Dipolar relaxation is an ever present interaction in magnetic resonance 

spectroscopy. The focus will be on two isolated spins I and S that are close enough in space. 

The amplitude of dipolar interaction depends on the inverse cube of the distance r  between 

the spins, and the angle between that vector and the direction of the two spins [22]. The 

Hamiltonian to describe the interaction is [22, 28] given in chapter one Equation (23). 

Running the Hamiltonian through the theory described above (a highly detailed derivation is 

available in Arthur Palmer's chapter in [25]) results in the following expressions for the self-

relaxation and the cross-relaxation rates for the two spins: 
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6 2 2 2 2 2 2
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


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C( )I S  
 
   

  (117) 

Cross-relaxation is responsible for the observed cross peaks in NOESY spectrum. Thus, the 

intensity of the peaks is correlated to the distance between spins in space. The measurement of 

distance from NOESY cross peak intensity is nontrivial due to spin diffusion effect in dense 

networks of proton spins in proteins. Spin diffusion [134] arises from magnetization transfer 

between spins via multiple short steps and complicates distance determination [135, 136]. 

Note that relaxation theory, as given above, requires diagonalization of the Hamiltonian 

superoperator. This is not a problem for small systems but quickly becomes computationally 

complex as the system size increases [20]. In order to overcome this, specifically for the 

purposes of our work diagonalization of the Hamiltonian is avoided [125]. Along with the state 

space restriction method [20], this made the simulation of proteins feasible. To ease the 

constraint in the memory upon large system simulation the diagonalization step is replaced by 

numerical evaluations of the integral that is present in the BRW relaxation Hamiltonian [125]. 

4.4 NOE	experiments	and	their	applications	

In its simplest form, the NOESY pulse sequence consists of three 90o pulses with an evolution 

time 1t  separating the first two pulses. This is followed by a fixed delay time m , also known 

as mixing time, between the second and third pulses during which magnetization transfer 
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happens between the spins via NOE. The last step of the sequence is the acquisition of the 

oscillating and decaying magnetization, which is known in the jargon as FID during the last t2 

period. The sequence is repeated for a range of t1 values to acquire FID, the time domain signal 

that are necessary for 2D experiment. Fourier transform of the FIDs with a suitable phase cycle 

generates frequency domain 2D NMR spectra [137, 138].  

  

 

Figure 82 Illustration of NOESY pulse sequence [138]. The pulse sequence involves application of a 90-degree 

rf pulse to the system, the system is then allowed to evolve for a period of 1t . This is followed by another 90-

degree pulse and let it evolve for time m  in which the spins undergo cross relaxation. Finally another 90-degree 

pulse is applied followed by the record of the free induction decay.  

NOESY spectrum consists of diagonal and cross peaks, an example is given in Figure 83 

(below). Diagonal peaks are those that correspond to the 1D experiment, while cross peak 

signals are those that arise from cross-relaxation between spins that are in close proximity. 
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Figure 83 An illustration of 2D NOESY spectrum showing the cross (blue) and diagonal (red) peaks. The cross 

peaks arise from the transfers of magnetization of one spin to another via Overhauser effect. This gives 

information on the separation between the nuclei and is useful in biomolecular NMR for structure determination 

and conformational analysis. The spin system used for the simulation of the spectrum is strychnine. The blue color 

of the cross-peaks was just chosen to highlight the cross-peaks that are observed from the NOE and does not 

indicate the negative NOE that are normally seen in NOESY of large biological molecules.  

1D NOE experiments may be split into two types depending on the area of their application. 

These are steady state and transient NOEs. Steady state experiment is a popular tool among 

organic chemists for structural and conformational studies. It relies on selective and continuous 

irradiation of the sample  

 

Figure 84 Steady state NOE pulse sequence, involving selectively saturating signal of one of the spins and then 

application of 90o pulse to all spins followed by FID acquisition.  

The other is transient 1D NOE. It is a technique that relies in production of NOE signals brought 

about by population disturbance. The pulse sequence for transient NOE is depicted in Figure 

85 (below).     

 

Figure 85 Illustration of transient 1D NOE pulse sequence. In this type of experiment a single resonance is 

inverted selectively. It is a requirement that the resonance to be pulsed is well separated from other resonances.   

Due to its importance to structural biologists, NOESY spectroscopy is still one of the most 

regarded and popular technique widely used in structure determination of biological 

macromolecules, such as proteins, nucleic acids, enzymes, and membranes. Protein structure 

determination using NMR has seen a rise ever since the first NMR structure and is useful to 

determine structure at the potential physiological environment specifically using solution state 

NMR. Structure calculation can either be conducted by using signal assignment [134, 139] as 

a prerequisite for structure calculation or carried out  using distance restrains without 

o90

selective	saturation

mτ
t

2
(180  ) selective

     o 90o 
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requirement of signal assignment [140]. In both cases, NOESY cross-peaks are of paramount 

importance in determining the structure of proteins or biological macromolecules in general. 

4.5 Our	method	for	protein	NOESY	simulation	

In the discussion of protein-scale NOESY simulation, I will be following closely our published 

work on quantum mechanical NMR simulation of protein systems [59]. The NMR simulation 

of proteins undoubtedly down to the work carried out at Oxford and then Southampton by IK 

et al. in the past 10 years [3, 20, 58, 125, 141, 142]. One of the many discoveries was the 

polynomially scaling simulation algorithm [20]. This became possible after the discovery of 

unpopulated density operator subspaces in spin systems, which normally are safe to ignore 

from analysis [20]. For reasons explored in [3, 20, 125], NMR simulation of arbitrary size 

system was made achievable. 

In the simulation work reported here, the reduced operator algebra was built from populated 

spin product states in the basis that were mapped by analysing the topology of the spin 

interaction network. Spin interaction network in NMR could either be through chemical bonds, 

which is electron mediated and known as J-coupling network, or dipolar coupling network 

defined by through space magnetization transfer between dipole-dipole coupled spins. In 

solution state, NMR J-coupling is responsible for peak splitting while dipolar coupling is 

related to line width, and cross relaxation processes. In NMR experiments, magnetization flows 

across both networks [59].   

The reduced basis set for the liquid state NOESY spectra simulation of our work was generated 

by using J-coupling graph (JCG) and dipolar coupling graph (DCG) that are generated from J-

coupling data and Cartesian coordinates. User specified thresholds for minimum J-coupling 

value of 2 Hz and maximum distance of 5Å between spins were used. Complete list of 

connected overlapping subgraphs that involved user specified number of spins for both JCG 

and DCG was generated using the depth first search algorithm [143].  

For each subgraph kG , a complete description of the basis set of the corresponding spin 

subsystem is generated with the dimension kD  of the basis set is been equal to the product of 

the sequences of multiplicities of each spin in kG . The basis operator represented as direct 

products of irreducible spherical tensors has the following from: 
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1 1 2 2, , , ,

ˆ ˆ ˆ ˆ... ...
j j G Gk k

l m l m l m l mT T T T       (118) 

where ,
ˆ

j jl mT  is an irreducible spherical tensor operator of rank jl  and projection jm  acting on 

spin j  with kG is the number of spins in subgraph kG . Equation (118) is useful to determine 

the structure of each basis operator based on the sequence index  ,j jl m  with a complete 

description of operator basis of a given subgraph kG  requiring 2 k kG D  integers of storage 

space. These operator basis descriptors will henceforth be referred to as the “state list” [59].   

Low orders of spin correlation are included between spins proximate in the coupling graph 

after merging the state lists of all subgraphs and eliminating repetitions. The basis that results 

from this, describes the entire system without gaps or cuts. All these procedures result in a 

global list of spin operators that are engaged during spin system evolution. The accuracy of the 

basis set can systematically be varied by changing the subgraph size. Accuracy analysis is 

highly technical and beyond the scope of this work but it has been covered elsewhere [142]. 

The basis sets used for the simulation work are implemented in Spinach [3]. The description is 

given in Table 6 (below).  

Table 6 Nomenclature of the reduced basis sets generated as described in the main text and implemented in 

Spinach library. This nomenclature is only applicable for liquid state NMR.    

IK-0 Includes all spin correlation up to user-specified level between all 
spins.  

IK-1 

All spin correlations up to user-specified level between directly J-
coupled spins with coupling value above user specified threshold and 
up to user-specified level between spins that are proximate through 
space with distances below the user specified threshold.   

IK-2 
For every spin this includes all of its correlations with directly J-
coupled spins and up to user-specified level between spins that are 
spatially proximate with distances below user specified threshold.    

 

After mapping the populated space, the spin operators and state vectors should be represented 

as matrices. The Hamiltonian that describes spin interactions between two particles has a direct 

product structure [18] of the form 

 ,1 ,2 ,
ˆ ...n n n n n NH            (119) 
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where n  are spin interaction magnitudes, N  is the total number of spins, and ,n k  are identity 

matrices, Pauli matrices or spherical tensor operators of dimension 2 1ks   with ks  is the spin 

quantum number of the k-th nucleus.  

The commutation superoperator  Cˆ̂
nH  for the Hamiltonian in Equation (119) defined by its 

actions on the density operator ̂ , is represented as the difference between the left-side product 

superoperator  Lˆ̂
nH  and the right-side product superoperator  Rˆ̂

nH . 
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 

  (120) 

If we now represent the Hamiltonian superoperator in the low correlation order basis set as 

discussed above, the complexity for the computation is reduced [141]. In a given operator basis 

 ˆko  the left-side product superoperator would be  
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  (121) 

As dot products commute with direct products, Equation (121) may be rearranged to obtain 
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, , , , , ,

1 1

ˆ̂ ˆ ˆ ˆ ˆ ˆ ˆTr  Tr
NN
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jk m m
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 

            
   (122) 

Due to the tiny size of the Pauli matrices, the complexity of computing the trace in Equation 

(122) is O(1) while the complexity of computing one matrix element is O(N) multiplications. 

