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J-coupling predictor function building and large-scale NMR simulations of proteins

and nucleic acids

Zenawi Teklay Welderufael

This thesis discusses large scale quantum mechanical NMR simulations and fitting works, and

deals with biomolecular spin systems.

Chapter one introduces the theoretical background that underpins the simulation work. It
describes spin and it properties, the interactions of spin with the magnetic field, the
environment and it self and the Hamiltonians that describe those interactions. It also covers the
Bloch equations that is normally used to predict the longitudinal and transverse relaxations. It
further briefly describes the common relaxation mechanisms that are available for a spin
system. It also included NMR experiments that are often used in the study of protein and

nucleic acid systems.

Chapter 2 summarizes the building of J-coupling predictor function. It provides the detail on
how the estimator function was built. The function is required for NMR simulations and
incorporates the functionality of J-coupling estimation, which provides J-coupling values for
proteins and nucleic acids. After building the estimator function NOESY spectra simulation of
ubiquitin and RNA stem loops spin systems was performed. Chapter 3 then discusses our
simulation method, treating the system quantum mechanically along with an advanced and

detailed description of NOE using Redfield relaxation theory.

Chapter 4 reports on large—scale simulations and fitting of an exchanging "H-'"N HSQC spectra
of calmodulin (PDB: 1CLL) upon stepwise addition of a ligand, that was analysed using a
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formalism that operates in the direct product of spin state space and chemical state space. It
also presents the least squares technique for the fitting procedure and the Nelder-Mead simplex
minimization technique used in the process. The chapter also highlights the data collated from

the fitting work.

Finally, chapter 5 concludes the thesis with the simulation of NOESY stem loops RNA spin
system and fitting with respect to correlation time and frequency offset. It also explains how
we fitted the data from theory to those from the experiment and why the diagonal peaks were

eliminated from the fitting.
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nuclear Overhauser effect
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1 Introduction

Spin dynamics simulation algorithms play a significant role in the design of experimental

techniques, analysis of spectra and to extract structural and dynamic parameters.

Spin dynamics focuses in simulating the evolution of a spin system over time. NMR simulation
of systems containing over 20 spins is difficult, because the CPU time for simulation in

Liouville space scales exponentially [1] with system size.

A number of computational tools that simulate spin dynamics have emerged over the years [2-
5]. Spin dynamics simulation packages are categorized as analytical and numerical tools.
Almost all analytical tools are written in Mathematica, while numerical tools are scripted and
coded in FORTRAN, Python, C and/or Matlab [3]. A class of polynomially scaling algorithms
that allow computationally efficient simulation of systems with a large number of coupled spins
are developed [3]. The development of Spinach [3], a spin dynamics simulation package, opens
the way to the simulation of large bio-molecules such as proteins and nucleic acid as a whole

in one go. But, this requires a J-coupling predictor function.

One bond and two bond coupling are largely known and available in literature [6-9]. Three
bond couplings are known to depend at the intervening dihedral angle [10]. This relation is
very well researched using Karplus equation. Thus, an electronic structure calculation package,

DFT, is used to predict the change of J-couplings due to dihedral angle scan.

Even though DFT is used for predicting spin-spin couplings, it fails to scale to very large
systems like proteins. The reason for the lack of scalability among others, are the introduction
of orbitals in DFT methods as proposed by Kohn-Sham [11, 12]. This makes the computation
complex by increasing the calculation at least cubically due to the increase in number of
variables from 3 to 3N—with N the number electrons. Thus DFT methods are useful to predict
physical or chemical properties of moderately sized spin systems [13]. However scalar
coupling computation for protein spin system would put very high strain on modern computer
if not crash it. Moreover, spin-spin coupling is more expensive compared to the calculation of
chemical shielding and quadrupolar coupling constants. This is due to the computational
dependence of J-coupling on the second derivative of electronic energy which is calculated as

a second-order time-independent property [14].



As it is already noticed and will witness from the main body of the thesis, the terms quantum
mechanical and large—scale are used very often. The “quantum mechanical” term indicates that
the formalism employed for the simulation is the quantum mechanical treatment of the spin
system and the simulated systems for purposes of this thesis are proteins and nucleic acids,

hence the term “large—scale”.

This thesis reflects on how the J-coupling predictor function for proteins and nucleic acids
were built and on large-scale simulations of NOESY NMR spectra for ubiquitin and stem loops
RNA. It also considers large—scale NMR simulations and fitting of chemical exchange. It
studied the simulation of 'H-'>N HSQC spectra of calmodulin and of that with the subsequent
addition of a ligand and least squarely fitted the data from theory to those from experiment as
a function of exchange and transverse relaxation rates to investigate conformational change

and calmodulin peptide binding.



2 Background

2.1 Spin and its properties

Spin is an intrinsic property of elementary particles. Algebraically spin has similar properties
to angular momentum although spin is not related to rotations in physical space. Spin theory

can be introduced using angular momentum. Classically, angular momentum of a particle is

defined as the cross product of the coordinate vector 7 =(x, y,z) and momentum vector

p=(p.p,:p,)

i j k| (w,-w,) [L,
L=rxp=|x y z|=|zp,—xp, |=|L (1)
P Py Dl \xp,—yp, L,

where 7, j,and k are unit vectors.

Replacing the classical quantities with the corresponding quantum mechanical operators;
angular momentum operators for the three components of the angular momentum vectors are

obtained

£X=—i yg—zi , L =—i(z£—xij, izz—i xi—yE . (2)
0z Oy Y ox Oz oy ~ ox
Another two important angular momentum operators exists. One of these operators is the total

angular momentum operator given as
212 2 2
=L +L +L, (3)

This operator appears when a system undergoes rotational diffusion. The other is the raising

and lowering operators defined as

A A A

L =L +il, L =L —iL, (4)
This operators are useful for the manipulation of angular momentum eigenfunctions.

Similar to angular momentum, the state of a spin, /2, can be described as a linear combination

of two state vectors:



Cy
cylay+re,|B)=| (5)

y

where |a> and | ﬂ> are the basis state vectors that represent the state space of the spin. The

matrix representation of I . in the Hilbert space spanned by |a> and |,B> states is

i_(v2 0 ]
z 0 _1/2 ()

Similarly, there exist an x- and y-component spin angular momentum operators (/, and /)

for a spin. The matrix representation of these operators in the |a> and | ,6’> basis is

L =(1;)2 1{)2} f,= [i;)z _sz 2

Another important spin operator is the total spin angular momentum operator I*. The spin

quantum number 7, is associated to the I operator via I w=1 (1 + 1)1//.

The other operators of a spin are the raising and lowering operators

f—01 j_oo .
o o) 10 ®

f+ acts on the spin down state () and raises the state into a and would give zero if it acts on

the up state (a). Likewise [ would only lower the upper state and gives zero when acting on

the lower state.

Spin is associated to magnetic moment, £, by a proportionality constant, ¥, known as the

gyromagnetic ratio. The relationship holds for the projection operators and is defined as:
o=yl py=yl,  p =7, )

The gyromagnetic ratio is distinct for each atomic nuclei type in the periodic table. Atomic
nuclei are composite particles that involve atomic sub-particles known as quarks, with each
quark having spin 2. The orientation of the quarks determines the magnetic dipole moment
and the spin quantum number of the nuclei. For example '3C has spin Y. This arises from the

seven antiparallel up and six parallel down alignment of the quarks. However, nuclei of the
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same element can have different spin and dipole moment depending on the number of the
quarks that makes up the nucleus. Finally, quark spin interaction is dependent on the magnetic
field produced by the magnetic moment and the Pauli Exclusion Principle, which states that no

two spins have the same quantum state at the same time.

The expectation value of any operator, such as A , 1s given by
<,21> — Tr(pA) (10)

Tr is the trace of the matrix and is given by the sum of the elements in the main diagonal. It

is a requirement that p - the density matrix, has the following property:

e [t must be Hermitian

e The trace of p the density matrix is one
e The diagonal elements of p must be nonnegative

The derivation of the density matrix is available in many text books including [15-17]. The
diagonal elements of a density matrix are populations while the off-diagonal are coherences.
The elements of density matrix contain statistically the behaviour of spin system, and the result

of an experimental measurement can be obtained using Equation (10).

The equation of motion, i.e. the development of p under a given Hamiltonian is determined

by the Liouville-von Neumann equation:

%p(t)=—i|:l:l,p(t):| — —if p(t) (11)

The first line in Equation (11) is the representation of the equation in the Hilbert space, where

the evolution of the density matrix is given by the commutation of p with the Hamiltonian

A

operator, /1. In the second line or the right part of Equation (11) we have relocated to the

Liouville space, where p becomes a vector. The action of taking Hamiltonian superoperator,

A~
A

H , is a commutation that transforms H into a matrix in the Liouville space. Superoperators
(recognized for their double hat) are defined as operations in the space of operators. In solving
the Liouville-von Neumann equation, its representation in the Liouville space is convenient for
the purposes of numerical computation. Detailed calculation of quantum dynamics in the

Liouville space can be found in [18-20].



2.2 Spin interactions and their Hamiltonians

NMR mainly deals with nuclear spin interactions in diamagnetic systems; though there are

areas of NMR that deals with paramagnetic samples, which are not part of the project work.

Spin interacts with its environment and with other spins via the associated magnetic moment.
Although there are many types of spin interactions in NMR, their spin Hamiltonians can
broadly be classified into linear, bilinear and quadratic. The interactions that involve the spin

and the external field are /inear, for example Zeeman interaction:

B
~ XX Xy Xz X
H=S-A-B=(S, 8, ) a, a, a,|B, (12)
zX aZy 7z BZ

—

where S is a vector of spin operators, B is magnetic field vector, and A is the Zeeman

Interaction tensor.

When the interaction is a coupling between spins, it is known as bilinear in spin

>

>

~ ~ XX Xy Xz
H=S-A-1=(8, 8, §) a, a, a,|] (13)
zX azy 7z AZ

where S and I are spin operator vectors, and A is the coupling tensor.

Interactions that are caused indirectly by other interactions, but manifest as a coupling of spin

to itself, are quadratic in spin. Nuclear quadrupolar interaction belongs to this category:

>

bl

XX axy axz

(14)

Av
Il
i
>
%%TH
Il
—_—
el
>
<
{Q
=
>

>

zX azy azz

N

where S is a vector of spin operators and A is the quadrupolar coupling tensor.
The overall Hamiltonian is a sum of all the interaction Hamiltonians in the system.

2.2.1 Chemical shielding Hamiltonian



This interaction arises [21] from the effect of electron motion in the vicinity of the nuclear spin.
The electron motion is induced by the externally applied static magnetic field EO of the NMR

spectrometer. The magnetic field at an arbitrary nucleus £ is

—

B(k)=B,+B,,(k) (15)
where the field B, , is induced by the electronic structure surrounding the nucleus.

Magnetic interactions are weak compared to the electronic ones, hence the induced field is a

linear function of the applied magnetic field EO
B,.(k)=B,+8(k)-B,=B,(1+d) (16)
where 0 is the shielding tensor.

The energy of magnetic dipole moment that results from this interaction is therefore

E=—ji,- B, (k)=—i, B, (1+3(k)) (17)
The interaction is a coupling between the spin and the applied magnetic field. The Hamiltonian
can be obtained by replacing the classical quantities by the quantum equivalents. It is given as

a scalar product between the spin vector, the shielding tensor and applied magnetic field

5)()( 6}(}’ 5}(2 BX
Heg=hyB,Y I 1, zzl- s, 6, 6,8, (18)
. é‘ZX zy §ZZ k BZ

2.2.2 Nuclear dipolar interaction Hamiltonian
To a very good approximation, nuclear spins can be considered point dipole moments [22].

The magnetic vector potential A, ofa dipole is

The magnetic field induced by the magnetic dipole / is the curl of the vector potential

[ - I 7 Nu-rv)\r— 20
Botxi = BovxEXP\_ _m 3AT)E 20)
47 7 4 P’



Therefore for two nuclear spins separated by a distance r, the interaction energy between their

respective magnetic dipoles is given by

PR S C A G
4 r

1)

where the constant g, =47 x10'kg-m-s™ - A~ is the permeability constant and 7 is the vector

that connects the two spins. The quantum mechanical energy operator can then be obtained by

replacing the magnetic dipole vectors g, and gz, by the corresponding spin operator vectors

]i(a) and f(b)
A, :—ﬂﬂ;ﬁ(s(i -f)(?-fb)—rz (fa -fb)j 22)

where y, and y, are the gyromagnetic ratio of the respective spins. The full dipolar

Hamiltonian matrix is
A YoVt
I 30=x) =7 3(n=x) (=) 3(n-x)(z-2) (L] (23
Jr=x%)  30-n) = 30— (-5 | 1
a _Zb)(xa _xb) 3(Za ‘Zb)(ya —yb) 3(Za ‘Zb)2 ~r Agb)

X

where (xa, ya,za) and (xb, yb,zb) are spin coordinates for 7® and I respectively. The trace

i.e. the sum of diagonal elements of the interaction tensor and rhombicity, the difference
between the smallest and second smallest eigenvalues, are zero making dipolar interaction
traceless and axial. In solution state NMR nuclear dipolar interaction is averaged out by the
tumbling of the molecules. In solids, however, it provides information on orientations and

distances.
2.2.3 J-coupling

J-coupling is a bilinear through bond interaction. Being isotropic [23], spin-spin coupling does

not average out upon molecular tumbling. Thus the interaction Hamiltonian takes the form



=

Il

[\®]

B

Nl)

<

>

Il

—_—

>

%’N)

~N >

SN—
[\ 9]

S N
<

[\®]

8 o

<

o O

Lh> s
>

<

(24)

o
o
D
5

<

N

= ZEJ(S'XiX + S‘yfy + Szfz)

This interaction is responsible for the multiplicity of resonance signals in an NMR spectrum
and indicates the number of neighbouring nuclei. Its magnitude depends on dihedral angles. In
contrast to chemical shift, the coupling constant does not depend on the strength of the static
magnet of the spectrometer. Scalar coupling is mediated by bonding electrons. Hence the

dominant contribution for the Hamiltonian comes from Fermi contact interaction:

~ 81h o\ 2
Hye = 3 7k7n5(rkn PR (25)
kn

J-coupling values are related to molecular conformation and this is useful in structure
determination by NMR spectroscopy [24, 25]. The magnitude of coupling constant normally
but not always depends on the number of bond that separate the nuclei i.e. the higher the
number of bond the smaller the coupling becomes. Spin-spin coupling (specifically *J)

dependence in dihedral angle is called Karplus equation [10].

2.2.4 Quadrupolar coupling

Nuclei with spin quantum number 7 > 5 possess non—symmetric charge distributions, which

generates an electric quadrupolar moment that interacts with an electric field gradient (EFG).

Quadrupolar moment is aligned with the nuclear spin. The interaction can be described as

A A 2
H:Li.v.[ V.= 0 (26)
21(21-1) 7 onor,

where eQ is the quadrupolar moment, / is the nuclear spin, and V is a symmetric and
traceless second rank tensor of the EFG. The electric field gradients at the nucleus are generated
by electronic charges present in the spin system outside the nuclei and are described as the
second derivative of the electrostatic potential. In principal axis frame, an asymmetric

parameter 77 and its magnitude eq are

27)



The quadrupolar Hamiltonian in the above stated axis system is

q QZQQ 22 72 M7 2
Hy=———"———\3[-1"+—(I, -1 28

¢ 4r(2r-nal " 2( ) %)
The coupling of the quadrupolar moment and EFG affects the line width of NMR signals and

makes them broad.

Detailed description of other spin interactions can be found in NMR books, in particular [22,

26, 27].

2.3 Bloch equations

The net magnetization vector, M, that comes into existence due to magnetic moments of
nuclear spins in NMR experience moment in the presence of magnetic field. This is given by
the cross product between the magnetization M and the magnetic field B .
dM (¢
—()zM(t)xyB(t) (29)
dt
Equation (29) is fundamental for the formulation of Bloch equations. After, application of an
rf pulses, nuclear spins relax to equilibrium with the transverse and longitudinal relaxation rates
along the x-y plane and z-axis respectively. It is assumed these relaxation rates follow first-
order kinetics. Thus, the full Bloch equations for free precession after the integration of the
relaxation term is
dM (1)
dt

=M (t)xyB(1)-R(M(1)-M,). (30)

y’I (I+1)B

where M, = T L is the thermal equilibrium magnetization, and R is the relaxation
B

rate. For each of the components Equation (30) becomes

M, (M,-M,)
=y(M B, -M B )-| ~—~—Y
dt 7( Ty y X) [ T, j’
amM M
*=y(M,B,-M,B,)——=
dt 7/( y-z z y) 7—,2 > (31)
amM

M
*=y(M B.—M B )——=.
dt 7/( z77X X z) 772

10



A convention in NMR is that the static field BO is treated as applied along the z-axis that gives

B, =B, =0, hence Equation (31) as of [28] simplifies to

am, _ (MZ _MO)

dt T
aMm, = _Mx
7_7MyB() T (32)
am - M
Y=—yM B, ——.
dt 7/ X0 Tvz

The first line of Equation (32) is used to predict the exponential relaxation of the longitudinal

magnetization component M, to its equilibrium value. The time that takes for this to happen
is known as spin lattice relaxation time and is denoted as 7, . The solution for M, after initial

inversion of the longitudinal magnetization using 180° pulse at time ¢ =0 is given as

M, =M, (1—2exp[—%n (33)
1

The second and third lines describes the coherent motion of the magnetization vector M and
the exponential decay of the transverse magnetization respectively. The time process for the

exponential decay of the transverse magnetization to happen is called spin-spin relaxation time

and is abbreviated as 7, . After application of on-resonance 90° pulse, the evolution of the

transvers magnetization can be expressed as

t
M, =M, exp(—;j (34)

2

L is associated to the line width and can be described using Equation (35)
2

Av=—ro (35)
where Av is the line width at half height of the peak.

2.4 Brief description of NMR relaxation mechanisms

Nuclear spin systems experience five major relaxation mechanisms [29, 30]. These are dipolar,

chemical shift anisotropy, scalar coupling relaxation of type one and two, quadrupolar
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interactions, and spin rotation [25, 29-31]. Of all the available relaxation mechanisms for a spin

system the dipolar relaxation mechanism is the most dominant for spin %2 systems.

Dipolar interaction depends in internuclear separation, which falls as the inverse cube of 7,

and the angle of the vector that connects the interacting nuclei with the static field Eo . Dipolar

interaction can be described using Equation (36)

Is = 3 2
4 rg s

D M 77 3(i'r)(§'r)_(j.§) (36)

While Equation (37) governs the relaxation of spin / due to dipolar interaction with a nearby

spin S'.
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Equation (37) includes spectral density component that couples the system to the stochastic
rotational dynamics of the molecules. The detailed description and derivation of the spectral
density function is available in chapter four. Molecular motions — such as translation, rotation

and vibration causes ;g and @ to change in a complex manner over a period of time producing

rapidly fluctuating magnetic fields. Dipolar interaction modulated by rotational tumbling in

liquids induces fluctuating magnetic fields that causes a nearby nuclei to relax.

Another common cause of spin relaxation is the chemical shift anisotropy (CSA). Chemical
shift is associated to the electronic environment in the vicinity of a nucleus and is normally
anisotropic, i.e. its value depends on the orientation of the molecule relative to the applied
magnetic field. As the molecule rotates, the magnetic field that the nucleus experiences keeps
changing. This makes the chemical shift direction dependent. Therefore, the variation of the

field as a function of the rotation time stimulates relaxation that is proportional to the square
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of the applied field strength and the gyromagnetic ratio. The relaxation rates from such

interaction are
1 _ 2 2 D2 2 T
s =157 Bi (=) [Hafffé}

1 1 »5 2 3t
2 Bg(O'H—ol) [4TC+—1+a)§ré]'

(3%)

where (O'” -0 L) is the anisotropy parameter, Eo is the applied magnetic field, and y is the
gyromagnetic ratio of the nucleus.

Spins that possesses spin quantum number / >1/2 have quadrupolar moment. Their relaxation
is dominated by quadrupolar relaxation mechanism. Electrons that surround such nuclei creates
electric field gradient. The coupling between the electric field gradient and the quadrupolar
moment is responsible for quadrupolar coupling. This interaction also couples the spin to the
rotational motion of the molecule. The quadrupolar relaxation of a spin [32, 33] is given by

21+3 (g0 Y
S I CA) NP (i) Y R N (39)
T° 50 1*(2r-1) 3 ) k& 1+ oot 1+4wyTe

where 77 is the field asymmetry parameter, ¢q is electric field gradient, Q is the quadrupolar

moment, and 7. is the rotational correlation time.

Quadrupolar relaxation is responsible for broad resonance signals. It effectively removes J-
couplings. NOE enhancements for quadrupolar nuclei are diminishingly small or impossible to
measure. For perfectly symmetric molecules, i.e. systems of tetrahedral and octahedral

structure, the electric field gradient is small.

Spins can also relax by scalar coupling relaxation mechanism. Scalar coupling is an isotropic
interaction, therefore its Hamiltonian is not affected by orientation of the molecule with respect
to the external field. This interaction acts as a source of relaxation when its strength varies over
time. The variation of the coupling strength over time on spin /, might be due to the relaxation
of the coupling spin S . Therefore, the longitudinal and transverse relaxation of spin /, due to

scalar coupling relaxation, according [30] is
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When the scalar coupling relaxation arises from the time dependence of the J-coupling, which
is the case for strongly coupled spins, the reader is recommended to read [32, 34] for a detailed

discussion.

2.5 Common protein and nucleic acid NMR experiments

This project involves protein and nucleic acid NMR spectroscopy and modelling of exchange
processes to extract kinetic information. Thus, it is sensible to include into the introduction
some common protein and nucleic acid experimental methods along with experimental
techniques that are necessary to study exchange processes. NOESY method for proteins and
nucleic acids is covered in detail in chapters four and six respectively. HSQC for calmodulin
is also discussed in chapter five. Here described are techniques used to study exchange
processes in proteins and nucleic acids. Experimental methods employed to study exchange
processes split into two [35]. These are magnetization transfer and lineshape analysis.
Magnetization transfer experiments commonly applied to investigate systems with exchange

process are:

e Saturation transfer [36, 37]

e EXSY spectroscopy [35, 38]

e CPMGQG relaxation dispersion [39-41]

e Rotating frame relaxation dispersion [42-44]
2.5.1 Saturation transfer experiment

This is a technique used to study exchange processes that are an order of magnitude slower
than the ones that can be studied using conventional lineshape analysis [37]. In such a slow
exchanging system, signals from one of the exchanging species is saturated using rf pulses that
oscillate at the resonance frequency of the spin; this destroys the signal from the spin [36, 37].

For two site exchange processes available in detail in chapter five; the observed change in
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intensity in the neighbouring spin indicates the spins are connected by chemical exchange. The

pulse sequence of the experiment as of [45] is depicted in Figure 1 (below)

90°

saturation H

Figure 1 Saturation transfer experiment pulse scheme. Illustrating selective saturation of one spin i.e. the
populations of the & and [3 energy levels are equalized. Then this is followed by a 90° pulse and detection of

the signal.

The time dependent longitudinal magnetization, M5, in site B, can be described by

M M
iMZB :(MOB_MZB)l -— S+

41
dt Tw 74 T, “1)

where M,, is the longitudinal magnetization at site A, 7, and 7 are the lifetimes of states A

and B, T; is the longitudinal relaxation of state B, and M, is the equilibrium z magnetization

1n site B.

After irradiation using an rf field that is sufficiently strong to saturate the magnetization at site
A, the signal from state A, is destroyed, giving M, =0. The last term in Equation (41)
disappears. After rearrangement Equation (41) becomes:

d 1 1 1
M, =M | = |-M,.|— +— 42
> OB(TIB) ZB[T]B TBJ (42)

Integration and simplification of Equation (42) gives the signal from site B as [5]

k R
M, =M || ——— |exp(—(R, +k_ )t)+—L— 43
7B oB |:[R1B+k—1] Xp( ( 1B —1) ) R1B+k—l:| (43)

2.5.2 2D EXSY spectroscopy

EXSY [35, 38, 46] is a technique employed to map exchange pathways in dynamic processes.
The technique has identical pulse sequence as the nuclear Overhauser effect spectroscopy. The
cross peak signals in EXSY indicate the exchanging species in a multisite exchange. Even
though the technique has advantage in determining exchange processes qualitatively; rate

extraction needs acquisition of a series of EXSY spectra at different mixing time (zm). In
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addition intensity integrals and longitudinal relaxation times of the exchanging species is

required.

90° 90° 902, 1

-

Figure 2 2D EXSY pulse sequence. Rectangular boxes are n/2 pulses. The pulse sequence is identical to the

NOESY experiment. During mixing time both exchange processes and dipolar couplings can transfer polarization.

An alternative approach to get rid of NOE effects is CLEAN-EXSY experiment [47, 48].

The solution to the Bloch-McConnell equation (covered in detail in chapter four) can be given

by Equation (44) as of [35]

I (7,)=M} exp(-Rz,) (44)

i, ij

where [, ; is the cross peak volume at position ®, and ®,, 7,, —is the mixing time, and R —is

the term that contains exchange rate and relaxation rate constants. Equation (44) makes the

following assumptions:

M,=M,=M
k =k, =k
R,=R,=R

This gives the solution to the diagonal and cross peak as

Loy =I5 :l{[1+exp(—2kz'm )] exp(—rmR)}
2 (45)

L=, :%{[l—exp(—ﬂcrm )] exp(—rmR)}

The exchange rate can be obtained from the ratio of the diagonal to cross peak intensities at

short mixing time.
2.5.3 Carr-Purcell-Meiboom-Gill relaxation dispersion

CPMG is an experimental technique that involves a spin-echo pulse sequence to investigate a
change in transverse relaxation rate due to exchange process [39-41, 46, 49]. A series of spin-
echo pulses is applied to the magnetization. The magnetization evolves under resonance

frequency that differs due to presence of exchange. In these type of experiments the pulsing
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frequency vCPMG is given by N / T. Where N is the number of cycle of the spin echoes,

cyc
and T is the total time of CPMG element given by 47N, where 7 - the time between
consecutive refocusing pulses. The relaxation dispersion data are usually depicted by plotting

R, and the pulse reputation rate (vcema) in the vertical and horizontal dimension of a 2D plot

respectively.

90° 180° 180°

1 (CPMG Loop)

Figure 3 CPMG pulse sequence.

Experimentally the exchange process parameters such as exchange rate constant, populations,
and resonance frequency are determined qualitatively by measuring the spin-spin relaxation

rate at several different 7 values. Dynamic parameters can also be quantified by fitting the

relaxation data to exchange equations. Loria et a/ [49] showed the dependence of R, on the

pulse range of CPMG experiment in the fast regime as:

2
R,(Yr,)=R + PaPpA® (46)

kXTC
2tanh(62"j
k. |1-

ex kz'

ex “cp

P, and py are equilibrium populations, Ao =Q, —Qy, k, =k +k,, 7, =2nt_is the delay
between two consecutive 180° pulses and R] is the transverse relaxation in the absence of

exchange. The populations and frequency differences are only determined after additional

independent measurements are performed.
2.5.4 Rotating frame relaxation dispersion experiment R1p [42-44]

The evolution of magnetization under the presence of rf fields spin locked parallel to the

effective field in the rotating frame of reference is known as spin-lattice relaxation time 71,.
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180 90,

14 Spin-lock

Zn

Figure 4 Rotating frame relaxation rate R, pulse sequence.

The spin lattice relaxation rate Rip depends on the amplitude of the rf field hence the name
relaxation dispersion [42]. Chemical exchange in the intermediate to fast regime is the effect
that contributes to the Rip relaxation [43]. In R1, experiment, sample is subjected with rf field

(B1) in the x-axis long enough to rotate magnetization vector M to the y-axis. At this field

. . B
strength, M starts to precess around the y-axis with a precession frequency % If we now
Vs

change the phase of the By field by 90°(n/2) and align it to the y-axis, i.e. rf is applied along
the y-axis, the two fields are parallel and no force to rotate vector away from that axis, thus
magnetization is spin locked along that axis. If we now look to the evolution of magnetization
from the rotating frame point of view, the B; field would appear stationary and the relaxation
of M appears similar to the spin lattice relaxation with rate Rip. In the fast limit the relaxation

rate becomes [49]

Ao’ )k Ao’ )k
R, =R cos’ 0+ Rz—[(p’*:f 2) J sin29+[(pA:ZB 2) e*]sinze @7)
o« T O, )

c c

where @, =\/&] +Q’ is the effective field, with 6 =arctan (e, /Q) is the tilt angle. In the

presence of Ri relaxation data measured independently, R> can be extracted. The exchange
parameters can be evaluated after Rip is measured at varying effective field strengths and tilt
angles. Rotating frame relaxation dispersion experiment is useful in the study of physical
processes such as loop motions, side chain motions, secondary structure element, and ligand

binding.
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Static field B,

Magnitude: B, B =(B 24 AB2)1/2
Frequency: o, eff V1
Phase: 6
tan0=AB/B,
AB

« 0=tan(AB/B))

y

" Applied rf field B,
Magnitude: B,
Frequency: o

Phase: ¢

Figure 5 Rotating frame representation, the effective field Bey arises from the vector sum of AB and B, while the

tilt angle, 0, is the angle between /B and Bey.

Table 1 A comparisons between CPMG and R, experimental techniques. These techniques are useful in study of

exchange processes in the intermediate to fast exchange.

CPMG Rip

ms (milli-second)—exchange events | us (micro-second) exchange events

R> — relaxation of transverse | Rip — relaxation of magnetization
magnetization locked along the effective field
Laboratory frame of reference Rotating frame of reference

2.6 Areview ofthe recentresearch on polynomially scaling algorithms

A significant number of spin dynamics simulation methods cannot handle big spin systems
[50-52]. This is due to the fact that the algorithms rely on numerical techniques such as matrix
factorization and diagonalization [50-52]. These are well suited to study small systems and are
not applicable to big systems that generate large matrices that are difficult to handle
computationally. Numerical algorithms that depend on direct propagation of the density matrix

in Liouville space scale exponentially with spin system size [3, 20].

