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Abstract

Although SO(10) Supersymmetric (SUSY) Grand Unification Theories (GUTs) are
very attractive for neutrino mass and mixing, it is often quite difficult to achieve
successful leptogenesis from the lightest right-handed neutrino N1 due to the strong
relations between neutrino and up-type quark Yukawa couplings. We show that in
a realistic model these constraints are relaxed, making N1 leptogenesis viable. To
illustrate this, we calculate the baryon asymmetry of the Universe YB from flavoured
N1 leptogenesis in a recently proposed ∆(27)×SO(10) SUSY GUT. The flavoured
Boltzmann equations are solved numerically, and comparison with the observed
YB places constraints on the allowed values of right-handed neutrino masses and
neutrino Yukawa couplings. The flavoured SO(10) SUSY GUT is not only fairly
complete and predictive in the lepton sector, but can also explain the BAU through
leptogenesis with natural values in the lepton sector albeit with some tuning in the
quark sector.
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1 Introduction

The Standard Model (SM), while otherwise phenomenologically successful, fails to explain
the observed baryon asymmetry of the Universe (BAU), i.e. the presence of more matter
than antimatter. The necessary ingredients for producing the BAU have been listed by
Sakharov [1], and even though they are all present in the SM, including CP violation,
the amount of asymmetry calculated is off by orders of magnitude [2]. Therefore, new
sources of CP violation are required to understand the BAU, which is measured either
with respect to photon density

nB
nγ

= (6.10± 0.04)× 10−10, (1)

or with respect to the entropy density,

YB = (0.87± 0.01)× 10−10, (2)

see e.g. [3] for reviews and [4] for a recent determination of the error.

One possible new source that is rather well motivated within the leptonic sector is lep-
togenesis [5,6]. In simple extensions of the SM that explain the light neutrino masses by
adding heavy right-handed (RH) Majorana neutrinos [7], known as the (type I) seesaw
mechanism, the decays of the heavy neutrinos can lead to a lepton asymmetry which can
be converted into the BAU by nonperturbative SM sphaleron interactions. Leptogenesis
is a generic feature of models with heavy RH neutrinos and seesaw. Whether or not it
can explain the BAU is a quantitative problem. Thermal leptogenesis, wherein the initial
RH neutrino abundance is assumed zero (produced instead in the thermal bath), is a
particularly minimal incarnation of this mechanism.

Conventional wisdom when discussing leptogenesis in SO(10) [8] suggests that the lightest
RH neutrino N1 has a mass that is too low to produce the correct baryon asymmetry.
It can be understood as follows: there is a very strong hierarchy in the up-type quark
masses, with mu : mc : mt ∼ 10−5 : 10−3 : 1, while the hierarchy among neutrinos is
comparatively mild. Assuming a normal ordering m1 < m2 < m3, we have m1 : m2 :
m3 ∼ 10−2 : 10−1 : 1. If up-type quark and neutrino Dirac couplings are assumed equal
in naive SO(10), producing the correct hierarchy in the neutrino Majorana masses after
seesaw requires a large hierarchy in the RH neutrino masses Mi, like 106 : 1010 : 1015.
Since M1 is too light for traditional leptogenesis, typically one proceeds by considering
N2 leptogenesis [9], which has been studied in detail for SO(10)-inspired models [10] (for
further work on leptogenesis in SO(10), see [11]).

The situation can be different in SO(10) flavour models [12, 13]. In this paper, we will
show that N1 leptogenesis is possible in a realistic flavoured SO(10) SUSY GUT model,
involving a flavour symmetry to account for the mass hierarchies and neutrino mass and
mixing pattern. As a concrete example, we estimate the BAU arising from leptogene-
sis in a ∆(27) × SO(10) SUSY GUT model [14], which was shown to successfully and
accurately fit all quark and lepton mass and mixing parameters, while simultaneously
resolving the doublet-triplet splitting problem and demonstrating that proton decay is
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naturally suppressed well within the current experimental constraints. It further predicts
normal neutrino ordering, and a leptonic Dirac phase δCP ≈ −π/2, in good agreement
with current experimental bounds. The model involves only “named” representations of
SO(10), i.e. the singlet, fundamental, spinor and adjoint representations.