With O  2N  interactions in spin system, this makes the building of the Hamiltonian O  23N D  

expensive. D  is the dimension of the reduced basis set. However the sparsity of spin 

Hamiltonians [144] and sparse spin interaction networks of protein systems reduce the 

complexity to around O  2N D . Computational complexity is further reduced by the discovery  

of unpopulated states even in the low correlation order subspace, presence of multiple 
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independently evolving subspaces, and because not all populated states evolve into the 

detection state [145].  

Spinach implementation of the NOESY pulse sequence itself is straightforward, annotated 

source code, coded as part of Luke Edwards and Ilya Kuprov’s work, appears below. 

function fid=noesy(spin_system,parameters,H,R,K) 

  

% Consistency check 

grumble(spin_system,parameters,H,R,K); 

  

% Compose Liouvillian 

L=H+1i*R+1i*K; 

  

% Coherent evolution timestep 

timestep=1./parameters.sweep; 

  

% Detection state 

coil=state(spin_system,'L+',parameters.spins {1},'cheap'); 

  

% Pulse operators 

Lp=operator(spin_system,'L+',parameters.spins {1});  

Lx=(Lp+Lp')/2; Ly=(Lp-Lp')/2i; 

  

% First pulse 

rho=step(spin_system,Lx,parameters.rho0,pi/2); 

  

% F1 evolution 

rho_stack=evolution(spin_system,L,[],rho,timestep(1),... 

                    parameters.npoints(1)-1,'trajectory'); 

  

% Second pulse 

rho_stack_cos=step(spin_system,Lx,rho_stack,pi/2); 

rho_stack_sin=step(spin_system,Ly,rho_stack,pi/2); 

  

% Homospoil 

rho_stack_cos=homospoil(spin_system,rho_stack_cos,'destroy'); 

rho_stack_sin=homospoil(spin_system,rho_stack_sin,'destroy'); 

  

% Mixing time 

rho_stack_cos=evolution(spin_system,1i*R+1i*K,[],rho_stack_cos,... 
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                        parameters.tmix,1,'final'); 

rho_stack_sin=evolution(spin_system,1i*R+1i*K,[],rho_stack_sin,... 

                        parameters.tmix,1,'final'); 

  

% Homospoil 

rho_stack_cos=homospoil(spin_system,rho_stack_cos,'destroy'); 

rho_stack_sin=homospoil(spin_system,rho_stack_sin,'destroy'); 

  

% Third pulse 

rho_stack_cos=step(spin_system,Ly,rho_stack_cos,pi/2); 

rho_stack_sin=step(spin_system,Ly,rho_stack_sin,pi/2); 

  

% F2 evolution 

fid.cos=evolution(spin_system,L,coil,rho_stack_cos,... 

                  timestep(2),parameters.npoints(2)-1,'observable'); 

fid.sin=evolution(spin_system,L,coil,rho_stack_sin,... 

                  timestep(2),parameters.npoints(2)-1,'observable'); 

  

end 

The simulation, however, practically required the following parameters: coordinates of each 

magnetic nucleus to extract dipolar couplings, chemical shielding tensors, scalar couplings, 

quadrupolar couplings for any quadrupolar nuclei present (e.g. for 14N), rotational correlation 

times – Redfield theory with rigid body rotational diffusion, and the maximum level of spin 

correlations expected depending on the pulse sequence. In the present work the coordinates 

came from the PDB database and chemical shifts including the side chains from the BMRB 

database. For the backbone shielding anisotropies and scalar couplings typical literature values 

were assumed. Sidechain scalar couplings and shielding anisotropies were estimated using 

GIAO DFT M06/cc-pVTZ method in Gaussian09 for the appropriately capped individual 

amino acids in vacuum. Detailed description on J-couplings generation is given in chapter 

three. 

After the data is collated, the following procedure was used to simulate the NOESY spectrum:  

1. Generate matrices for the spin quantum numbers that the system contains; that is the 

Pauli matrices, which are the matrix representations for the spin operators.  

2. Generate spin operators using Kronecker products in the reduced state space and then 

build the Hamiltonian. 
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3. Take the initial condition, detection state, and the time step with the best sampling rate 

using Nyquist condition for optimal sampling, and then building the step propagator to 

record the free induction decay.  

4. Finally the signal is multiplied by a window function, Fourier transformed and then the 

spectrum is plotted. 

The specification of the system is done by specifying the magnet field in units of Tesla along 

with the coordinates, and isotropic chemical shift of the system read in from PDB and a file of 

chemical shift data supplied by Christian Griesinger and Donghan Lee for ubiquitin spin system 

and from Imai Shunsuke, Gerhard Wagner, and Scott Robson of Wagner Lab at Harvard 

Medical School for the stem loop RNA system.  

The cut-off tolerances for dipolar coupling and J-couplings are set using the following 

commands   

sys.tols.inter_cutoff=1.0 

sys.tols.prox_cutoff=4.0 

Cut-off tolerance for proximity is specified in Angstrom and cut-off for J-coupling is specified 

in Hz. In the example above, dipolar couplings between spins that are further than 4.0 Angstro 

apart would not be taken into account and any J-couplings smaller than 1.0 Hz would be 

ignored. The next thing to be specified is the relaxation theory. Redfield theory is used in the 

simulation. 

inter.relaxation='redfield'; 

inter.rlx_keep='kite'; 

inter.tau_c=5e-9; 

The first command requests full Redfield relaxation theory: DD, CSA, nuclear quadrupolar 

interaction (NQI) and all cross-correlations that are available for the system. As mentioned 

before, dipolar relaxation rates are computed from atomic coordinates, CSAs and NQIs must 

be provided – for those involved in simulations that require the two terms visit the manual 

available on http://spindynamics.org on how to add the data for CSA and NQI to Spinach input 

data structures. The second line in the specification requests the Redfield “kite”. This takes into 

account cross-relaxation between longitudinal spin states only. For those who require the 

treatment of all cross-relaxation processes, need to specify “secular” rather than “kite”. The 

inclusion of cross-relaxation terms in the simulation, would significantly increase the CPU 
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time. The last line of the commands specifies the rotational correlation time ( C ) in seconds. 

The relaxation rates depend on C .  

The next step in the simulation processes is the option to specify the basis set. This is a 

complicated topic by itself and the reader is referred to the original papers [3, 59]. However 

the minimal basis set required for accurate results in solution state is given below:  

bas.formalism='sphten-liouv'; 

bas.approximation='IK-1'; 

bas.connectivity='scalar_couplings'; 

bas.level=5;  

bas.space_level=3; 

The IK-1(5,3) requests connectivity-adaptive basis set that includes local correlations of up to 

five spins on the J-coupling graph and local correlations of up to three spins on the spatial 

proximity graph. IK-(5,4) should be used for accurate simulations that require the analysis of 

NOESY peak volumes. In the next stage the function calls the Spinach constructor functions 

using the command  

spin_system=create(sys,inter) 

And generates the spin_system data structure – the fundamental structure that contains all 

information about the spin system. The spin composition of the system was read from the file 

of chemical shift data. All the protons present in the system were used in the simulation, as the 

interest was to simulate 2D NOESY NMR spectrum of the molecule supplied, other spins 

present in the system are excluded from the simulation using the following commands. 

spin_system=kill_spin(spin_system,strcmp('13C',spin_system.comp.isotopes)); 

spin_system=kill_spin(spin_system,strcmp('15N',spin_system.comp.isotopes)); 

These spins are either present in 12C and 14N forms, or decoupled. For experiments that require 

the presence of these spins: HSQC, HCP, HNCO and other sequences, the commands should 

be altered depending on which spins should be included and/or excluded in the simulation.     

The next step is to specify experiment parameters. For the purposes of the 2D 1H-1H NOESY 

calculations, the following sets of parameters were used:  

parameters.tmix=0.065; 

parameters.offset=3473; 
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parameters.sweep=[7500 7500]; 

parameters.npoints=[512 1024]; 

parameters.zerofill=[1024 4096]; 

parameters.spins= {'1H'}; 

parameters.axis_units='ppm'; 

parameters.rho0=state(spin_system,'Lz','1H','cheap'); 

Finally, after the parameters are specified, two FIDs: one cosine modulated and the other sine 

modulated for the pulse sequence is simulated using a Spinach NOESY function and multiplied 

both by a decaying Gaussian function, which then Fourier transformed both with respect to t2 

using the following commands  

f1_cos=real(fftshift(fft(fid.cos,parameters.zerofill(2),1),1); 

f1_sin=real(fftshift(fft(fid.sin,parameters.zerofill(2),1),1)); 

The imaginary parts are then ignored and the sine modulated data is multiplied by -i and added 

to the cosine modulated data using  

f1_states=f1_cos-1i*f1_sin. 

This is then Fourier transformed with respect to t1 with the command  

spec=fftshift(fft(f1_states,parameters.zerofill(1),2),2). 

And then plotted using the plot_2d function.  

The result from the simulation work is given in Figure 86 (below); with the spin system where 

the quantum mechanical simulations were carried out on is shown in Figure 87 (below). 
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Figure 86 Ubiquitin NOESY spectra at 900 MHz proton frequency – (left panel) experimental spectrum, data 

obtained from Christian Griesinger and Donghan Lee. Right panel theoretically simulated spectrum. Simulated 

spectrum is computed with through space distance cut-off of 4.0 Angstrom for dipolar interactions. Mixing time 

of 0.065 s was used in the simulation process. BRW relaxation theory with a single global rotational diffusion 

time of 5 ns was used for relaxation superoperator.   
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Figure 87 Ubiquitin (PDB 1D3Z): 76 amino acids, 1060 magnetic nuclei, about 60,000 spin-spin couplings.  

 

Figure 88 Correlation between experimental and theoretical 1H-1H cross-peak volume for ubiquitin at 900 MHz 

proton frequency for the spectra depicted in Figure 86 (above). The intensity between the experimentally and 

theoretically obtained cross peaks were compared. Simpson’s method [146] was used to integrate the volume of 

the cross peak taking care of the baseline. The cross peak volumes obtained from the experiment were then plotted 

against those from the theory to observe the quantitative relationship between the spectra from experiment and 

theory. This figure is copied from our published paper [59]. 
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Discussion and result analysis 

A large number almost hundreds of NOEs are observed in the simulated spectrum Figure 86 

(above). These cross peaks are due to the mutual cross relaxations between two proton spins 

which happens during the mixing time period of the NOESY pulse sequence Figure 82 

(above). 