Full Liouville space includes all correlations between all spins [3, 53]. But, in magnetic
resonance simulation of large systems, it is found that a large number of spin states are not

populated and can be left out of the state space. This led to the development of a numerical
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algorithm that scales polynomially with the size of the spin system and makes use of the
reduced state-space approximation method to identify and discard spin states that are not
populated during spin dynamics [20]. Emsley ef al also designed a similar algorithm that scales
polynomially with the spin system for the simulation of strongly dipolar coupled spin -
systems by using low-order correlation in Liouville space [53, 54]. The technique was
implemented as a Suzuki-Trotter [55] numerical algorithm that avoids the storage of the
Liouvillian and the propagator to make efficient use of memory. The idea of reduced space
approximation is based on splitting spin system into clusters of connected spins, in which the
Liouvillian matrix for each cluster is generated and recoupled during the recoupling stage to

establish the overall reduced states. Hence the global Liouvillian works for the whole system.

It is believed [18, 20, 56] that high order spin correlations and high order coherences of spins
that are remote in the interaction graph relax very fast or do not accumulate enough to give an
observable signal. This is one of the reasons for the elimination of high order correlations and
coherences of large spin systems such as proteins and nucleic acids during quantum mechanical
spin dynamics simulations. Coherence order is determined from the difference between the
number of the raising and lowering operators, where the spin states are given in the direct
product operator form. In addition, any two spins that are remote in the interaction graph would
not contribute to an observable signal and can be dropped from the simulation process. The
state space reduction technique is adaptive, and can simulate local tight and loose couplings by

altering cluster size.

The magnetic resonance simulations of large systems are further accelerated using on Krylov
subspace technique [57] and zero track elimination [58]. This allows further compression of
the state space and resulted into another algorithm been added to the package to further reduce

simulation speed.

2.7 Objectives of the work

Time domain spin dynamics simulation in Liouville space is complicated due to the exponential
scaling [18, 28] of the operator matrices dimensions (2" for spin %2 nuclei, with n being the
number of spins) involved that require large computational power and making it impractical to
simulate spin dynamics of large biological systems. However emergence of algorithms [20, 58]
that scale polynomially with system size makes it feasible for large-scale simulations of

proteins and nucleic acids [3, 59]. The polynomial scaling algorithm is achieved by reducing
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the dimension of the Liouvillian matrices accurately to significantly improve simulation time;
making use of the reduced state space approximation technique to eliminate states that are not
populated and insignificant. The exclusion of high order spin correlations and coherences is
vindicated by the arguments that such states dephase or relax rapidly than the low order
correlations does and do not accumulate to a significant extent. In addition two-spin order
correlations that are topologically remote in the interaction graph accumulate slower; hence,

excluded from the basis set.

This was the first hypothesis that led to subsequent development of sophisticated algorithms
that form the bases for SPINACH, a software library, for spin dynamics simulation of large
systems such as proteins and nucleic acids. This has helped to make possible quantum
mechanical NMR simulation of proteins and nucleic acids in one go and allowed modelling of
important biomolecular NMR pulse sequences including NOESY, HSQC and HNCO. As an
illustration the quantum mechanical NMR modelling of the NOESY spectra of *C and >N
isotopically labelled protein ubiquitin with over thousand coupled spins is available in Chapter
four. The detailed description of the simulation algorithm that carefully prunes the density
operator space along with the relaxation algorithm employed that implements the Bloch,
Redfield, and Wangsness relaxation theory [60] is delineated in section three of chapter four

and our published paper [59].
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3 J-coupling predictor function for
proteins

3.1 What has been done?

Three bond J-couplings of all the 20 standard amino acids are calculated using Gaussian. This
was performed quantum mechanically using the DFT theory level B3LYP for structure
optimization and M06 exchange correlation functional with basis set cc-pVTZ for the scalar
couplings. The computation required the construction of the amino acid structure using Gauss
View software - then optimize the structure before running the spin-spin coupling job. The
Karplus coefficients [10] A, B, and C are then generated from the DFT calculations to establish
the function that predicts J-couplings during protein NMR simulations. Such function did not

exist before.

All the backbone and sidechain dihedral angles of the 20 amino acids are scanned making a

constraint at a particular dihedral angle to extract the Karplus coefficients from the J-couplings

and the associated dihedral angles using Karplus equation (3J =4 cos’p + B cosg + C) . Each and

every dihedral angle is scanned for 36 steps at a size of 10 degrees.

When the scan of the energy is completed, the coordinates of each of the optimized
conformations are extracted into a Gaussian input files to run the spin-spin coupling jobs and
these were submitted to Southampton’s HPC cluster, Iridis4, for the computation of magnetic

interactions.

This produced a log files as an output of the calculation, which contains molecular properties
along with the *J coupling values. The coupling between two spins that are three bond apart
are then extracted and fitted to Karplus equation as described in section 3.8. Karplus curves
and coefficients are then generated from the fitting and all the results are given in the results

section of this chapter.

The dihedral angles computed using the DFT approach employed in the research work are the

¢, v, and o of the main chain, and y,, %,, ¥;, ¥, and y; of the sidechain torsion angles

for all the 20 amino acids. From all the calculations and literature review, a J-coupling field

was built and integrated into SPINACH as a J-coupling predictor function.
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The scan of all the possible dihedral angles and computing of the 3J coupling values as
mentioned above for all the essential 20 amino acids - is a huge task, and required a significant

chunk of CPU time.

To give an idea of the nature of the task, the ground state optimization of leucine, a 31 atom
amino acid, elapsed 1128 CPU core hours. This gave 36 conformations of molecular structure
from that single amino acid molecular structure; and are required to be optimized before
running the computation of magnetic interactions for all the orientations of the molecular

structure.

3.2 NMR methods for obtaining J-couplings in proteins

Experiments to measure J-couplings in protein NMR has advanced rapidly and saw an increase
in applications due to the advancement of isotope labelling in hetronuclear 2D NMR
experiments in the study of proteins and nucleic acids [61]. The series of experiments used to
measure J-couplings are splint into several groups depending on the underlying principles that
are employed to record the data. Some of the experiments to mention are the in-phase anti-
phase (IPAP) [62] J-coupled technique, exclusive correlation spectroscopy [63] (E.COSY),
and quantitative J correlation (QJ) [64]. In the in-phase and anti-phase (IPAP) [62] experiment,
an in-phase and anti-phase NMR data are recorded and combined to provide an up-field and

downfield component of a doublet in a spectrum. The time domain signals for the in-phase data

are obtained from the evolution of an in-phase terms (operators) such as /_ and [, hence the

name in-phase. The anti-phase experiment, however, evolves under an anti-phase operators

(eg. 21§

S, 21 S ), which are not observable, but over time evolve into an in-phase terms,
which give an observable transverse magnetization in the time-domain signal. This shows the
importance of the anti-phase components in multi-pulse and multi-dimensional experiments.
The INEPT [65] technique is an example that makes use of anti-phase states to transfer
coherences. The pulse sequence of the technique is heavily employed as a building block in a
complex multi-pulse experiments. The I[PAP technique is suitable to measure coupling constant
for proteins and produces spin state separated spectra, which makes J-coupling splitting
measurable. Unlike E.COSY discussed below, the IPAP is not sensitive to the size of the one

bond coupling constant for separating the spin state signals.

For larger systems spins of active coupling (responsible for cross peak) are passively coupled

to other spins gives a broad linewidth that exceed the size of the coupling value. Hence to

23



resolve and measure coupling values in such cases a method known as E.COSY was
introduced. The technique was first proposed by Griesinger ef al in 1986 and is used to measure
coupling values in proteins and nucleic acids that are isotopically enriched. It is also helpful to
determine the sign of the couplings [63]. The method simplifies cross peak multiplets by
transferring coherence between exclusively connected transitions for spins that are weakly
coupled. The method requires three spins represented as /SX in which one of the spins is
actively coupled to the other two. Then excitation of the connected spins leaves the passive
spins energy unperturbed and as a result the experiment generates reduced cross peak multiplets
due to the actively coupled spins [66]. The utility of E.COSY experiment is hampered by the
low sensitivity and limited digital resolution that the technique offers. To overcome the
limitation of the E.COSY an experiment known as quantitative J-correlation have been
developed. Quantitative J correlation experiments rely in the modulation of signal intensities
due to the evolution of magnetization under the influence of J-coupling and are used to measure
a large variety of couplings over two and three bond correlations [64]. There are a variety of
this experiment. One type of the experiments quantitates the loss in signal that result when the
coupling is active compared to the data obtained when the coupling is inactive. The second
type of experiments runs in a series of measurements where the signal is modulated by the
coupling evolution. In this type of experiments the coupling constant is extracted from the
fitting of peak intensities from the 'Jxu coupling modulated 2D spectra [67]. The other type of
experiment determines the coupling constant from the intensity ratio of diagonal peak to that
of the cross peak [68] in a 3D experiment. This was applied for the measurement of *JinHa
coupling values for '°N labelled protein where the ratio of the intensity not affected by
transverse relaxations of the amide and o proton spins, and are useful to determine intra-residue

correlations.

3.3 Why are we doing this and what was done before?

Large-scale quantum mechanical protein and nucleic acid spectra simulation requires J-
coupling predictor function. Protein and nucleic acid J-coupling predictor functions was built
and implemented into Spinach. The functions incorporate the functionality of J-coupling
estimation for protein and nucleic acid systems into Spinach, which will provide J-coupling

values during NMR simulations of proteins, DNAs and RNAs.

Several commercial [69-72] and non-commercial [73, 74] J-coupling prediction methods are

out there. The methods use different techniques to achieve the desired outcome. Lehtivarjo et
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al. [73] for example have developed a universal J-coupling predictor method based on data
driven approach. The method involves prediction parameters to take into account the effect of
hydrogen bond and substituents, have on J-coupling. Juniper algorithm, developed as a result
of the work, is designed to predict coupling for small molecules. The algorithm would take
long time for proteins and would ruin structure, as the technique do geometry optimization
based on small molecule force field. Due to conformational variability of proteins, the *J-
couplings data Juniper algorithm have, might not estimate to a sufficient accuracy vicinal
coupling for proteins, as the coupling values are obtained from small molecules. Another
similar package is SPINUS. It predicts proton J-couplings of small organic molecule along
with chemical shifts using Associated Neural Networks (ASNN) [75] from a given structure.
The program involves a method of data collection from literature and also experimental data
from collaborators. For description purposes hydrogen atoms split into aromatic, nonaromatic
n, rigid aliphatic, and non-rigid aliphatic depending to which the proton is bonded. The
descriptors are physicochemical, geometrical, and topological descriptors. A data set of
couplings categorized into several classes depending on the type and number of bonds between
protons is entered into the ASNN memory. These are then used to predict couplings for a new

pair of coupled protons.

Wang et al. [76] also utilized DFT and computed *J-couplings for GB3 protein using automated
fragmentation quantum mechanics/molecular mechanics approach that integrates protein
environment effect. The approach avoids the computational intensive quantum chemical
calculations by splitting the entire protein into non-overlapping fragments in which residues
within certain range are assigned as a buffer region. The fragment and the buffer region are
then treated quantum chemically while the rest of the protein approached empirically by point-

charge model.

Another accounts of J-coupling predictor functions are the works of Xia and Roy et al. who
discussed the implementation of the technique in their papers [77, 78] and [79] respectively.
3.4 Origin and theoretical study of spin-spin coupling

In electronic structure calculations, magnetic parameters, such as spin-spin coupling constants,
can be computed using wave function methods and density functional methods. In this work
we have investigated spin-spin coupling using density functional theory. The basic argument

for density functional theory is that ground state energy is determined by electron density [80],
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and the ground state electron density p of a chemical system with interacting electrons in the

presence of external potential can be used to predict the properties of the system. DFT theory
significantly reduces the complexity of computing system properties by making the problem

three-dimensional [12, 81].

According to Hohenberg and Kohn [80], the energy functional of a system is given by
E[p]=(w,|T+V +U |y,) (48)

where p is the ground state electron density, T is kinetic energy operator, V is the electron-

nuclear attraction operator, and U is the electron-electron repulsion operator. The variational
principle in quantum chemistry states that £ [ p] = [, , i.e. there exists a solution for the electron
density function with a global minimum at the ground state density. Kohn-Sham theory mimics

wave function theory in its usage of orbitals [12]. This allows choosing a basis set and set up

one-electron orbitals, and to generate trial density to optimize against energy £.

pP=2 N )= ) )

k=1

where y, (7) are one electron orbitals, ¢, (77) are the basis set functions and gq,, are

coefficients.

The model, introduced by Kohn and Sham [11], has similar mathematics to the Hartree-Fock
(HF) method, possessing the same formula for kinetic, electron-nuclear, and Coulomb energies

apart from the exchange-correlation term. The equation for a single electron orbital is

2

—EVZ—H}(?) % (F) =g, (F) (50)

2

where —;—Vz is the kinetic energy term, V() is the potential energy term and &, is the
m

energy eigenvalue. The term which is not known in DFT is the exchange-correlation energy,

in which the remaining energy is absorbed. This term may be written as

Ex[p]=[p(F) exc [ (7)) v (51)
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where p(F) is the density that indicates the number of electrons per unit volume and

Exc [ ,o(z7 ):| is the exchange-correlation energy density which represents energy per electron.

An important research area within DFT is to derive approximations to the exchange-correlation
functional. A functional takes a function and returns a scalar. In quantum chemistry functionals

are denoted as F[f]. There are a variety of exchange-correlation functionals in DFT that

employ different approximations and all aim to increase the accuracy of the method. The spin
systems structure was optimizated using hybrid XC functional B3LYP [12, 81-83], which is a

three-parameter functional defined by
Ege" =(1—a) Ex™ +aEy" +bAE, +(1—¢) E™* +cES™ (52)
with typical values fora,b and ¢ are 0.2, 0.7, and 0.8 respectively.

The basis set employed in the calculation of the indirect spin-spin coupling magnetic
parameters is cc-pVTZ, which stands for correlation consistent polarized Valence Triple Zeta
[84]. By convention correlation consistent is denoted as (cc) lower case letters to avoid
confusion with coupled cluster (CC) method. Correlation consistent [84, 85] basis sets are
developed by Dunning et al. and employs a smaller set of primitives to achieve similar or better
accuracy than the “STO-nG” type basis sets. STO-nG — stands for Slater Type Orbitals with n
is the number of Gaussian Type Orbitals that are linearly combined to mimic an STO. The

Slater Type and Gaussian Type functions for STO and GTO are
s(E)=e® gf)=e" (53)

where ¥ is coordinate vector and ( is zeta and controls the width of orbitals. Correlation

consistent basis sets are designed in a way that recovers correlation energy of valence electrons.
However, with the addition of core functions, nuclear properties such as magnetic shielding
and spin-spin couplings, can also be calculated. The cc-pVTZ basis set incorporates the basis
functions listed in Table 2 (below) for hydrogen, carbon, and nitrogen in the amino acids

investigated for magnetic parameters in this work.

Accurate spin-spin coupling requires large basis set [86]. This is partly due to the Fermi Contact
contribution requirements of accurate nuclear regions that the normal basis set would not offer
[86, 87]. The magnetic parameters were computed using the GIAO method, which stands for

Gauge-Independent Atomic Orbitals. It is a method that employs basis functions that explicitly
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possesses field dependence [88, 89]. As the NMR shielding calculation requires, the structure
is optimized using B3LYP hybrid functional before the spin-spin coupling was computed using
the option “spinspin=mixed” in Gaussian 09 that request a two-step coupling calculation to

improve the accuracy of spin-spin coupling calculation [90, 91].

In order to reflect the potential environment of proteins in biological systems the studied system
was treated in polarizable continuum solvent water and using SMD model [92]. In quantum
chemistry solvent models are broadly classified into two categories. These are implicit and
explicit models. There are a variety of implicit methods. Generally implicit method is defined
as the model in which explicit solvent model are removed and replaced by a polarizable
continuum that considers the medium as a continuous isotropic and thermally averaged

medium [93]. SMD model belongs to the implicit treatment.

Table 2 The contracted correlation consistent basis set basis functions for hydrogen, carbon, and nitrogen
employed in the computation of indirect spin-spin coupling. For comparison cc-pVDZ and cc-pVQZ basis sets

are also included.

Basis Hydrogen Carbon Nitrogen
cc-pVDZ 2slp 3s2pld 3s2pld
cc-pVTZ 3s2pld 4s3p2d1f 4s3p2d1f
cc-pVQZ 4s3p2d1f 5s4p3d2flg S5s4p3d2flg

3.5 Ramsey theory: spin-spin coupling mechanism

In non-relativistic DFT theory, spin-spin couplings are obtained from individual contributions

of the following four mechanisms [14, 94]:
1. Diamagnetic spin orbit (DSO) term
2. Paramagnetic spin-orbit (PSO) term
3. The spin-dipole term and

4. Fermi contact term
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Of all the mechanisms, the Fermi-contact term is the most prominent contribution. The spin-
spin coupling tensor is the second derivative of the total electronic energy with respect to
magnetic moments of the nuclei
2
Jo—pledmg o g dE (54)

— —

nm 27T 27T nm? nm d/,l/nd/,l/’n o

where J,

m

is the coupling tensor between the spins 7 and m that have magnetic moments of

4, and [i, . The experimentally observed coupling tensor in liquids and gases i.e. systems that

tumble freely may be obtained using the trace as
1
J= gTr (J) (55)

According to Ramsey’s non-relativistic theory, the coupling tensor may be calculated using

second order perturbation theory [95, 96]

(56)

The first summation is over all excited singlet states with energy £ , while the second
summation is over all triplet states with energy E, . The operators for the four mechanisms in

atomic units are:
T T
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where « is the fine structure constant [14], I;, is the position of electron with respect to nucleus,

é(r,

in

) is the Dirac delta function, I,is a three-by-three unit matrix, and s, is spin of electron.

All the summations in Equation (57) are over all electrons in the system. The superscript T

shows that the vectors are transposed.

3.6 Karplus law derivation - dependence on dihedral angle

Vicinal or three bond (CJ(X, Z) =3J (X-Y-W-Z)) spin-spin couplings in magnetic resonance are
noted for their dependence on the local dihedral or torsion angle. The dihedral angle is defined

as =X —W —Y—Z as depicted in Figure 6 (below). To obtain the dihedral angle, first, it
is necessary to compute three intermediate vectors; a, =W —-X, b, =Y-W and ¢, =2Z-Y .

Their unit vectors are obtained as

,  C=T (58)

The dihedral angle ¢ is then derived from the unit vectors using an inverse tangent function

with two arguments as an input:

arctan (y, x)

$=180°- (59)

T

where x = (|b| . a) -(bxc) and y = (a Xb) . (b>< c) . The use of the atan2 function rather than the

inverse cosine function method [97] is recommended, because this avoids a singularity.

The dependence of NMR vicinal coupling values on dihedral angle is given to a good

approximation by Karplus equation [10]:
*J =A cos’p+ B cosg + C (60)

This equation is useful in determining the geometry of spin systems from coupling constants

and for deducing the coupling constants from atomic coordinates.
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Figure 6 Visualization of dihedral angle that connects arbitrary nuclei X and Z.

The coefficients 4, B, and C of the Karplus equation are parameters that depend on the types
of atoms that are coupled through the three bonds i.e. X and Z in this case and the substituents
that are attached to atoms Y and W, atoms that define the torsion angle. Vicinal spin-spin
coupling constants depend on the cosine of the angle ¢ and its square. Complicated relations
between vicinal coupling constant and dihedral angle exist that include substituent effects [98,
99]. In particular, Abraham and Pachler derived an expression that included the
electronegativity effect [100]. In protein NMR spectroscopy the *J coupling constant is linked

to backbone and side chain angles. The backbone angle is described using ¢, v , and @ torsion

angles, while the side chain conformation can be defined by up to five dihedral angles, namely

Zla sz Z37 Z4and ZS'

The fragment of a protein chain in Figure 7 (below) illustrates the *J coupling network in the

backbone and side-chain torsion angles that characterize the conformation.
H

X1

i+1

2

3

Figure 7 Schematic illustration protein backbone @, v, @ and side-chain dihedral angles }, through to ;.
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The ¢ dihedral angle is associated with up to six >/ coupling constants. These are *Junta, >JinCB,

3 Juco, *Jcocs, *Jcona, and *Jcoco.

i+1

|
6—n>c,

Figure 8 ¢ dihedral angle illustration — a rotation around the bond NH and Ca in protein backbone. This
dihedral angle is associated with six 3J coupling constants. The spins connected by these coupling constants are

spins of the circled atoms.

The second most important backbone dihedral angle in the conformation of protein is the y
torsion angle. Although in principle there are six >J values that are related to y , the coupling

constants *Jaini+1 and *Jegini+1 are the only interactions with sufficient contribution that would

provide information to describe dependence of the local geometry on the coupling values.
Figure 7 (above) gives a schematic of the y,, angle and the associated spins are indicated in

Figure 9 (below). Glycine is the only amino acid, which has no y torsion angle.

Ha

I i+1

Ca
Jx
H—Ca—H

Figure 9 Side-chain angle Y, - a rotation around the bond between Co and Cy. Circled atoms illustrate 3J coupled

spins that are affected by the rotation about the }, dihedral angle.
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Side chain sequence determines the unique properties of a particular protein. This includes the

biological activity and the three dimensional structures of proteins [97]. Theoretically there

exist up to five y dihedral angles to define the side chain conformations; in practice the y,

and y, are well studied. The dihedral angle ¥, determines up to nine *J coupling constants.

The four atoms that define the dihedral angle are N, Cq, Cp, and C,.

Accurate parameterization of Karplus equation is necessary in order to associate >J couplings
to dihedral angle. However calibration of Karplus equation and determination of dihedral angle
are complicated by relaxation induced self-decoupling, which reduces couplings in larger
proteins and intra-molecular motions. It also averages >J values over distribution of dihedral

angle [25].

3.7 Complexity scaling of DFT calculations

The DFT approach for computing indirect spin-spin coupling is not realistic for proteins. As it
is demonstrated in Figure 10 (below) the complexity increases steeply as the system size
increases, hence it is not feasible to run coupling calculations even for small proteins such as
ubiquitin and GB3. The main reason for this is the increase in the number of orbitals in DFT,
which increases the complexity by increasing the calculation time at least cubically [11, 12,
101]. Therefore, we have created an empirical parameterization that looks similar to a

molecular dynamics force field.

Table 3 List of the amino acids studied for J-coupling using GIAO B3LYP/ M06/cc-pVTZ and the total CPU time
in hours elapsed for the computation of spin-spin coupling. B3LYP was employed for geometry optimization while

MO06 was used for the computation of spin-spin coupling.

Amino acid number of Calculation time | CPU core | Total core-hours
Atoms in hours count

Glycine 19 10 12 120

Alanine 22 15 12 180

Arginine 36 35.5 24 852

Asparagine 26 54 12 648

Aspartic acid 25 69 12 828
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Glutamine 29 73.5 12 882
Glutamic acid 28 17.5 24 420
Histidine 30 143.5 16 2296
Isoleucine 31 90 12 1080
Leucine 31 94 12 1128
Lysine 34 28 24 672
Methionine 29 20.5 24 492
Phenylalanine 32 192 24 4608
Proline 26 19 16 304
Serine 23 20 12 240
Threonine 26 79.5 16 1272
Tryptophan 36 46 24 1104
Tyrosine 33 31.5 24 756
Valine 28 104.5 16 1672
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Figure 10 Wall clock DFT time elapsed in the computation of spin-spin coupling constant for single amino acids
using GIAO M06/cc-pVTZ in SMD water.

3.8 Empirical parameterization of J-couplings

In Spinach protein module the function “protein.m” takes as input a PDB (Protein Data
Bank) and BMRB (Biological Magnetic Resonance Bank) files. The PDB file should contain
coordinates of all the atoms (along with those of protons). In a case where the file possesses
multiple structures, Spinach by default reads the first geometry. The BMRB file should also
contain chemical shift data of the spins assigned. If there are unassigned nuclear spins, these
are used in the J-coupling prediction, but do not appear in the simulated spectrum. The function
uses the command below to take the two files as input and spits out Spinach input data

structures.
[sys, inter]=protein(“pdb_file”,”bmrb_file”)
The following fields are returned from the command above:
sys. isotopes

sys. labels
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inter.zeeman.scalar
inter.zeeman.matrix
inter.coupling.scalar

inter.coordinates

The field names are user friendly and straightforward with each isotope names, PDB labels are

assigned to sys. isotopes and sys. labels. The Zeeman interaction, chemical shift

anisotropy (CSA), and estimated J-couplings are assigned to the iInter.zeeman.scalar,

inter.zeeman.matrix, and inter.coupling.scalar respectively. The Cartesian

coordinates of the atoms from the PDB are placed into the inter.coordinates.

The actions that undertaken by Spinach during protein data import are:

L.

II.

I1I.

PDB file is parsed, amino acid numbers and types along with PDB atom ids and

coordinates are read in.

BMRB file is parsed, amino acid numbers and types are extracted in addition to the

BMRB atom ids and chemical shifts.

The function removes atoms that are not required in the simulation processes oxygens,
sulphurs, and terminal atoms such as hydroxyl groups. It then matches BMRB chemical
shifts to the PDB coordinates. Then it prints out missing atoms that will not appear in

the simulation.
The J-couplings are estimated using the following procedure.

The molecular bonding graph is split into connected sub-graphs. The angles and

dihedrals are then computed from atomic coordinates.

One bond coupling

The molecular bonding graph is split into connected subgraphs of size two. The
J-couplings are assigned from a complete database of nuclear pairs. One bond
J-couplings are either found from literature or are estimated using DFT for

individual amino acids.

Two bond couplings
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IV.

The molecular bonding graph is partitioned into connected subgraphs of size
three, and two bond J-couplings are assigned from a database of connected
triples of nuclei. The couplings are assigned from experimental data and DFT

calculations.

Three bond couplings

The molecular bonding graph is split into subgraphs of sequentially connected
four atoms and the dihedral angle is computed from atomic coordinates [59].
DFT calculations are used to compute *J couplings, by scanning dihedrals and
the data fitted to Equation (60) to extract the coefficients 4, B, and C, which are

then used in the simulation of proteins.

Couplings across more than three bonds are ignored as the couplings are of
vanishingly small size. However, care has been taken for amino acids that
contain aromatic side chain where long range couplings would provide useful
structural information. An estimated *J coupling values between two proton
spins in aromatic systems falls in the range of 2 to 3 Hz. Examples of these
amino acids are tyrosine, tryptophan, histidine, and phenylalanine. Electrostatic
environment was also left out as its effect is small enough to not affect the
outcome to the accuracy required for the quantum mechanical simulations of

protein [7, 102].

CSA estimation procedure is run for amide nitrogen atoms only with the local
directions determined from the coordinates of N, H, C and CA spins. CSA tensor is
directed along ZZ, YY, and XX, which are assumed as collinear to the N-CO bond,
perpendicular to the peptide plane, and perpendicular to the other two planes

respectively.

Once the import function completes running the sys and inter structures are outputted and used

in the subsequent simulation of the protein system by Spinach.

3.9 Results and dihedral angle scan plots for all amino acids

The Karplus coefficients A, B, and C are obtained by least squares fit of Equation (60) to the

DFT computed J-coupling value scans. Least squares is a mathematical approach that

minimizes the sum of the squares of the deviation of the data points from the line of best fit
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[103]. Spinach function takes a series of J-coupling values from a Gaussian J-coupling
calculation logs that differ in the value of dihedral angle and numbers of the four consecutive
spins that make the dihedral angle. The form of curve fitting employed in our work is the linear

least squares fitting.

The least square fitting of Karplus equation given by J =4 cos’¢ + B cos¢ + C, where the

solution for the constants 4, B and C is given by the formulas:

cos’¢, cos¢, 1 J,

cos’¢, cosg, 1 J,

cos’¢, cosg, 1 ) J,
Bl=| 61)
cl |

cos’ ¢y, cosgy, 1 Jss

If the matrix and the vector on the left are represented as €2 and x, and the vector on the right

as y ; Equation (61) would be of the form:

=y (62)
Thus the solution to Equation (62) is given by

=0y (63)

where the pseudoinverse Q' is computed using Matlab function.

A large database of amino acid specific of the Karplus coefficients 4, B, C has been generated
and incorporated into Spinach to predict the coupling between spins in magnetic resonance
simulations of proteins. The result is presented below as Karplus curves and Boltzmann
probability distribution histograms of all the dihedral angle scans for the sites designated as
flexible. For the Boltzmann probability distribution histograms, the four atoms for which the
dihedral angle is calculated, are exactly the same four atoms that the J-coupling is propagated
across. Proline is not scanned as it has no part that deems to be scanned at a dihedral angle
however, it has a five membered ring that do isomerize between cis and trans forms. Side chain
scan for Alanine and Glycine was not performed as these amino acids possess no side chain

with relevant dihedral angles.
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3.9.1 Karplus coefficients, ALA

Method: GIAO DFT B3LYP/MO06/cc-pVTZ in SMD Water

Atom | Atom Atom Atom A, Hz | Armsp | B, Brmsp | C, Hz Crmsp
1 2 3 4 Hz
N C CA N 0.05 0.29 -0.04 |1 0.17 0.02 0.15
HA CA C N 1.09 0.38 -0.02 |1 0.17 0.03 0.15
HA CA C N -0.88 -0.61 -0.27

[104]
CB CA C N 0.18 0.33 0.03 |0.14 0.18 0.18
H N CA HA 10.80 | 0.36 -0.11 | 0.20 0.03 0.20
H CA HA 6.51 -1.76 1.60

[105]
C N CA HA 5.67 0.27 -1.68 | 0.13 0.70 0.15
H N CA C 6.81 0.36 -1.23 1 0.16 -0.30 0.22
H N CA CB 5.54 0.34 -0.65 | 0.30 -0.33 0.15
H N CA CB 3.06 -0.07 0.13

[106]
C N CA C 2.64 0.26 -1.00 | 0.13 0.35 0.16
C CA C 1.33 -0.88 0.06

[107]
C N CA CB 2.04 0.26 -0.70 | 0.14 0.31 0.16
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Figure 11 ALA ¢ dihedral angle scan and the Karplus curves of all the torsion angles related to the dihedral
angle (top panel) along with Boltzmann probability distribution graphs of the respective three bond coupled spins
(bottom panel). References in the table indicate that the Karplus coefficient values that are obtained from that
literature and integrated into Spinach as that values came from experiment, however all the Karplus curves in the

graph are acquired from theory.