A compelling feature of the model is that the mass matrices in each sector (including
the light neutrinos after the seesaw has been implemented) have the same universal
structure, and the phases and mixing angles in the leptonic sector are guided by the
flavour symmetry. This leads also to a rather predictive scenario for leptogenesis, which
ultimately allows to constrain some of the free parameters of the model (and indirectly,
the mass of the RH neutrinos) in order to obtain the correct asymmetry.

The paper is organized as follows. In Section 2 we briefly summarize the model in [14]. In
Section 3 we show how the seesaw mechanism is implemented in this model. In Section 4
we describe how the BAU is obtained from leptogenesis, and plot the results of solving the
Boltzmann equations for the flavoured asymmetries Y∆α . Section 5 concludes. Appendix
A contains additonal information about the quark sector of the model in [14]. Appendix B
relates the effective seesaw parameters in the model to the underlying model parameters.
Appendix C derives a useful result for the seesaw mechanism with rank-one matrices.

2 The Model

We begin by giving a summary of the model fully described in [14]. The model aims
to be fairly complete and is therefore lengthy. In this paper we will describe only those
fields and couplings relevant to analysing leptogenesis. The model is a supersymmetric
flavour GUT model, where the SO(10) gauge group is coupled to a ∆(27) × Z9 × Z12

flavour symmetry, with a ZR4 R-symmetry [15]. The non-Abelian discrete group ∆(27)
is responsible for the flavour structure,5 while the Abelian discrete group Z9 works as a
shaping symmetry and helps to give correct flavour structure in the masses. A further Z12

symmetry is required to fix the flavon alignment potential and plays no role in the sector
relevant to leptogenesis. Furthermore, the model is CP symmetric and renormalisable at
high energies; all nonrenormalisable terms appear after integrating out heavy messenger
fields. The model is fairly complete and is built using only small, “named” representations
SO(10): singlet, fundamental, spinor and adjoint.

The full model contains a large number of fields. We list the ones relevant to our dis-
cussion in Table 1, all chiral supermultiplets. The superfield Ψ contains the full SM
fermion content plus three RH neutrinos. Hu,d

10 contain each of the MSSM Higgs doublets
respectively. Two different SO(10) multiplets are needed to obtain a non-trivial Cabibbo-
Kobayashi-Maskawa (CKM) matrix. The superfield H16 obtains a vacuum expectation
value (VEV) that breaks SO(10)→ SU(5) and gives Majorana masses to RH neutrinos.
H45 breaks SU(5)→ SM and its VEV is aligned in such a way that it achieves doublet-
triplet splitting through the Dimopoulos-Wilczek mechanism [18]. It also provides the

5∆(27) was first used as a flavour group in [12,16], see also [17].
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Field
Representation

∆(27) SO(10) Z9 Z12 ZR4

Ψ 3 16 0 0 1

Hu
10 1 10 6 0 0

Hd
10 1 10 5 0 0

H45 1 45 0 0 0
H16 1 16 6 0 0

φdec 3 1 6 0 0

φatm 3 1 1 0 0

φsol 3 1 5 6 0
ξ 1 1 1 0 0

Table 1: Superfields that appear in the Yukawa superpotential, and their associated charges
under the symmetries of the model.

necessary Clebsch-Gordan coefficients to obtain correct quark masses. The field ξ breaks
Z9 completely and provides an explanation for the hierarchy between fermion masses à
la Froggatt-Nielsen. Finally, the φ̄ superfields are flavons that break ∆(27) and provide
the structure of the mass matrices in the so-called CSD3 alignment where

〈φatm〉 = vatm

0
1
1

 , 〈φsol〉 = vsol

1
3
1

 , 〈φdec〉 = vdec

0
0
1

 . (3)

CSD refers to Constrained Sequential Dominance [19]. The viability of the CSD(n) class
of flavour models for explaining neutrino data has been studied in [20,21] and leptogenesis
in these scenarios was studied in [22]. The SO(10) model is successfully fitted to available
quark and lepton mass and mixing data, and summarised in Tables 2-5 in Appendix A.