Mixing time is an important parameter for NOE hence one mixing time –a parameter normally 

required for an NOE experiment, was specified for the simulation i.e. the same mixing time 

used for generating the experimental data. This is normally found to be small due to the large 

molecular weight of proteins and the value should also be kept as small as possible to linearly 

approximate NOE build-up and avoid spin diffusion. When the mixing time is too short only 

diagonal peaks are observed and useful coupling information about the interacting spins start 

to appear when there is exchange of magnetization between spins via cross relaxation.  In a 

similar fashion the effect of a long mixing time is disappearance of cross peaks from a NOESY 

spectrum due to the establishment of equilibrium and the loss of frequency labelling.  

Overall rotational diffusion and internal motion of protein are the factors that normally 

modulate spin relaxation in proteins. The term rotational diffusion of biological 

macromolecules however includes the overall tumbling times and the anisotropic motion. 

Internal motions are not efficient at driving relaxation but are included at occasions when 

accurate simulations are required. Overall tumbling time depends on molecular shape and size. 

However these are not the only factors that affect the tumbling rates. Temperature and solvent 

viscosities are also important factors in determining the rotation correlation time in which the 

NOE is dependent on. Thus, larger molecules such as proteins in viscosities solvents have 

larger correlation times hence negative NOE’s, while small organic molecules in non-viscous 

solvents have positive NOEs. Correlation time along with the distance between the interacting 

protons determines the position of the maximum NOE and the rate at which the NOE builds 

up. 

The NOE is inversely proportional to the sixth power of the internuclear distance, thus small 

changes in spin coordinates can bring in significant variations in the observed cross peak 

intensities. Nevertheless signals are observed when the distance between the spins in not more 

than 5 Angstroms.  

Variation in NOE data were observed from the dynamic property of sidechain when an 

ensemble averaging was performed. The variability showed little or no impact on the cross 
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peak NOE simulation we conducted. Note, however that this is a conclusion from our 

observation from a single project study carried out by Zihan Fang. 

Cut-off variation from 4 to 5 or 6 Angstrom increases the volume (and therefore the number of 

active spins) used for simulation and this effect goes cubically with the radius. In a similar way 

the complexity increases cubically with the number of active spins used to approximate the 

simulation, causing the computational effort to rise very steeply. 

When J-couplings are ignored from the simulation process the quality of the simulated spectra 

would be affected as the multiplicity pattern vanishes and also all transfer routes across zero-

quantum coherences disappears. It is likely that the simulation would probably be a passable 

approximation, however it would not deem to be quantitative. 

An ensemble of structures for ubiquitin are available from the PDB (1D3Z), however a single 

structure was used in the NOESY simulation conducted as part of the project. The cross-peak 

volume was analysed and fitted to those from experiment and showed linear correlation Figure 

88. For comprehensive peak volume analysis every off-diagonal peak should have been 

included however, this was impossible with the techniques currently available to us. Thus the 

cross-peaks of the spectrum were cut into small squares with the volume underneath each 

square is computed and ignoring squares with low integration value from the analysis.  

To integrate the overall motion of ubiquitin, cross-peak volume from a single structure and that 

from an ensemble average was compared and showed a negligible multi-structural effect, on a 

separate project study where the results are not published. 

Based on the results from the simulation the 4 Հ dipolar distance cut-off used is sufficient for 

ubiquitin NOESY simulation. However, in cases where the computational resources are 

available 5 Հ threshold is recommended for better accuracy.  
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4.6 Conclusions	

An NMR spectrum of protein spin system has been simulated using the reduced state space 

approximation method. Ubiquitin that possesses 76 amino acids, 1060 magnetic nuclei, about 

60,000 spin-spin couplings is used as an example. In the simulation processes the spin system 

was treated as a whole in one go - without cutting it into fragments. The simulation procedure 

discussed above has massively improved the simulation time compared to the exact ones. 

Redfield relaxation superoperator with a single global rotational diffusion tensor including 

cross-correlations was used in the calculation and was computed using the diagonalization-free 

algorithm [125]. In practice the simulation required shielding tensors, J-couplings, quadrupolar 

tensors and Cartesian coordinates for each participating spin. The simulation given above was 

carried out on a Dell PowerEdge 820 system with 32 Intel Sandy Bridge cores and 1024 GB of 

memory. In the latest versions of Spinach the memory requirement is reduced to 128 GB.  
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5 Large‐scale	simulations	and	fitting	
of	chemical	exchange	NMR	

 

5.1 	Introduction		

NMR spectroscopy is useful for the study of exchange process [147-149] at atomic level for 

biologically important molecules, such as proteins and nucleic acids. Exchange behaviour 

depends on the conformations of the molecules which can be captured by NMR due to the 

chemical shift differences between conformations.  

NMR spectroscopy can also be used to quantify chemical exchange processes in the time scale 

from microseconds to several hours. C. D. Kroenke et al [148] has quantitatively determined 

chemical exchange effects in the timescale micro to milliseconds, which was demonstrated in 

the study of Escherichia coli ribonuclease H. Exchange processes are classified into three types 

[23, 35, 150], depending on the time scale.  

1. “Slow” time scale characterizes motions in the micro to millisecond range [148, 151]. 

This is known to affect the line shape and chemical shift of NMR signal. The slow time 

scale motion contribution to the transverse relaxation can be studied using different 

techniques depending in the type of the motion. Motions in the microsecond to 

millisecond can be investigated using CPMG (Carr-Purcell-Meiboom-Gill) [39, 46] 

based experiments. For processes in the millisecond to second, especially for 15N nuclei, 

the ZZ-exchange spectroscopy is suitable to measure the rate exchange. 

2. “The intermediate” regime which can be detected in the nanosecond to microsecond is 

known for broad and coalesced peak, can be described using the evolution of the density 

matrix over time. Motions which are in the range of fast microsecond region can be 

studied using dynamic line shape analysis or 1R  [42] experiments.  

3. “Fast” exchange processes characterize motions in the picosecond to nanosecond time 

scale. The fast regime is usually studied using relaxation methods. In a fast exchange 

process the contribution of exchange is determined by 2T experiments. 
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Exchange processes alter 2T  in NMR experiments and this effect may be similar to the normal 

relaxation processes [150]. The former is distinguishable in the property that they increase the 

transverse relaxation rate 2R while the longitudinal relaxation normally remains unaffected by 

the exchange. Generally, there are two ways to analyse exchange effects, namely the lineshape 

analysis and magnetization transfer [35]. However the analysis depends on the region of 

exchange and the degree of the order (first or second) of the exchange process. NMR spectra 

and relaxation studies are useful for the analysis of conformational and chemical exchange in 

biomolecules. Chemical shift and spin-spin couplings change the appearance of spectra in the 

presence of exchange processes. Relaxation however senses chemical and conformational 

processes depending upon line width. These NMR parameters are very useful to determine the 

kinetics and thermodynamic processes on the microsecond to second time scale, which is 

characteristic for the dissociation and association of protein complexes. Table 7 (below) shows 

the classification of exchange processes depending on different NMR parameters. In NMR 

time scale, a slow or fast classification of rate constant is categorized depending on how fast 

or slow is the exchange rate in relation to the difference of the resonance frequency of the two 

states [23, 35, 152].  

Table 7 Showing the classification of exchange processes depending in the NMR timescale. It is defined as the 

difference of magnetic signal in the two environments relative to the exchange rate. Exchange rate is affected 

experimentally by an increase in the temperature of the system. Increasing the temperature drives the system into 

the fast exchange regime.  

Exchange processes 

NMR Time scale Slow exchange Intermediate exchange Fast exchange 

Chemical shift 
A B- k    A B- k     A B- k     

Coupling constant 
A B-k J J   A B= -k J J  A B-k J J   

Relaxation time 

2,A 2,B

1 1
k

T T
   

2,A 2,B

1 1
k

T T
    

2,A 2,B

1 1
k

T T
  

   

Anything in between the two extremes is considered as intermediate. There is a simplified 

mathematical expression for the intermediate regime processes and detailed description of this 
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can be found in reference [23, 35]. Now back to the description of the spectra in Figure 90 

(below). When the exchange rate is slow, two separate signals are observed at the resonance 

frequency of the nuclei in the two sites. In contrast in the fast exchange regime a single 

resonance at the mean frequency of the two sites is observed. The computed spectra in Figure 

90 are a special case of equal populations of the most common two site exchange processes. A 

variety to this is when the population of the two states are different. An example of this case 

can be found in many NMR text books. This is the case when concentration of the two states 

are different hence their rate constant [23]. The first step in the analysis of exchange processes 

is to identify to which region of the exchange the spectra belongs. EXSY [38] is a technique 

normally employed to establish the presence of slow exchange. A selective inversion 

experiment is useful for quantitative analysis. Exchange process affects NMR spectra in variety 

of different ways, however all follow the same basic mechanisms. 

5.1.1 Ligand Binding 

Ligand binding is the study of binding of a ligand to a macromolecule such as proteins and 

nucleic acids. Ligand binding may induce structural changes. The structural rearrangements 

are large at binding sites compared to other parts of the macromolecule-ligand complex. The 

interaction of ligand to a macromolecule partner is due to the presence of binding sites that are 

charged and/or hydrophobic. An example of ligand binding study with a positively charged 

binding pocket is given in the paper by Anderson et al. [153]. The binding of ligand to 

macromolecule happens by Van der Waals forces, ionic bonds, and hydrogen bonds. The rate 

of ligand binding is known as affinity and is determined by Kd. It is used to characterize the 

strength of binding effect. Protein complexation occurs in the region of slow exchange 

processes, typically around 10-6 to 10-1 seconds. In dynamic NMR, this may be assumed in the 

simplest case as a two-site exchange processes, observed at two distinct chemical 

environments. These can be studied by chemical shift line shape analysis using Bloch-

McConnell equation given in Equation (127).  