The result of the fitting of *J coupling data to Karplus curve for six torsion angles is given in
Figure 11 (above). Top panel shows the Gaussian dihedral angle scan data nicely follow the
function for all Karplus curves. The bottom panel Boltzmann probability distribution
histograms are drawn as stairs. The probability distribution is determined using Equation (64)

i.e. dividing the Boltzmann factor by the partition function:
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(64)

where P and E, are the probability and energy at state i, while R and 7 are the ideal gas

constant and temperature of the system respectively.

In the generation of the dihedral graphs in Matlab, all that was required were Spinach function
“drhedral” to compute dihedral angles connecting an arbitrary binary spins and another
function “karplus_TFfit” that fits Karplus equation to coupling data, from electronic
structure calculation at the above mentioned method, at a specific dihedral angle and plots the

Karplus curves, and the probability distribution as histograms.
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Figure 12 ALA W dihedral angle scan and the Karplus curves of all the torsion angles associated to the Y
dihedral angle along with the Boltzmann probability distribution graphs of the respective coupled spins top and

bottom panels respectively.

Three bond scalar couplings (*J) between two nitrogen spins is not very well studied. The

amplitudes are found to be very small. As it is depicted in Figure 12 (above) the >J between
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nitrogen and proton at alpha position shows the dependence of the coupling values on dihedral
angle or the Karplus relation while the coupling between the above mentioned spins do not.
Therefore, a pattern of under and over prediction specifically for the *Jxcy coupling data is
clearly visible in Figure 12 (above). The probability density distribution graph shows, the
probability distribution in the range of 10° to 60° and 170° to 250° for >Jxn of the w backbone
dihedral angle. There is also probability distribution of just over 0.04 at 310° which goes down
to around 0.01 that went up to nearly 0.05 at 360°. For the 3Jxcb the distribution is mostly in
the range 200° to 300° with another pronounced peak in between 50° and 150° along with a
small blip from 180° to 200°. Similar pattern for the Jxm dihedral angle however the
probability distribution is at different conformations, please refer to probability distribution

graph in Figure 12 (above) to find out the range of coverage.

3.9.2 Karplus coefficients, ALA

Method: GIAO DFT B3LYP/M06/cc-pVTZ in SMD Water M06/cc-pVDZ optimized structure

Atom1 | Atom 2 | Atom3 | Atom4 | A, Hz | Armsp | B, HzZ | Brvsp | C, Hz | Crmsp
H N CA HA 10.88 | 0.41 -0.23 10.20 -0.03 | 0.22
C N CA HA 582 10.27 -1.67 |0.15 0.68 10.14
H N CA C 7.01 0.37 -1.21 | 0.16 -0.35 |0.23
H N CA CB 5.51 0.27 -0.71 10.19 -0.33 ] 0.16
C N CA C 2.65 0.27 -1.01 | 0.13 0.40 ]0.16
C N CA CB 2.10 10.29 -0.69 |0.14 0.30 ]0.17
3.9.3 Karplus coefficients, ARG

Method: GIAO DFT B3LYP/MO06/cc-pVTZ in SMD Water

Atom | Atom2 | Atom3 | Atom4 | A,Hz | Armsp | B, Hz | Brmsp | C, Hz | Crvs
1 D
N C CA N 0.01 0.37 -0.03 1 0.21 -0.02 10.23
HA CA C N 1.03 0.32 0.06 |0.15 -0.13 ] 0.16
HA CA C N -0.88 -0.61 -0.27

[104]
CB CA C N 0.13 0.36 -0.04 | 0.16 0.03 0.17
HA CA CB CG 7.89 0.32 0.35 0.12 -0.08 | 0.22
N CA CB CG 1.18 0.42 -0.08 | 0.17 -0.00 ]0.23
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C CA CB CG 326 1029 |-0.67 |0.12 |0.12 |0.19
HA |CA CB HBI 11.60 | 038 [0.73 |0.15 |049 |0.20
HA |CA CB HBI 9.5 -1.60 1.80
[108]

N CA CB HBI 277 035 |-0.09 |0.13 |0.06 |0.22

CA CB HBI 720 039 |-0.53 |0.17 |0.09 |0.22
C CA CB HBI 7.2 -2.04 0.60

[109]

HA |CA CB HB2 12.14 | 031 [168 |0.15 |0.75 |0.19
N CA CB HB2 344 032 |-036 |0.11 |0.06 |0.22
C CA CB HB2 751 031 |-078 |0.12 |0.17 |0.19
H N CA HA 11.20 030 [0.10 |0.12 |-040 |0.20
C N CA HA 581 038 |-1.90 |0.19 |034 |o0.21
H N CA CB 561 034 |-061 |0.17 |-034 |0.14
C N CA CB 202 [030 |-0.87 |0.15 |0.13 |0.15
H N CA C 639 037 |-124 |0.18 |-0.28 |0.I5
C N CA C 273 025 |-086 |0.13 |0.06 |0.14
CA |CB CG CD 592 1029 |-0.11 |0.16 |0.14 |0.16
HB!l |CB CG CD 12.54 039 [0.02 |022 [-0.03 |0.20
HB2 |CB CG CD 13.48 |033 [-0.10 |0.22 |-0.18 |0.17
CA |CB CG HG1 793 040 |-0.03 |023 |0.07 |0.23
HB! |CB CG HG1 13.12 031 [1.08 |0.13 |032 |0.17
HB2 |CB CG HG1 12.90 | 034 [091 |0.15 [0.63 |0.15
CA |CB CG HG2 7.65 038 031 |0.15 |0.08 |0.26
HBl |CB CG HG2 11.76 1034 [0.75 |0.14 |0.76 |0.18
HB2 |CB CG HG2 13.09 031 [157 |0.2 050 |0.22
CB | CG CD NE 149 032 [-020 |0.18 |[-0.01 |0.15
HGl |CG CD NE 518 028 |-074 |0.13 |-0.02 |0.18
HG2 | CG CD NE 425 034 |-009 |0.12 |0.09 |0.22
CB | CG CD HDI 745 1035 |-0.50 |0.14 |0.16 |0.20
HGl |CG CD HDI 12.79 036 |041 |0.15 |0.83 |0.18
HG2 | CG CD HDI 1348 039 [0.82 |0.18 |0.15 |0.22
CB | CG CD HD2 674 033 |-0.10 |0.12 |0.17 |0.20
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HG1 | CG CD HD2 13.28 | 0.36 0.86 0.19 0.31 0.20
HG2 | CG CD HD2 11.31 | 0.35 0.38 0.13 0.83 0.18
CG CD NE CZ 2.63 0.35 -0.76 | 0.20 0.22 0.23
HD1 | CD NE CZ 7.37 0.28 -2.24 10.15 0.41 0.15
HD2 | CD NE CZ 7.57 0.34 -2.65 |0.19 0.58 0.12
CG CD NE HE 5.46 0.33 -0.62 | 0.15 -0.38 | 0.22
HDI | CD NE HE 11.93 | 042 -0.51 |0.18 0.17 0.14
HD2 | CD NE HE 12.33 | 0.33 -0.24 | 0.14 0.17 0.19
CD NE CZ NHI1 0.55 0.42 0.22 0.22 0.20 0.16
HE NE CZ NHI1 1.47 0.47 -0.52 | 0.10 0.73 0.43
CD NE CZ NH2 0.60 0.30 0.22 0.16 0.11 0.14
HE NE CZ NH2 1.60 0.36 -0.52 | 0.11 0.57 0.32
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Figure 13 ARG ¢ backbone dihedral angle scan. Top panel Karplus curves for the torsion angles linked to the
¢ dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective torsion
angles.

The Karplus curve for the *Juarn torsion angle is broken due to the presence of hydrogen bond.

This also affected the appearance of the probability distribution histograms for all the torsion

angles linked to the ¢ backbone dihedral angle, making them look sharp.
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Figure 14 ARG W backbone dihedral angle scan. Top and bottom panels are Karplus curves and well behaved
Boltzmann probability distribution histograms for the torsion angles associated to the Y dihedral angle scan

respectively.

Three bond couplings between two nitrogen and between nitrogen and carbon spins is of

vanishingly small values. This corresponds to small amplitude numerical noise, hence the
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emergence of anomalous Karplus curve graphs. As it is depicted in Figure 14, the vicinal
coupling between nitrogen and the proton at « position shows the Karplus relation between
the coupling values and the dihedral angle i.e. couplings are largest at 0, 180, and 360 degrees
with zero at 90 and 270 with the values in between the extremes reflecting the deduction of the

values from Karplus equation.
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Figure 15 ARG %, side-chain dihedral angle scan. Top panel Karplus curves for torsion angles linked to the },
dihedral angle scan and bottom panel Boltzmann probability distribution histograms for the respective torsion

angles.
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Figure 16 ARG Y, side-chain dihedral angle scan. Top panel fitting of Karplus curves associated to the Y,
dihedral angle to theoretical NMR vicinal coupling data and bottom panel probability distribution histograms for

the respective torsion angles.

The existence of hydrogen bond is responsible for the jumps in the Karplus curves and sharp

appearance of the Boltzmann’s probability distribution graphs.
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Figure 17 ARG 5 side-chain dihedral angle scan. Top panel Karplus curves for torsion angles related to the }

dihedral angle scan and bottom panel Boltzmann probability distribution histograms for the respective torsion

angles.

Hydrogen bond effect is also responsible for the sharp appearance of the Boltzmann probability

distribution histograms and for some of the Karplus curves that appear broken in Figure 17

upper panel.
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Figure 18 ARG ¥, side-chain dihedral angle scan. Top panel Karplus curves for the torsion angles related to
the ¥, dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective torsion

angles.

The jump and discontinuity observed on the Karplus curves is due to hydrogen bond between
a proton from the sidechain and oxygen from the backbone amino acid residue and also
possibly from Van der Walls interactions from the presence of the large hydrocarbon sidechain
of the amino acid arginine. It is thought that these effects are also likely to be responsible for
the broad probability distribution histograms depicted in Figure 18 (above). The Karplus curve
for the 3Jc.cg couplings (blue colour legend) is broken and its Boltzmann probability
distribution histogram along with that of the *Jczna1 torsion angle are broad. Arginine as basic

amino acids favour charge-charge interactions.
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Figure 19 ARG )Y side-chain dihedral angle scan. Top panel X5 Karplus curves for the torsion angles and
bottom panel Boltzmann probability distribution histograms related to the Y dihedral angle scan.

The broken curve for */nn2ue and *Jnnite is likely due to the hydrogen bond being pulled away
as a result of dihedral angle scan. This pulling of hydrogen bonded atoms disturbs the spatial
arrangement and destroys the Karplus relation hence causes jumps in coupling values. The
other two three bond couplings are >Jxn2ca and *Jxnicd. The values for these couplings are small,

and small amplitudes are numerical noise hence the breakage of the coupling curve.
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3.9.4 Karplus coefficients, ASN

Method: GIAO DFT B3LYP/ M06/cc-pVTZ in SMD Water

Atom | Atom2 | Atom | Atom | A, Hz Arwmsp | B,Hz | Brmsp | C, Hz | Crumsp
1 3 4
CG CB CA N 1.64 037 |-0.60 [027 |-0.12 |0.19
CG CB CA C 3.40 036 |-094 [0.14 |0.27 |0.19
CG CB CA HA 9.19 0.28 -0.57 10.13 ]0.01 |0.20
HA CA CB HBI 12.85 0.32 1.45 0.12 1058 [0.20
HA CA CB HB2 |12.37 0.33 0.70 0.12 1088 [0.22
N CA CB HB1 | 3.65 0.27 0.31 0.14 ]0.14 ]0.14
N CA CB HB2 |4.19 0.49 -0.01 [0.17 |-0.07 | 0.36
C CA CB HB1 | 7.86 0.33 0.21 0.12 ]-0.17 [0.20
C CA CB HB2 | 6.56 0.34 -0.18 [0.13 031 |0.20
CA CB CG ND 0.26 034 |-033 [0.13 |-0.04 |0.20
Hl CB CG ND 1.46 042 |-041 (022 |-0.22 |0.25
H2 CB CG ND 1.36 034 |[-041 |0.19 |-0.30 |0.20
H N CA HA 11.48 0.34 -041 1013 |-0.09 |0.22
C N CA HA 5.83 0.45 -1.67 10.19 |0.51 |0.23
H N CA C 6.26 0.46 -144 1025 [-0.34 |0.18
H N CA CB 5.62 0.36 -0.70 | 0.21 -0.34 1 0.16
C N CA C 2.89 0.25 -1.03 [0.14 |0.08 |0.14
C N CA CB 1.93 0.29 -0.73 1013 ]0.05 |0.17
N C CA N 0.09 0.29 -0.05 10.14 [0.00 |0.18
N C CA HA 0.94 0.35 -0.16 [0.16 |-0.16 |0.17
HA CA C N -0.88 -0.61 -0.27

[104]
CB CA C N 0.10 0.38 -0.14 1 0.21 0.00 ]0.17
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Figure 20 ASN ¢ backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann’s

probability distribution graphs for torsion angles associated to the ¢ backbone dihedral angle scan.

The presence of hydrogen bond between the backbone amide proton and sidechain oxygen
atom bonded to Cs is very likely to be responsible for the broken Karplus curves that involve
the backbone amide participated in couplings. The hydrogen bond breakage might also be
responsible for the sharp appearance of the Boltzmann probability distribution histograms of
the torsion angles that involved the backbone amide proton. The affected torsion angles are
3JcHn, *JHatin and >Jcprn coloured as green, cyan and yellow respectively. There, also exist other
atoms that are involved in hydrogen bond interactions (example: backbone amide proton and

backbone oxygen atom and sidechain amide proton and oxygen atoms), however these

interactions are not affected by the scan of the ¢ dihedral angle.
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Figure 21 ASN W backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann

probability distribution histograms for the torsion angles linked to Y dihedral angle scan.

The broken curves are due to the very small coupling values between two nitrogen atoms, and

nitrogen and carbon nuclei separated by three bonds. Please note that these are very small

amplitudes hence the numerical noise.
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Figure 22 ASN %, side-chain dihedral angle scan. Top panel Karplus curves for torsion angles linked to the },
dihedral angle scan and bottom panel Boltzmann probability distribution histograms for the respective torsion

angles.

Hydrogen bond between oxygen atom at C, position and the amide backbone proton is
responsible for the jump in some of the Karplus curves and the thin appearance of the

probability distribution histograms.
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Figure 23 ASN Y, side-chain dihedral angle scan. Top panel Karplus curves associated to the }, dihedral

angle scan and bottom panel probability distribution graphs for the respective torsion angles.

The 3Jndca coupling values are of vanishingly small size hence the curve do not fit the data
properly. The coupling between these nuclei is very small, hence the numerical noise. The other
Karplus curves involve couplings between sidechain nitrogen atom at d position and hydrogen

atoms of Cg.
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3.9.5 Karplus coefficients, ASP

Method: GIAO DFT B3LYP/MO06/cc-pVTZ in SMD Water

Atom | Atom2 | Atom3 | Atom4 | A,Hz | Armsp | B, Hz | Brmsp | C, Hz | Crmsp
1
CG CB CA N 1.39 0.32 -0.86 | 0.18 0.01 0.16
CG CB CA C 4.13 0.30 -1.13 | 0.14 0.23 0.16
CG CB CA HA 9.63 0.27 —0.94 | 0.16 -0.01 ]0.13
HA CA CB HBI 12.53 0.36 1.13  ]10.15 1.09 10.20
HA CA CB HB2 13.22  10.26 1.14 | 0.12 029 10.17
N CA CB HBI1 4.27 0.58 0.13 [0.24 -0.09 |0.40
N CA CB HB2 3.76 0.37 021 [0.12 0.09 10.23
C CA CB HBI 7.96 0.33 0.13 ]0.14 -0.15 | 0.19
C CA CB HB2 7.59 0.36 -0.11 |0.13 0.10 | 0.22
H N CA HA 10.81 0.44 -0.18 | 0.11 -0.08 | 0.31
C N CA HA 5.52 0.44 -1.56 | 0.22 0.37 10.21
H N CA C 6.82 0.35 -1.19 1 0.13 -0.45 10.23
H N CA CB 5.72 0.34 -0.63 | 0.21 -0.52 1 0.18
C N CA C 2.76 0.27 -0.94 |0.13 0.07 ]0.18
C N CA CB 2.18 0.28 -0.87 |0.13 0.05 |0.17
N C CA N 0.09 0.35 -0.07 | 0.15 -0.06 | 0.24
N C CA HA 0.86 0.53 -0.20 | 0.20 -0.17 1 0.28
HA CA C N -0.88 -0.61 -0.27

[104]
CB CA C N 0.05 0.34 -0.17 | 0.17 0.04 ]0.21
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Figure 24 ASP ¢ backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann

probability distribution histograms for torsion angles related to the ¢ dihedral angle respectively.

The sharp appearance of the probability distribution graphs is attributed to hydrogen bond.
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Figure 25 ASN W backbone dihedral angle scan. Top and bottom panels are Karplus curves and probability
distribution graphs for torsion angles related to the Y dihedral angle respectively.

Karplus curve is broken for *Jxn and *Jncb as these are very small couplings and the *JnHa

coupling curve has jumps likely to be due to the hydrogen bond breakage.
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Figure 26 ASP Y, side-chain dihedral angle scan. Top panel Karplus curves for torsion angles associated to the

X, dihedral angle scan and bottom panel Boltzmann probability distribution histograms for the respective torsion

angles.

3.9.6 Karplus coefficients, CYS

Method: GIAO DFT B3LYP/MO06/cc-pVTZ in SMD Water

Atom | Atom | Atom3 | Atom4 | A,Hz | Armsp | B,Hz | Brmsp | C, Hz | CrMmsp
1 2
N C CA N 0.03 0.26 -0.08 ]0.14 0.00 0.14
HA CA C N 0.91 0.32 -0.14 | 0.12 -0.19 0.20
HA CA C N -0.88 -0.61 -0.27

[104]
CB CA C N -0.07 10.32 -0.35 10.13 0.07 0.17
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C CA CB HBI 730 10.34 -0.39 |0.12 0.02 0.20
C CA CB HB2 7.14 10.34 -0.28 |0.12 0.16 0.21
HA CA CB HB1 12.80 | 0.33 1.00 ]0.15 0.65 0.16
HA CA CB HB2 11.89 |0.39 096 [0.17 ]0.80 0.24
N CA CB HB2 4.06 1045 0.16 |0.18 -0.12 1 0.35
N CA CB HBI 3.86 0.35 0.24 0.11 0.04 0.23
H N CA HA 11.14 | 0.39 0.07 10.12 -0.19  10.27
C N CA HA 569 10.29 -1.88 0.14 ]0.30 0.20
H N CA C 6.57 0.44 -1.11 ] 0.19 -0.36 [ 0.23
H N CA CB 6.90 0.30 -0.55 10.20 -0.66 | 0.15
C N CA C 2.66 |0.25 -1.00 | 0.13 0.10 0.16
C N CA CB 241 0.26 -1.04 [0.13 0.01 0.15
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Figure 27 CYS ¢ backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann
probability distribution graphs for torsion angles associated to the ¢ dihedral angle scan.

The existence of hydrogen bond between the backbone amide proton and oxygen atom bonded
to carbon next to Cq is likely to be responsible for the broken Karplus curves that involve the
backbone amide participating in J-couplings. The hydrogen bond making and breaking as the
¢ dihedral angle rotated might also be responsible for the anomalous appearance of the
Boltzmann probability distribution histograms of the torsion angles that involved the backbone

amide proton.
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Figure 28 CYS W backbone dihedral angle scan. Top panel Karplus curves of the torsion angles associated to
the Y dihedral angle and bottom panel are the respective probability distribution histograms.

Similar to the above mentioned, this dihedral angle affects three >J couplings, namely >Jxn,
3Jneb, and *Jnma. The first two are very small, however *Jnua has higher coupling values that
shows a Karplus like pattern. The broken curves are attributed to the small coupling values.

Hydrogen bond breakage could also be responsible for the anomalous coupling curves.

62



=
vl

[} 3]NS§
Fitted line to 3]NSg

o 3]CS§
——Fitted line to 3]CSg

o 3]HaS%
Fitted line to 3JHaSg
o 3JHaHb1l
——Fitted line to 3JHaHb1
1 * 3JNHb1l
Fitted line to 3]NHb1
x 3JCHb1
Fitted line to 3JCHb1
4 x 3JCHb2
Fitted line to 3JCHb2
+ 3]NHb2
— —Fitted line to 3]NHb2
+ 3JHaHb2
— —Fitted line to 3JHaHb2

—_
o

921

J-coupling, Hz

1
vl

e <
vt o

=]
N
T

——Probability distribution to 3]NSg

4 ——Probability distribution to 3 CS§

—— Probability distribution to 3]Ha

—— Probability distribution to 3]JHaHb1
Probability distribution to 3]NHb1

——Probability distribution to 3]CHb1
Probability distribution to 3]CHb2

1 — —Probability distribution to 3]NHb2

— — Probability distribution to 3JHaHb2
I—I‘—lﬁ_A | JM _ JH—L__I — |

50 100 150 200 250 300 350
Dihedral angle, degrees

Probability

e
N
T

e
w
T
1

=
U
T
1

o
|
|

Figure 29 CYS y, side-chain dihedral angle scan. Top panel Karplus curves for torsion angles associated to the
X, dihedral angle scan and bottom panel Boltzmann probability distribution histograms for the respective torsion

angles.

%, dihedral angle scan brings the sidechain sulphur atom closer the backbone amide hydrogen

to form a hydrogen bond. Thus, the making and breaking of the hydrogen bond affects the

coupling data and fitting of Karplus curves that involved sulphur atom appears to be broken.

3.9.7 Karplus coefficients, GLU

Method: GIAO DFT B3LYP/MO06/cc-pVTZ in SMD Water

Atom | Atom2 | Atom 3 | Atom4 | A,Hz | Armsp | B, Hz | Brmsp | C, Hz | CrMmsp
1
N C CA N 0.04 0.30 -0.04 | 0.18 -0.03 | 0.19
HA CA C N 1.18 0.32 -0.00 | 0.16 -0.18 | 0.17
HA CA C N -0.88 -0.61 -0.27

[104]
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CB CA C N 0.23 0.35 -0.08 |0.14 [0.00 |0.18
CG CB CA N 2.03 0.32 0.09 0.13 -0.01 | 0.20
CG CB CA C 3.63 0.35 -044 |0.16 [0.12 [0.18
CG CB CA HA 834 10.39 0.64 |0.21 0.03 |0.20
C CA CB HB1 7.73 0.38 -0.20 1022 [-0.03 |0.21
C CA CB HB2 7.42 0.35 -0.38 | 0.12 024 10.22
HA CA CB HB1 12.63 |0.42 1.18 0.16 1073 10.20
HA CA CB HB2 12.67 | 0.34 1.76 0.13 0.63 10.24
N CA CB HB2 4.59 1046 0.16 ]0.12 [-0.07 |0.33
N CA CB HB1 420 1037 0.25 0.12 0.06 |0.24
H N CA HA 10.80 | 0.46 -0.16 [0.12 -0.06 | 0.35
C N CA HA 5.61 0.39 -1.62 | 0.23 0.33 10.20
H N CA C 694 |0.38 -1.09 0.14 [-042 |0.24
H N CA CB 5.42 0.41 -0.60 | 0.38 -0.32 1 0.17
C N CA C 2.73 0.27 -094 10.14 [0.12 ]0.16
C N CA CB 224 1045 -0.64 1020 [0.04 ]0.24
CA CB CG CD 5.17 0.95 -0.79 1086 [0.06 |0.29
Hl CB CG CD 9.52 0.61 -1.32 1 0.22 0.09 1041
H2 CB CG CD 9.99 1.87 -0.94 [ 2.11 0.23 10.56
CA CB CG HGI1 8.12 12.50 -0.14 | 2.82 0.13 10.76
HI CB CG HGI1 14.19 | 0.71 1.70 046 [0.18 |0.24
H2 CB CG HGl1 13.28 |10.43 0.43 0.23 0.81 ]0.25
CA CB CG HG2 829 10.50 -0.35 10.23 0.01 1035
HI CB CG HG2 9.67 10.99 2.18 1.02 1.67 10.34
H2 CB CG HG2 14.53 | 0.86 1.13 0.69 10.19 ]10.22
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Figure 30 GLU ¢ backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann

probability distribution graphs for the torsion angles related to the ¢ dihedral angle scan respectively.

Torsion angles that involve the proton (H«) bonded to Cu have broken Karplus curves and

anomalous probability distribution graphs that are sharp. This may be, due to steric effects that

come from longer methyl sidechain groups and the formation of zwitterion as a result of proton

transfer from the carboxylic acid group.
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Figure 31 GLU ' backbone dihedral angle scan. Top panel Karplus curves for torsion angles associated to the
Y dihedral angle scan and bottom panel Boltzmann probability distribution histograms for the respective torsion

angles.

The Karplus curves for the torsion angles that involve carbon and nitrogen as well as nitrogen
and nitrogen are numerically very small, thus the fitting of the Karplus curves to the vicinal
coupling data looks random and noisy. The fitting of the Karplus curve for the torsion angle

involving nitrogen and the Cq proton also shows jumps, which may be attributed to steric effect.
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Figure 32 GLU %, side-chain dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann

probability distribution graphs for the torsion angles related to the }, dihedral angle scan respectively.

The sharp appearance and tiny bumps present in the Boltzmann probability distribution

histograms might be down to the presence of longer hydrocarbon sidechains of the glutamic

acid. There exist hydrogen bonds in the backbone chain, but this appears not to affe

Karplus curves and distribution graphs.
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Figure 33 GLU Y, side-chain dihedral angle scan. Top panel Karplus curves for torsion angles related to }/,

dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective torsion angles.

The scan of the y, dihedral angle brings the sidechain oxygen atom attached to Cs closer to

the backbone amide proton to form a hydrogen bond. Thus, the making and breaking of the

hydrogen bond is likely to be responsible for the unusual feature of the Boltzmann’s probability

distribution graphs and jumps in the Karplus curves.

3.9.8 Karplus coefficients, GLN

Method: GIAO DFT B3LYP/MO06/cc-pVTZ in SMD Water
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Atom | Atom2 | Atom3 | Atom4 | A,Hz | Armsp | B,Hz | Brmsp | C, Hz | Crmsp

1
N C CA N 002 |033 |-0.12 |0.15 |0.00 |0.20
HA |cA C N 121 032 |-008 |0.12 |-022 |021
HA |CA C N -0.88 -0.61 -0.27

[104]
CB |cCA C N 022 030 |000 |0.17 |0.04 |0.18
CG |CB CA N 137 026 |-0.15 |0.17 |-0.04 |0.13
CG |CB CA C 294 1035 |-042 |0.19 |0.18 |0.19
CG |CB CA HA 840 028 |074 013 |025 |0.16
C CA CB HBl |753 |033 |-092 [013 |-0.19 |0.18
C CA CB HB2 680 [034 |-127 [013 |027 |0.20

HA CA CB HBI1 13.20 |0.34 1.52 0.13 0.27 10.18

HA CA CB HB2 12.67 10.29 1.70 0.15 045 10.15

N CA CB HB2 3.39 0.38 -0.35 0.19 10.09 ]0.24
N CA CB HB1 3.36 0.34 -0.15 0.14 10.03 ]0.23
H N CA HA 10.87 10.34 0.37 0.11 -0.17 10.26
C N CA HA 545 0.29 -1.86 0.15 039 [0.14
H N CA C 6.44 0.48 -1.24 0.19 -0.33 1 0.22
H N CA CB 5.54 0.31 -0.39 0.18 -0.36 | 0.13
C N CA C 2.50 0.28 -0.89 0.13 0.16 10.18
C N CA CB 2.07 0.28 -0.87 0.15 0.18 10.16
CA CB CG CD 3.72 0.31 -0.97 0.17 0.13 10.13
Hl CB CG CD 8.91 0.33 -0.90 0.14 |0.01 |0.18
H2 CB CG CD 8.84 0.30 -0.62 0.15 -0.03 | 0.16
CA CB CG HGl1 8.65 0.40 -0.21 0.25 -0.14 | 0.18
HI CB CG HGl1 12.75 1 0.30 1.28 0.13 0.41 0.17
H2 CB CG HGI 11.92 10.36 1.4 034 1094 ]0.16
CA CB CG HG2 8.20 0.31 0.06 0.13 0.07 10.20
HI CB CG HG2 12.04 10.27 0.48 0.13 094 0.18
H2 CB CG HG2 13.00 | 0.41 1.63 0.12 039 10.31
CB CG CD NE 0.25 0.36 -0.17 0.18 -0.01 | 0.22
HGl | CG CD NE 1.34 0.36 -0.30 0.23 -0.26 ] 0.21
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Figure 34 GLN @ backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann’s

probability distribution graphs for torsion angles associated to the ¢ dihedral angle scan respectively.
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Figure 35 GLN y backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann

probability distribution histograms for the torsion angles related to the Y dihedral angle scan respectively.