Here we will mostly restrict ourselves to study the sector of the model responsible for
neutrino and charged lepton masses. These come from the following superpotential terms

W0
Y =ΨiΨjH

u
10

[
φidecφ

j
dec

λ̃
(u)
dec

M2
χ

+φiatmφ
j
atmξ

λ̃
(u)
atm

M3
χ

+φisolφ
j
solξ

2 λ̃
(u)
sol

M4
χ

]

+ ΨiΨjH
d
10

[
φidecφ

j
decξ

λ̃
(d)
dec

M3
χ

+φiatmφ
j
atmξ

2 λ̃
(d)
atm

M4
χ

+φisolφ
j
solξ

3 λ̃
(d)
sol

M5
χ

]

+ ΨiΨjH16H16

[
φidecφ

j
decξ

3 λ̃
(M)
dec

M2
χM

4
Ωdec

+φiatmφ
j
atmξ

4 λ̃
(M)
atm

M3
χM

4
Ωatm

+φisolφ
j
solξ

5 λ̃
(M)
sol

M4
χM

4
Ωsol

]
,

(4)

where the λ̃’s are real dimensionless couplings (defined in Appendix A) and the indices
i = 1, 2, 3 cover the 3 generations of triplets (lower indices) and anti-triplets (upper
indices) under the ∆(27) symmetry. The above nonrenormalisable superpotential is the
result of integrating out heavy messengers of mass Mχ,Ω as specified in the full model. The
terms in the first line provide Dirac mass terms for neutrinos and up-type quarks. Those
in the second line provide masses for charged leptons and down-type quarks. The third
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line contains Majorana masses for RH neutrinos and we assume the hierarchy between
distinct messengers MΩdec

< MΩatm ,MΩsol
, such that one RH neutrino is so heavy that it

may be considered effectively decoupled.

A short description of the quark sector is available in Appendix A. The full WY actually
contains additional terms where every Mχ mass insertion can be replaced with the VEV
〈H45〉, as shown in Appendix A. The effect of including the 〈H45〉 is to introduce Clebsch-
Gordan factors which, for a general alignment, leads to different quark and lepton masses.
Without 〈H45〉, the up-type quark and neutrino Yukawa couplings would be equal, just
as they are in naive SO(10) models.6

As a consequence, the quark and lepton mass matrices will have the same CSD3 structure
but have different dimensionless parameters (although naturally they are expected to be
of the same order). This accounts for the observed differences between quark and charged
lepton/neutrino masses. The quark sector is largely not relevant for leptogenesis calcu-
lations, with the exception of the top mass mt, which appears when ∆L = 1 scatterings
like qt→ H → `N are taken into account.

3 The Seesaw Mechanism

We first present a simple heuristic argument which shows that the seesaw mechanism
leads to a light Majorana neutrino mass matrix with the same universal structure as the
input Yukawa and heavy Majorana mass matrices, then demonstrate this result rigorously.
Below the SO(10) breaking scale, the flavour structure of the operators emerging from
Eq. 4 relevant for the neutrino sector may be written schematically as

Hu(φatmL)(φatmN
c) +Hu(φsolL)(φsolN

c) +Hu(φdecL)(φdecN
c)

+ (φatmN
c)(φatmN

c) + (φsolN
c)(φsolN

c) + (φdecN
c)(φdecN

c),
(5)

where we have dropped all the couplings and mass scales, and have not distinguished
between flavon fields and their VEVs, all these details will be recovered later.

Noting that the same combinations of RH neutrinos (φatmN
c), (φsolN

c), (φdecN
c) appear

both in the Dirac and heavy Majorana sectors, integrating out these combinations of
heavy RH neutrinos leads to effective Weinberg operators of the form,

HuHu(φatmL)(φatmL) +HuHu(φsolL)(φsolL) +HuHu(φdecL)(φdecL), (6)

6 In the original model in [14], it was assumed that H45 gets a VEV aligned in such a way that it
only couples to quarks and not to leptons. It is now understood that such an alignment does not exist,
and H45 must couple to leptons also. This would spoil the model’s precise prediction of the phases in
the lepton mass matrices unless we assume 〈H45〉 is real. A real 〈H45〉 leaves the conclusions in [14] for
the lepton sector completely unchanged, as the additional terms involving 〈H45〉 can be accounted for
by a redefinition of available free parameters yeatm,sol,dec (defined below in Eqs. 8 and 36). However, it
fixes all (but one) phases in the quark sector, which were assumed free. We performed a new fit to the
quark parameters in this more predictive setup, and found a good fit to data. The results are given in
Tables 2-3 in Appendix A.
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which have the same flavour structure as in the original Dirac and heavy Majorana
sectors. According to this heuristic argument one expects that the light effective Majorana
neutrino masses will have the same universal structure as all the other mass matrices,
which is an attractive feature of the model. This simple argument was first presented for
the case of tri-bimaximal mixing in [12,23]. However one may worry that the combinations
of RH neutrinos that are integrated out, namely (φatmN