Ligand binding can be mapped using chemical shift changes in the case where the resonance 

difference associated with the binding is on the fast time scale. However the slow time scale 

binding kinetics of the bound state should be established using alternative or additional 

experiments. One of the application of ligand binding is in drug design. Thus it is important to 

understand ligand binding mechanism at molecular level. 

5.1.2 Chemical shift mapping 
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Chemical shift perturbation mapping method is used to map the interface of protein complexes 

[154]. In such experiments, a 15N-1H HSQC spectrum of the protein is monitored under 

stepwise addition of another protein or ligand. The interaction affects the resonance frequency 

of the NMR active nuclei in that area. 

5.1.3 Visualisation 

Chemical shift changes due to titration are mapped to the protein structure using a weighted 

average of the chemical shift difference of the amide 1H and 15N backbone resonances [155] 

using the formula 2 2
H N

1

2
d        . The value for   used to map the residue shift in 

calmodulin (PDB: 1CLL) depicted in Figure 89 (below) was 0.14. Another application of 

resonance perturbation is to map side chain interactions upon protein complexation [156]. Side 

chains paly a dominant role in molecular recognition. Chemical shift perturbation mapping 

provide the location of the binding site, however it doesn’t explain or describe how the partners 

interact at atomic level. Shift perturbation experiments can be used to estimate the affinity, 

specificity, and kinetics of the binding.  

 

Figure 89 PyMOL surface representation of calmodulin titrated using a ligand with the geometrical distance 

moved higher that 0.2 ppm by the peak. Red illustrates hetronuclear N-H spin interactions of the residues with a 

shift greater than 0.2 ppm. The NMR data of the spin system were obtained from Joern Werner and Kelly Hooper.     

5.2 Classical	theory:	Bloch‐McConnell	equation	

Below is the derivation of the Bloch-McConnell equation for a simple system with two sites of 

different chemical environment and a single spin exchanging between two sites A and B i.e. 

for a reaction scheme given in Equation (131).  
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The Bloch equations for the transverse magnetization without chemical exchange are 

 

+ +
A 2AA A

+ +
B 2BB B

x y

ω 0

0 ωt

i RM Md

i Rd M M

M M iM

    
        

 

  (123) 

where 
+
A
+
B

M

M

 
 
 

 are complex magnetization amplitudes. If we now take the case when the spin 

interchanges between the two states which are of different frequency.  

The kinetics of the system that interconverts between two states can be described by the rate 

equations below 

  

     

     

1 1

1 1

A
A B

B
A B





  
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d
k k

dt
d

k k
dt

   (124) 

The kinetic rate matrix is 

 1 1

1 1

k k

k k




 
  

  (125) 

This kinetic equation can be incorporated into the Bloch equation to give the equation which 

is known as the Bloch-McConnell equation, which is given as: 

 
+ +

A 2A 1 1A A
+ +

B 2B 1 1B B

iω 0

0 iωt

R k kM Md

R k kd M M




                          
  (126) 

This can be rewritten in a matrix form: 

  
+ +
A A
+ +
B Bt

M Md
i

d M M

   
     

   
Ω R K   (127) 

where Ω  is the frequency matrix, R  is relaxation matrix, and K – the exchange matrix are 

given by  

 2A 1 1

B 1 1

2

1
0

ω 0
= ;   ;   .

0 ω 1
0

T k k

k k

T





                 
 

Ω R K   (128) 
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Equation (127) is a first order differential equation that can be solved as: 

 
 
 

   
 

+ +
A A
+ +
B B

0

0
i tM t M

e
M t M

    
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   

Ω R K   (129) 

The longitudinal and transverse magnetization components evolve independently and are given 

by Equations (130) and (129) respectively. 
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where 1R  is the longitudinal relaxation matrix. This can further be adapted to study transient 

phenomena [18], in which a system starts from non-equilibrium and monitor the return to 

equilibrium overtime. 

5.3 Simple	examples	

A classical example is the first order isomerization reaction with different forward and 

backward rate [23, 151, 157].   

 
1

1

A B
k

k

   (131) 

where A and B are the states of the system and k is the rate of exchange between the states.  

 

Figure 90 Simulation of two site exchange process depicting change in line shape as kex, the rate constant 

abrivated as ex-rate in the legend moves on from slow to fast in NMR time scale. These NMR spectra are 

ex-rate=1e3ex-rate=1e3ex-rate=2e3ex-rate=2e3
ex-rate=3e3ex-rate=3e3ex-rate=4e3ex-rate=4e3
ex-rate=5e3ex-rate=5e3ex-rate=6e3ex-rate=6e3ex-rate=7e3ex-rate=7e3ex-rate=8e3ex-rate=8e3ex-rate=1.5e3ex-rate=1.5e3ex-rate=2.5e3ex-rate=2.5e3ex-rate=3.5e3ex-rate=3.5e3ex-rate=4.5e3ex-rate=4.5e3ex-rate=5.5e3ex-rate=5.5e3ex-rate=6.5e3ex-rate=6.5e3ex-rate=7.5e3ex-rate=7.5e3ex-rate=1.2e3ex-rate=1.2e3
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calculated using Spinach [3]. NMR frequency of 600 MHz with 900 Hz offset and sweep width of 5000 Hz were 

used as parameters in the simulation. The exchange rate is in Hertz. 

The spectra in Figure 90 (above) are calculated using different values of the rate constants, .k  

NMR parameters that are distinct for states A and B are the chemical shift (δA, δB), longitudinal 

( 1,AR , 1,BR ) and transverse ( 2,AR , 2,BR ) relaxation rates.  

 

Figure 91 Computed NMR spectra for a pair of nuclei in two states that possess different populations using NMR 

proton Larmor frequency of 600 MHz with an offset and sweep width of 900 Hz and 5000 Hz respectively. Where 

k indicates the exchange rate constant. 

The population of the two states should be equal to unity i.e.  A Bp p 1  . The lifetimes A  

and B  for the two states can be given by the equation below:   

 A B
A B

1 1
,                       ,

k k
     (132) 

where Ak  and Bk  are the exchange rates for the states.  

In the slow regime, the effect of the exchange at the two sites can be given by the equation 

below. 
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 A B
A B

1 1
,                          ,

π π
 

 
      (133) 

where A  and B are the change in line width due to exchange effect at states A  and B  

respectively. For the fast regime a single peak at the weighted average of the resonance 

frequency of the two sites is observed. Its line width is given by 

 
 2

A B
A B

A B

4 p p
,              where    .

k k

 
       


  (134) 

5.4 Why	 Bloch‐McConnell	 equation	 can’t	 describe	most	 NMR	 pulse	

sequences	

The Bloch-McConnell equation used in the study of exchange processes assumes to describe 

the process in the absence of scalar coupling. That is, the equations are derived to illustrate the 

evolution of magnetization for isolated spins. HSQC, however, is a two dimensional 

experiment that transfers magnetization between 1H and heteronuclei via scalar coupling. 

5.5 Quantum	mechanical	description	of	chemical	exchange	

The most convenient way to approach exchange processes for complicated systems that involve 

two or more spins that are coupled, is the density matrix.  

The equation of motion of   includes the frequency matrix, L , the relaxation matrix, R , and 

the exchange rate matrix, K , to provide the following equation: 

    + + ( )t i t
t
 

 


L R K   (135) 

It can be solved using a matrix exponential: 

       exp + + 0t i t   L R K   (136) 

In NMR, the spectrometers usually detect magnetic signals along the transverse x- or y- axis. 

x̂ ,I  is the operator that is used to represent the magnetization. This operator is a vector in the 

Liouville space. Thus the measured signal  F t can be described by 

         x x
ˆ ˆF | | exp + + 0t I t I i t    L R K   (137) 
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Density operator equation that describes two-site exchange processes has been implemented 

into SPINACH and is given in Equation (138). 

 A A A A A

B B B
B B

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ0

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ0

H iR k E k Ed
i

dt H iR k E k E

  
  

 

 

                               
   (138) 

where A,B̂  are density matrices of the spin systems of chemical species A and B, A,B

ˆ̂
H  are 

their spin Hamiltonian commutation superoperators, A,B

ˆ̂
R  are their relaxation superoperators, 

ˆ̂
E  is a unit superoperator and k  are the reaction rates.  

5.6 Fitting	method		

Here in, the project work 1H-15N HSQC spectra of ligand titrated calmodulin protein were fitted 

to investigate kinetics and extract exchange parameters for the protein system. And this was 

achieved using least squares method [158, 159].  

Least squares is a mathematical approach to find optimum parameters that best fit a function,  

 f x , of data points 1 2 3, , ... nx x x x , with the purpose to minimize the sum of the squares of the 

deviations between the observed and calculated values of the data. This is measured using 

“error functional”.  

For a given set of data points  ,i iy x  and any function  ;f x  , the “error functional” can be 

described using Equation (139): 

      2

1

;
m

i
i

s y f x 


    
   (139) 

 

where  s   is the residual of the sum of squares of all the elements of the data points, i.e. the 

difference between the actual data acquired from experiment and the model function with 

respect to the parameter  . 

The objective function was minimized using Nelder–Mead simplex method [160, 161]. In 

numerical analysis the Nelder-Mead simplex belongs to the direct search method category. The 

method is used to minimize a real valued function. In addition it is a technique which is used 
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to handle functions which are discontinuous, noisy, nonlinear, and non-differentiable. The 

method minimizes a function of several variables by computing a simplex from an initial 

estimate. This is summarized as given in Equation (140) 

   ,  nf x x   (140) 

This is followed by the evaluation of the function at the points and reflection operation is 

performed on the worst value of the function through the centroid of the other points. 

Depending on the value of the function at the reflected point a contraction or expansion step is 

taken. These steps are represented by β and γ variables. The expansion coefficient is usually 

greater than unity while that of the contraction step is between 0 and 1. The Nelder-Mead 

generation of simplex and steps to minimum is depicted in Figure 92 (below).  