The y dihedral angle is associated to three torsion angles with two of the J-couplings involving

nitrogen with nitrogen and carbon nuclei. The vicinal coupling of these spins appears to have

small amplitudes. The fitting of the Karplus curve to these data turns out to be random noise.

71



NH-CH,

NH

H>N H3C

[u=y
ol

[u=y
o

J-coupling, Hz
ol

-5

o 3]JNC
Fitedlineto3)Ncg O GIn
o 3JNHb1
——Fitted line to 3]NHb1
1 o 3JNHb2
Fitted line to 3J]NHb2
o 3JHaHb2
Fitted line to 3JHaHb2
41 * 3JHaHb1l
Fitted line to 3JHaHb1
* 3]HaC;i’,
Fitted line to 3]JHaCg
x 3]CC§
Fitted line to 3JCCg
x 3JCHb1
— —Fitted line to 3JCHb1
+ 3JCHb2

0.25 . . . . . . .

— —Fitted line to 3JCHb2

o
N
T

0.15r

Probability

e
=
T

0.05¢

—

by My

-

——Probability distribution to 3]NC

——Probability distribution to 3]NHb1
Probability distribution to 3]NHb2

—— Probability distribution to 3]JHaHb2
Probability distribution to 3JHaHb1

—— Probability distribution to 3]JHaCg

1 ——Probability distribution to 3]CC%

— — Probability distribution to 3JCHb1

— — Probability distribution to 3JCHb2

Dihedral angle, degrees

50 100 150 200 250 300 350 400

Figure 36 GLN }, side-chain dihedral angle scan. Top panel Karplus curves for the torsion angles linked to the

X, dihedral angle scan and bottom panel probability distribution histograms for the respective torsion angles.

The staggered along the bumps appearance in the Boltzmann probability distribution

histograms might be due to the presence of longer hydrocarbon sidechains of the glutamine

amino acid. There also exist hydrogen bond interaction between the sidechain chain amide

proton and oxygen attached to the Cs, but this interaction appears not to affect the Karplus

curves and distributions.
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Figure 37 GLN Y, side-chain dihedral angle scan. Top panel Karplus curves of torsion angles associated to the
X, dihedral angle scan and bottom panel Boltzmann probability distribution graphs of the respective torsion

angles.
Hydrogen bond between sidechain oxygen atom attached to the Cs and the backbone amide
proton that arises as the y, dihedral angle is rotated along with the sidechain hydrocarbon

steric effect is likely to be responsible for the presence of bumps in the probability distribution

graph and jumps of the Karplus curves.
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Figure 38 GLN }Y; side-chain dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann
probability distribution graphs for the torsion angles linked to the } dihedral angle scan respectively.

The Karplus curves for the *Jxecy coupling data involves very small amplitudes, hence the
fitting of the curve resembles random noise. The curves for the other torsion angles involve J-
coupling between nitrogen and amide protons. The fitting of these Karplus curves over and

under predicts the data.

3.9.9 Karplus coefficients, GLY

Method: GIAO DFT B3LYP/MO06/cc-pVTZ in SMD Water
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Atom | Atom | Atom | Atom4 | A,Hz | Armsp | B, Hz | Brmsp | C, Hz | CrMmsp
1 2 3

N C CA N 0.00 0.00 0.00

HA CA C N 0.91 -0.14 -0.19

CB CA C N 0.00 0.00 0.00

H N CA H3 13.07 | 0.51 -0.50 ]0.15 -0.21 0.35
C N CA H3 6.97 0.29 -1.62 1 0.15 0.05 0.14
H N CA C 7.73 0.33 -1.73 0.23 -0.72 0.14
H N CA H2 13.25 10.40 -046 | 0.12 -0.47 0.31
C N CA C 3.65 0.32 -0.99 10.17 -0.19 0.25
C N CA H2 7.37 0.31 -1.78 1 0.16 -0.08 0.15
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Figure 39 GLY ¢ backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann
probability distribution graphs for the torsion angles associated to the ¢ dihedral angle scan respectively.

Hydrogen bond between the backbone nitrogen nuclei part of the ¢ dihedral angle and the

oxygen atom bonded to carbon that is attached to the nitrogen is likely to be responsible for the
anomalous appearance of the Boltzmann probability graphs and the jumps on the Karplus

curves.

3.9.10 Karplus coefficients, HIS

Method: GIAO DFT B3LYP/M06/cc-pVTZ in SMD Water
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Atom | Atom2 | Atom 3 | Atom4 | A,Hz | Armsp | B, Hz | Brmsp | C, Hz | Crms
1 D

N C CA N -0.02 1 0.39 -0.04 ]0.25 -0.01 10.23
HA CA C N 094 1031 0.15 ]0.14 -0.18 ] 0.17
CB CA C N 0.09 10.35 -0.09 ] 0.15 0.04 ]0.16
H N CA HA 11.45 | 0.40 -0.27 | 0.11 -0.27 10.28
C N CA HA 566 |0.34 -1.65 ]0.13 037 ]0.22
H N CA C 6.58 1040 -0.84 10.13 -0.46 | 0.30
H N CA CB 642 10.29 -0.70 1 0.12 -0.57 10.18
C N CA C 246 033 -0.92 | 0.18 0.19 10.18
C N CA CB 252 1039 -0.60 ] 0.26 -0.05 10.20
HA CA CB CG 8.47 10.40 -0.79 10.12 034 10.25
HA CA CB HBI 11.94 |0.33 142 10.14 043 10.18
HA CA CB HB2 11.55 10.33 1.31 0.14 0.70 ]0.16
N CA CB CG 1.26 1 0.30 -0.24 10.13 0.01 ]0.17
N CA CB HBI 2.82  10.30 -0.30 ] 0.11 0.03 ]0.21
N CA CB HB2 249 1035 -0.07 10.12 0.08 ]0.22
C CA CB CG 3.88 1033 -0.59 |0.13 0.09 10.18
HA CA CB HBI1 7.07 10.34 -0.39 10.13 0.03 10.20
C CA CB HB2 6.62 1032 -0.21 ]0.18 0.13 10.17
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Figure 40 HIS ¢ backbone dihedral angle scan. Top panel Karplus curves for the torsion angles associated to
the ¢ dihedral angle scan. Bottom panel Boltzmann probability distribution graphs for the respective torsion

angles.

The presence of hydrogen bond between amide backbone proton and oxygen attached to carbon
that is bonded to C« along with interaction between the amide proton of the cyclic sidechain
group of histidine with oxygen attached to carbon atom next to amide nitrogen of the backbone
are likely to be responsible for the anomaly of the Boltzmann energy probability distribution
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graphs. The broken Karplus curves are those of the torsion angles that involved backbone
amide proton as one of the three bond separating J-coupled nuclei. This is mainly due to the
involvement of the amide proton in hydrogen bond interaction. Thus the breaking of hydrogen

bond as the dihedral angle rotated breaks the coupling hence the fitting of the Karplus curves.
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Figure 41 HIS W backbone dihedral angle scan. Top panel Karplus curves for the torsion angles that are related
to the W dihedral angle scan. Bottom panel Boltzmann probability distribution graphs for the respective torsion

angles.

As noted earlier, the amplitudes of the *Jnn and *Jncp are small hence the fitting of the Karplus

curves looks random noise. However, the fitting of the 3Jnua coupling data from electronic
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structure calculation at the above mentioned theory approximated by Karplus curve that shows

Karplus like pattern.
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Figure 42 HIS Y, side-chain dihedral angle scan. Top panel Karplus curve for the torsion angles associated to
the }, dihedral angle and bottom panel Boltzmann’s probability distribution graphs for the respective torsion
angles.

The making and breaking of a hydrogen bond between the cyclic sidechain amide proton and

backbone oxygen atom attached to the carbon that is bonded to Cq on the other residue as the

80



%, dihedral scanned is likely to be responsible for the anomaly that is present in the Boltzmann

probability distribution graphs. The fitting of some of the Karplus curves shows an under and
over prediction due to the above mentioned hydrogen bond effect. There is another hydrogen
bond present between atoms of the backbone chain and this appears not to influence the Karplus

curves and distribution graphs.

3.9.11 Karplus coefficients, ILE

Method: GIAO DFT B3LYP/MO06/cc-pVTZ in SMD Water

Atom | Atom2 | Atom 3 | Atom4 | A,Hz | Armsp | B, Hz | Brmsp | C, Hz | CrMmsp
1
N C CA N 0.00 0.00 0.00
HA CA C N 1.31 0.00 -0.11
CB CA C N 0.00 0.00 0.00
CGl | CB CA N 1.12 0.34 0.07 10.14 0.12 10.20
CGl | CB CA N 2.64 0.26 -0.22

[110]
CGl [CB CA C 3.31 0.35 -0.12 1 0.14 0.12 10.23
CGl | CB CA C 342 -0.59 0.17

[110]
CGl | CB CA HA 6.95 0.35 0.72 10.12 0.13 10.22
C CA CB HB 7.01 0.34 -0.65 |0.14 0.03 |0.18
C CA CB CG2 3.22 0.36 -0.31 |0.14 0.16 ]0.24
C CA CB CG2 3.42 -0.59 0.17

[110]
HA CA CB HB 10.75 | 0.30 1.92 |0.13 0.68 |0.17
HA CA CB CG2 6.87 0.31 1.27 10.12 0.18 10.23
N CA CB CG2 1.34 0.32 0.04 |0.15 0.02 ]0.17
N CA CB CG2 2.64 0.26 -0.22

[110]
N CA CB HB 2.93 0.34 0.04 |0.11 0.05 10.23
H N CA HA 11.92 10.29 0.07 10.13 -0.10 1 0.21
C N CA HA 5.96 0.26 -1.87 | 0.15 0.51 ]0.15
H N CA C 7.16 0.46 -1.47 1032 -0.45 10.17
H N CA CB 5.02 0.31 -0.76 | 0.17 -0.17 10.13
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C N CA C 3.07 10.25 -1.05 ]0.13 -0.02 | 0.15
C N CA CB 1.96 10.30 -0.74 1 0.15 0.03 |0.15
CA CB Cal CD 3.51 0.32 -0.30 | 0.16 0.03 10.19
HB CB CGl CD 8.21 0.37 0.54 ]0.13 0.06 |0.22
CG2 | CB CGl CD 536 033 093 10.13 0.18 10.20
CA CB CGl HGI1 7.57 10.36 -0.00 |0.13 0.11 ]0.22
HB CB CGl HGI 10.85 | 0.35 1.39 10.13 0.73 10.19
CG2 | CB CGl HGI1 8.04 |0.38 0.54 |0.18 0.23 10.19
CA CB CGl HG2 7.33 0.32 -0.63 | 0.15 030 ]0.19
HB CB Cal HG2 11.17 ] 0.40 1.57 10.25 0.57 10.22
CG2 | CB Cal HG2 8.64 10.33 0.91 0.17 -0.08 | 0.18
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Figure 43 ILE ¢ backbone dihedral angle scan. Top and bottom panels are Karplus curves and probability
distribution graphs for the torsion angles related to the ¢ dihedral angle.

Karplus curves of the nuclei that involved the backbone amide proton are broken, this is due to
the participation of the atom in a hydrogen bond. This is the likely reason for the thin sharp

appearance of the Boltzmann probability distribution graphs and jumps of the Karplus curves.
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Figure 44 ILE Y, side-chain dihedral angle scan. Top panel Karplus curves for the torsion angles associated to

the }, dihedral angle. Bottom panel Boltzmann’s probability distribution graphs for the respective torsion

angles.
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Figure 45 ILE Y, side-chain dihedral angle scan. Top panel Karplus curves for the torsion angles related to the

X, dihedral angle and bottom panel probability distribution for the respective torsion angles.

3.9.12 Karplus coefficients, LEU

Method: GIAO DFT B3LYP/MO06/cc-pVTZ in SMD Water

Atom | Atom2 | Atom 3 | Atom4 | A,Hz | Armsp | B, Hz | Brmsp | C, Hz | CrMmsp
1

N C CA N 0.04 0.30 -0.11 | 0.15 0.00 0.14
HA CA C N 1.17 0.35 -0.25 10.16 -0.14 0.20
CB CA C N 0.02 0.33 -0.36 | 0.14 0.02 0.18
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CG CB CA N 1.86 0.40 0.14 10.21 -0.03 0.22
CG CB CA C 3.00 0.52 -0.22 1 0.17 0.29 0.35
CG CB CA HA 7.75 0.49 -0.23 1 0.39 0.19 0.23
C CA CB HBI1 6.94 0.54 -0.28 | 0.25 -0.09 0.30
C CA CB HB2 7.76 0.66 -0.51 10.25 0.13 0.28
HA CA CB HBI 12.06 | 0.62 1.96 10.38 0.54 0.22
HA CA CB HB2 12.32 | 0.58 1.64 10.20 0.86 0.33
N CA CB HBI1 4.21 0.61 022 10.17 -0.05 0.45
N CA CB HB2 4.27 0.47 0.16 10.29 0.29 0.27
H N CA HA 11.98 |0.33 0.05 |0.14 -0.12 0.18
C N CA HA 6.28 0.29 -1.62 | 0.17 0.44 0.14
H N CA CB 5.16 0.31 -0.52 | 0.12 -0.27 0.20
C N CA CB 1.95 0.32 -0.84 1 0.17 0.03 0.16
H N CA C 6.48 0.44 -1.52 10.22 -0.38 0.20
C N CA C 2.77 0.29 -1.09 | 0.15 0.12 0.15
CA CB CGl CDl1 3.97 0.30 -0.80 ] 0.12 -0.07 0.20
HB1 |CB CGl CDl1 8.98 0.35 0.67 10.23 -0.12 0.22
HB2 | CB CGl CDlI 8.51 0.40 028 10.22 0.23 0.20
CA CB Cal HG 7.59 0.32 -0.90 |0.11 0.03 0.21
HB1 |CB CGl HG 11.14 | 0.31 146 |0.13 0.62 0.20
HB2 | CB CGl HG 11.15 1 0.30 1.52 10.14 0.74 0.17
CA CB CGl CD2 3.77 0.48 -0.43 1 0.36 0.01 0.24
HB1 | CB CGl CD2 8.31 0.42 049 10.21 0.22 0.20
HB2 | CB CGl CD2 9.13 0.36 0.60 |0.16 -0.05 0.19
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Figure 46 LEU ¢ backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann

probability distribution for the torsion angles associated to the ¢ dihedral angle.

Hydrogen bod making and breaking as the ¢ dihedral angle is rotated might be responsible for

unusual feature of the probability distribution graphs and jumps of the Karplus curves.
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Figure 47 LEU W backbone dihedral angle scan. Top and bottom are Karplus curves and probability distribution
graphs for torsion angles linked to the Y dihedral angle.

The broken Karplus curves are due the small amplitudes of the J-couplings between the atoms

involved in the respective torsion angles (*Jx~ and *Jnc).
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Figure 48 LEU }, side-chain dihedral angle scan. Top panel Karplus curves for torsion angles associated to the
X, dihedral angle and bottom panel probability distribution graphs for the respective torsion angles.

The effect from the presence of branched sidechain hydrocarbon is more pronounced for the
% dihedral angle. The amplitudes of the interaction energy are smaller compared to the

unbranched amino acids, thus the appearance of small bumps in the probability distribution
graphs and jumps in Karplus curves are mainly due to this effect and may be also due to tiny

contribution from hydrogen bond effect.
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Figure 49 LEU }, side-chain dihedral angle scan. Top panel Karplus curves for torsion angles associated to

the }, dihedral angle and bottom panel probability distribution graphs for the respective torsion angles.

3.9.13 Karplus coefficients, LYS

Method: GIAO DFT B3LYP/M06/cc-pVTZ in SMD Water

Atom | Atom2 | Atom 3 | Atom4 | A,Hz | Armsp | B, Hz | Brmsp | C,Hz | CrMmsp
1

N C CA N -0.01 [0.31 -0.14 | 0.16 -0.03 | 0.14
HA CA C N 0.86 0.32 -0.25 | 0.14 -0.37 1 0.17
CB CA C N -0.04 |0.36 -0.23 1 0.14 -0.06 | 0.18
HA CA CB CG 8.93 0.37 0.04 |0.13 0.06 |0.20
N CA CB CG 1.46 0.28 -0.21 | 0.16 -0.10 ] 0.15

C CA CB CG 3.09 [0.35 -0.67 10.15 -0.04 [ 0.21
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HA CA CB HBI 13.30 | 0.32 1.97 10.17 0.73 10.20
N CA CB HB1 3.48 0.35 -0.39 | 0.11 0.05 [0.26
C CA CB HBI1 6.81 0.35 -0.73 | 0.13 0.37 |0.19
HA CA CB HB2 12.22 1 0.36 1.02  10.17 0.55 [0.18
N CA CB HB2 3.31 0.37 -0.25 1 0.17 0.01 |0.25
C CA CB HB2 7.44 0.36 -0.82 ] 0.12 -0.30 | 0.23
H N CA HA 10.36 | 0.30 048 |0.11 -0.23 1 0.22
C N CA HA 5.38 0.30 -1.73 1 0.15 034 |0.16
H N CA CB 6.26 0.27 -0.61 ]0.12 -0.55 [ 0.18
C N CA CB 2.22 0.29 -0.83 ] 0.16 0.08 |0.15
H N CA C 6.48 0.44 -1.12 | 0.19 -0.45 | 0.23
C N CA C 2.53 0.25 -0.86 | 0.12 0.09 |0.16
CA CB CG CD 5.12 0.34 -0.08 |0.15 0.08 |0.19
HB1 | CB CG CD 11.52 | 0.32 0.27 10.15 -0.03 | 0.16
HB2 | CB CG CD 10.72 10.43 -0.09 | 0.22 0.13 |0.17
CA CB CG HGI1 8.23 0.34 -0.25 ] 0.16 0.02 |0.19
HB1 | CB CG HG1 11.92 | 0.37 1.27 10.16 0.73 10.17
HB2 | CB CG HGI1 13.07 | 0.37 1.34 10.20 0.29 [0.16
CA CB CG HG2 7.67 0.31 0.08 10.16 0.18 |0.17
HB1 |CB CG HG2 12.67 |0.30 1.51 0.11 045 [0.21
HB2 | CB CG HG2 12.27 10.34 0.78 10.13 0.68 |0.19
CB CG CD CE 7.70 0.30 0.80 ]0.14 0.01 |0.17
HGI | CG CD CE 1437 1 0.46 -0.19 1 0.32 0.12 ] 0.28
HG2 | CG CD CE 14.07 | 0.36 -0.03 | 0.15 0.03 |0.18
CB CG CD HD1 7.27 0.31 -0.43 ] 0.16 0.06 |0.17
HGI | CG CD HD1 13.17 10.43 1.12 10.22 0.30 [0.21
HG2 | CG CD HDI 12.13 ] 0.31 1.14 | 0.13 0.71 |0.17
CB CG CD HD2 7.97 0.36 0.20 ]0.17 0.05 |0.23
HGI | CG CD HD2 12.46 | 0.36 1.59 10.16 0.59 10.20
HG2 | CG CD HD2 12.93 10.42 1.50 ] 0.16 042 |0.19
CG CD CE NZ 2.32 0.34 0.12 10.16 -0.04 | 0.23
HD1I |CD CE NZ 6.48 0.37 0.17 10.15 -0.02 | 0.19
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HD2 | CD CE NZ 6.83 039 0.1 ]0.17 -0.05 | 0.20
CG CD CE HE1 745 1036 10.04 ]0.14 -0.00 | 0.19
HDI | CD CE HE1 13.60 | 0.45 1.13 0.32 0.00 |0.23
HD2 | CD CE HEI 12.62 | 0.35 0.59 10.13 0.60 |0.19
CG CD CE HE2 7.33 0.39 -0.02 | 0.15 0.00 |0.20
HD1I |CD CE HE2 12.06 | 0.35 0.78 10.13 0.64 |0.18
HD2 | CD CE HE2 13.75 | 0.61 097 10.56 0.05 [0.25
0
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Figure 50 LYS ¢ backbone dihedral angle scan. Top and bottom panels are Karplus curves and probability

distribution histograms for the torsion angles associated to the ¢ dihedral angle respectively.
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Hydrogen bond making and braking as the ¢ dihedral angle rotated is responsible for the jumps

in the Karplus curves and the sharp appearance of the probability distribution graphs.
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Figure 51 LYS ¥ backbone dihedral angle scan. Top and bottom are Karplus curves and Boltzmann probability

distribution graphs for torsion angles linked to W dihedral angle scan respectively.

Small amplitude vicinal coupling of nitrogen with nitrogen and carbon atoms of the y dihedral

angle is responsible for the broken curves. Steric effect, that arise from the longer chain of
hydrocarbons, coupled to hydrogen bond effect are responsible for the presence of the tiny

bumps in the energy probability distribution graphs and breaks of the /s Karplus curve.
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Figure 52 LYS %, side-chain dihedral angle scan. Top panel Karplus curves for the torsion angles linked to the

X, dihedral angle and bottom panel Boltzmann probability distribution graphs for the respective torsion angles.
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Figure 53 LYS Y, side-chain dihedral angle scan. Top panel Karplus curves for the torsion angles associated
to the Y, dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective

torsion angles.
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Figure 54 LYS Y, side-chain dihedral angle scan. Top panel Karplus curves for the torsion angles associated
to the Y dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective

torsion angles.

Three bond J-couplings that involved CE nuclei show an unusual character in which its Karplus
coefficients have bigger values than the ones that arise from J-couplings between two proton
atoms. This may be attributed to the extra amine present in the sidechain and the charge of the
nitrogen atom of that amine group which is bonded to the CE atom. The two Karplus curves
(*Jceng2 and *Jcengl) showed larger coefficients than the Karplus curves that involved vicinal
couplings between proton atoms such as *Jugina1, >Jrg2rd1, *JHgiHa, and *Jagua. In addition
steric effect from the presence of large chain of methyl hydrocarbons in the amino acids

sidechain might likely have a contribution to the jump in the Karplus curve of the *Jcerg!.
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Figure 55 LYS Y, side-chain dihedral angle scan. Top panel Karplus curves of the torsion angles associated to
the ¥, dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective torsion
angles.

The Karplus curves of the dihedral angle appear to split into three groups depending on the
magnitude of the amplitude of the spins involved in vicinal coupling. The presence of an extra
amide and steric effect resulting from the larger hydrocarbon chain are likely to be responsible

the staggered appearance of the energy probability distribution graphs.

3.9.14 Karplus coefficients, MET
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Method: GIAO DFT B3LYP/MO06/cc-pVTZ in SMD Water

Atom | Atom2 | Atom3 | Atom4 | A,Hz | Arvsp | B,Hz | Brmsp | C, Hz | Crmsp
1

N C CA N 0.03 041 -0.10 | 0.18 | 0.00 0.25
HA CA C N 1.17 10.35 -0.08 |0.14 |-0.20 ]0.22
CB CA C N 020 |0.32 0.00 ]0.18 |0.03 0.20
HA CA CB CG 924 10.34 1.02 10.14 |0.18 0.19
N CA CB CG 148 10.26 -0.12 1 0.14 |-0.04 |0.15
C CA CB CG 3.05 [0.36 -0.9 0.18 ]0.25 0.20
HA CA CB HBI 12.39 10.34 1.77 10.14 | 0.69 0.19
N CA CB HBI 339 1037 -0.33 1 0.14 | 0.16 0.22
C CA CB HBI 735 1040 -0.16 | 0.19 |-0.14 ]0.19
HA CA CB HB2 12.68 |0.30 1.09 |0.15 |0.53 0.17
N CA CB HB2 344 1047 -0.15 ]0.13 0.02 0.37
C CA CB HB2 6.16 10.35 -0.89 | 0.13 0.42 0.21
H N CA HA 11.70 ] 0.31 -0.54 10.12 |-0.11 0.21
C N CA HA 565 1031 -1.67 |0.13 | 0.53 0.23
H N CA CB 583 10.34 -0.33 1020 |-040 ]0.14
C N CA CB 2,13 10.27 -0.92 10.14 |0.13 0.15
H N CA C 6.20 10.49 -1.32 1 029 |-0.29 10.18
C N CA C 2.79 1029 -1.00 | 0.15 | 0.07 0.15
CA CB CG SD 3.63 0.49 0.64 |041 0.00 0.30
HBlI | CB CG SD 7.08 1045 -0.15 1032 |-0.26 ]0.29
HB2 | CB CG SD 7.15 1035 -0.09 | 0.17 |-0.03 ]0.18
CA CB CG HGI1 8.87 10.34 -0.72 1 0.18 |-0.09 ]0.19
HB1 |CB CG HGI1 13.25 10.32 0.89 [0.16 ]0.51 0.20
HB2 | CB CG HGI1 13.02 {029 10.58 ]0.15 ]0.84 0.15
CA CB CG HG2 8.17 10.38 -0.24 1 0.18 ] 0.18 0.21
HB1 |CB CG HG2 1246 |034 (1048 [0.12 |0.81 0.21
HB2 | CB CG HG2 1391 |0.25 1.00 | 0.13 0.42 0.16
CB CG SD CE 559 1037 1.33 1026 |-0.05 ]0.14
HG1 | CG SD CE 852 10.38 052 |0.15 |-0.03 ]0.20
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Figure 56 MET ¢ backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann
probability distribution graphs for the torsion angles related to the ¢ dihedral angle scan.

Though there exists a hydrogen bond that does not involve nuclei that participated in vicinal J-
couplings associated to the scan of the ¢ dihedral angle, the Karplus curves looks fit the data
nicely in a Karplus like pattern. Thus, hydrogen bond coupled with steric effect from longer
chain of the sidechain may be likely to affect the appearance of the Boltzmann probability
distribution graphs.
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Figure 57 MET W backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann
probability distribution graphs for the torsion angles associated to the Y dihedral angle scan respectively.

3Jnn and *Ineb vicinal couplings have small amplitudes, making the fitting of the Karplus curve
difficult. The other torsion angle Karplus curve i.e. >JxHa shows a break in the fitting curve,
which is likely down to hydrogen bond making and breaking as well as steric effect of the

longer chains of methyl groups of the amino acid sidechain.
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Figure 58 MET }, side-chain dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann
probability distribution graphs for the torsion angles associated to the Y, dihedral angle scan.

All the Karplus curves in Figure 58 (above) nicely fitted to the vicinal coupling data. This

shows the absence of hydrogen interactions in the scan of the ¥, dihedral angle.
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Figure 59 MET Y, side-chain dihedral angle scan. Top panel Karplus curve of the torsion angles associated to
the Y, dihedral angle scan and bottom panel Boltzmann probability distribution graphs of the respective torsion

angles.

The scan of the ¥, dihedral angle scan brings the sidechain sulphur atom closer the backbone

amide hydrogen to form hydrogen bond. Sulphur is known to form noncovalent interactions

such as hydrogen bond [111].
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Figure 60 MET Y side-chain dihedral angle scan. Top panel Karplus curves of the torsion angles related to the

X3 dihedral angle scan and bottom panel Boltzmann probability distribution for the respective torsion angles.

3.9.15 Karplus coefficients, PHE

Method: GIAO DFT B3LYP/MO06/cc-pVTZ in SMD Water

Atom | Atom2 | Atom3 | Atom4 | A,Hz | Arvsp | B,Hz | Brmsp | C, Hz | Crmsp
1

N C CA N -0.03 [ 0.53 -0.04 |0.23 0.01 0.33
HA CA C N 1.13 0.49 0.18 0.16 -0.22 1 0.35
CB CA C N 0.08 0.45 -0.14 1 0.27 0.08 0.17
HA CA CB CG 6.37 0.36 -043 10.14 0.31 0.20
N CA CB CG 1.07 0.29 -0.23 | 0.12 0.02 0.18
C CA CB CG 3.21 0.36 -0.46 | 0.13 0.06 0.22
HA CA CB HBI 11.31 ]0.35 1.58 0.13 0.67 0.20
N CA CB HBI1 2.78 0.37 0.00 ]0.13 0.09 0.20
C CA CB HBI1 6.93 0.30 -0.26 | 0.15 0.19 0.17
HA CA CB HB2 11.52 1 0.32 1.77 10.13 0.57 0.19
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N CA CB HB2 296 10.39 -0.11 ]0.14 0.03 0.27
C CA CB HB2 6.96 |0.35 -0.40 ]0.13 0.14 0.20
H N CA HA 11.93 |0.37 0.64 |0.11 0.02 0.30
C N CA HA 6.67 |0.32 -2.19 10.14 -0.07 1 0.17
H N CA CB 7.03 0.49 -0.40 ] 0.28 -0.63 [ 0.25
C N CA CB 277 10.30 -0.74 1 0.18 -0.20 ] 0.18
H N CA C 7.27 10.44 -1.49 10.28 -0.31 0.18
C N CA C 336 | 0.25 -1.01 ] 0.12 -0.22 1 0.18
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Figure 61 PHE ¢ backbone dihedral angle scan. Top and bottom are Karplus curves and Boltzmann probability

distribution graphs for torsion angles associated to the ¢ dihedral angle scan respectively.

Karplus curves that involve backbone amide proton as one of the J-coupled nuclei, are broken.

This is due to fact that the atom is involved in a hydrogen bond with oxygen atom attached to
the carbon bonded to the Cq. Thus the scan of the @ dihedral angle breaks that bond hence that

jumps and breaks are observed in the torsion angles that are associated to the above mentioned

nuclei.
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Figure 62 PHE W backbone dihedral angle scan. Top and bottom are Karplus curves and Boltzmann probability

distribution graphs for the torsion angles associated to the Y dihedral angle scan respectively.

As mentioned above the scanning of the Karplus curve to the small amplitude J-coupling data
of the *Jx~ and *Jncb torsion angles appears to produce random noise. The jumps in the other

Karplus curve are likely due to the effect of hydrogen bond making and breaking together with

the steric effect.
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Figure 63 PHE }, side-chain dihedral angle scan. Top panel Karplus curves for the torsion angles related to

the }¥, dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective torsion

angles.