c), (φsolN
c), (φdecN

c) are not mass
eigenstates. One may also worry that the mechanism only works for tri-bimaximal mixing
where the flavon alignments are mutually orthogonal.

We now present a more rigorous discussion of the seesaw mechanism in this model,
showing that the above result is in fact robust. From the above superpotential terms
one can write the fermionic part of the seesaw Lagrangian as

L = HuLiY
ν
ijNj +HdLiY

e
ijej +NT

i M
N
ij Nj, (7)

where Li and Hu,d are the SU(2) lepton and Higgs doublets, Nj are the RH neutrinos,
and the Yukawa and Majorana mass matrices are given in terms of fundamental model
parameters in Appendix B. The Yukawa and mass matrices in Eq. 35 may be written as7

Y e,ν = ye,νatm

0 0 0
0 1 1
0 1 1

+ ye,νsol e
iη

1 3 1
3 9 3
1 3 1

+ ye,νdece
iη′

0 0 0
0 0 0
0 0 1

 ,

MN = Matm

0 0 0
0 1 1
0 1 1

+Msole
iη

1 3 1
3 9 3
1 3 1

+Mdece
iη′

0 0 0
0 0 0
0 0 1

 ,

(8)

where the real Yukawa parameters and Majorana masses introduced above are given in
terms of the fundamental model parameters in Appendix B. The model fixes η = 2π/3,
η′ = 0, while the effective couplings ye,νi and Mi (with i = dec, atm, sol) are real and
dimensionless with the natural hierarchies

ye,νdec � ye,νatm � ye,νsol ,
Mdec � Matm > Msol.

(9)

These relations are a direct consequence of the superpotential in Eq. 4 and the symmetry
breaking sector that fixes the flavon VEVs, although, apart from these general expecta-
tions, we shall regard these as free parameters. Using the standard seesaw formula

mν = v2
uY

ν(MN)−1(Y ν)T , (10)

leads to the effective light neutrino matrix with the same structure as Eq. 8,

mν = µatm

0 0 0
0 1 1
0 1 1

+ µsole
iη

1 3 1
3 9 3
1 3 1

+ µdece
iη′

0 0 0
0 0 0
0 0 1

 , (11)

7Throughout this paper we use the notation ye,νdec, y
e,ν
sol , y

e,ν
atm and Mdec,Msol,Matm which references

the flavons involved in the respective Yukawa and Majorana mass terms shown in Eq. 35. We note that
this differs from the notation used in [14], where the corresponding parameters for up (u), down (d) and

charged lepton (e) Yukawa matrices were denoted yf3 , y
f
2 , y

f
1 , with f = u, d, e.
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with the same values of the phases as before, namely η = 2π/3, η′ = 0, and where

µatm ≡
(yνatmvu)

2

Matm

, µsol ≡
(yνsolvu)

2

Msol

, µdec ≡
(yνdecvu)

2

Mdec

. (12)

This remarkable and non-trivial result, that the seesaw mechanism result for mν in Eq. 11
preserves the universal matrix structure of Y ν and MN in Eq. 8, is nothing to do with
symmetry or the special CSD3 form of alignments. The result only requires that the
Dirac and heavy Majorana matrices be expressable as linear combinations of the same
three rank-one matrices, as shown in Appendix C.

We emphasise that the universal structure of all the Yukawa and Majorana mass matrices
(both heavy and light) is an attractive feature of the model. Moreover, due to the small
number of free parameters, this is a highly predictive setup. In the lepton sector, only
six effective free parameters (three µi and three yei ) determine the charged lepton and
light neutrino masses, as well as all Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix
parameters, in excellent agreement with experimental best fits. This is summarised in
Appendix A (see e.g. Tables 4, 5 where best fit values of µi are presented). The parame-
ters µi only fix the combinations of neutrino Dirac and Majorana couplings in Eq. 12 and
do not allow the three RH neutrino mass parameters Matm, Msol, Mdec to be disentangled
from the Yukawa couplings yνatm, yνsol, y

ν
dec.