 

Figure 92 Simplex, which is a polygon of three vertices in two dimensional spaces, followed by reflection, 

expansion, contraction, and shrinkage. The figure is taken and modified from Ilya Kuprov’s Spin Dynamics 

lectures.  

The objective function, which is the least square function, computes the square of the difference 

between the theory and experimental spectra as given in Equation (141). 

        2
2

1

, spec _ theo parameters spec _ exp
N

nn
n

a b


    (141)   

where  2 ,a b  is the value of the function at the parameters, spec _ exp  - the experimental 

spectra,  spec _ theo parameters  is the theoretical spectra with the parameters to be optimized 

and N  is the number of iterations. 
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5.7 Fitting	of	exchange	processes	applied	 to	 1H‐15N	HSQC	 spectra	of	

calmodulin	

Joern Werner and Kelly Hooper at the centre for biological science of the University of 

Southampton were interested in a protein simulation task collaboration, and requested us to run 

simulations of chemical exchange between different protein conformations from an NMR 

titration experiment.  

The system investigated was a protein calmodulin (PDB: 1CLL) titrated by a ligand with the 

reaction monitored using HSQC, a 2D nuclear magnetic resonance technique that stands for 

heteronuclear single quantum coherence.  

Calmodulin abbreviated as CaM for calcium-modulated protein is a ubiquitous calcium binding 

protein that plays an important role in Ca+2 signal transduction within the cell [162]. 

Calmodulin consists of 148 amino acid residues and has a dumbbell shaped topological 

structure. It contains four calcium binding cites with two on each of the two globular domains 

connected by a flexible antiparallel β-sheet linker [163]. Calmodulin is a versatile molecule 

that interacts with generic proteins involved in a wide variety of functions including cell 

signalling and ion transport by regulating the activities of kinases and phosphatases [164].      

HSQC spectra of Ca+2 calmodulin and that of the samples with subsequent addition of ligand 

were recorded and analysed. As part of our collaboration we quantum mechanically simulated 

a candidate spectrum and fitted the experimental data to the computed once to extract exchange 

parameters such as the kon and koff. 

HSQC spectra of calmodulin in the presence of chemical exchange were calculated 

theoretically using Spinach v1.5 [3] for a collection of standalone N–H pairs. To model spin 

dynamics in the presence of a unimolecular chemical reaction Equation (131), Spinach uses 

Equation (138) as the equation of motion. The formalism given for the case of two chemical 

species is a special case of a more general implementation of chemical kinetics in Spinach, 

which operates in the direct product of spin state space and chemical state space.  

The spin part of the problem contains 254 N–H pairs and was therefore handled using the 

restricted state space approximation [20]. Because a collection of standalone N–H pairs is 

assumed in this case, state space restriction to two-spin orders connecting directly coupled 

spins is in this case exact. A single spin pair in Liouville space yields a 16-dimensional problem 

and therefore the total dimension of the matrices in Equation (138) is 254 x 16 x 2 = 8128 – 
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small enough to be handled comfortably by the sparse matrix functionality implemented in 

Spinach. 

However, the current project work involves a second order reaction with a chemical reaction 

structure of 
on

off

CaM Pep CaM:Pep
k

k
  .    

Spinach NMR exchange simulation work requires the following items for that reaction: 

I. 1H-15N chemical shifts of Ca+2 CaM 

II. 1H-15N chemical shifts of Ca+2 CaM:Pep complex 

III. Forward and backward rates in the 
on

off

CaM Pep CaM:Pep
k

k
   reaction, which are 

assumed to be first order in both directions were extracted as described below.  

The parameters supplied to create.m function of Spinach are a cell array of the type { [1 2] 

[3 4]} assigned to inter.chem.parts. This specifies a vector of integers i.e. spins 1 and 

2 belongs to the first chemical subsystem while spins 3 and 4 to the second chemical subsystem. 

The next parameter is inter.chem.rates. This is a matrix of real numbers that indicates 

the reaction matrix rate between the subsystems specified in the inter.chem.parts variable. 

Finally the initial concentrations of the subsystems should be supplied to the assigned 

command variable inter.chem.concs. 

To proceed with the simulation of the exchanging spectra we required a kinetic binding model. 

Kd the binding affinity for the titrant peptide was measured using ITC and found to be around 

200nM. Values obtained from ITC measurements provide useful insights into the binding 

mechanism. ITC an acronym for isothermal titration calorimetry is an experimental technique 

used to directly measure the heat generated or absorbed when two biomolecules interact.  

Assuming that this Kd (200nM) value corresponds to the slow exchange part of the binding our 

collaborators Joern Warner and Kelly Hooper simplified the multistep binding to a simple and 

most generic binding model or mechanism. The binding mechanism involved a first order 

reaction in the absence of scalar coupling that computes equilibrium concentrations in the 

reaction: on

off

CaM Pep CaM:Pep
k

k
   given the initial concentrations of CaM   and Pep  as 

well as the overall binding affinity Kd. With Kd is assumed to be equivalent to  
   
 
CaM Pep

CaM:Pep


. 
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For simple equilibrium systems like this, off
d

on

k
K

k
 . The diffusion limited kon for the peptide 

involved from literature shows the values in the range of 0.1M M-1s-1 to 0.1GM-1s-1 giving a 

koff in the range of 0.02 to 20 along with a life time 
off

1

k

 

 
 

 for the complex formed around 

50ms to 50s. However, the very slow and fast kon rate are extreme values, hence a koff of 0.2 to 

2s-1 i.e. a life times of 500ms to 5s for the complex formed are considered realistic. This 

estimate came from Joern Warner and Kelly Hooper our collaborators in the project work.  

The titration experiment with a reaction scheme CaM Pep  CaM:Pep   is a second-order 

reaction where only the effective first order is actually observed. Therefore the following 

ordinary differential equations would describe the rate of the forward and reverse reaction:  

 

       

       

off on

off on

CaM
– CaM Pep CaM:Pep

 
CaM:Pep

CaM Pep – CaM:Pep

d
k k

dt
d

k k
dt

    

    

   (142) 

This makes the calculation to require the concentration of the peptide in which its solution 

involves solving a quadratic equation. The law of conservation of matter in an isolated system 

states that the total quantity of reactants must be equal to that of the products. Thus the 

concentrations of  Cam  and  Pep  can be given by the following equations: 

 
     
     

tot

tot

CaM CaM CaM : Pep

Pep Pep CaM : Pep

 

 
   (143) 

where  tot
CaM  and  tot

Pep  are the total concentrations of the protein calmodulin and the 

peptide. Thus, if we know  CaM : Pep , we can easily determine the concentration of  CaM  

and  Pep . This sorts out equilibrium concentrations, as a consequence, the nonlinearity 

problem of Equation (142). After equilibrium is established, the concentration of the peptide 

  Pep  becomes stationary and the quadratic term becomes linear.  

To calculate the concentration of  CaM : Pep  we can substitute Equation (143) into the 

equation of the overall binding affinity to obtain a quadratic equation, given below in Equation 

(144) 
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                 2

dtot tot tot tot
CaM : Pep CaM Pep CaM : Pep CaM Pep 0K          (144) 

As we are working on concentrations, only positive solutions for Equation (144) are 

considered. 

The coded Matlab program for the kinetic model is available under the function name 

“kin_model”. 

With the state A data came from the naked protein calmodulin with a starting concentration of 

100µM and zero for the peptide (practically this was given as a finitely small number), and 

20µM for the binding constant (Kd). While for state B the values are 100µM for the protein and 

the peptide and 20µM for Kd.   

These input data were used for the simulation of the exchanging HSQC spectra of the titration 

experiment with an example shown in Figure 93 (below), and were calculated with respect to 

the rate constants of the forward and backward reactions, where both rates presumed “slow”. 

The parameters for the theoretical data were matched to that of the experiment including the 

point spacing, timing, and the apodization function. The chemical shifts of the theory and 

experiment were also aligned to make sure that the signals are overlapping, this consequently 

makes the data quantitatively fittable.  

The only adjustable parameter was the kinetic dissociation rate (kdis) and association rate (kass) 

was computed from the equilibrium condition, i.e. the equilibrium condition from the 

concentrations and Kd that were provided. 
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Figure 93 1H-15N HSQC NMR spectra of calmodulin experimentally obtained right panel and left panel 

theoretically computed. Two of all the spectra from the titration of calmodulin upon addition of a ligand to show 

data match. Some missing peaks in the simulated spectrum.  

It is evident from the simulation that the features of titration are reproduced using the 

simulation work with an example given in Figure 96. An example of two residues that are well 

resolved and in an isolated regions of the spectrum that show exchange characteristics are Asp 

64 and Ile 130 at H=8.75-8.95ppm and N=127.5-129ppm, and H=8.25-8.45ppm and N=127.5-

129ppm coordinate axis for the two residues respectively. Both the residues show the 

characteristics of fast exchange processes in the F1 i.e. direct and F2 the indirect axis. The 

exchange phenomenon is also accompanied by a change in direction of peak movement.  
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Figure 94 An illustration of chemical exchange phenomenon from 1H-15N HSQC spectra for the residue Asp 64. 

The two unresolved peaks on the right panel merge and form a single peak as the concentration of the peptide 

increased in a titration experiment. The ratio of the concentration of the protein to the peptide is 1:0.05 and 1:1 

for the right and left panel, with kinetics matrix of [-0.098, 2; 0.098, -2] and [-0.033, 2; 0.033, -2] respectively.  

The kinetics matrix consists chemical reaction exchange rate matrix between subsystems as its elements. Due to 

the law of conservation of matter, the diagonal elements of the kinetic matrix must balance out those that are off 

diagonal.     