3.9.16 Karplus coefficients, PRO

Method: GIAO DFT B3LYP/M06/cc-pVTZ in SMD Water

Atom 1 Atom 2 Atom 3 Atom 4 A, Hz B, Hz C, Hz
HA CA N CD 0.00 0.00 0.00
CA N CD HD3 0.00 0.00 2.50
HG2 CG CD N 0.00 0.00 0.00
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C N CD CG 0.00 0.00 2.50
C CA N CD 0.00 0.00 1.10
C N CD HD2 0.00 0.00 1.00
C N CD HD3 0.00 0.00 1.00
CB CA N CD 0.00 0.00 0.00
N CD CG CB 0.00 0.00 1.10
CA N CD HD2 0.00 0.00 2.50
CA N CD CG 0.00 0.00 0.00
HG3 CG CD N 0.00 0.00 0.00

This amino acid deemed to have no parts that are flexible and thus not considered for a relaxed
dihedral angle scan. However, proline does isomerise between cis and trans forms and plays a

central role in protein folding and function.

3.9.17 Karplus coefficients, SER

Method: GIAO DFT B3LYP/MO06/cc-pVTZ in SMD Water

Atom | Atom2 | Atom 3 | Atom4 | A,Hz | Armsp | B, Hz | Brmsp | C, Hz | CrMmsp
1

N C CA N 0.02 0.33 -0.07 10.13 0.00 0.21
HA CA C N 1.03 0.35 -0.26 | 0.14 -0.15 0.20
CB CA C N 0.12 0.34 -0.30 | 0.13 0.01 0.20
HA CA CB HBI 10.89 | 0.44 1.72 1 0.36 0.51 0.18
N CA CB HBI 3.34 0.47 0.29 0.32 0.03 0.29
C CA CB HBI1 5.99 0.35 -0.64 | 0.13 0.43 0.20
HA CA CB HB2 9.32 0.37 .72 10.14 1.00 0.20
N CA CB HB2 2.75 0.37 0.42 0.13 0.24 0.22
C CA CB HB2 6.48 0.34 -0.21 ]0.12 0.05 0.21
H N CA HA 10.81 |0.45 0.31 0.14 -0.14 0.29
C N CA HA 0.33 0.33 -1.20 | 0.20 2.76 0.13
H N CA CB 7.00 0.39 -1.43 | 0.17 -0.48 0.22
C N CA CB -0.27 10.30 0.43 0.14 1.54 0.17
H N CA C 7.02 0.35 -1.77 10.16 -0.44 0.21
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Figure 64 SER ¢ backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann
probability distribution graphs for the torsion angles associated to the ¢ dihedral angle scan respectively.
The presence of hydroxyl ion attached to the carbon at the £ position results in hydrogen bond

formation. Thus, the rotation of the dihedral angle breaks the bond and is responsible for the
scatter of the data. The fitting of Karplus curve to vicinal coupling data however looks fine.
The hydrogen bond effect appears to affect all Karplus curves and the probability distribution

graphs of the torsion angles related to the @ dihedral angle.
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Figure 65 SER W backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann

probability distribution graphs for the torsion angles associated to the respective torsion angles respectively.

Although the fitting of the *Jnn and *Jnco Karplus curves appears random and noisy due to
small amplitude of the coupling values, hydrogen bond effect is likely to be responsible for the

broken Karplus curve of the 3JnHa torsion angle and the probability distribution graphs.
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Figure 66 SER Y, side-chain dihedral angle scan. Top panel Karplus curves for the torsion angles associated to

the }, dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective torsion

angles.

All the Karplus curves are affected by hydrogen interaction as the dihedral angle scanned. The

Karplus curves have either jumps or are broken as depicted in Figure 66 (above).

3.9.18 Karplus coefficients, THR

Method: GIAO DFT B3LYP/MO06/cc-pVTZ in SMD Water

Atom | Atom2 | Atom 3 | Atom4 | A,Hz | Armsp | B, Hz | Brmsp | C, Hz | CrMmsp
1

N C CA N -0.01 ] 0.66 -0.12 1 0.36 0.03 0.45
HA CA C N 0.97 0.50 -0.07 [0.25 -0.12 1 0.34
CB CA C N -0.04 |0.82 -0.29 10.73 0.01 0.23
HA CA CB CGl 6.33 0.41 0.65 0.13 0.53 0.21
N CA CB CGl 1.14 0.38 -0.10 | 0.21 0.01 0.22
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N CA CB CGl | 201 0.21 -0.13
[110]
CA CB CGl [3.02 |029 |-042 |0.14 |-0.15 |0.16
C CA CB CGl |2.76 -0.67 0.19
[110]
HA |CA CB HB 11.23 |0.33 226 |0.14 |041 |0.23
N CA CB HB 271 046 004 |020 |0.09 |0.24
C CA CB HB 529 036  |-092 |0.12 |030 |0.22
H N CA HA 11.77 1036  |-0.14 |0.10 |-0.00 |0.30
C N CA HA 580 026 |-1.54 |0.13 |041 |0.15
H N CA CB 645 036 |-1.08 |0.17 |-040 |0.15
C N CA CB 1.88 027 |-0.88 [0.15 |0.11 |[0.13
H N CA C 641 039 |-1.09 |0.19 |-045 |0.15
C N CA C 254 1028 |-097 |0.14 |0.09 |0.16
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Figure 67 THR @ backbone dihedral angle scan. Top panel Karplus curves for torsion angles associated to the

¢ dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective torsion

angles.
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Figure 68 THR ' backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann
probability distribution graphs for the torsion angles associated to the Y dihedral angle scan respectively.

As normal, the *Jn~ and *Jncb J-coupling interaction amplitudes is small, hence the scan of the
Karplus curves resembles random noise. However the presence of multiple hydrogen bond
making and breaking is likely to be responsible for the breaking of the curve and broad

appearance of the distribution histograms.
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Figure 69 THR }, side-chain dihedral angle scan. Top panel Karplus curves for the torsion angles related to
the Y, dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective torsion

angles.

Though the atoms involved in the three bond separated J-couplings do not have any hydrogen

bond, there are hydrogen bonds that involves an oxygen atom attached to the Cp and backbone

amide proton. Thus the scan of the %, dihedral angle breaks the hydrogen bond and causes the

couplings of the spins to have jumps, hence the breaks of the Karplus curves. The effect is also

likely to be responsible for the under and over prediction pattern evident in some of the curves.

3.9.19 Karplus coefficients, TRP
Method: GIAO DFT B3LYP/MO06/cc-pVTZ in SMD Water
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Atom | Atom2 | Atom 3 | Atom4 | A,Hz | Armsp | B, Hz | Brmsp | C,Hz | CrMmsp
1

N C CA N 0.01 0.33 -0.15 | 0.13 0.02 |0.20
HA CA C N 1.30 0.30 -0.06 | 0.12 -0.21 1 0.18
CB CA C N 0.22 0.29 -0.01 | 0.16 0.05 |0.17
H N CA HA 11.75 10.30 -0.58 | 0.13 -0.14 ] 0.21
C N CA HA 5.69 0.34 -1.70 | 0.15 0.52 10.24
H N CA CB 5.93 0.30 -0.36 | 0.18 -0.39 1 0.12
C N CA CB 2.26 0.28 -0.86 | 0.14 0.14 |0.17
H N CA C 6.14 0.56 -1.38 1 0.30 -0.21 | 0.20
C N CA C 2.80 0.29 -0.98 |0.15 0.04 ]0.15
HA CA CB CG 7.71 0.36 0.06 10.20 0.26 |0.21
N CA CB CG 1.31 0.28 -0.29 | 0.15 0.01 ]0.15
C CA CB CG 2.89 0.33 -0.80 | 0.15 021 |0.19
HA CA CB HB1 12.62 | 0.28 1.09 10.12 0.73 10.18
N CA CB HBI1 3.47 0.51 -0.08 | 0.12 -0.01 | 0.39
C CA CB HBI1 5.95 0.34 -0.73 | 0.13 049 10.19
HA CA CB HB2 1245 ] 0.36 1.76 | 0.13 0.61 |0.19
N CA CB HB2 3.13 0.37 -0.32 | 0.14 0.15 10.22
C CA CB HB2 7.05 0.35 -0.20 | 0.15 -0.14 1 0.18
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Figure 70 TRP ¢ backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann
probability distribution graphs for the torsion angles associated to the ¢ dihedral angle scan respectively.

The three bond J-coupled nuclei associated to the ¢ dihedral angle do not engage in hydrogen

bond, however the jumps in some of the Karplus curves and the thin appearance of the
probability distribution graphs might be due to steric effect that arise from the presence of large

sidechain of the tryptophan amino acid.
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Figure 71 TRP W backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann

probability distribution graphs for the torsion angles related to the Y dihedral angle scan respectively.

Similar to the previous description of the Karplus curves related w dihedral angle, the

amplitude of three bond J-couplings between nitrogen and another nitrogen and carbon atoms

is small. The scan of the Karplus curves to these data appears to be random and noisy.
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Figure 72 TRP Y, side-chain dihedral angle scan. Top panel Karplus curves for the torsion angles related to the
X, dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective torsion

angles.

The Karplus curves that relates two proton spins appears to show higher amplitudes compared
to curves constructed from dihedral angle that connects a proton and another spin (carbon and
nitrogen). >Jncg however has small intensity hence its Karplus curve appears to have the

smallest amplitude of all curves in Figure 72 (above).

3.9.20 Karplus coefficients, TYR
Method: GIAO DFT B3LYP/MO06/cc-pVTZ in SMD Water

Atom | Atom2 | Atom 3 | Atom4 | A,Hz | Armsp | B, Hz | Brmsp | C, Hz | CrMmsp
1

N C CA N -0.18 | 0.74 -0.25 10.53 0.03 0.14
HA CA C N 1.04 0.38 -0.20 |0.20 -0.23 0.24
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CB CA C N 0.18 1.30 -0.15 [ 142 10.09 0.42
HA CA CB CG 7.74  10.40 -0.34 10.14 | 0.21 0.23
N CA CB CG 1.78 0.57 -0.11 1 0.32 -0.00 1 0.33
C CA CB CG 3.14 |0.37 -0.67 10.14 10.20 0.20
HA CA CB HBI 12.41 | 0.37 1.70 10.13 0.90 0.23
N CA CB HB1 4.65 0.42 028 [0.18 -0.09  10.29
C CA CB HBI1 6.47 0.36 -048 |0.14 ]0.48 0.20
HA CA CB HB2 12.64 | 0.36 213 [0.14 ]0.88 0.20
N CA CB HB2 3.98 0.33 038 10.14 ]0.12 0.19
C CA CB HB2 7.70 1041 0.01 0.13 -0.05 0.23
H N CA HA 11.72 | 0.27 -0.48 | 0.12 -0.21 0.18
C N CA HA 5.85 0.29 -1.74 10.12 1 0.45 0.18
H N CA CB 547 10.37 -0.56 | 0.21 -0.31 0.18
C N CA CB 2.03 0.26 -0.75 10.14 | 0.16 0.15
H N CA C 644 1041 -1.50 | 0.22 -0.34 ] 0.15
C N CA C 2.84 10.25 -0.98 10.13 0.03 0.14
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Figure 73 TYR ¢ backbone dihedral angle scan. Top and bottom are Karplus curves and Boltzmann probability

distribution graphs for the torsion angles associated to the ¢ dihedral angle scan respectively.

The nuclei involved in the J-couplings across the torsion angles associated to the ¢ dihedral

angle do not engage in hydrogen bonds. However, there is hydrogen bond between oxygen
atom attached to the backbone amide nitrogen and to the backbone amide proton of the other

residue that might be responsible for the jumps in the Karplus curves.
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Figure 74 TYR W backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann

probability distribution graphs for the torsion angles associated to the Y dihedral angle scan respectively.

As noted above, the amplitude of the vicinal coupling of the *Jnn and *Jncb is small hence the

scan of the Karplus curve appears as a random noise.
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Figure 75 TYR Y, side-chain dihedral angle scan. Top panel Karplus curves for the torsion angles related to the

X, dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective torsion

angles.

3.9.21 Karplus coefficients, VAL

Method: GIAO DFT B3LYP/M06/cc-pVTZ in SMD Water

Atom | Atom 2 | Atom3 | Atom4 | A,Hz | Armsp | B, Hz Brmsp | C, Hz | Crmsp
1

N C CA N 0.06 0.31 -0.06 0.20 -0.03 | 0.16
HA CA C N 1.39 0.37 -0.03 0.16 -0.14 1 0.19
CB CA C N 0.13 0.33 -0.19 0.14 0.03 |0.16
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HA |CA CB CGl |691 |038 |074 |0.14 |0.18 |0.23
N CA CB CGl |1.15 |034 |004 |0.14 |o0.11 021
N CA CB CGl | 2.64 0.26 -0.22

[110]
C CA CB CGl [340 |031 |-013 [0.13 |o0.11 021
C CA CB CGl |3.42 -0.59 0.17

[110]
HA |CA CB CG2 |677 |034 |1.07 |0.12 |023 |0.25
N CA CB CG2 135 1037 |-000 |0.17 |-0.00 |0.16
C CA CB CG2 325 |037 |-039 |0.13 |0.12 |0.24
HA |CA CB HB 1069 |043 |193 [020 |0.62 |0.17
N CA CB HB 2.84 043 005 |021 |0.07 |0.28
C CA CB HB 694 035 |-061 |0.16 |0.05 |0.18
H N CA HA 1198 1029 |0.14 |0.14 |-0.14 |0.21
C N CA HA 594 026 |-193 |0.14 050 |0.15
H N CA CB 517 033 |-072 |0.17 |-0.19 |0.13
C N CA CB 1.99 029 |-0.73 |0.14 |0.05 |0.15
H N CA C 721 046 |-149 |032 |-048 |0.19
C N CA C 3.06 025 |-1.04 |0.14 |0.00 |0.14
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Figure 76 VAL ¢ backbone dihedral angle scan. Top panel Karplus curve for the torsion angles linked to the ¢

dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective torsion angles.

The backbone amide proton is involved in hydrogen bond interactions, thus the rotation of the
@ dihedral angle breaks the hydrogen bond and disturbs the coupling data. As a result, the
fitting of the Karplus curves to the coupling data that participate the amide proton turns out to
be just fine. The affected Karplus curves are *Juatn, >Jctn and *Jevin coloured magenta, green,
and yellow respectively. The Boltzmann probability distribution graphs for those torsion angles

also appear sharp, which might be due to the hydrogen bond interaction.
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Figure 77 VAL W backbone dihedral angle scan. Top and bottom panels are Karplus curves and Boltzmann

probability distribution graphs for the torsion angles associated to the Y dihedral angle scan respectively.

As mentioned above, the */nn and *Jxcb have very small amplitudes. Thus the scan looks

random and noisy. However the Karplus curve i.e. *JNua appears to fit the data from theory and

preserve the Karplus like pattern where maximum values of vicinal coupling observed at 180°,

0° and 360° and minimum at 90° and 270°, while the values in between are related to the torsion

angles between those angles.
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Figure 78 VAL }, side-chain dihedral angle scan. Top panel Karplus curves for the torsion angles associated
to the }, dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective

torsion angles.

There appears to be some hydrogen bond effect from the backbone groups that are not affected

by the scan of the dihedral angle.

3.10Comparison with experimental data

Overall, the J-coupling values obtained from DFT agree well to those measured
experimentally. From extensive protein >/ coupling data set that are available in litrature [24,

112-115], a recently published paper [116] for *Juanp1 and [112, 113, 115] for the *Jop dihedral
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angles are selected and the reported values are compared to the results from our DFT
calculation. An example of the coupling data set is given in Table 4 and Table 5 (below)
presented in Figure 79 and Figure 80 (below). The data shows the dependence of the spin-

spin coupling of a proton to the amide proton for ¢ and the protons at the carbonyl positions o

and f for y,.

For demonstration, GB3 protein 2N7J is used to show the relationship between theory and
experiment for the ¢ dihedral angle. And the coupling values from theory for alpha and amide

protons are within 95% prediction limit correlations to that from the experiment.

Most of the amino acids have two B protons. However, ILE, THR, VAL residues possesses
only one P proton. An exception to both rules is GLY and PRO, which involve no B protons.
Note that, as depicted in Figure 80, the *Jiap1 of ARG and *Jienp2 of HIS 2.00 and 0.95 Hz
shows a considerable deviation from the experimental values of 5.7 and 2.6 Hz respectively.
The dihedral angle y1 as of reference [24] is defined by the average dihedral angle and
computed to be as 104 +35 for *Juaupt of ARG and 2834 27 for *Juenp2 of HIS. While the
respective theoretical dihedral angles are computed from atomic coordinates by scanning at the
torsion angle. Chil dihedral angles where extracted from PDB. In this example hen lysozyme
[112], FKBP bound ascomycin [113] and an unfolded urea denatured protein G [115] are used

to demonstrate the correlation with the couplings from the theory.

Reported values from theory are for dihedral angles of phi and chil with 47 degrees. This is
because the calculations was performed by specifying the angles at a specific dihedral angles
but the geometry optimization step refreshs the geometry to a ground state structure hence the
disturbance of the specified angles by about +£47 degrees. The dihedral angles used for input

setup were derived from PDB for the corresponding spin pairs.

J-coupling predictions better approximated using an ensemble structure [117], but the current

DFT calculations are carried out on single amino acids due computational complexity.
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Table 4 An example that shows the comparison of predicted and experimentally determined [116] >Jian-coupling

values for the main-chain dihedral angle phi.

Amino acids and | Single letter | 3Jyqun coupling value | 3Juqnn Dihedral

residue number | amino acid | in Hz from experiment | coupling | angle
code. value in | extracted

Hz from | from
theory structure
PDB (2N7J)

GLN 2 Q2 7.55 6.82 0

LEU 5 L5 9.34 8.93 180

ILE 7 17 9.46 11.19 0

GLY 9 G9 12.96 11.28 -0

GLY 9 G9 12.96 11.28 -0

LYS 10 K10 4.70 6.63 180

THR 11 T11 10.06 8.11 180

LEU 12 L12 7.84 8.93 180

LYS 13 K13 9.34 6.63 -180

GLU 15 E15 8.23 8.54 180

THR 16 T16 6.58 8.11 180

THR 17 T17 8.88 8.11 180

THR 18 T18 6.62 7.12 0

ALA 20 A20 7.41 9.58 0

ALA 26 A26 4.32 4.28 180

LYS 28 K28 3.78 4.81 0

ALA 29 A29 4.52 4.28 180

LYS 31 K31 3.96 4.81 180

GLN 32 Q32 4.68 6.82 0

ASN 37 N37 9.33 11.02 180

GLY 38 G38 12.05 11.28 0

GLY 41 G41 9.28 11.28 180

GLY 41 G41 9.28 6.85 180
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VAL 42 V42 8.81 6.32 180
THR 44 T44 8.81 8.11 180
TYR 45 Y45 8.92 6.30 180
ASP 46 D46 9.91 11.79 180
ALA 48 A48 4.28 4.28 180
THR 49 T49 9.86 8.11 180
LYS 50 K50 7.17 4.81 180
THR 51 T51 10.07 8.11 180
PHE 52 F52 9.47 9.44 0
THR 53 T53 9.46 7.12 0
THR 55 T55 9.95 8.11 0
GLU 56 E56 8.49 8.73 0

Predicted J-coupling, Hz
il

3 ® ¥/, coupling data -
2 — Linear fit of data ]
4 — 95% confidence limit
14 —— 95% prediction limit —

0

IIIIIIIIIIIIIIIIIIIIII
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Experimental J-coupling, Hz

Figure 79 Correlation of predicted and experimentally obtained coupling values for Ha and Hy for different @
dihedral angles.
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Table 5 An example that shows the comparison of predicted and experimentally determined 3J,5-coupling values

of the side-chain dihedral angle Chil.

Amino | Single | Scalar Alpha Beta protons 3 HanHxp 3 HaHxp Dihedral

acid and | letter coupling | proton coupling coupling angle from

residue | amino | over value in Hz | value in Hz | PDB; 5JXV,

number | acid three from from theory | 1E8L, 1FKR
code bond experiment and 9PCY

TYR 3 Y3 3J HA HB2 8.25 [115] 8.82 0

TYR 3 Y3 3J HA HB3 547[115] 5.18 0

ASN 8 N8 3J HA HB3 5.50[115] 5.15 0

PHE 52 | F52 3J HA HB3 5.52[115] | 4.60 0

TYR33 |Y33 3J HA HB2 8.61 [115] 8.82 0

CYS 6 Cé6 3] HA HBI1 11.5]112] 12.78 73.57

CYS 6 Cé6 3J HA HB2 3.5[112] 4.88 -50.16

PHE 3 F3 3J HA HBI1 10 [112] 10.39 76.38

PHE 3 F3 3J HA HB2 3.0[112] 5.01 161.21

HIS 15 HI5 3] HA HB1 11.2112] 10.09 70.18

HIS 15 HI15 3J HA HB2 2.6 [112] 0.95 12.41

ASP 18 | D18 3J HA HBI1 4.2 [112] 5.04 48.14

ASP 18 | DI8 3J HA HB2 11.0[112] 13.18 -98.43

TYR20 | Y20 3] HA HB1 2.3[112] 5.19 48.03

TYR20 | Y20 3] HA HB2 11.7[112] 12.15 -73.52

ASN 27 | N27 3J HA HBI1 10.3[112] 13.10 75.40

ASN 27 | N27 3J HA HB2 2.4[112] 5.29 -50.64

ARG 61 | R6l 3J HA HBI1 5.7[112] 2.00 -176.79

ARG 61 | R61 3J HA HB2 10.8 [112] 10.53 49.65

TRP 123 | W123 |3J HA HBI1 10.6 [112] 11.30 69.73

TRP 123 | WI123 |3J HA HB2 2.9[112] 5.20 -1.17

GLN 3 Q3 3J HA HBI1 9.2[113] 11.31 4591

GLN 20 | Q20 3] HA HB2 4.1[113] 7.15 -88.61
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SER 8 S8 3J HA HB2 2.0[113] 2.83 -66.53
SER 8 S8 3] HA HBI1 4.0 [113] 3.32 47
LEU 50 | L50 3J HA HBI1 10.0[113] 8.56 46.44
LEU S50 | L50 3J HA HB2 3.0[113] 2.03 153.73
LYS 17 | K17 3J HA HBI1 11.0[113] 11.95 72.40
LYS17 |KI17 3J HA HB2 3.2[113] 3.79 152.91
GLU 61 | Ee6l 3J HA HBI1 13.0113] 12.20 46.08
GLU 61 | E6l 3J HA HB2 4.1[113] 2.98 162.09
MET 49 | M49 3J HA HBI1 11.0[113] 11.36 44.34
MET 49 | M49 3J HA HB2 3.0[113] 4.67 143.49
PRO 58 | P58 3J HA HBI 8.9 [114] 8.16 65.24
PRO 58 | P58 3J HA HB2 8.0[114] 8.95 -13.64

177

16

157

14

134
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Figure 80 Correlation of predicted and experimentally obtained coupling values for Ho. and Hpx for different },

dihedral angles, HPx stands for HBI or HS2.
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3.11Concluding remarks on applicability and limitations

This work on spin-spin coupling constants has focused in NMR simulation work of protein
systems. The work primarily involved the compilation of data to simulate NMR spectra of
ubiquitin specifically, and biologically important molecules in general. The objective of the
work was to theoretically compute spin-spin coupling values. To obtain the coupling values for
a protein system, the spin-spin coupling constant of each of the 20 amino acids must be
considered. This was done quantum mechanically using DFT with B3LYP/ cc-pVTZ method
for structure optimization and GIAO MO06/cc-pVTZ method for magnetic interactions
computation. Practically, the computation required entering the amino acid structure using
Gauss View software followed by a relaxed scan before running the spin-spin coupling job.
The computationally predicted value of the spin-spin interactions involve isotropic
contributions form Fermi contact (FC), spin-dipolar (SD), paramagnetic spin-orbit (PSO), and

the diamagnetic spin-orbit (DSO) terms [94].

The focus of this research work was to determine the coefficients A4, B, and C of the Karplus
equation that aids in building an estimator function in Spinach software library [3], which

estimates coupling constants in proteins during protein NMR simulation.

Most one and two-bond couplings are known already [ 14, 25]. Therefore, the focus turned into
computing the *J-coupling values of all the possible conformations making a constraint at a
particular dihedral angle. This was useful to construct the relationship between the J-coupling
values and the associated dihedral angle. When the scan of the energy was completed, a script
was used to extract the coordinates of each of the optimized conformations in to a Gaussian
files to run spin-spin coupling job. This was done using Matlab. Another script was then used
to extract the >/ coupling constant values and draw a graph against the angles of rotation. The

A, B and C parameters were extracted from the Karplus equation.
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4 Quantum mechanical simulation
of protein NOESY spectra

4.1 Nuclear Overhauser effect

NOE is one of the oldest and most researched NMR techniques that is widely used by structural
biologists and organic chemists for structure determination and conformational studies [25, 29,
31] . The phenomenon is credited to Albert Overhauser [118] who initially proposed and
derived detailed mathematical equations for nuclear spin polarization enhancement by
polarizing conduction electron spins in metals. Carver and Slichter [119] experimentally
verified the theory by observing lithium nuclear polarization enhancement as a result of
electron saturation. Ronald Kaiser [120] has later extended the application of polarization
enhancement technique to the analysis of NMR spectra. In his paper he showed the effect of

saturating nuclear spin has on the spin polarization of the neighbouring nuclei.

NOE phenomenon arises from dipolar interaction between spins that are in close proximity, it
is caused by population change that is brought about by cross-relaxation. The strength of NOE
signal is proportional to the inverse sixth power of the distance between the interacting spins.

The phenomenon is detectable for inter-nuclear distances up to about 6 Angstrom.

4.2 Basic NOE description using energy level diagrams

Consider a system with two spins I and S, which are neither magnetically equivalent nor J-
coupled, but are dipolar coupled through space. The experimental manifestation of the nuclear
Overhauser effect is that irradiation of the S spin would either increase, or decrease, or even
invert the intensity of the signal from spin I. The mechanism involves cross-relaxation and
spin-lattice relaxation pathways for the two spins. The effect of cross relaxation and signal
intensity transfer between the spins can be understood from the energy level diagram shown in
Figure 81 (below). The diagram shows that four relaxation pathways involve single spin with
a rate W1, while the other two pathways involve two spins either flipping in the same direction

(rate W2) or in opposite directions (rate Wo).
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Figure 81 Energy level diagram depicting relaxation pathways for two spins I and S in an NOE experiment.
Black arrows indicate spin lattice relaxation pathways that involve single spin flips while red and green arrows
show cross relaxation between the spins that involve two spin flipping either in the same or opposite direction.

Rates W2 and Wo determine the sign of the enhancement. The equation of motion for the
populations is an instance of Solomon equations, which were known before the Overhauser

effect was discovered [121]. Solomon equations describe the evolution of energy level

populations:

dn,,

= _<VV11 +Ws+ W;lS)nua + mlnpa + VVISnaB + VVZIS”BB

d:ﬁ = —(Wis +Wis +Woss ) 1o + Wity + Wi, + Wosy,
(65)

dn
Ba
dr = _<VV11 +Ws+ VVOIS)”B& + VVIS”BB +Wyn,, + VVOISnaB
dn
BB
dr = _<Wls +W, + Wzls)nBB + VVllnaB + VVlSnBa + Wity

In NOE experiments, the observable quantity is the longitudinal magnetization /, and S, .
These are proportional to the difference in the number of spins between the o and P state and
are given by

S, = (n(m +naﬁ)_ (”ﬁu - nﬁﬁ)

(66)
L, = (ny, +ny, ) —(ny +nyy )
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Inserting Equation (66) in Equation (65) and rearranging the result produces a system of

coupled differential equations for /, and S, :

dl
==—p (Iz>_0-IS (Sz)
dt (67)

ds
dtz = —Ps (Sz>_OIS <Iz>

where

Py =Wos +2W + W
ps =Wy +2Ws + W
015 =W —Wos

After correcting for the finite-temperature thermal equilibrium, we obtain:

Ly (1, 1) a5,

68)
dsS |
s (8, —87)—os(2, - 17)

where I and S, are the Boltzmann equilibrium values. NOE enhancement can be quantified

as

: (69)

where [, is the thermal equilibrium magnetization intensity and / is the perturbed

magnetization. The pair of interacting spins may belong to different molecules (intermolecular
NOE), or the same molecule (for example, in the amino acid chain of polypeptide) — this is

called intramolecular NOE.

4.3 Advanced NOE description using Redfield theory

Relaxation theory, formulated by Bloch, Wangsness and Redfield (also known as Redfield
theory) is one of the hardest and most important topics in the field of magnetic resonance [122,
123]. Relaxation theory is widely employed in structural biology and is useful for protein
structure determination, conformational analysis, and ligand binding with a profound reliance
in nuclear Overhauser effect, which is useful in determining inter-nuclear separation. The

relevant relaxation theory in our case is the rotationally modulated relaxation theory in liquids.

136



A detailed derivation that follows broadly the argument of Ilya Kuprov's Spin Dynamics lecture

course, and also keeps to the same notation, is presented in this section.
The Liouville - von Neumann equation for the density matrix p(¢) is

6 ~ . S A . : ~

= p(t) =i A (1), p(e) | ==ifi (¢) p(e) (70)
where H is the Hamiltonian commutation superoperator. In solution state NMR, there are two
types of contributions to the Hamiltonian superoperator, one that is static and predictable such

as the chemical shift, J-coupling, and the other that arises due to the stochastic Brownian

motion in liquid, which is assumed to be rotational diffusion. As a result, the Hamiltonian of

the spin system is split into two — the static Hamiltonian A »» Which acts on the spin system

and the dynamic Hamiltonian that perturbs the system A, (1):

A

H(t)= H,+ H,(¢) (71)

The result is as follows:

A
A

%,b(z) = —i(lflo + H, (t)),é(t) (72)

This equation has the large time-independent Hamiltonian, 4 »» and the small time-dependent
stochastic Hamiltonian A, (¢).