In the next section we show how the requirement that the BAU is produced entirely from
thermal N1 leptogenesis may constrain the Yukawa couplings yνatm, yνsol, which enables
the RH neutrino mass parameters Matm, Msol to be constrained, as well as the lightest
two RH neutrino mass eigenvalues M1 and M2, assuming the third mass M3 to be much
heavier. The relation between the RH mass parameters Matm, Msol and the RH mass
eigenvalues M1, M2 is rather complicated since the RH neutrino mass matrices in Eq. 8
are not diagonal, but according to SD we should have Mdec ≈M3 which is much heavier
than the other RH masses and thus essentially decoupled.

4 Leptogenesis

In this section we shall calculate the BAU using flavoured N1 leptogenesis, for the seesaw
matrices derived in the previous section from our model. Unlike typical SO(10)-inspired
models, in the flavoured SO(10) model considered here, we will show that it is possible
to obtain M1 large enough to allow for successful N1 leptogenesis. As we are considering
thermal leptogenesis, we additionally assume a (reheating) temperature T > M1. As the
model establishes the hierarchy in RH neutrino masses M3 �M2 �M1, we will use the
hierarchical approximation to leptogenesis generated only by the lightest RH neutrino.
Following the procedure outlined in [24], we may parametrise the final baryon asymmetry
YB as

YB =
10

31

[
YN1 + YÑ1

]
z�1

∑
α

ε1,αηα. (13)
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ε1,α is the decay asymmetry of N1 (s)neutrinos, while ηα is an efficiency factor, which
contains the dependence on washout from inverse decays and scattering, and is typically
different for each flavour α. In the fully flavoured regime, calculating ηα requires solving
the Boltzmann equations in terms of the decay factors Kα and a numerical 3× 3 matrix
A that describes flavour coupling effects. As can be seen in [24], ηα typically takes values
0 < ηα . 0.2.

The flavoured decay asymmetry ε1,α is given by [25]

ε1,α =
Γ1α − Γ1α

Γ1 + Γ1

, (14)

where Γ1α, Γ1α are the decay rates of N1 neutrinos decaying, respectively, into `αHu

lepton-Higgs or `αH
∗
u antilepton-Higgs pairs, in a given flavour α. Γ1 and Γ1 are the

corresponding total decay widths (summed over flavour). An analogous decay asymmetry
ε1,α̃, may be defined for neutrinos decaying into ˜̀

αH̃ slepton-Higgsino pairs, and similarly
we may define ε1̃,α, and ε1̃,α̃ for Ñ1 sneutrino decays. In the MSSM, to which the SO(10)
model reduces, all these decay rates are equal, i.e. ε1,α = ε1,α̃ = ε1̃,α = ε1̃,α̃.

Assuming M3 is large enough that the N3 neutrino does not affect leptogenesis, in the
hierarchical approximation M1 �M2, ε1,α can be expressed as

ε1,α =
1

8π

Im
[
(λ†ν)1α(λ†νλν)12(λTν )2α

]
(λ†νλν)11

gMSSM

(
M2

2

M2
1

)
, gMSSM

(
M2

2

M2
1

)
≈ −3

M1

M2

, (15)

where λν is the neutrino Yukawa matrix in the flavour basis, where the charged lepton
and RH neutrino mass matrices are diagonal by definition. In general, the charged lepton
and RH neutrino mass matrices may be diagonalised as follows:

VeLY
eV †eR = diag(ye, yµ, yτ ),

VeLY
e†Y eV †eL = diag(y2

e , y
2
µ, y

2
τ ) = VeRY

eY e†V †eR,

UNM
NUT

N = diag(M1,M2,M3).

(16)

As Y e in Eq. 8 is complex symmetric, we have V †eR = V T
eL. The neutrino Yukawa matrix

in the flavour basis is thus given by

λν = VeLY
νUT

N . (17)

Given the highly non-trivial mass and Yukawa matrix structure, to rigorously show that
N1 leptogenesis can be achieved in this model, we solve the Boltzmann equations for the
evolution of the N1 neutrino and B − L asymmetry densities. We may derive bounds
on the neutrino Yukawa couplings by performing a scan over parameter space. Our
analysis is based on results in [24,26], which give the Boltzmann equations for flavoured
(supersymmetric) N1 leptogenesis.