 

 

Figure 95 Illustration of fast exchange phenomenon of a well resolved peak from Ile 130. Top panel – a single 

peak for complex of 1:1 ratio of protein and ligand, while bottom panel is a peak from 1:0.05 ratio.     
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After accomplishing this, i.e. simulation of the HSQC spectrum which is almost identical (line 

shape and position) to that of the experiment– the work proceeded in minimizing the difference 

of the volumes of the peaks between the experimental and simulated data as a function of the 

exchange rate. This is conducted using global optimization of the peak to peak fitting as 

depicted in Figure 96 of those signals that are well resolved. 

The simulated spectra were fitted to the experimental spectra using the least squares method 

[165] to obtain chi squared ( 2 ) – the value of the function evaluated as the parameters passed 

over to the objective function. The least squares method minimizes the difference between the 

experiment and the theory. The optimized parameters are Kd– the overall binding affinity, kdis– 

the dissociation constant, proton and 15N relaxation constants, and intensity multiplier.  

In the fitting process Kd was initially fixed and the fitting was run for the other four parameters, 

and then Kd was varied from result obtained from previous fitting run. An example of the results 

from the fitting are depicted below in Figure 96.     

 

Figure 96 Fitting of 1H-15N 2D HSQC spectra with respect to ligand binding kinetic parameters. Left panel 1H-
15N HSQC spectrum of protein ligand complex Figure 93 (above). Middle panel – a fragment of the peak by peak 

fit undertaken in this work – (Top row) experimental peak and (Bottom row) theoretically simulated peak at three 

different concentrations of ligand. Good agreement with peak position and line width is apparent between theory 

and experiment. Right panel Calmodulin (PDB: 1CLL): 148 amino acids, 1134 magnetic nuclei.   

The simulation has reproduced the line shape as it is apparent in Figure 96. The values obtained 

for the fitted parameters from the fitting procedure described above are 9.62, 1.81, -8.09, 79.86, 

28.54, 0.58 for the 2 , the logarithm of kdis and Kd, proton and 15N relaxation constants, and 

intensity multiplier respectively.      
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 A subtraction plot that is the difference between experimental and simulated peaks was also 

conducted to investigate the extent of matching between the two data types. An example, a 

fragment of the peaks studied is depicted in Figure 97.  

 

Figure 97 A fragment from the 2D fitting of 1H-15N HSQC spectra of calmodulin (PDB: 1CLL). The top panel of 

5 peaks is from experiment, the middle row is the theoretically simulated peaks while the bottom panel is the 

difference plot between the experiment and theory.  

It is apparent from Figure 97 (above) that the difference plot depicts an almost flat peak with 

a lot of noise. Beneath all the peaks is a colour bar that illustrates the intensity of the 

corresponding signals. A closer look to the colour bar shows that the intensity of the peaks 

spans from 0 to   ̴ 0.25, and 0 to   ̴ 0.20 for the experimental and theoretically simulated peaks 

respectively. But for the difference plot (bottom panel) it is an order of magnitude smaller than 
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that of the theory and experiment. In addition the difference plot depicts a considerable amount 

of noise (apparent blue colour) around the entire area. In this research work, we are yet to make 

a conclusion on the conformation of the protein calmodulin upon step wise addition of a ligand 

using line shape analysis as a function of exchange processes. This is as far as we can go for 

this fitting work and to bring it to a logical end, there needs another simulation work to be 

conducted using another model that involves two site binding of the ligand to the protein. 

Table 8 Objective function and fitting parameters value extracted from the fitting work conducted as part of this 

research work. The left most column represents an arbitrary number given to 19 peaks randomly picked from the 

titration spectra recorded at eleven different concentrations of the peptide to the fixed concentration of the protein 

calmodulin. The Log_Kd and Log_kdiss are the natural logarithm of the binding affinity and dissociation constants 

respectively. χ is the local minimizer of the error functional i.e. its values are the local minimizers of the objective 

function (the minimized function for fitting the data from experiment to that obtained from theory).     

Arbitrary 
number 
of peak 
function 

χ Log_kdiss  Log_Kd R2 for 
1H 

R2 for 15N Intensity 
multiplier 
– A 

0  9.62  1.81           -8.09 79.86 28.54 0.58 

1 0.00 1.24        -8.02 25.56 14.79  

2  3.94 1.79            -5.86 68.71 31.12 0.74 

3  0.00 1.41         -7.07 66.24   35.75   0.90  

4  0.00 1.48  -6.78 72.63 24.25 0.77 

5  4.78  1.58   -6.02 69.10 43.67 0.61 

6  5.06 1.77  -6.96 70.32 28.32  0.60 

7  2.81 1.89          -7.69 67.44 29.17   0.56 

8  7.27 1.79           -6.08 62.76 27.40 0.75 

9  1.41 1.70            -6.32 68.66 31.60 0.49 

10  0.49 -2.94           -6.60 95.69 41.85 0.55 

11  6.21 2.49           -5.65 57.03 28.07 0.86 

12  7.06 -0.13            -4.56 44.23 25.11 0.79 
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13 2.48 -2.74            -6.04 76.02 34.46 0.84 

14 3.40 2.68          -5.63 76.02    34.23 0.73 

15 1.85 1.94           -6.41 89.98 37.47 0.55 

16 1.31 1.20 -11.08 82.39 3.32 0.57 

17 0.41 1.77            -5.99 82.12 40.97 0.48 

18  16.93 1.92  -6.15 69.29 33.34 0.64 

  

5.8 Concluding	remark	

This project work involved: the fitting of CaM protein 1H-15N HSQC spectra. The simulation 

of the spin systems was run quantum mechanically using the reduced state space approximation 

[20]. The spectra were computed using the standard Spinach functionality with pulse sequence 

and acquisition parameters matched to the experimental values. As it is discussed in detail in 

the main text, the spectra from theory were fitted to the data from the experiment using the 

least squares method with the error functional minimization performed by the Nelder-Mead 

Simplex algorithm. In practice, the fitting was performed by minimizing the discrepancies 

between the theoretical model and the data from the experiment. The minimization technique 

makes sure that the optimizing parameters are optimized to best match the theory to the 

experiment. The optimized parameters are dK – the binding affinity, disK – the dissociation 

constant, proton and 15N relaxation constants, and intensity multiplier.  

A peak by peak fitting was conducted for the extraction of parameters used in the evaluation 

of the conformation of calmodulin using exchange process as the system investigated was 

treated as a two site exchanging system.  

The residual of the sum of squares function employed in the project work was the method of 

choice for the fitting purposes due to its practicality and firm establishment in statistics. The 

objective function i.e. the residual function is minimized using the Nelder-Mead simplex 

algorithm implemented in Matlab. The Nelder-Mead simplex algorithm is a direct search 

method that does not rely on gradient and Hessian of the function. It is the method of choice to 

handle functions which are discontinuous, noisy, nonlinear, and non-differentiable. The 

algorithm minimizes a function of several variables by computing a simplex from an initial 



182 

 

estimate and evaluates the function at the points, sorts the values of the function to perform a 

reflection, expansion and contraction operation and depending on the value of the function at 

the reflected point a change in shape or size of the simplex is taken as require 
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6 Quantum	 mechanical	 simulation	
and	 fitting	 of	 nucleic	 acid	 NMR	
spectra	

 

6.1 Introduction		

Before delving into the discussion of the quantum mechanical NMR NOESY simulation and 

fitting of RNA; here in briefly introduced on where RNA comes from and why is it an 

interesting system to study.   

Cell is a basic building unit of structural and functional biology of all living organisms [166, 

167]. The cell consists of a compartmentalized organelles, and one of these structures, enclosed 

at the centre is “the nucleus”. The nucleus contains hereditary genetic particles known as 

nucleic acids (DNA & RNA). It is the place were DNA transcription and RNA synthesis occurs. 

DNA is transcribed into special type RNA (mRNA), which is transported out of the nucleus 

where it gets translated into another important biomolecule “the protein”. Proteins are known 

for biochemical catalysis, and structure were its specific property and function is determined 

from the translated hereditary gene [167].  

RNA plays an important role in living cells as biocatalysts [168, 169] of chemical reaction (a 

property discovered in early 1980), gene expression and gene regulation. The route for the 

transmission of genetic messages is the encoding of the DNA i.e. the three letter word sequence 

(CAG ACT GCC) that contain the genetic code to RNA. The sequence of the code (three letter 

word) in turn determines the amount and combination of the amino acids in protein synthesis. 

This convey of information from DNA to proteins carried out by RNA is the base for different 

structural and functional variations in living organisms. RNA also transfers specific amino 

acids to a polypeptide chain during translation processes.  

Although RNAs are single strand, the property to self-complement makes it to base-pair and 

fold to form complex three dimensional structure. The shape of the RNA is determined by the 

amount and combination of the nitrogenous bases. A change in the bases would cause a change 

in shape or structure, hence function. This versatility in structure makes RNA such an important 
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molecule in biology and interesting system to investigate its structure and dynamics using 

NMR and crystallographic technique.  

6.2 Chemical	structure	and	NMR	spectroscopy	of	nucleic	acids	

Nucleic acids are composed of fundamental building blocks called nucleotides. A nucleotide 

unit consists of three components: the base, the ribose also known as sugar, and the phosphate 

section. The nucleotides are connected together through phosphodiester bonds attached at both 

ends to the C5’ and hydroxyl at C3’ to form a chain of nucleotides. There are two types of 

nucleic acids, DNA and RNA.   

 

Figure 98 An example – chemical structure of the adenine nucleotide.   

The difference between DNA and RNA is the elimination of oxygen atom from the sugar 

component of DNA nucleotides to yield deoxyribose. There are two types of nucleotide bases 

composed of two groups of nitrogen heterocycle bases, pyrimidine and purine rings.  

 

Figure 99 Chemical structure of the bases for nucleic acids.  
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The local conformation of nucleic acids depends on backbone dihedral angles  ,  ,  ,  ,   

[170],  , and the glycosidic bond dihedral angle   [171]. Changes in these parameters are 

observed using different NMR experiments. Some examples of these experimental techniques 

are: HSQC for through bond scalar couplings that records correlations over one bond (1J), and 

NOESY that makes use of dipolar coupling between spins to estimate distance. Another 

experimental technique that is useful in determining backbone dihedral angle is the 31P-1H 

correlation experiment [172].     