Such systems can efficiently be treated in a formalism in which the noise is stationary, and its

statistical properties are predictable. Our first assumption is that the ensemble average of the

perturbing interaction vanishes i.e. <I—21 . (t)> =0 [124, 125]. If it is not zero, then that value is

put back into the static Hamiltonian. The second assumption is that the norm of the noise is

much smaller than that of the main Hamiltonian:

A

H, (t)H <|H,

(73)

This is the perturbation theory approximation. The next step is to move into the interaction

representation with respect to H ,- This is achieved by introducing the following relations:
G(1)=Mpry  HN(0)=e" A, (1)e (74)
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Plugging Equation (74) into the derivative of Equation (72) we obtain the following expression

%(eH Jo 1)+ %(&(r)) =il G (1) —ie AR ()M S (1) (75)
This simplifies into:
il G (1) + %(&(t)) = il (1)~ ie AR (1) e G (1) (76)

A lot of terms cancel and Equation (76) simplifies to

—6(t)=—iH (1) (¢) (77)

where H , has formally disappeared. It has gone into the definition of 6‘(1‘). This significantly

accelerates the convergence under the time dependent perturbation theory (TDPT).

After formally integrating Equation (77), we obtain
S (4)6 (1) dh (78)

After moving 6‘(0) over to the right hand side and substituting it back into Equation (77) the

following expression is obtained
—& (1) =il (1)6(0)=[ A (0) AL (1) (1)d1, (79)

We will now apply ensemble averaging on both sides and denote it with angle brackets.

Ensemble average is a linear operation, thus the average of a derivative is equivalent to the

derivative of the average. Moreover &(0) is a constant, therefore it can be taken out of the

average.
%<6’(f)> i <H (¢)>6(0)— [ <H () (1) (s )>de (80)

As per our assumption at the beginning, the ensemble average of the noise is zero i.e.

<P:I h (t)> =0 . Therefore the whole first term on the right vanishes, giving a simpler expression:

A

S(o () =-T{Ar )7 ()3 1)) (81)
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The time dependent rotating frame Hamiltonian operator can be factorized into time dependent
coefficients with time independent operators. This is possible because time dependent matrices

can be written as constant matrices with time dependent coefficients.

A
A

H, ( qu(t )0, =X4. ()0} (82)
where ¢, (t) and q; (t) are the coefficients while Qk and QL are the time independent basis

matrices. The second equality is the complex conjugate transpose. Thus, transforming
Equation (82) into the interaction representation and plugging it into Equation (81) we obtain

the following expression
8 2 Ao .
ZEO)=-X (0 06 ()8 (00 ()0 () )

It is necessary for later to paste one of the Hermitian superoperators H Xin a conjugated form.

The perturbation is rotationally modulated and in such cases the coefficients g, (Z) are Wigner
functions and Qk are spherical tensor operators.

We will now remember our assumption at the very beginning. Equation (73) states that the
amplitude of the perturbing Hamiltonian is much smaller than that of A o- Thus, the dynamics
of the system is effectively uncorrelated with the noise in Fll (t) . The average of a product can

be separated into product of averages if the functions are uncorrelated i.e. the noise is so weak
that it does not drive the system, but is strong enough to relax it. This allows taking the average

separately for the state vector and the perturbing Hamiltonian:

A
~

(9. (042 (4)0F (0" () (1)) = {0, ()42 (1) O (DX (1)) (1) 89

The time dependence in the OF (+)OR'(¢) term is not stochastic. They are therefore not
affected by the ensemble average. Mathematically the ensemble average of the remaining term

q, (t)q; (,) is a correlation function:

<‘Ik (t)q;l (tl )> = &m (t’tl) (85)
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The noise in the system is assumed to be stationary, therefore the statistical properties of the

noise do not depend on time. Therefore the correlation function can only depend on the

difference of the time (t —tl) instead of the absolute times ¢ and ¢;:

8im (t’tl) =8im (t_tl) (86)

After modifying Equation (83) using Equations (86) and (84) the following is obtained:

2 ZI 2 (E=1) OF (£) OX" ()(6 (1)) (87)

61

A further assumption is that the decay of the correlation function in small and non-viscous
solvents is so fast that the spin dynamics of the system hardly occurs; hence the density matrix

can be taken out of the integral to obtain
8 A .
& Z j 2o (1 ( )OR (1) dt, (6 (1)) (88)

Because the implicit coarse-graining schemes are known to be more stable than the explicit

ones, we take &(t) out of the integral, rather than 6‘(0). In the remaining integral we will

perform a variable substitution 7 =¢—¢, and then turn the integration limits around to get:

A~

at zjgkm OF (1) O (1= 7)dr (6 (1)) (89)

km

The second consequence of our assumption about the very rapid decay of the correlation
functions is that it is permissible to extend the upper integration limit to infinity without
affecting the value of the integral. We shall also drop the angular brackets on the density matrix

for convenience:

=3[ g (7)OF (1) 08 (1 f)dr}GA(t) (90)

km

After using Equations (74) to return back to the Schrodinger representation, we get:

op(t
[;E) ~iH,p() ngm £)0,e Ol drp (1) (2]
km

The equation now has the following form:
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oo(t 2 2
8—5):—iH0p(t)+Rp(t) (92)
In which the relaxation superoperator is:
R=-Y [, (r)0,e ™ Qe dr 93)

km @

Equation (92) is the “master equation”. In practice the master equation requires a correction to
drive the system towards equilibrium instead to zero, which the currently derived equation

does. The derivation of the correction term is beyond the scope of the project work.

An important bit of the relaxation superoperator that needs special attention is the correlation
function. Mathematically, the correlation function is followed by the multiplication of two

functions ensemble average. The Hamiltonian for a rotationally modulated interaction is:

H(1)= i o) (1)0,, (94)

km=-2

where ’ngn) are second rank Wigner D-functions that depend on the angles of rotation which

further depend on time and ka are the rotational basis set.

The correlation function between two Wigner functions is given by Equation (95) with the

angle bracket denoting ensemble average:
G (7) = (D) (7)) (1+7)) = (D) (0))' (7)) (93)

It only depends on the time difference, hence the second equality in which the function is
translated to the origin. Correlation function analysis is similar to the analysis of probability

distributions thus Equation (95) can be expressed in probability distributions
G (7)= [ [ D00 ()DL (Q) P(Q)P(2,719,0)d Q2 (96)

Our first assumption is that the sample is in equilibrium, the molecules are spherical and

undergo isotropic rotational diffusion [25]. For systems that involve anisotropic rotational

diffusion detailed description is given in [126, 127]. Thus P (Q)) is a constant and equal to

- due to normalization. Thus, Equation (96) simplifies to

87
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o (1) = 5= ] [ (04) 0 (Q)P(.719,.0) 40 o)

The term P(Q, 7|, 0) is not known. Hence for the moment the focus would be to determine

this term and substitute it into Equation (97). The system obeys the isotropic rotational

diffusion equation in space. The equation is:

aiP(Q,ﬂQO,o):—D(L‘i + Dy + 1) P(Q,7]Q,0)=-DI’P(Q,7[Q,,0)  (98)
T

where D is the rotational diffusion constant and Lé , izy , and izz are infinitesimal diffusion

generators along the respective directions. (L?( + LA?Y + izz) is the angular momentum operator
and its eigenfunctions are Wigner functions l?@gg{ =I(l+ 1)33%,)c

The solution to Equation (98) can be achieved by standard variable separation in terms of linear
combination of Wigner functions. If we now partition the probability function into sum of

products of space and time, we find a solution of the form

QT|QOO=iZA”r|QUO V(Q) (99)

1=0 k, i

After substituting Equation (99) into Equation (98) we get

> z 110,000 (Q)=3 Y 4”(z]Q,.0)(-DII+1)D (Q)  (100)

1=0 k,m= l 1=0 k,m=—I
Wigner functions are orthogonal. Therefore, after multiplying both sides of Equation (100)

with D), (Q) and integrating, we get:

iA,EQ(TyQO,o)z—1)1(1+1)A,§,’,3(r|QO,0) (101)

This is a large set of equations but the equations are independent. They may be solved in the

standard way:
A (7]9),0) =7 41(0) (102)

Replacing 4. (0) with C!)(0) to emphasize that they are constants, the general solution for

Equation (99) would be
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o0 [
P(Q,7]9,0)=3 > C{(0)Dy)(Q) ™" (103)

1=0 k,m=-1

If we now apply the initial condition, the solution at time 7 =0 would be of the form
) !
> (0)D)(Q) e =5(Q-Q) (104)

We now need to multiply again by the Wigner function @Sf}n (Q) to extract C,Efn) . Using the

orthogonality condition of the Wigner functions from the literature:

20 +1
Con =g i () (105)

and plugging Equation (105) into Equation (103) we obtain

o0 l
P(0.710,0)= 2L S 2l) ()0 ()¢ (106)
=0 k,m=—1
([2 _ 87[2
J.gklm :Dk 21y (Q)dQ_ +1 hiy = kyky ™ mymy (107)

So, to compute the correlation function, Equation (106) should be substituted into Equation

(97) and, after taking the sum out of the integral for simplicity, we get

Gahcd (T):

108
81 281+1 ~D(1(+1))z Z J‘J‘@ﬁ (Q,)D" 2)*(9)@km (QO)QSM (Q)Qd (108)
72' =0 O k,m==1

The double integrals can now be partitioned into two single integrals with one integrating over
() and the other over Q. The two integrals resemble Equation (107) which gives the

orthogonality condition, and so the integrals can be replaced with the answers in Equation (107)
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Gabcd (T) =

1 &2/+1 7[) (1(+1))z (2)* ()
- ; - 2 lU@ D) (2)dQ, || [25 (@) (Q)d0 ]

1 & l-i-l D(I(I+1))z : 872'2 872'2 (109)

0,,0, ,0, —6,,0, .0,

872'2 ; 7Z'2 mZ::_l 2] +1 1,2%k,a"m,b 2[ +1 1,2%k,cYm,d
— §a,c5b,d e—éDr — 5a,c5b,d 67115
5 5
where 7, is the characteristic decay time of the correlation function:
1

P p— 110
<T%D (110)

and the rotational diffusion coefficient D is defined [128] from hydrodynamics using the

following expression

kT

D= 3
8rnr

(111)

where T is the temperature, 77 viscosity of solvent, £ and r are the Boltzmann’s constant and

molecular radius respectivley.

The rotational correlation time can be determined from the ratio of the longitudinal to

transverse relaxation times [129, 130]. For small to medium sized biomolecules, such as
proteins and nucleic acids, 7, is obtained from the ratio of >N longitudinal and transverse rates

[130, 131]. However this approach cannot be employed for the analysis of larger proteins due

to local motion contribution to the longitudinal relaxation [130]. Lee et al. have proposed a

method for the determination of correlation time which is suitable for rapid estimation of ,

based on the TROSY principle [132, 133]. Correlation time value varies depending on

molecular size and shape, solvent viscosity, and temperature. 7, is in picoseconds for small

organic molecules and nanoseconds for biological macromolecules.

Our next step in the derivation is to define the spectral power density as the Fourier transform

of the correlation function derived above. If we now calculate an element of the relaxation

superoperator from state p, to state 0,

(51F

£)=2 |, G (T)Tr( 5l [ka’[e,ﬁm o i Ibbﬂjdr (112)

kmpq
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Equation (112) involves commutators, which can be reordered by applying the cyclic

permutation rule to facilitate the derivation

A
A

<ba R, /3b> == Z [QA;(, l}_ [ﬁk(,:’b) l‘i TG"’"W (T)eiw"’rdz' =
ijkmpq 0
= z |:QA1]‘7qi|U [ﬁ;c(’s’b)]j[ kapq (a)t]) (113)
ijkmpq
kapq (a)) = J.kapq (T)eiw’jrdz-a a)ij = a)i - a)j
0

Equation (113) involves a complex exponential that depends on wz’j and the time 7, Q;q isa

constant matrix, and ﬁk(,,f’b) is also a constant matrix. Hence integration of Equation (113) clearly

gives a number of Fourier transforms. For the approximation that we employed to derive the
correlation function i.e. the isotropic tumbling approximation, the spectral density function

would be given as

J(w)= Te_;eiw”rdr = Te[m;]rdr _ (114)
0 0 —+iw

For mathematical reasons it is not convenient to have a complex number in the denominator,
thus the spectral density function is split into real and imaginary part to give

. 2
¢ T,

= 2 2 2 2
l+o't. 1+t

J (o) (115)

The real part is a Lorentzian curve. The imaginary part is fairly small and is commonly ignored,

reducing the spectral density function to

Tc

J (o) (116)

= 2 2
I+ o'z,

Physically, the spectral density function gives the energy density of stochastic perturbations at
a given frequency. If the molecular motion is rapid, which means short correlation times, this

gives rise to a broad spectral density function and samples a wide range of the frequencies.

This limit is known as extreme narrowing limit. Mathematically expressed as @’z; <1 then

J (@)~ J(0).

145



The final step in our derivation is to use the relaxation theory obtained above specifically for
the dipolar interaction. Dipolar relaxation is an ever present interaction in magnetic resonance
spectroscopy. The focus will be on two isolated spins I and S that are close enough in space.
The amplitude of dipolar interaction depends on the inverse cube of the distance » between
the spins, and the angle between that vector and the direction of the two spins [22]. The

Hamiltonian to describe the interaction is [22, 28] given in chapter one Equation (23).

Running the Hamiltonian through the theory described above (a highly detailed derivation is
available in Arthur Palmer's chapter in [25]) results in the following expressions for the self-

relaxation and the cross-relaxation rates for the two spins:
232
R _LIH (ﬂo]r_c 3 6 . 1
10 \dx) i1+ eind  1H(o vt 1+(0, - o) 1l
2 2
Ry =LLE [ Lo j— Lo L am)
10 \4zn) rg\l+wsre 1+ (o, +wg) 7. 1+(w, —ay) .

o 7/17;712 Hy T_C 6 _ 1
510 \4z) i1+ (o, +00) 2 1+(0, —o,)1?

Cross-relaxation is responsible for the observed cross peaks in NOESY spectrum. Thus, the

intensity of the peaks is correlated to the distance between spins in space. The measurement of
distance from NOESY cross peak intensity is nontrivial due to spin diffusion effect in dense
networks of proton spins in proteins. Spin diffusion [134] arises from magnetization transfer

between spins via multiple short steps and complicates distance determination [135, 136].

Note that relaxation theory, as given above, requires diagonalization of the Hamiltonian
superoperator. This is not a problem for small systems but quickly becomes computationally
complex as the system size increases [20]. In order to overcome this, specifically for the
purposes of our work diagonalization of the Hamiltonian is avoided [125]. Along with the state
space restriction method [20], this made the simulation of proteins feasible. To ease the
constraint in the memory upon large system simulation the diagonalization step is replaced by

numerical evaluations of the integral that is present in the BRW relaxation Hamiltonian [125].

4.4 NOE experiments and their applications

In its simplest form, the NOESY pulse sequence consists of three 90° pulses with an evolution

time f, separating the first two pulses. This is followed by a fixed delay time 7,, also known
as mixing time, between the second and third pulses during which magnetization transfer
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happens between the spins via NOE. The last step of the sequence is the acquisition of the
oscillating and decaying magnetization, which is known in the jargon as FID during the last ©
period. The sequence is repeated for a range of #1 values to acquire FID, the time domain signal
that are necessary for 2D experiment. Fourier transform of the FIDs with a suitable phase cycle

generates frequency domain 2D NMR spectra [137, 138].

9(0° 90° 90° 1,

e Jf

Figure 82 Illustration of NOESY pulse sequence [138]. The pulse sequence involves application of a 90-degree

rf pulse to the system, the system is then allowed to evolve for a period of t,. This is followed by another 90-
degree pulse and let it evolve for time T, in which the spins undergo cross relaxation. Finally another 90-degree

pulse is applied followed by the record of the free induction decay.

NOESY spectrum consists of diagonal and cross peaks, an example is given in Figure 83
(below). Diagonal peaks are those that correspond to the 1D experiment, while cross peak

signals are those that arise from cross-relaxation between spins that are in close proximity.
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F2: 1H chemical shift / ppm
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Figure 83 An illustration of 2D NOESY spectrum showing the cross (blue) and diagonal (red) peaks. The cross
peaks arise from the transfers of magnetization of one spin to another via Overhauser effect. This gives
information on the separation between the nuclei and is useful in biomolecular NMR for structure determination
and conformational analysis. The spin system used for the simulation of the spectrum is strychnine. The blue color
of the cross-peaks was just chosen to highlight the cross-peaks that are observed from the NOE and does not

indicate the negative NOE that are normally seen in NOESY of large biological molecules.

1D NOE experiments may be split into two types depending on the area of their application.
These are steady state and transient NOEs. Steady state experiment is a popular tool among
organic chemists for structural and conformational studies. It relies on selective and continuous

irradiation of the sample

90°

selective saturation

Figure 84 Steady state NOE pulse sequence, involving selectively saturating signal of one of the spins and then

application of 90° pulse to all spins followed by FID acquisition.

The other is transient 1D NOE. It is a technique that relies in production of NOE signals brought
about by population disturbance. The pulse sequence for transient NOE is depicted in Figure

85 (below).

(180 ° ) selective )

909, 1
T
4 >H

Figure 85 Illustration of transient 1D NOE pulse sequence. In this type of experiment a single resonance is

inverted selectively. It is a requirement that the resonance to be pulsed is well separated from other resonances.

Due to its importance to structural biologists, NOESY spectroscopy is still one of the most
regarded and popular technique widely used in structure determination of biological
macromolecules, such as proteins, nucleic acids, enzymes, and membranes. Protein structure
determination using NMR has seen a rise ever since the first NMR structure and is useful to
determine structure at the potential physiological environment specifically using solution state
NMR. Structure calculation can either be conducted by using signal assignment [134, 139] as

a prerequisite for structure calculation or carried out using distance restrains without
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requirement of signal assignment [140]. In both cases, NOESY cross-peaks are of paramount

importance in determining the structure of proteins or biological macromolecules in general.

4.5 Our method for protein NOESY simulation

In the discussion of protein-scale NOESY simulation, I will be following closely our published
work on quantum mechanical NMR simulation of protein systems [59]. The NMR simulation
of proteins undoubtedly down to the work carried out at Oxford and then Southampton by IK
et al. in the past 10 years [3, 20, 58, 125, 141, 142]. One of the many discoveries was the
polynomially scaling simulation algorithm [20]. This became possible after the discovery of
unpopulated density operator subspaces in spin systems, which normally are safe to ignore
from analysis [20]. For reasons explored in [3, 20, 125], NMR simulation of arbitrary size

system was made achievable.

In the simulation work reported here, the reduced operator algebra was built from populated
spin product states in the basis that were mapped by analysing the topology of the spin
interaction network. Spin interaction network in NMR could either be through chemical bonds,
which is electron mediated and known as J-coupling network, or dipolar coupling network
defined by through space magnetization transfer between dipole-dipole coupled spins. In
solution state, NMR J-coupling is responsible for peak splitting while dipolar coupling is
related to line width, and cross relaxation processes. In NMR experiments, magnetization flows

across both networks [59].

The reduced basis set for the liquid state NOESY spectra simulation of our work was generated
by using J-coupling graph (JCG) and dipolar coupling graph (DCG) that are generated from J-
coupling data and Cartesian coordinates. User specified thresholds for minimum J-coupling

value of 2 Hz and maximum distance of 5A between spins were used. Complete list of

connected overlapping subgraphs that involved user specified number of spins for both JCG

and DCG was generated using the depth first search algorithm [143].

For each subgraph G, , a complete description of the basis set of the corresponding spin
subsystem is generated with the dimension D, of the basis set is been equal to the product of

the sequences of multiplicities of each spin in G, . The basis operator represented as direct

products of irreducible spherical tensors has the following from:
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f;]yml ®f;2,mz ®"'®f;j’mj ®®T

fe) ™l

(118)

where 7,

B
J

is an irreducible spherical tensor operator of rank /; and projection m; acting on
spin j with |Gk| is the number of spins in subgraph G, . Equation (118) is useful to determine
the structure of each basis operator based on the sequence index {l m j} with a complete

description of operator basis of a given subgraph G, requiring 2|Gk|Dk integers of storage

space. These operator basis descriptors will henceforth be referred to as the “state list” [59].

Low orders of spin correlation are included between spins proximate in the coupling graph
after merging the state lists of all subgraphs and eliminating repetitions. The basis that results
from this, describes the entire system without gaps or cuts. All these procedures result in a
global list of spin operators that are engaged during spin system evolution. The accuracy of the
basis set can systematically be varied by changing the subgraph size. Accuracy analysis is
highly technical and beyond the scope of this work but it has been covered elsewhere [142].
The basis sets used for the simulation work are implemented in Spinach [3]. The description is

given in Table 6 (below).

Table 6 Nomenclature of the reduced basis sets generated as described in the main text and implemented in

Spinach library. This nomenclature is only applicable for liquid state NMR.

1K-0 Includes all spin correlation up to user-specified level between all
spins.

All spin correlations up to user-specified level between directly J-
IK-1 coupled spins with coupling value above user specified threshold and
up to user-specified level between spins that are proximate through
space with distances below the user specified threshold.

For every spin this includes all of its correlations with directly J-
IK-2 coupled spins and up to user-specified level between spins that are
spatially proximate with distances below user specified threshold.

After mapping the populated space, the spin operators and state vectors should be represented
as matrices. The Hamiltonian that describes spin interactions between two particles has a direct

product structure [18] of the form
H =00, ®0c,,®.80,,| (119)
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where @), are spin interaction magnitudes, N is the total number of spins, and o, , are identity

matrices, Pauli matrices or spherical tensor operators of dimension 2s, +1 with s, is the spin

quantum number of the .-th nucleus.

The commutation superoperator H for the Hamiltonian in Equation (119) defined by its

actions on the density operator p, is represented as the difference between the left-side product

superoperator H ,SL) and the right-side product superoperator I:I,ER).

H9p=|A,.p|=H,p-pA (120)

If we now represent the Hamiltonian superoperator in the low correlation order basis set as

discussed above, the complexity for the computation is reduced [141]. In a given operator basis

{5k} the left-side product superoperator would be
[ﬁ,ﬁ”lk = (6,4 6,) =Tt 6]H,6, |

(AT

As dot products commute with direct products, Equation (121) may be rearranged to obtain

(121)

A

[FIEL)} :Tr[é (61,6, ak)} HTr[O'jm 6,10Gim ] (122)
Jk

m=1

Due to the tiny size of the Pauli matrices, the complexity of computing the trace in Equation

(122) is O(1) while the complexity of computing one matrix element is O(N) multiplications.

With O (N ? ) interactions in spin system, this makes the building of the Hamiltonian O (N ’D? )

expensive. D is the dimension of the reduced basis set. However the sparsity of spin

Hamiltonians [144] and sparse spin interaction networks of protein systems reduce the

complexity to around O(N 2D) . Computational complexity is further reduced by the discovery

of unpopulated states even in the low correlation order subspace, presence of multiple
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independently evolving subspaces, and because not all populated states evolve into the

detection state [145].

Spinach implementation of the NOESY pulse sequence itself is straightforward, annotated

source code, coded as part of Luke Edwards and Ilya Kuprov’s work, appears below.

function fid=noesy(spin_system,parameters,H,R,K)

% Consistency check

grumble(spin_system,parameters,H,R,K);

% Compose Liouvillian

L=H+11*R+1i*K;

% Coherent evolution timestep

timestep=1./parameters.sweep;

% Detection state

coil=state(spin_system, "L+" ,parameters.spins {1}, “cheap®);

% Pulse operators
Lp=operator(spin_system, "L+" ,parameters.spins {1});

Lx=(Lp+Lp~)/2; Ly=(Lp-Lp~)/2i;

% First pulse

rho=step(spin_system,Lx,parameters.rho0,pi/2);

% F1 evolution
rho_stack=evolution(spin_system,L,[],rho,timestep(l),.-.-.

parameters.npoints(1)-1, "trajectory”);

% Second pulse
rho_stack_cos=step(spin_system,Lx,rho_stack,pi/2);

rho_stack_sin=step(spin_system,Ly,rho_stack,pi/2);

% Homospoil
rho_stack_cos=homospoil (spin_system,rho_stack_cos, "destroy”);

rho_stack_sin=homospoil (spin_system,rho_stack_sin, "destroy”);

% Mixing time

rho_stack_cos=evolution(spin_system,li*R+1i*K,[],rho_stack_cos,...

152



parameters._tmix,1, final");
rho_stack_sin=evolution(spin_system,li*R+1i*K, [],rho_stack_sin, ...

parameters.tmix,1,"final");

% Homospoil
rho_stack_cos=homospoil (spin_system,rho_stack_cos, "destroy”);

rho_stack_sin=homospoil (spin_system,rho_stack_sin, “destroy”);

% Third pulse
rho_stack_cos=step(spin_system,Ly,rho_stack _cos,pi/2);

rho_stack_sin=step(spin_system,Ly,rho_stack_sin,pi/2);

% F2 evolution

fid.cos=evolution(spin_system,L,coil,rho_stack cos,...
timestep(2),parameters.npoints(2)-1, “observable®);

fid.sin=evolution(spin_system,L,coil,rho_stack_sin, ...

timestep(2),parameters.npoints(2)-1, "observable™);

end

The simulation, however, practically required the following parameters: coordinates of each
magnetic nucleus to extract dipolar couplings, chemical shielding tensors, scalar couplings,
quadrupolar couplings for any quadrupolar nuclei present (e.g. for '“N), rotational correlation
times — Redfield theory with rigid body rotational diffusion, and the maximum level of spin
correlations expected depending on the pulse sequence. In the present work the coordinates
came from the PDB database and chemical shifts including the side chains from the BMRB
database. For the backbone shielding anisotropies and scalar couplings typical literature values
were assumed. Sidechain scalar couplings and shielding anisotropies were estimated using
GIAO DFT MO06/cc-pVTZ method in Gaussian09 for the appropriately capped individual
amino acids in vacuum. Detailed description on J-couplings generation is given in chapter

three.
After the data is collated, the following procedure was used to simulate the NOESY spectrum:

1. Generate matrices for the spin quantum numbers that the system contains; that is the

Pauli matrices, which are the matrix representations for the spin operators.

2. Generate spin operators using Kronecker products in the reduced state space and then

build the Hamiltonian.
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3. Take the initial condition, detection state, and the time step with the best sampling rate
using Nyquist condition for optimal sampling, and then building the step propagator to

record the free induction decay.

4. Finally the signal is multiplied by a window function, Fourier transformed and then the

spectrum is plotted.

The specification of the system is done by specifying the magnet field in units of Tesla along
with the coordinates, and isotropic chemical shift of the system read in from PDB and a file of
chemical shift data supplied by Christian Griesinger and Donghan Lee for ubiquitin spin system
and from Imai Shunsuke, Gerhard Wagner, and Scott Robson of Wagner Lab at Harvard
Medical School for the stem loop RNA system.

The cut-off tolerances for dipolar coupling and J-couplings are set using the following
commands
sys.tols._inter_cutoff=1.0
sys.tols._prox_cutoff=4_0
Cut-off tolerance for proximity is specified in Angstrom and cut-off for J-coupling is specified
in Hz. In the example above, dipolar couplings between spins that are further than 4.0 Angstro
apart would not be taken into account and any J-couplings smaller than 1.0 Hz would be

ignored. The next thing to be specified is the relaxation theory. Redfield theory is used in the

simulation.
inter._relaxation="redfield";
inter.rix_keep="kite";
inter.tau_c=5e-9;
The first command requests full Redfield relaxation theory: DD, CSA, nuclear quadrupolar
interaction (NQI) and all cross-correlations that are available for the system. As mentioned

before, dipolar relaxation rates are computed from atomic coordinates, CSAs and NQIs must

be provided — for those involved in simulations that require the two terms visit the manual

available on http://spindynamics.org on how to add the data for CSA and NQI to Spinach input
data structures. The second line in the specification requests the Redfield “kite”. This takes into
account cross-relaxation between longitudinal spin states only. For those who require the
treatment of all cross-relaxation processes, need to specify “secular” rather than “kite”. The

inclusion of cross-relaxation terms in the simulation, would significantly increase the CPU
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time. The last line of the commands specifies the rotational correlation time ( 7. ) in seconds.

The relaxation rates depend on 7.

The next step in the simulation processes is the option to specify the basis set. This is a
complicated topic by itself and the reader is referred to the original papers [3, 59]. However

the minimal basis set required for accurate results in solution state is given below:
bas.formalism="sphten-liouv";
bas.approximation="1K-1";
bas.connectivity="scalar_couplings”;
bas.level=5;

bas.space level=3;

The IK-1(5,3) requests connectivity-adaptive basis set that includes local correlations of up to
five spins on the J-coupling graph and local correlations of up to three spins on the spatial
proximity graph. IK-(5,4) should be used for accurate simulations that require the analysis of
NOESY peak volumes. In the next stage the function calls the Spinach constructor functions

using the command
spin_system=create(sys, inter)

And generates the spin_system data structure — the fundamental structure that contains all
information about the spin system. The spin composition of the system was read from the file
of chemical shift data. All the protons present in the system were used in the simulation, as the
interest was to simulate 2D NOESY NMR spectrum of the molecule supplied, other spins

present in the system are excluded from the simulation using the following commands.
spin_system=kill_spin(spin_system,strcmp("13C",spin_system.comp. isotopes));
spin_system=kill_spin(spin_system,strcmp("15N",spin_system.comp. isotopes));

These spins are either present in '*C and '*N forms, or decoupled. For experiments that require
the presence of these spins: HSQC, HCP, HNCO and other sequences, the commands should

be altered depending on which spins should be included and/or excluded in the simulation.