The conformation of the sugar component can be identified from the 3J (H,H) coupling values 

of proton spins attached at C1’ and C2’ together with coupling value of the protons at positions 

C3’ and C4’ of the sugar ring [173].  

 

Figure 100 Graphical illustration of the backbone and glycosidic dihedral angles scanned for a nucleotide unit 

using Gaussian 09 package at DFT theory level with basis set M06/6-31G**. 

One of the applications of NOESY in nucleic acids NMR is to establish base pairing pattern. 

There are two type of imino protons in nucleic acid nucleobases. These are the H3 imino proton 

of uracil and the H1 proton of guanine. The resonance signals of these protons provide 

information about nucleic acid pairing and are only observed when the spins are involved in 

hydrogen bonding. Therefore the number of resonance signals from these proton spins gives 

the number of bases that are paired; 2D NOESY cross peak correlates spins that are a few 

Angstroms apart [137, 174].  

Observation of cross peaks in NOESY experiment is an indication that there are dipolar 

couplings between spins. These interactions are fundamental for assignment of base-pairing 
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resonances. In simple models, NOESY cross peaks are related to distance qualitatively and 

hence grouped into “strong”, “medium”, and “weak” for the purposes of structure 

determination depending on the intensity of the observed signals. 

Amino protons (example are those of cytosine nucleobase) can be identified by doing NMR 

with 13C and 15N labelled nucleic acid molecules, which are useful for further correlating to H5 

and H6 of the unsaturated ring protons using correlation experiments. 2D (15N, 1H) HSQC 

experiment in particular, using 15N labelled systems, provides information for the elucidation 

of base pairing – giving distinct signals for uracil and guanine imino proton resonance signals 

– where the imino nitrogen resonance frequency has around 10 ppm difference for the two 

bases. HNN-COSY is also another technique used to determine scalar coupling across 

hydrogen bonds that connects base pairs to elucidate secondary and tertiary structures.  

The complete assignment of nucleic acid resonances can be accomplished by the identification 

of the spin resonance frequencies of the nucleobase and assignment of nuclei such as HN, NH2, 

H2, H5, H6 and H8. The assignment of sugar proton spins is then followed. Once these are 

established, the connection between ribose and nucleobase spin system can be established using 

NOE enhancements observed for H1 proton of sugar and aromatic spins of the nucleobase. 

HCN type techniques can also correlate the same proton of the sugar to aromatic spins [175]. 

The ribose spin system is then completed by using HCCH – TOCSY [176, 177] experiment.  

Finally, sequential NOE experiments establishes the sequential connection between adjacent 

nucleotides. Other applicable experiments include HCP and the HCP – TOCSY techniques. 

A variety of nucleic acid structure calculation strategies are described in the literature [178-

180]. However all have one thing in common, i.e. all require some of the following NMR 

parameters for structure calculation [181]: 

 NOESY cross-peak for distance constraint 

 Chemical shifts – to identify the type of each spin 

 Homonuclear and heteronuclear coupling constants – identifies nearest neighbour and 

next nearest neighbour spins. For nuclei that are three bonds apart, the scalar coupling 

value depends on the corresponding dihedral angle. 

 Cross correlated relaxation rates – most commonly used parameters are the DD-CSA 

or the DD-DD relaxation rates. 
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 NOE from hydroxyl (OH) groups.  

 Residual dipolar couplings (RDC)  

6.3 J‐coupling	predictor	function	for	RNA	

We need all J-couplings in RNA for our simulation work. Hence, we looked for scalar coupling 

values from literature, as many of the J-couplings are not available in literature, we did DFT 

estimation of J-coupling values for values that could not be located in literature.  

Nucleic acid J-coupling predictor function was built and implemented into Spinach [3].  

Vicinal coupling data from DFT method GIAO M06/cc-pVTZ in SMD Water (a detailed 

description of the methods involved is given in chapter three) was fitted to Karplus equation, 

with an example result is given below in Figure 101 (below). The equation relates local 

dihedral angle to three bond scalar spin-spin couplings. 

 

Figure 101 Fitted curve of 3J H4H5pp coupling constant at the   dihedral angle. Scanned coordinates at position 

Ci—1NCαCi+1 of the   dihedral angle of uracil nucleotide. The fitting curve is achieved using Karplus equation 

    3 2       J A cos B cos C      . The Karplus coefficients derived from the fitting have values of 

10.89, 0.93, and 0.64 for A, B, and C of the Karplus equation in hertz. The data points “blue diamond” are J-

coupling values from electronic structure calculations with DFT method GIAO M06/6-31G** in [SMD] [Water] 

and the curve is the model applied Karplus equation.  
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The method proceeds by splitting the molecular bonding graph into clusters of sequentially 

connected four atoms (i.e. connected by three bonds). The dihedral angle is computed from 

atomic coordinates, and the three bond J-couplings from a database of Karplus curves.  

The work primarily involved the compilation of data that would allow to simulate the NMR 

spectra of RNA specifically, and nucleic acid molecules in general.  

To obtain the coupling between all spins in nucleic acids, the calculation of J-coupling 

constants for each of the five nucleotides has been done using DFT theory level with M06 

exchange-correlation functional for geometry optimization and for J-couplings along with cc-

pVTZ basis set. Practically the computation required the construction of the nucleotides 

structure using Gauss View 5.0.9 package, then optimization into a minimum energy molecular 

structure before running the spin-spin coupling calculation. Atomic coordinates in Gaussian 09 

can normally be specified in two ways: the Cartesian coordinate system and the internal 

coordinate system also known as Z-matrix. By default geometry optimization in Gaussian is 

performed in internal coordinates. Pulay et al. [182, 183] has demonstrated that internal 

coordinates are preferred for optimizing large flexible systems to the Cartesian coordinate, 

which is efficient for handling rigid ring systems.  

Gaussian uses quasi-Newton BFGS algorithm [184] for optimizing molecular structure, which 

requires the gradient of the energy to be supplied at each iterate with no requirement to compute 

the Hessian. The Gaussian jobs were submitted to Iridis4 cluster.        

The coupling constants obtained from the computation include one bond– 1J, two bond– 2J, 

and three bond– 3J. Longer range couplings are of vanishingly small size and are not part of 

the research work. Electrostatic environment was ignored because its effect on the J-coupling 

is minimal [185, 186].   

However, care was taken for nucleotides that contain heterocyclic bases, where long range 

couplings would provide useful structural information – those 4J couplings fall in the range of 

2 to 3 Hz.  

The computationally predicted value of the spin-spin interactions involves isotropic 

contributions form Fermi contact (FC), spin-dipolar (SD), paramagnetic spin-orbit (PSO), and 

the diamagnetic spin-orbit (DSO) terms. With the Fermi contact contribution being the most 

prominent contributor of all the other terms to the calculated scalar coupling values.    
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Figure 102 Top panels are the constructed molecular structure of adenine before and after geometry optimization, 

left bottom panel is SPINACH representation of magnetic shielding tensors in adenine, and right bottom panel is 

proton NMR spectrum of adenine computed using SPINACH at proton resonance frequency of 250 MHz.  

The contribution for one bond 1J  coupling mostly comes from the Fermi contact term [187, 

188], while that for two and three bond couplings, there are sufficient contribution from the 

other terms. Literature review was conducted to supplement the remaining coupling values. 

The DFT computation of the coupling constant for the four nucleotides was done considering 

the gas phase environment. 

6.4 Results	and	scan	plots	for	RNA		

6.4.1 Karplus coefficients, C 

Method: GIAO DFT M06/6-31G** in SMD Water  

Atom 
1 

Atom 2 Atom 3 Atom 4 A, Hz ARMSD B, Hz BRMSD C, Hz CRMSD 

P5’ O5’ C5’ H5’’ 20.17 0.28 -4.83 0.15 2.87 0.16 

P5’ O5’ C5’ H5’ 17.33 0.34 -8.08 0.14 2.71 0.18 

P5’ O5’ C5’ C4’ 21.90 0.34 -0.50 0.19 -7.95 0.16 
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H5’’ C5’ C4’ C3’ 6.80 0.51 -0.62 0.13 -0.02 0.39 

H5’’ C5’ C4’ H4’ 9.31 0.47 1.29 0.17 1.70 0.26 

H5’ C5’ C4’ C3’ 4.38 0.42 -0.28 0.15 1.13 0.22 

H5’ C5’ C4’ H4’ 11.85 0.35 1.51 0.14 -0.87 0.23 

 

 

 

Figure 103 Cytosine   main-chain dihedral angle scan. Top panel fitting of Karplus curves associated to the 

 dihedral angle to theoretical NMR vicinal coupling data and bottom panel probability distribution histograms 

for the respective torsion angles. 

As it is depicted in Figure 103 the Karplus curves for the 3JPC, 3JPH5’, and 3JPH5’’ coupling data 

shows a pattern of under and over prediction which might be due to the effect that steric 

hindrance brings to the scan of the   dihedral angle. 
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Figure 104 Cytosine   main-chain dihedral angle scan. Top panel Karplus curves for torsion angles related to 

the    dihedral angle scan and bottom panel Boltzmann probability distribution histograms for the respective 

torsion angles. 

Similarly the steric effect is also likely to be responsible for the under and over prediction 

pattern evident in some of the curves and for the broken Karplus curves.  

 

6.4.2 Karplus coefficients, U 

Method: GIAO DFT M06/6-31G** in SMD Water 

Atom 
1 

Atom 2 Atom 3 Atom 4 A, Hz ARMSD B, Hz BRMSD C, Hz CRMSD

P5’ O5’ C5’ H5’’ 26.59 0.37 -13.58 0.20 4.66 0.21 

P5’ O5’ C5’ H5’ 28.60 0.42 -7.92 0.16 0.87 0.26 

P5’ O5’ C5’ C4’ 0.35 0.62 -3.61 0.37 -1.87 0.27 

H5’’ C5’ C4’ C3’ 5.14 0.38 0.53 0.17 0.66 0.19 

H5’’ C5’ C4’ H4’ 9.37 0.36 0.20 0.14 1.44 0.20 

H5’ C5’ C4’ C3’ 6.61 0.37 -0.31 0.18 -0.09 0.23 

H5’ C5’ C4’ H4’ 10.89 0.32 0.93 0.13 0.64 0.20 
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Figure 105 Uracil   main-chain dihedral angle scan. Top panel Karplus curves for the torsion angles related 

to the   dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective 

torsion angles. 