The next step is to specify experiment parameters. For the purposes of the 2D 'H-'"H NOESY

calculations, the following sets of parameters were used:

parameters.tmix=0.065;

parameters.offset=3473;
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parameters.sweep=[7500 7500];

parameters.npoints=[512 1024];

parameters.zerofill=[1024 4096];

parameters.spins= {"1H"};

parameters.axis_units="ppm"~;

parameters.rhoO=state(spin_system, "Lz","1H","cheap”);
Finally, after the parameters are specified, two FIDs: one cosine modulated and the other sine
modulated for the pulse sequence is simulated using a Spinach NOESY function and multiplied

both by a decaying Gaussian function, which then Fourier transformed both with respect to

using the following commands
Tl _cos=real (fftshift(fft(fid.cos,parameters.zerofill(2),1),1);

fl_sin=real (fftshift(fft(fid.sin,parameters.zerofill(2),1),1));

The imaginary parts are then ignored and the sine modulated data is multiplied by -i and added

to the cosine modulated data using
Tl states=f1l cos-1li*fl_sin.
This is then Fourier transformed with respect to #1 with the command
spec=fFftshift(Fft(fl_states,parameters.zerofill(1),2),2).

And then plotted using the plot_2d function.

The result from the simulation work is given in Figure 86 (below); with the spin system where

the quantum mechanical simulations were carried out on is shown in Figure 87 (below).
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Figure 86 Ubiquitin NOESY spectra at 900 MHz proton frequency — (left panel) experimental spectrum, data
obtained from Christian Griesinger and Donghan Lee. Right panel theoretically simulated spectrum. Simulated
spectrum is computed with through space distance cut-off of 4.0 Angstrom for dipolar interactions. Mixing time
of 0.065 s was used in the simulation process. BRW relaxation theory with a single global rotational diffusion

time of 5 ns was used for relaxation superoperator.
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Figure 88 Correlation between experimental and theoretical 'H-'H cross-peak volume for ubiquitin at 900 MHz
proton frequency for the spectra depicted in Figure 86 (above). The intensity between the experimentally and
theoretically obtained cross peaks were compared. Simpson’s method [146] was used to integrate the volume of
the cross peak taking care of the baseline. The cross peak volumes obtained from the experiment were then plotted
against those from the theory to observe the quantitative relationship between the spectra from experiment and

theory. This figure is copied from our published paper [59].
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Discussion and result analysis

A large number almost hundreds of NOEs are observed in the simulated spectrum Figure 86
(above). These cross peaks are due to the mutual cross relaxations between two proton spins
which happens during the mixing time period of the NOESY pulse sequence Figure 82

(above).

Mixing time is an important parameter for NOE hence one mixing time —a parameter normally
required for an NOE experiment, was specified for the simulation i.e. the same mixing time
used for generating the experimental data. This is normally found to be small due to the large
molecular weight of proteins and the value should also be kept as small as possible to linearly
approximate NOE build-up and avoid spin diffusion. When the mixing time is too short only
diagonal peaks are observed and useful coupling information about the interacting spins start
to appear when there is exchange of magnetization between spins via cross relaxation. In a
similar fashion the effect of a long mixing time is disappearance of cross peaks from a NOESY

spectrum due to the establishment of equilibrium and the loss of frequency labelling.

Overall rotational diffusion and internal motion of protein are the factors that normally
modulate spin relaxation in proteins. The term rotational diffusion of biological
macromolecules however includes the overall tumbling times and the anisotropic motion.
Internal motions are not efficient at driving relaxation but are included at occasions when
accurate simulations are required. Overall tumbling time depends on molecular shape and size.
However these are not the only factors that affect the tumbling rates. Temperature and solvent
viscosities are also important factors in determining the rotation correlation time in which the
NOE is dependent on. Thus, larger molecules such as proteins in viscosities solvents have
larger correlation times hence negative NOE’s, while small organic molecules in non-viscous
solvents have positive NOEs. Correlation time along with the distance between the interacting

protons determines the position of the maximum NOE and the rate at which the NOE builds
up.

The NOE is inversely proportional to the sixth power of the internuclear distance, thus small
changes in spin coordinates can bring in significant variations in the observed cross peak
intensities. Nevertheless signals are observed when the distance between the spins in not more

than 5 Angstroms.

Variation in NOE data were observed from the dynamic property of sidechain when an

ensemble averaging was performed. The variability showed little or no impact on the cross
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peak NOE simulation we conducted. Note, however that this is a conclusion from our

observation from a single project study carried out by Zihan Fang.

Cut-off variation from 4 to 5 or 6 Angstrom increases the volume (and therefore the number of
active spins) used for simulation and this effect goes cubically with the radius. In a similar way
the complexity increases cubically with the number of active spins used to approximate the

simulation, causing the computational effort to rise very steeply.

When J-couplings are ignored from the simulation process the quality of the simulated spectra
would be affected as the multiplicity pattern vanishes and also all transfer routes across zero-
quantum coherences disappears. It is likely that the simulation would probably be a passable

approximation, however it would not deem to be quantitative.

An ensemble of structures for ubiquitin are available from the PDB (1D3Z), however a single
structure was used in the NOESY simulation conducted as part of the project. The cross-peak
volume was analysed and fitted to those from experiment and showed linear correlation Figure
88. For comprehensive peak volume analysis every off-diagonal peak should have been
included however, this was impossible with the techniques currently available to us. Thus the
cross-peaks of the spectrum were cut into small squares with the volume underneath each

square is computed and ignoring squares with low integration value from the analysis.

To integrate the overall motion of ubiquitin, cross-peak volume from a single structure and that
from an ensemble average was compared and showed a negligible multi-structural effect, on a

separate project study where the results are not published.

Based on the results from the simulation the 4 A dipolar distance cut-off used is sufficient for
ubiquitin NOESY simulation. However, in cases where the computational resources are

available 5 A threshold is recommended for better accuracy.
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4.6 Conclusions

An NMR spectrum of protein spin system has been simulated using the reduced state space
approximation method. Ubiquitin that possesses 76 amino acids, 1060 magnetic nuclei, about
60,000 spin-spin couplings is used as an example. In the simulation processes the spin system
was treated as a whole in one go - without cutting it into fragments. The simulation procedure
discussed above has massively improved the simulation time compared to the exact ones.
Redfield relaxation superoperator with a single global rotational diffusion tensor including
cross-correlations was used in the calculation and was computed using the diagonalization-free
algorithm [125]. In practice the simulation required shielding tensors, J-couplings, quadrupolar
tensors and Cartesian coordinates for each participating spin. The simulation given above was
carried out on a Dell PowerEdge 820 system with 32 Intel Sandy Bridge cores and 1024 GB of

memory. In the latest versions of Spinach the memory requirement is reduced to 128 GB.
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5 Large-scale simulations and fitting
of chemical exchange NMR

5.1 Introduction

NMR spectroscopy is useful for the study of exchange process [147-149] at atomic level for
biologically important molecules, such as proteins and nucleic acids. Exchange behaviour
depends on the conformations of the molecules which can be captured by NMR due to the

chemical shift differences between conformations.

NMR spectroscopy can also be used to quantify chemical exchange processes in the time scale
from microseconds to several hours. C. D. Kroenke ef al [148] has quantitatively determined
chemical exchange effects in the timescale micro to milliseconds, which was demonstrated in
the study of Escherichia coli ribonuclease H. Exchange processes are classified into three types

[23, 35, 150], depending on the time scale.

1. “Slow” time scale characterizes motions in the micro to millisecond range [148, 151].
This is known to affect the line shape and chemical shift of NMR signal. The slow time
scale motion contribution to the transverse relaxation can be studied using different
techniques depending in the type of the motion. Motions in the microsecond to
millisecond can be investigated using CPMG (Carr-Purcell-Meiboom-Gill) [39, 46]
based experiments. For processes in the millisecond to second, especially for '°N nuclei,

the ZZ-exchange spectroscopy is suitable to measure the rate exchange.

2. “The intermediate” regime which can be detected in the nanosecond to microsecond is
known for broad and coalesced peak, can be described using the evolution of the density

matrix over time. Motions which are in the range of fast microsecond region can be

studied using dynamic line shape analysis or R, , [42] experiments.

3. “Fast” exchange processes characterize motions in the picosecond to nanosecond time

scale. The fast regime is usually studied using relaxation methods. In a fast exchange

process the contribution of exchange is determined by 7, experiments.
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Exchange processes alter 7, in NMR experiments and this effect may be similar to the normal
relaxation processes [150]. The former is distinguishable in the property that they increase the
transverse relaxation rate R, while the longitudinal relaxation normally remains unaffected by

the exchange. Generally, there are two ways to analyse exchange effects, namely the lineshape
analysis and magnetization transfer [35]. However the analysis depends on the region of
exchange and the degree of the order (first or second) of the exchange process. NMR spectra
and relaxation studies are useful for the analysis of conformational and chemical exchange in
biomolecules. Chemical shift and spin-spin couplings change the appearance of spectra in the
presence of exchange processes. Relaxation however senses chemical and conformational
processes depending upon line width. These NMR parameters are very useful to determine the
kinetics and thermodynamic processes on the microsecond to second time scale, which is
characteristic for the dissociation and association of protein complexes. Table 7 (below) shows
the classification of exchange processes depending on different NMR parameters. In NMR
time scale, a slow or fast classification of rate constant is categorized depending on how fast

or slow is the exchange rate in relation to the difference of the resonance frequency of the two

states [23, 35, 152].

Table 7 Showing the classification of exchange processes depending in the NMR timescale. It is defined as the
difference of magnetic signal in the two environments relative to the exchange rate. Exchange rate is affected
experimentally by an increase in the temperature of the system. Increasing the temperature drives the system into

the fast exchange regime.

Exchange processes
NMR Time scale Slow exchange Intermediate exchange | Fast exchange
Chemical shift k <5, - 6, k=0,- o, k>0,- 6
Coupling constant k<J Iy k=J A k>J A
Relaxation time < R = 1 s 1
2a Dog La Tp 2a Dop

Anything in between the two extremes is considered as intermediate. There is a simplified
mathematical expression for the intermediate regime processes and detailed description of this

163



can be found in reference [23, 35]. Now back to the description of the spectra in Figure 90
(below). When the exchange rate is slow, two separate signals are observed at the resonance
frequency of the nuclei in the two sites. In contrast in the fast exchange regime a single
resonance at the mean frequency of the two sites is observed. The computed spectra in Figure
90 are a special case of equal populations of the most common two site exchange processes. A
variety to this is when the population of the two states are different. An example of this case
can be found in many NMR text books. This is the case when concentration of the two states
are different hence their rate constant [23]. The first step in the analysis of exchange processes
is to identify to which region of the exchange the spectra belongs. EXSY [38] is a technique
normally employed to establish the presence of slow exchange. A selective inversion
experiment is useful for quantitative analysis. Exchange process affects NMR spectra in variety

of different ways, however all follow the same basic mechanisms.
5.1.1 Ligand Binding

Ligand binding is the study of binding of a ligand to a macromolecule such as proteins and
nucleic acids. Ligand binding may induce structural changes. The structural rearrangements
are large at binding sites compared to other parts of the macromolecule-ligand complex. The
interaction of ligand to a macromolecule partner is due to the presence of binding sites that are
charged and/or hydrophobic. An example of ligand binding study with a positively charged
binding pocket is given in the paper by Anderson et al. [153]. The binding of ligand to
macromolecule happens by Van der Waals forces, ionic bonds, and hydrogen bonds. The rate
of ligand binding is known as affinity and is determined by Ka. It is used to characterize the
strength of binding effect. Protein complexation occurs in the region of slow exchange
processes, typically around 10 to 10™! seconds. In dynamic NMR, this may be assumed in the
simplest case as a two-site exchange processes, observed at two distinct chemical
environments. These can be studied by chemical shift line shape analysis using Bloch-

McConnell equation given in Equation (127).

Ligand binding can be mapped using chemical shift changes in the case where the resonance
difference associated with the binding is on the fast time scale. However the slow time scale
binding kinetics of the bound state should be established using alternative or additional
experiments. One of the application of ligand binding is in drug design. Thus it is important to

understand ligand binding mechanism at molecular level.

5.1.2 Chemical shift mapping
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Chemical shift perturbation mapping method is used to map the interface of protein complexes
[154]. In such experiments, a '"’N-'H HSQC spectrum of the protein is monitored under
stepwise addition of another protein or ligand. The interaction affects the resonance frequency

of the NMR active nuclei in that area.
5.1.3 Visualisation

Chemical shift changes due to titration are mapped to the protein structure using a weighted

average of the chemical shift difference of the amide 'H and >N backbone resonances [155]

using the formulad = ,%[éﬁ +a-5§,] The value for a used to map the residue shift in

calmodulin (PDB: 1CLL) depicted in Figure 89 (below) was 0.14. Another application of
resonance perturbation is to map side chain interactions upon protein complexation [156]. Side
chains paly a dominant role in molecular recognition. Chemical shift perturbation mapping
provide the location of the binding site, however it doesn’t explain or describe how the partners
interact at atomic level. Shift perturbation experiments can be used to estimate the affinity,

specificity, and kinetics of the binding.

Figure 89 PyMOL surface representation of calmodulin titrated using a ligand with the geometrical distance
moved higher that 0.2 ppm by the peak. Red illustrates hetronuclear N-H spin interactions of the residues with a
shift greater than 0.2 ppm. The NMR data of the spin system were obtained from Joern Werner and Kelly Hooper.

5.2 C(lassical theory: Bloch-McConnell equation

Below is the derivation of the Bloch-McConnell equation for a simple system with two sites of
different chemical environment and a single spin exchanging between two sites A and B i.e.
for a reaction scheme given in Equation (131).
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The Bloch equations for the transverse magnetization without chemical exchange are

d[m;] [io,-R, 0 M
dt| M 0 iy — Ry || M (123)
M*=M_+iM,

N
where ( ‘:J are complex magnetization amplitudes. If we now take the case when the spin
B

interchanges between the two states which are of different frequency.

The kinetics of the system that interconverts between two states can be described by the rate

equations below

AAL (AL, [B]
dt (124)
S kal-x o
dt ] -
The kinetic rate matrix is
-k Kk
{ b } (125)
ko -k,

This kinetic equation can be incorporated into the Bloch equation to give the equation which

is known as the Bloch-McConnell equation, which is given as:

iM% _ i, —R,, | 0 +—k1 k M% (126)
dt| M, 0 o, — R, ky =k ||| Mg

This can be rewritten in a matrix form:

M; M}
AIMA o+ r+k] A (127)
dt\ M, M,

where € is the frequency matrix, R is relaxation matrix, and K- the exchange matrix are

given by
0 _TL 0 ko k
Qz[wA ]; R=| : K:[ vt } (128)
0 o 0 1 k, -k,
T,
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Equation (127) is a first order differential equation that can be solved as:

{M; (r)] _ [MZ (0)j (129)

My (1) My (0)

The longitudinal and transverse magnetization components evolve independently and are given

by Equations (130) and (129) respectively.

MEA)(t) _ iRk MiA)(f) M(;A) {_kl kl}. M, (130)

M(1) MP(@)] M) Lk

where R, is the longitudinal relaxation matrix. This can further be adapted to study transient

phenomena [18], in which a system starts from non-equilibrium and monitor the return to

equilibrium overtime.

5.3 Simple examples

A classical example is the first order isomerization reaction with different forward and

backward rate [23, 151, 157].
A=B (131)

where A and B are the states of the system and £ is the rate of exchange between the states.
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Figure 90 Simulation of two site exchange process depicting change in line shape as k.., the rate constant

abrivated as ex-rate in the legend moves on from slow to fast in NMR time scale. These NMR spectra are
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calculated using Spinach [3]. NMR frequency of 600 MHz with 900 Hz offset and sweep width of 5000 Hz were

used as parameters in the simulation. The exchange rate is in Hertz.
The spectra in Figure 90 (above) are calculated using different values of the rate constants, £.
NMR parameters that are distinct for states A and B are the chemical shift (da, dB), longitudinal

(R, 5, R ) and transverse (R, ,, R, ;) relaxation rates.

Fast exchange

k>4,- 6

Intermidiate exchange

Slow exchange

k<«d,- &

1H chemical shift / ppm

Figure 91 Computed NMR spectra for a pair of nuclei in two states that possess different populations using NMR
proton Larmor frequency of 600 MHz with an offset and sweep width of 900 Hz and 5000 Hz respectively. Where

k indicates the exchange rate constant.

The population of the two states should be equal to unity i.e. (p A TDPg = 1). The lifetimes 7,

and 7, for the two states can be given by the equation below:

TA:k—, TB:k—, (132)
A B

where k, and k, are the exchange rates for the states.

In the slow regime, the effect of the exchange at the two sites can be given by the equation

below.
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Ao, =—, Aw, =—, (133)

where Aw, and Awjgare the change in line width due to exchange effect at states A and B

respectively. For the fast regime a single peak at the weighted average of the resonance

frequency of the two sites is observed. Its line width is given by

_ 47p Py (50))2
ky + ks

Aw , where Aw=wo, +o,. (134)
5.4 Why Bloch-McConnell equation can’t describe most NMR pulse

sequences

The Bloch-McConnell equation used in the study of exchange processes assumes to describe
the process in the absence of scalar coupling. That is, the equations are derived to illustrate the
evolution of magnetization for isolated spins. HSQC, however, is a two dimensional

experiment that transfers magnetization between 'H and heteronuclei via scalar coupling.

5.5 Quantum mechanical description of chemical exchange

The most convenient way to approach exchange processes for complicated systems that involve

two or more spins that are coupled, is the density matrix.

The equation of motion of p includes the frequency matrix, L , the relaxation matrix, R, and

the exchange rate matrix, K, to provide the following equation:

£ p(r) =-[ILRK] (1) (135)

It can be solved using a matrix exponential:
p(1) =eXp(—[iL+R+K]t)p(O) (136)

In NMR, the spectrometers usually detect magnetic signals along the transverse x- or y- axis.

A

I

X2

is the operator that is used to represent the magnetization. This operator is a vector in the

Liouville space. Thus the measured signal F(t) can be described by

F(¢)

(L1 (1)) = (I, lexp(~[IL+R+K]z) p(0)) (137)
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Density operator equation that describes two-site exchange processes has been implemented

into SPINACH and is given in Equation (138).

5 H, +iR 0 5\ [k E kE|/
dt\ pr 0 A, +iR,

where p,, are density matrices of the spin systems of chemical species A and B, H, , are
their spin Hamiltonian commutation superoperators, R, , are their relaxation superoperators,

E is a unit superoperator and k&, are the reaction rates.

5.6 Fitting method

Here in, the project work "H-'"N HSQC spectra of ligand titrated calmodulin protein were fitted
to investigate kinetics and extract exchange parameters for the protein system. And this was

achieved using least squares method [158, 159].

Least squares is a mathematical approach to find optimum parameters that best fit a function,

f (x), of data points X;,X,,X;...X, , with the purpose to minimize the sum of the squares of the
deviations between the observed and calculated values of the data. This is measured using

“error functional”.
For a given set of data points { yi,xl.} and any function f (x; 07) , the “error functional” can be

described using Equation (139):

s(é)=izj:[y,, ~f(xa)] (139)

where s(o?) is the residual of the sum of squares of all the elements of the data points, i.e. the

difference between the actual data acquired from experiment and the model function with

respect to the parameter & .

The objective function was minimized using Nelder—Mead simplex method [160, 161]. In
numerical analysis the Nelder-Mead simplex belongs to the direct search method category. The

method is used to minimize a real valued function. In addition it is a technique which is used
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to handle functions which are discontinuous, noisy, nonlinear, and non-differentiable. The
method minimizes a function of several variables by computing a simplex from an initial

estimate. This is summarized as given in Equation (140)

f(x), xeR" (140)

This is followed by the evaluation of the function at the points and reflection operation is
performed on the worst value of the function through the centroid of the other points.
Depending on the value of the function at the reflected point a contraction or expansion step is
taken. These steps are represented by 3 and y variables. The expansion coefficient is usually
greater than unity while that of the contraction step is between 0 and 1. The Nelder-Mead

generation of simplex and steps to minimum is depicted in Figure 92 (below).

Figure 92 Simplex, which is a polygon of three vertices in two dimensional spaces, followed by reflection,
expansion, contraction, and shrinkage. The figure is taken and modified from Ilya Kuprov’s Spin Dynamics

lectures.

The objective function, which is the least square function, computes the square of the difference

between the theory and experimental spectra as given in Equation (141).

2’ (a,b)= ZN:((spec _theo (parameters))n —(spec_exp) )2 (141)

n=1

where y’ (a,b) is the value of the function at the parameters, spec__exp - the experimental

spectra, spec theo(parameters) is the theoretical spectra with the parameters to be optimized

and N is the number of iterations.
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5.7 Fitting of exchange processes applied to 1H-15N HSQC spectra of

calmodulin

Joern Werner and Kelly Hooper at the centre for biological science of the University of
Southampton were interested in a protein simulation task collaboration, and requested us to run
simulations of chemical exchange between different protein conformations from an NMR

titration experiment.

The system investigated was a protein calmodulin (PDB: 1CLL) titrated by a ligand with the
reaction monitored using HSQC, a 2D nuclear magnetic resonance technique that stands for

heteronuclear single quantum coherence.

Calmodulin abbreviated as CaM for calcium-modulated protein is a ubiquitous calcium binding
protein that plays an important role in Ca™ signal transduction within the cell [162].
Calmodulin consists of 148 amino acid residues and has a dumbbell shaped topological
structure. It contains four calcium binding cites with two on each of the two globular domains
connected by a flexible antiparallel B-sheet linker [163]. Calmodulin is a versatile molecule
that interacts with generic proteins involved in a wide variety of functions including cell

signalling and ion transport by regulating the activities of kinases and phosphatases [164].

HSQC spectra of Ca*? calmodulin and that of the samples with subsequent addition of ligand
were recorded and analysed. As part of our collaboration we quantum mechanically simulated
a candidate spectrum and fitted the experimental data to the computed once to extract exchange

parameters such as the kon and kofr.

HSQC spectra of calmodulin in the presence of chemical exchange were calculated
theoretically using Spinach v1.5 [3] for a collection of standalone N—H pairs. To model spin
dynamics in the presence of a unimolecular chemical reaction Equation (131), Spinach uses
Equation (138) as the equation of motion. The formalism given for the case of two chemical
species is a special case of a more general implementation of chemical kinetics in Spinach,

which operates in the direct product of spin state space and chemical state space.

The spin part of the problem contains 254 N-H pairs and was therefore handled using the
restricted state space approximation [20]. Because a collection of standalone N-H pairs is
assumed in this case, state space restriction to two-spin orders connecting directly coupled
spins is in this case exact. A single spin pair in Liouville space yields a 16-dimensional problem

and therefore the total dimension of the matrices in Equation (138) is 254 x 16 x 2 = 8128 —
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small enough to be handled comfortably by the sparse matrix functionality implemented in

Spinach.

However, the current project work involves a second order reaction with a chemical reaction

k,

structure of CaM+ Pep ;\ CaM:Pep .

koff
Spinach NMR exchange simulation work requires the following items for that reaction:
I.  'H-">N chemical shifts of Ca*> CaM

II.  'H-'>N chemical shifts of Ca™ CaM:Pep complex

kﬂll
III.  Forward and backward rates in the CaM+Pep = CaM:Pep reaction, which are

off

assumed to be first order in both directions were extracted as described below.

The parameters supplied to create .m function of Spinach are a cell array of the type { [1 2]
[3 4]} assigned to inter.chem.parts. This specifies a vector of integers i.e. spins 1 and
2 belongs to the first chemical subsystem while spins 3 and 4 to the second chemical subsystem.
The next parameter is inter .chem.rates. This is a matrix of real numbers that indicates
the reaction matrix rate between the subsystems specified in the inter.chem.parts variable.
Finally the initial concentrations of the subsystems should be supplied to the assigned

command variable inter .chem.concs.

To proceed with the simulation of the exchanging spectra we required a kinetic binding model.
K the binding affinity for the titrant peptide was measured using ITC and found to be around
200nM. Values obtained from ITC measurements provide useful insights into the binding
mechanism. ITC an acronym for isothermal titration calorimetry is an experimental technique

used to directly measure the heat generated or absorbed when two biomolecules interact.

Assuming that this K4 (200nM) value corresponds to the slow exchange part of the binding our
collaborators Joern Warner and Kelly Hooper simplified the multistep binding to a simple and
most generic binding model or mechanism. The binding mechanism involved a first order

reaction in the absence of scalar coupling that computes equilibrium concentrations in the

reaction: CaM+ Pepé:#CaM:Pep given the initial concentrations of CaM and Pep as

off

[CaM] . [Pep]

well as the overall binding affinity K4. With K4 is assumed to be equivalent to .
[CaM:Pep]
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For simple equilibrium systems like this, K, = % The diffusion limited kon for the peptide

on

involved from literature shows the values in the range of 0.1M M's™! to 0.1GM's™! giving a

kofr in the range of 0.02 to 20 along with a life time [r = LJ for the complex formed around

off
50ms to 50s. However, the very slow and fast kon rate are extreme values, hence a kofr of 0.2 to
25! i.e. a life times of 500ms to 5s for the complex formed are considered realistic. This

estimate came from Joern Warner and Kelly Hooper our collaborators in the project work.

The titration experiment with a reaction scheme CaM+Pep = CaM:Pep is a second-order

reaction where only the effective first order is actually observed. Therefore the following

ordinary differential equations would describe the rate of the forward and reverse reaction:

d[cam] =k, -[CaM]-[Pep]+k,, -[CaM:Pep]
] i - (142)
w = +k,; -[CaM]-[Pep]—k,, -[CaM:Pep|

This makes the calculation to require the concentration of the peptide in which its solution
involves solving a quadratic equation. The law of conservation of matter in an isolated system

states that the total quantity of reactants must be equal to that of the products. Thus the

concentrations of [Cam] and [Pep] can be given by the following equations:

[CaM] = [CaM]tOt - [CaM : Pep]

143
[Pep] = [Pep]tot — [CaM : Pep] (143)

where [CaM] and [Pep] are the total concentrations of the protein calmodulin and the

tot tot

peptide. Thus, if we know [CaM : Pep] , we can easily determine the concentration of [CaM]
and [Pep]. This sorts out equilibrium concentrations, as a consequence, the nonlinearity

problem of Equation (142). After equilibrium is established, the concentration of the peptide

([Pep]) becomes stationary and the quadratic term becomes linear.

To calculate the concentration of [CaM:Pep] we can substitute Equation (143) into the

equation of the overall binding affinity to obtain a quadratic equation, given below in Equation
(144)
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([CaM : Pep])2 - ([CaM]m + [Pep]m +K, ) . ([CaM : Pep]) + ([CaM]tot -[Pep]ml) =0 (144)

As we are working on concentrations, only positive solutions for Equation (144) are

considered.

The coded Matlab program for the kinetic model is available under the function name

“kin_model”.

With the state A data came from the naked protein calmodulin with a starting concentration of
100uM and zero for the peptide (practically this was given as a finitely small number), and
20uM for the binding constant (Kd4). While for state B the values are 100uM for the protein and
the peptide and 20uM for Ka.

These input data were used for the simulation of the exchanging HSQC spectra of the titration
experiment with an example shown in Figure 93 (below), and were calculated with respect to
the rate constants of the forward and backward reactions, where both rates presumed “slow”.
The parameters for the theoretical data were matched to that of the experiment including the
point spacing, timing, and the apodization function. The chemical shifts of the theory and
experiment were also aligned to make sure that the signals are overlapping, this consequently

makes the data quantitatively fittable.

The only adjustable parameter was the kinetic dissociation rate (kdis) and association rate (kass)
was computed from the equilibrium condition, i.e. the equilibrium condition from the

concentrations and Kq that were provided.
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Figure 93 'H-N HSQC NMR spectra of calmodulin experimentally obtained right panel and left panel
theoretically computed. Two of all the spectra from the titration of calmodulin upon addition of a ligand to show

data match. Some missing peaks in the simulated spectrum.

It is evident from the simulation that the features of titration are reproduced using the
simulation work with an example given in Figure 96. An example of two residues that are well
resolved and in an isolated regions of the spectrum that show exchange characteristics are Asp
64 and Ile 130 at H=8.75-8.95ppm and N=127.5-129ppm, and H=8.25-8.45ppm and N=127.5-
129ppm coordinate axis for the two residues respectively. Both the residues show the
characteristics of fast exchange processes in the F1 i.e. direct and F2 the indirect axis. The

exchange phenomenon is also accompanied by a change in direction of peak movement.
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Figure 94 An illustration of chemical exchange phenomenon from 'H->N HSQC spectra for the residue Asp 64.
The two unresolved peaks on the right panel merge and form a single peak as the concentration of the peptide
increased in a titration experiment. The ratio of the concentration of the protein to the peptide is 1:0.05 and 1:1
for the right and left panel, with kinetics matrix of [-0.098, 2; 0.098, -2] and [-0.033, 2; 0.033, -2] respectively.
The kinetics matrix consists chemical reaction exchange rate matrix between subsystems as its elements. Due to
the law of conservation of matter, the diagonal elements of the kinetic matrix must balance out those that are off

diagonal.

127.65F T T T T T T T L

127.7 i
127.75¢ i
127.8 i
127.85}) i
1279 | i

127.95¢ i
8385 838 8375 837 8365 836 8355 835 8345

F1: 15N chemical shift / ppm

127.65F— T T T

127.751 ]
127.851 @ ]
127.951 ]

128.05L @ 1

128.151 I

838 837 836 835 834 833 832 831
F2: 1H chemical shift / ppm

F1: 15N chemical shift / ppm

Figure 95 lllustration of fast exchange phenomenon of a well resolved peak from Ile 130. Top panel — a single
peak for complex of 1:1 ratio of protein and ligand, while bottom panel is a peak from 1:0.05 ratio.



After accomplishing this, i.e. simulation of the HSQC spectrum which is almost identical (line
shape and position) to that of the experiment— the work proceeded in minimizing the difference
of the volumes of the peaks between the experimental and simulated data as a function of the
exchange rate. This is conducted using global optimization of the peak to peak fitting as

depicted in Figure 96 of those signals that are well resolved.

The simulated spectra were fitted to the experimental spectra using the least squares method
[165] to obtain chi squared ( ) — the value of the function evaluated as the parameters passed
over to the objective function. The least squares method minimizes the difference between the
experiment and the theory. The optimized parameters are K4¢— the overall binding affinity, kdis—

the dissociation constant, proton and '°N relaxation constants, and intensity multiplier.

In the fitting process Kd was initially fixed and the fitting was run for the other four parameters,
and then K4 was varied from result obtained from previous fitting run. An example of the results

from the fitting are depicted below in Figure 96.
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Figure 96 Fitting of 'H-">’N 2D HSQC spectra with respect to ligand binding kinetic parameters. Left panel 'H-
SN HSQC spectrum of protein ligand complex Figure 93 (above). Middle panel — a fragment of the peak by peak
fit undertaken in this work — (Top row) experimental peak and (Bottom row) theoretically simulated peak at three
different concentrations of ligand. Good agreement with peak position and line width is apparent between theory

and experiment. Right panel Calmodulin (PDB: 1CLL): 148 amino acids, 1134 magnetic nuclei.

The simulation has reproduced the line shape as it is apparent in Figure 96. The values obtained
for the fitted parameters from the fitting procedure described above are 9.62, 1.81, -8.09, 79.86,
28.54, 0.58 for the y°, the logarithm of kdis and Ka, proton and '°N relaxation constants, and

intensity multiplier respectively.
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A subtraction plot that is the difference between experimental and simulated peaks was also

conducted to investigate the extent of matching between the two data types. An example, a

fragment of the peaks studied is depicted in Figure 97.
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Figure 97 A4 fragment from the 2D fitting of 'H-">’N HSQC spectra of calmodulin (PDB: 1CLL). The top panel of
5 peaks is from experiment, the middle row is the theoretically simulated peaks while the bottom panel is the

difference plot between the experiment and theory.

It is apparent from Figure 97 (above) that the difference plot depicts an almost flat peak with
a lot of noise. Beneath all the peaks is a colour bar that illustrates the intensity of the
corresponding signals. A closer look to the colour bar shows that the intensity of the peaks
spans from 0 to ~0.25, and 0 to ~0.20 for the experimental and theoretically simulated peaks

respectively. But for the difference plot (bottom panel) it is an order of magnitude smaller than
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that of the theory and experiment. In addition the difference plot depicts a considerable amount
of noise (apparent blue colour) around the entire area. In this research work, we are yet to make
a conclusion on the conformation of the protein calmodulin upon step wise addition of a ligand
using line shape analysis as a function of exchange processes. This is as far as we can go for
this fitting work and to bring it to a logical end, there needs another simulation work to be

conducted using another model that involves two site binding of the ligand to the protein.

Table 8 Objective function and fitting parameters value extracted from the fitting work conducted as part of this
research work. The left most column represents an arbitrary number given to 19 peaks randomly picked from the
titration spectra recorded at eleven different concentrations of the peptide to the fixed concentration of the protein
calmodulin. The Log K, and Log_kaiss are the natural logarithm of the binding affinity and dissociation constants
respectively. y is the local minimizer of the error functional i.e. its values are the local minimizers of the objective

function (the minimized function for fitting the data from experiment to that obtained from theory).

Arbitrary | x Log_Kaiss Log Kq R for R: for SN | Intensity
number H multiplier
of peak -A
function

0 9.62 1.81 -8.09 79.86 28.54 0.58

1 0.00 1.24 -8.02 25.56 14.79

2 3.94 1.79 -5.86 68.71 31.12 0.74

3 0.00 1.41 -7.07 66.24 35.75 0.90

4 0.00 1.48 -6.78 72.63 24.25 0.77

5 4.78 1.58 -6.02 69.10 43.67 0.61

6 5.06 1.77 -6.96 70.32 28.32 0.60

7 2.81 1.89 -7.69 67.44 29.17 0.56

8 7.27 1.79 -6.08 62.76 27.40 0.75

9 1.41 1.70 -6.32 68.66 31.60 0.49

10 0.49 -2.94 -6.60 95.69 41.85 0.55

11 6.21 2.49 -5.65 57.03 28.07 0.86

12 7.06 -0.13 -4.56 44.23 25.11 0.79
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13 2.48 -2.74 -6.04 76.02 34.46 0.84
14 3.40 2.68 -5.63 76.02 34.23 0.73
15 1.85 1.94 -6.41 89.98 37.47 0.55
16 1.31 1.20 -11.08 82.39 3.32 0.57
17 0.41 1.77 -5.99 82.12 40.97 0.48
18 16.93 1.92 -6.15 69.29 33.34 0.64

5.8 Concluding remark

This project work involved: the fitting of CaM protein 'H-'>N HSQC spectra. The simulation
of the spin systems was run quantum mechanically using the reduced state space approximation
[20]. The spectra were computed using the standard Spinach functionality with pulse sequence
and acquisition parameters matched to the experimental values. As it is discussed in detail in
the main text, the spectra from theory were fitted to the data from the experiment using the
least squares method with the error functional minimization performed by the Nelder-Mead
Simplex algorithm. In practice, the fitting was performed by minimizing the discrepancies
between the theoretical model and the data from the experiment. The minimization technique

makes sure that the optimizing parameters are optimized to best match the theory to the

experiment. The optimized parameters are K — the binding affinity, K  — the dissociation

constant, proton and '°N relaxation constants, and intensity multiplier.

A peak by peak fitting was conducted for the extraction of parameters used in the evaluation
of the conformation of calmodulin using exchange process as the system investigated was

treated as a two site exchanging system.

The residual of the sum of squares function employed in the project work was the method of
choice for the fitting purposes due to its practicality and firm establishment in statistics. The
objective function i.e. the residual function is minimized using the Nelder-Mead simplex
algorithm implemented in Matlab. The Nelder-Mead simplex algorithm is a direct search
method that does not rely on gradient and Hessian of the function. It is the method of choice to
handle functions which are discontinuous, noisy, nonlinear, and non-differentiable. The

algorithm minimizes a function of several variables by computing a simplex from an initial
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estimate and evaluates the function at the points, sorts the values of the function to perform a
reflection, expansion and contraction operation and depending on the value of the function at

the reflected point a change in shape or size of the simplex is taken as require
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6 Quantum mechanical simulation
and fitting of nucleic acid NMR
spectra

6.1 Introduction

Before delving into the discussion of the quantum mechanical NMR NOESY simulation and
fitting of RNA; here in briefly introduced on where RNA comes from and why is it an

interesting system to study.

Cell is a basic building unit of structural and functional biology of all living organisms [166,
167]. The cell consists of a compartmentalized organelles, and one of these structures, enclosed
at the centre is “the nucleus”. The nucleus contains hereditary genetic particles known as
nucleic acids (DNA & RNA). It is the place were DNA transcription and RNA synthesis occurs.
DNA is transcribed into special type RNA (mRNA), which is transported out of the nucleus
where it gets translated into another important biomolecule “the protein”. Proteins are known
for biochemical catalysis, and structure were its specific property and function is determined

from the translated hereditary gene [167].

RNA plays an important role in living cells as biocatalysts [168, 169] of chemical reaction (a
property discovered in early 1980), gene expression and gene regulation. The route for the
transmission of genetic messages is the encoding of the DNA i.e. the three letter word sequence
(CAG ACT GCC) that contain the genetic code to RNA. The sequence of the code (three letter
word) in turn determines the amount and combination of the amino acids in protein synthesis.
This convey of information from DNA to proteins carried out by RNA is the base for different
structural and functional variations in living organisms. RNA also transfers specific amino

acids to a polypeptide chain during translation processes.

Although RNAs are single strand, the property to self-complement makes it to base-pair and
fold to form complex three dimensional structure. The shape of the RNA is determined by the
amount and combination of the nitrogenous bases. A change in the bases would cause a change

in shape or structure, hence function. This versatility in structure makes RNA such an important
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molecule in biology and interesting system to investigate its structure and dynamics using

NMR and crystallographic technique.

6.2 Chemical structure and NMR spectroscopy of nucleic acids

Nucleic acids are composed of fundamental building blocks called nucleotides. A nucleotide
unit consists of three components: the base, the ribose also known as sugar, and the phosphate
section. The nucleotides are connected together through phosphodiester bonds attached at both
ends to the C5” and hydroxyl at C3’ to form a chain of nucleotides. There are two types of
nucleic acids, DNA and RNA.

Figure 98 An example — chemical structure of the adenine nucleotide.

The difference between DNA and RNA is the elimination of oxygen atom from the sugar
component of DNA nucleotides to yield deoxyribose. There are two types of nucleotide bases

composed of two groups of nitrogen heterocycle bases, pyrimidine and purine rings.
=z N
DROE;
N |
Pyrimidine Ring Purine Ring H

Figure 99 Chemical structure of the bases for nucleic acids.
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The local conformation of nucleic acids depends on backbone dihedral angles ., 5, 7, &, ¢
[170], ¢, and the glycosidic bond dihedral angle y [171]. Changes in these parameters are

observed using different NMR experiments. Some examples of these experimental techniques
are: HSQC for through bond scalar couplings that records correlations over one bond ('), and
NOESY that makes use of dipolar coupling between spins to estimate distance. Another
experimental technique that is useful in determining backbone dihedral angle is the 3'P-'H

correlation experiment [172].

The conformation of the sugar component can be identified from the *J (H,H) coupling values
of proton spins attached at C1” and C2’ together with coupling value of the protons at positions

C3’ and C4’ of the sugar ring [173].

Backbone dihedral angle specification
C3’-P-05’-C%’
P-05’-C5’-C4°
05’-C5’-C4’-C3°
C5’-C4°-C3°-03°
C4°-C3°-03’-P
C3’-03’-P-05°

nucleotide unit

Y h O <R ™ K

The glycosidic torsion angle %

04’-C1’-N1-C2 for Pyrimidine bases
04’-C1°’-N9-C4 for Purine bases

Figure 100 Graphical illustration of the backbone and glycosidic dihedral angles scanned for a nucleotide unit
using Gaussian 09 package at DFT theory level with basis set M06/6-31G**.

One of the applications of NOESY in nucleic acids NMR is to establish base pairing pattern.
There are two type of imino protons in nucleic acid nucleobases. These are the H3 imino proton
of uracil and the H1 proton of guanine. The resonance signals of these protons provide
information about nucleic acid pairing and are only observed when the spins are involved in
hydrogen bonding. Therefore the number of resonance signals from these proton spins gives
the number of bases that are paired; 2D NOESY cross peak correlates spins that are a few

Angstroms apart [137, 174].

Observation of cross peaks in NOESY experiment is an indication that there are dipolar

couplings between spins. These interactions are fundamental for assignment of base-pairing
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resonances. In simple models, NOESY cross peaks are related to distance qualitatively and
hence grouped into “strong”, “medium”, and “weak” for the purposes of structure

determination depending on the intensity of the observed signals.

Amino protons (example are those of cytosine nucleobase) can be identified by doing NMR
with 1*C and '°N labelled nucleic acid molecules, which are useful for further correlating to H5
and H6 of the unsaturated ring protons using correlation experiments. 2D ('°N, 'H) HSQC
experiment in particular, using '°N labelled systems, provides information for the elucidation
of base pairing — giving distinct signals for uracil and guanine imino proton resonance signals
— where the imino nitrogen resonance frequency has around 10 ppm difference for the two
bases. HNN-COSY is also another technique used to determine scalar coupling across

hydrogen bonds that connects base pairs to elucidate secondary and tertiary structures.

The complete assignment of nucleic acid resonances can be accomplished by the identification
of the spin resonance frequencies of the nucleobase and assignment of nuclei such as HY, NH>,
Hz, HS, H6 and H8. The assignment of sugar proton spins is then followed. Once these are
established, the connection between ribose and nucleobase spin system can be established using
NOE enhancements observed for H1 proton of sugar and aromatic spins of the nucleobase.
HCN type techniques can also correlate the same proton of the sugar to aromatic spins [175].

The ribose spin system is then completed by using HCCH — TOCSY [176, 177] experiment.

Finally, sequential NOE experiments establishes the sequential connection between adjacent

nucleotides. Other applicable experiments include HCP and the HCP — TOCSY techniques.

A variety of nucleic acid structure calculation strategies are described in the literature [178-
180]. However all have one thing in common, i.e. all require some of the following NMR

parameters for structure calculation [181]:
e NOESY cross-peak for distance constraint
e Chemical shifts — to identify the type of each spin

e Homonuclear and heteronuclear coupling constants — identifies nearest neighbour and
next nearest neighbour spins. For nuclei that are three bonds apart, the scalar coupling

value depends on the corresponding dihedral angle.

e Cross correlated relaxation rates — most commonly used parameters are the DD-CSA

or the DD-DD relaxation rates.
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e NOE from hydroxyl (OH) groups.

e Residual dipolar couplings (RDC)

6.3 J-coupling predictor function for RNA

We need all J-couplings in RNA for our simulation work. Hence, we looked for scalar coupling
values from literature, as many of the J-couplings are not available in literature, we did DFT

estimation of J-coupling values for values that could not be located in literature.
Nucleic acid J-coupling predictor function was built and implemented into Spinach [3].

Vicinal coupling data from DFT method GIAO MO06/cc-pVTZ in SMD Water (a detailed
description of the methods involved is given in chapter three) was fitted to Karplus equation,
with an example result is given below in Figure 101 (below). The equation relates local

dihedral angle to three bond scalar spin-spin couplings.

[ —
co <O

J-coupling, Hz

(NS )

0 100 200 300

Dihedral angle scan, degrees

Figure 101 Fitted curve of >J wmsyy coupling constant at the Y dihedral angle. Scanned coordinates at position
CINCaC™! of the ¥ dihedral angle of uracil nucleotide. The fitting curve is achieved using Karplus equation
(3 J = A-cos’ (¢) + B-cos (¢) + C) . The Karplus coefficients derived from the fitting have values of
10.89, 0.93, and 0.64 for A, B, and C of the Karplus equation in hertz. The data points “blue diamond” are J-
coupling values from electronic structure calculations with DFT method GIAO M06/6-31G** in [SMD] [Water]

and the curve is the model applied Karplus equation.
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The method proceeds by splitting the molecular bonding graph into clusters of sequentially
connected four atoms (i.e. connected by three bonds). The dihedral angle is computed from

atomic coordinates, and the three bond J-couplings from a database of Karplus curves.

The work primarily involved the compilation of data that would allow to simulate the NMR

spectra of RNA specifically, and nucleic acid molecules in general.

To obtain the coupling between all spins in nucleic acids, the calculation of J-coupling
constants for each of the five nucleotides has been done using DFT theory level with M06
exchange-correlation functional for geometry optimization and for J-couplings along with cc-
pVTZ basis set. Practically the computation required the construction of the nucleotides
structure using Gauss View 5.0.9 package, then optimization into a minimum energy molecular
structure before running the spin-spin coupling calculation. Atomic coordinates in Gaussian 09
can normally be specified in two ways: the Cartesian coordinate system and the internal
coordinate system also known as Z-matrix. By default geometry optimization in Gaussian is
performed in internal coordinates. Pulay et al. [182, 183] has demonstrated that internal
coordinates are preferred for optimizing large flexible systems to the Cartesian coordinate,

which is efficient for handling rigid ring systems.

Gaussian uses quasi-Newton BFGS algorithm [184] for optimizing molecular structure, which
requires the gradient of the energy to be supplied at each iterate with no requirement to compute

the Hessian. The Gaussian jobs were submitted to Iridis4 cluster.

The coupling constants obtained from the computation include one bond— 'J, two bond— 2/,
and three bond— *J. Longer range couplings are of vanishingly small size and are not part of
the research work. Electrostatic environment was ignored because its effect on the J-coupling

is minimal [185, 186].

However, care was taken for nucleotides that contain heterocyclic bases, where long range
couplings would provide useful structural information — those *J couplings fall in the range of

2 to 3 Hz.

The computationally predicted value of the spin-spin interactions involves isotropic
contributions form Fermi contact (FC), spin-dipolar (SD), paramagnetic spin-orbit (PSO), and
the diamagnetic spin-orbit (DSO) terms. With the Fermi contact contribution being the most

prominent contributor of all the other terms to the calculated scalar coupling values.
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Figure 102 Top panels are the constructed molecular structure of adenine before and after geometry optimization,
left bottom panel is SPINACH representation of magnetic shielding tensors in adenine, and right bottom panel is
proton NMR spectrum of adenine computed using SPINACH at proton resonance frequency of 250 MHz.

The contribution for one bond 'J coupling mostly comes from the Fermi contact term [187,
188], while that for two and three bond couplings, there are sufficient contribution from the
other terms. Literature review was conducted to supplement the remaining coupling values.
The DFT computation of the coupling constant for the four nucleotides was done considering

the gas phase environment.

6.4 Results and scan plots for RNA

6.4.1 Karplus coefficients, C

Method: GIAO DFT M06/6-31G** in SMD Water

Atom | Atom2 | Atom 3 | Atom4 | A,Hz | Armsp | B, Hz | Brmsp | C, Hz | Crvsp
1

P5’ os’ Cs H5” 20.17 | 0.28 -4.83 | 0.15 2.87 |0.16
P5’ os’ Cs HS’ 17.33 |1 0.34 -8.08 10.14 | 2.71 0.18
P5’ os’ Cs c4 21.90 ]0.34 -0.50 ]0.19 -7.95 10.16
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H5” | CY ¥ c3 6.80 |0.51 -0.62 | 0.13 -0.02 | 0.39
H5” | CY ¥ H4’ 9.31 0.47 1.29  10.17 1.70 1 0.26

HS’ Cs C4 C3’ 4.38 0.42 -0.28 1 0.15 1.13 0.22
HS5’ Cs’ C4 H4’ 11.85 | 0.35 1.51 0.14 -0.87 10.23
:E]" 3]P5p05pC5pC4
t:m . F{tteg ling t0p3]ng05pC5pC4p
i ° 3]P5p0_5pC5pH5§)
2 o IPEn0EpCopap P CoPHoP
Al Fitted line to 3]P£p05pC5pH5pp

0.3 F ; -
0.25+ .

0.2 + - ——Probability distribution to 3]P5p05pC5pC4p
0.15 —— Probability distribution to 3]JP5pO5pC5pH5p

. Probability distribution to 3]JP5pO5pC5pH5pp
0.1+ .

0.05- ﬁ

50 100 150 200 250 300 350
Dihedral angle, degrees

Probability at 298 K

Figure 103 Cytosine ﬁ main-chain dihedral angle scan. Top panel fitting of Karplus curves associated to the
ﬂ dihedral angle to theoretical NMR vicinal coupling data and bottom panel probability distribution histograms

for the respective torsion angles.

As it is depicted in Figure 103 the Karplus curves for the *Jec, >Jpus’, and *Jpus> coupling data
shows a pattern of under and over prediction which might be due to the effect that steric

hindrance brings to the scan of the £ dihedral angle.
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Figure 104 Cytosine Y main-chain dihedral angle scan. Top panel Karplus curves for torsion angles related to
the Yy dihedral angle scan and bottom panel Boltzmann probability distribution histograms for the respective

torsion angles.

Similarly the steric effect is also likely to be responsible for the under and over prediction

pattern evident in some of the curves and for the broken Karplus curves.

6.4.2 Karplus coefficients, U

Method: GIAO DFT M06/6-31G** in SMD Water

Atom | Atom2 | Atom 3 | Atom4 | A,Hz | Armsp | B, Hz | Brmsp | C, Hz | CrMmsp
1

P5’ os’ Cs H5” 26.59 | 0.37 -13.58 1 0.20 4.66 0.21
P5’ (OR) Cs HS’ 28.60 | 0.42 -7.92 | 0.16 0.87 0.26
P5’ oy’ Cs ¥ 0.35 0.62 -3.61 | 0.37 -1.87 0.27
H5” | C¥Y c¥ c3 5.14 0.38 0.53 0.17 0.66 0.19
H5” | CY ¥ H4’ 9.37 0.36 020 |0.14 1.44 0.20
HS’ Cs’ ¥ C3 6.61 0.37 -0.31 | 0.18 -0.09 0.23
HY’ Cs’ 4 H4’ 10.89 |0.32 0.93 0.13 0.64 0.20
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Figure 105 Uracil ﬂ main-chain dihedral angle scan. Top panel Karplus curves for the torsion angles related
to the ﬂ dihedral angle scan and bottom panel Boltzmann probability distribution graphs for the respective

torsion angles.

The result of the fitting of *J coupling data to Karplus curves for the three torsion angles is
given in Figure 105 and shows the dependence of the coupling values on the Karplus relation.
Top panel shows the dihedral angle scan data with under and over predicting the function for
two of the Karplus curves (*Jpus’, and >Jpus~). However, the 3Jpc data for the broken curve is

due to the predicted small amplitudes.
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Figure 106 Uracil ¥ main-chain dihedral angle scan. Top panel Karplus curves for torsion angles related to the
Y dihedral angle scan and bottom panel Boltzmann probability distribution histograms for the respective torsion

angles.

All the scan of the y dihedral angle are affected by steric effect as the fitting of the coupling

data from the scan to the Karplus curves are either under and over predicted or have jumps as

depicted in Figure 106.

6.5 RNA NOESY spectrum simulation and fitting with respect to

correlation time (7.) and frequency offset

The detailed description of the theoretical background of NOESY NMR simulation technique
along with the quantum mechanical treatment of the interaction Hamiltonians is given in
chapter four. The simulation work for the NOESY RNA followed the procedure outlined in the

chapter.
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Figure 107 Spinach simulated 'H-'"H 2D NOESY NMR spectrum of RNA (28 residues and around 910 spins)
calculated with a cut-off of 5A and mixing time of 200ms, recorded at a 750MHz proton Larmor precession
spectrometer. This illustrates that Spinach can deal with a large number of coupled spin system, while any

conventional software would crash.

The simulation included one-bond, two-bond and three-bond J-couplings, correct magnet field
and mixing time. Only important Karplus curves that involved two proton spins are included
in the simulation. Three bond couplings between spins that consist other nuclei are assigned

Z€10.

The next step after the simulation work is to fit a simulated 2D NOESY spectrum of the RNA
molecule supplied by Shunsuke er al of Wagner lab of the Harvard Medical School to a

candidate structure from PDB.

The experimental spectrum provided by Imai Shunsuke and his colleagues was acquired by
using the following parameters: mixing time of 200ms, sweep width of 7500Hz for the direct
and 7496.25Hz for the indirect dimension, and offset of 3473Hz in an NMR spectrometer with
a proton Larmor frequency of 750MHz. The rotational correlation time of the system is
estimated to be around 3ns depending on previously reported rotational correlation time for the

other RNAs and the molecular weight of the RNA molecule i.e. 9.2kDa. The same parameters
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were used to simulate a candidate theoretical spectrum that matches the one from the
experiment and would be employed as a decent initial guess in fitting to the data from
experiment. The enclosed spectrum depicted in Figure 107 (above) is the result of matching
the simulation parameters to the experimental data. The extra peaks that appear in the
simulation probably belong to the protons that got exchanged for deuterium in D20 and the

missing peaks may be attributed to the protons that have not been assigned.

The proton isotropic chemical shift tensor assignment file have fewer protons assigned than
the PDB file has protons. And it is the more protons of chemical shift known available the
better the result from the simulation would be. The assignment input file contains a peak list of
208 protons out of 308 protons in the PDB file. The difference stems from the exchangeable
protons such as HO2’ for all residues; H1, H21, H22 of all guanine residues; H41, H42 of
cytosine residues; H3 for uridine residues; H61 and H62 for adenine residues and the terminal
residues protons, which are HST and H3T that are not observable in D20. To get the simulation
setup closer to the experimental conditions we have come to the idea of deuteriating those
exchangeable protons that are available in the PDB file. If this is not accounted for, the line
widths of the non-exchangeable protons in the simulated spectra would include the effect of
dipolar interactions with the exchangeable protons — apparently huge for some of them — that

are not present in the experimental data.

A script is then written that would deuterate the list of protons in the structure of the RNA from
PDB that are exchangeable in D20. Hence Spinach would do the calculation having the

exchangeable protons deuterated.

For the purposes of the fitting work a comparison between a simulated and experimental
spectra is necessary, therefore this requires a better resolved spectra. For this reason a NOESY
spectrum in D20 is simulated and was directly compared to experimental spectrum. After
deuterating the exchangeable protons the two things apparent from the calculation are a lot of
missing signals and a few variations in intensities in the simulation. The former would raise an

important questions such as:

Is it possible to use the simulation to get the rest of the assignments?

When all missing assignments were dumped at zero ppm in the calculation, they generate cross-
peaks that are correct with respect to other coupled partners. This is useful to take the dipolar

interactions of the missing signals into account so that we can compare the line widths of the
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peaks with the experimental ones and would be helpful to identify missing protons by sliding

down until they match a missing peak.

The observation of variation in intensities between the simulated and experimental spectra is
an indication of mismatch between the PDB geometry and the real geometry. Fitting would
iron this out but it is required that as many assigned protons as possible to have to start the

fitting, unless the fitting might end in astray.

Eliminating unassigned peaks from the theoretical calculation would produce sharp simulated
peaks for the sugar protons H1’ and H2’, which could be another difficult during the fitting
runs of the computed spectra against the experimental data. An example, sugar protons such as
H4’ and H5’ are difficult to assign as a result of the severe signal overlaps, but the line widths

of HI” and H2’ should be affected by the presence and or absence of the other two protons.
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Figure 108 RNA fitting work undertaken as part of this project. The simulation was run under the same conditions

of the simulated and experimental spectra depicted in Figure 107.

More assignments can be obtained from simulation using computational programs such as
ARIA [189, 190] to refine protein structures by iteratively minimizing the deference between

the theoretical and experimental spectra to optimize protein structures, or alternative methods
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described in detail in [191] that do not require the NOE cross peak assigned unequivocally to
proton pairs to use as initial guess to compute three dimensional protein structures by loosely
describing the term ambiguous restrain using assigned isotropic chemical shift tensor and NOE
cross peak that are not assigned to coupled proton spins. Though the aforementioned techniques
enjoys huge success in solution protein NMR spectroscopy, this has not been the case for
nucleic acids and specifically with RNAs, and similar programs for RNA have long been
awaited in the field. In the simulated spectrum from the cross peaks it can qualitatively be
observed that some variation in intensities i.e. some of the NOE’s are more broadened than it
is expected, and this effect might be down to the dynamics of the bulge region that depends on

temperature.

To avoid having many unassigned cross-peaks and get around the problem of ambiguities that
this creates, we have made the focus on the “fingerprint” region i.e. on the 5 to 6.5 ppm in F2

and 7 to 9 ppm in F1 where most of the signals are assigned along with the diagonal peaks.

The proposed region doesn’t have too many unassigned peaks and usually contains much more
structural information than the excluded region. If the structural refinement as describe above
and another side project on extending assignments are established, both of these can be applied

iteratively to refine the structure further.

In practice the fitting was conducted by zeroing the diagonal to keep the optimization function
from getting stuck in a local minimum as the diagonals dominate the intensities if they are left
in place during optimization process. The first runs of fitting of the project fits with respect to
the rotational correlation time, experimental offset variable and overall scaling multiplier. The
results from the fit is depicted in Figure 108 (above). To fit with respect to coordinates, the

Hessians are required.

The NOESY spectra were computed using standard Spinach functionality with pulse sequence
and acquisition parameters matched to the experimental values. As usual, the spectra from
theory were fitted to the data from the experiment using the least squares method with the error

functional minimization performed by the Nelder-Mead Simplex algorithm. In practice, the

fitting was performed by optimizing the parameters: correlation time (Z'C) and frequency

offset, in a similar fashion to that of the fitting performed in chapter five.
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6.6 Concluding summary and outlook

Nucleic acid J-coupling predictor function was built and implemented into Spinach. This is a
function, which is necessary in the simulation of biologically important molecules such as

DNA and RNA.

After completion of the estimator function, a 2D NOESY RNA spectrum was simulated for the
candidate data provided by the group from Wagner lab at Harvard Medical School. During the
simulation processes, the estimator function as a wrapper function is used to estimate J-
coupling values as mentioned above in the main text when called by another Spinach function

to simulate nucleic acid systems.

The integration of the predictor function not only allowed us to carry the simulation of the
system but also opened the way for the fitting of the system. As it is delineated and shown in
section 6.5, we have managed to fit the NOESY experimental spectrum against the NOESY
simulated spectrum with respect to the rotational correlation time, frequency offset variable

and overall intensity scaling multiplier.

Once simulation stage is over, one possible area of exploration is, the fitting with respect to
structure from PDB. For that purpose, one future direction is to refine the structure based on
minimizing the NOE difference between the theoretically simulated spectrum and that from
the experiment. The main structure of the RNA stem loops is a Watson-Crick double helix,
where the loop is not well defined. The optimization should focus on the global fold of the
structure rather than on the atomic coordinates. This will alleviate the computational
complexity as the dimensions are significantly reduced. For that, the Hessian of the Energy is
required, which would be generated using the molecular dynamics package GROMACS and

diagonalise for the acquisition of the slow vibrational modes.

The slow normal mode stage of the Hessian matrix ensures that we should not worry about the
coordinates of each participating atom and instead focus on optimizing the global fold. Thus at
each iteration of the fitting procedure, the resulting Hessian from the previous iteration is used

to update the coordinate search direction for the next step in the fitting process.
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