The result of the fitting of 3J coupling data to Karplus curves for the three torsion angles is 

given in Figure 105 and shows the dependence of the coupling values on the Karplus relation. 

Top panel shows the dihedral angle scan data with under and over predicting the function for 

two of the Karplus curves (3JPH5’, and 3JPH5’’). However, the 3JPC data for the broken curve is 

due to the predicted small amplitudes.   
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Figure 106 Uracil   main-chain dihedral angle scan. Top panel Karplus curves for torsion angles related to the 

   dihedral angle scan and bottom panel Boltzmann probability distribution histograms for the respective torsion 

angles.  

All the scan of the   dihedral angle are affected by steric effect as the fitting of the coupling 

data from the scan to the Karplus curves are either under and over predicted or have jumps as 

depicted in Figure 106.  

6.5 RNA	 NOESY	 spectrum	 simulation	 and	 fitting	 with	 respect	 to	

correlation	time	  C 	and	frequency	offset	

The detailed description of the theoretical background of NOESY NMR simulation technique 

along with the quantum mechanical treatment of the interaction Hamiltonians is given in 

chapter four. The simulation work for the NOESY RNA followed the procedure outlined in the 

chapter.      
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Figure 107 Spinach simulated 1H-1H 2D NOESY NMR spectrum of RNA (28 residues and around 910 spins) 

calculated with a cut-off of 5Å and mixing time of 200ms, recorded at a 750MHz proton Larmor precession 

spectrometer. This illustrates that Spinach can deal with a large number of coupled spin system, while any 

conventional software would crash. 

The simulation included one-bond, two-bond and three-bond J-couplings, correct magnet field 

and mixing time. Only important Karplus curves that involved two proton spins are included 

in the simulation. Three bond couplings between spins that consist other nuclei are assigned 

zero.  

The next step after the simulation work is to fit a simulated 2D NOESY spectrum of the RNA 

molecule supplied by Shunsuke et al of Wagner lab of the Harvard Medical School to a 

candidate structure from PDB.  

The experimental spectrum provided by Imai Shunsuke and his colleagues was acquired by 

using the following parameters: mixing time of 200ms, sweep width of 7500Hz for the direct 

and 7496.25Hz for the indirect dimension, and offset of 3473Hz in an NMR spectrometer with 

a proton Larmor frequency of 750MHz. The rotational correlation time of the system is 

estimated to be around 3ns depending on previously reported rotational correlation time for the 

other RNAs and the molecular weight of the RNA molecule i.e. 9.2kDa. The same parameters 
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were used to simulate a candidate theoretical spectrum that matches the one from the 

experiment and would be employed as a decent initial guess in fitting to the data from 

experiment. The enclosed spectrum depicted in Figure 107 (above) is the result of matching 

the simulation parameters to the experimental data. The extra peaks that appear in the 

simulation probably belong to the protons that got exchanged for deuterium in D2O and the 

missing peaks may be attributed to the protons that have not been assigned.  

The proton isotropic chemical shift tensor assignment file have fewer protons assigned than 

the PDB file has protons. And it is the more protons of chemical shift known available the 

better the result from the simulation would be. The assignment input file contains a peak list of 

208 protons out of 308 protons in the PDB file. The difference stems from the exchangeable 

protons such as HO2’ for all residues; H1, H21, H22 of all guanine residues; H41, H42 of 

cytosine residues; H3 for uridine residues; H61 and H62 for adenine residues and the terminal 

residues protons, which are H5T and H3T that are not observable in D2O. To get the simulation 

setup closer to the experimental conditions we have come to the idea of deuteriating those 

exchangeable protons that are available in the PDB file. If this is not accounted for, the line 

widths of the non-exchangeable protons in the simulated spectra would include the effect of 

dipolar interactions with the exchangeable protons – apparently huge for some of them – that 

are not present in the experimental data. 

A script is then written that would deuterate the list of protons in the structure of the RNA from 

PDB that are exchangeable in D2O. Hence Spinach would do the calculation having the 

exchangeable protons deuterated. 

For the purposes of the fitting work a comparison between a simulated and experimental 

spectra is necessary, therefore this requires a better resolved spectra. For this reason a NOESY 

spectrum in D2O is simulated and was directly compared to experimental spectrum. After 

deuterating the exchangeable protons the two things apparent from the calculation are a lot of 

missing signals and a few variations in intensities in the simulation. The former would raise an 

important questions such as: 

Is it possible to use the simulation to get the rest of the assignments? 

When all missing assignments were dumped at zero ppm in the calculation, they generate cross-

peaks that are correct with respect to other coupled partners.  This is useful to take the dipolar 

interactions of the missing signals into account so that we can compare the line widths of the 
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peaks with the experimental ones and would be helpful to identify missing protons by sliding 

down until they match a missing peak.  

The observation of variation in intensities between the simulated and experimental spectra is 

an indication of mismatch between the PDB geometry and the real geometry. Fitting would 

iron this out but it is required that as many assigned protons as possible to have to start the 

fitting, unless the fitting might end in astray.  

Eliminating unassigned peaks from the theoretical calculation would produce sharp simulated 

peaks for the sugar protons H1’ and H2’, which could be another difficult during the fitting 

runs of the computed spectra against the experimental data. An example, sugar protons such as 

H4’ and H5’ are difficult to assign as a result of the severe signal overlaps, but the line widths 

of H1’ and H2’ should be affected by the presence and or absence of the other two protons.   

 

Figure 108 RNA fitting work undertaken as part of this project. The simulation was run under the same conditions 

of the simulated and experimental spectra depicted in Figure 107. 

More assignments can be obtained from simulation using computational programs such as  

ARIA [189, 190] to refine protein structures by iteratively minimizing the deference between 

the theoretical and experimental spectra to optimize protein structures, or alternative methods 
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described in detail in [191] that do not require the NOE cross peak assigned unequivocally to 

proton pairs to use as initial guess to compute three dimensional protein structures by loosely 

describing the term ambiguous restrain using assigned isotropic chemical shift tensor and NOE 

cross peak that are not assigned to coupled proton spins. Though the aforementioned techniques 

enjoys huge success in solution protein NMR spectroscopy, this has not been the case for 

nucleic acids and specifically with RNAs, and similar programs for RNA have long been 

awaited in the field. In the simulated spectrum from the cross peaks it can qualitatively be 

observed that some variation in intensities i.e. some of the NOE’s are more broadened than it 

is expected, and this effect might be down to the dynamics of the bulge region that depends on 

temperature.       

To avoid having many unassigned cross-peaks and get around the problem of ambiguities that 

this creates, we have made the focus on the “fingerprint” region i.e. on the 5 to 6.5 ppm in F2 

and 7 to 9 ppm in F1 where most of the signals are assigned along with the diagonal peaks.   

The proposed region doesn’t have too many unassigned peaks and usually contains much more 

structural information than the excluded region. If the structural refinement as describe above 

and another side project on extending assignments are established, both of these can be applied 

iteratively to refine the structure further.  

In practice the fitting was conducted by zeroing the diagonal to keep the optimization function 

from getting stuck in a local minimum as the diagonals dominate the intensities if they are left 

in place during optimization process. The first runs of fitting of the project fits with respect to 

the rotational correlation time, experimental offset variable and overall scaling multiplier. The 

results from the fit is depicted in Figure 108 (above). To fit with respect to coordinates, the 

Hessians are required.  

The NOESY spectra were computed using standard Spinach functionality with pulse sequence 

and acquisition parameters matched to the experimental values. As usual, the spectra from 

theory were fitted to the data from the experiment using the least squares method with the error 

functional minimization performed by the Nelder-Mead Simplex algorithm. In practice, the 

fitting was performed by optimizing the parameters: correlation time  C  and frequency 

offset, in a similar fashion to that of the fitting performed in chapter five. 
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6.6 Concluding	summary	and	outlook	

Nucleic acid J-coupling predictor function was built and implemented into Spinach. This is a 

function, which is necessary in the simulation of biologically important molecules such as 

DNA and RNA. 

After completion of the estimator function, a 2D NOESY RNA spectrum was simulated for the 

candidate data provided by the group from Wagner lab at Harvard Medical School. During the 

simulation processes, the estimator function as a wrapper function is used to estimate J-

coupling values as mentioned above in the main text when called by another Spinach function 

to simulate nucleic acid systems. 

The integration of the predictor function not only allowed us to carry the simulation of the 

system but also opened the way for the fitting of the system. As it is delineated and shown in 

section 6.5, we have managed to fit the NOESY experimental spectrum against the NOESY 

simulated spectrum with respect to the rotational correlation time, frequency offset variable 

and overall intensity scaling multiplier.  

Once simulation stage is over, one possible area of exploration is, the fitting with respect to 

structure from PDB. For that purpose, one future direction is to refine the structure based on 

minimizing the NOE difference between the theoretically simulated spectrum and that from 

the experiment. The main structure of the RNA stem loops is a Watson-Crick double helix, 

where the loop is not well defined. The optimization should focus on the global fold of the 

structure rather than on the atomic coordinates. This will alleviate the computational 

complexity as the dimensions are significantly reduced. For that, the Hessian of the Energy is 

required, which would be generated using the molecular dynamics package GROMACS and 

diagonalise for the acquisition of the slow vibrational modes.  

The slow normal mode stage of the Hessian matrix ensures that we should not worry about the 

coordinates of each participating atom and instead focus on optimizing the global fold. Thus at 

each iteration of the fitting procedure, the resulting Hessian from the previous iteration is used 

to update the coordinate search direction for the next step in the fitting process. 
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