We will find that the solutions are chiefly dependent on the decay factors Kα (themselves
dependent on the neutrino Dirac matrix) and a matrix A that describes flavour coupling
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effects that modify the lepton asymmetries in individual flavours. In the three-flavour
case, Kα and the total decay factor K are defined by

Kα =
v2
u(λ
†
ν)1α(λν)α1

m?M1

, K =
∑
α

Kα ; m? ' 1.58× 10−3 eV, (18)

while

A =

−93/110 6/55 6/55
3/40 −19/30 1/30
3/40 1/30 −19/30

 . (19)

The N1 neutrino density is given by YN1 , with the density at thermal equilibrium given
by Y eq

N1
. We define ∆YN1 = YN1 − Y

eq
N1

, as well as corresponding ∆YÑ1
for the sneutrino

density YÑ1
. The equilibrium density for leptons and sleptons are denoted Y eq

` and Y eq
˜̀ .

We use

Y eq
N1

= Y eq

Ñ1
≈ 45

2π4g∗
z2K2(z), Y eq

` = Y eq
˜̀ ≈

45

2π4g∗
. (20)

The total B/3 − Lα asymmetries (including both fermion and scalar matter) are given
by Y∆α . The Boltzmann equations may be written as

dYN1

dz
= −2Df1∆YN1 , (21)

dYÑ1

dz
= −2Df1∆YÑ1

, (22)

dY∆α

dz
= 2 ε1,αDf1(∆YN1 + ∆YÑ1

) +W
Kα

K
f2

∑
β

AαβY∆β
. (23)

The decay and washout terms D and W are defined as

D = Kz
K1(z)

K2(z)
, W = Kz

K1(z)

K2(z)

Y eq
N1

+ Y eq

Ñ1

Y eq
` + Y eq

˜̀

. (24)

The functions f1(z) and f2(z) parametrise the contributions from ∆L = 1 scatterings.
We use the results from [27], wherein they consider scatterings involving neutrinos and
top quarks but not gauge bosons, nor do they consider thermal effects. The functions
may be approximated by

f1(z) ≈ f2(z) ≈ z

a

[
ln
(

1 +
a

z

)
+
KS

Kz

](
1 +

15

8z

)
,

a =
K

KS ln(M1/Mh)
,

KS

K
=

9

4π2

m2
t

gN1v
2
,

(25)

where mt is the top mass (at the leptogenesis scale), Mh ≈ 125 GeV is the Higgs mass, and
gN1 = 2. In the limit where scattering effects are neglected, f1(z) = f2(z) = 1. The top
mass is fitted by the SO(10) model at the GUT scale, at mt = 92.8 GeV. Assuming the
running between GUT and leptogenesis scales is relatively minor, we use this benchmark
value.
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We rewrite the parametrisation in Eq. 13 as YB = Y0

∑
α ε1,αηα, where Y0 = (10/31)[YN1 +

YÑ1
]z�1 is a normalisation constant that ensures 0 ≤ ηα ≤ 1. We may factor out the

decay asymmetry, leading to a set of equations for the efficiency factor ηα. Furthermore,
if we neglect the small off-diagonal elements of the matrix A, the efficiencies in each
flavour decouple and may be solved individually, in terms of the decay factors Kα. More
precisely, for fixed K/|AααKα|, ηα(z →∞) is a function only of AααKα. Eq. 23 may be
rewritten as

Y0
dηα
dz

= 2Df1(∆YN1 + ∆YÑ1
) +W

AααKα

K
f2Y0ηα. (26)

In Fig. 1 we show the variation in ηα, in agreement with the results in [24]. The grey
lines show ηα when scatterings are switched off.

K/|AααKα|

1
5
100

-2 -1 0 1 2
0.00

0.05

0.10

0.15

0.20

log10|AααKα|

ηα

Figure 1: Variation in ηα, in agreement with the results in [24]. The grey lines show ηα when
scatterings are switched off, i.e. f1 = f2 = 1.

In the solutions presented below, we will solve Eqs. 21-23 in terms of the full A-matrix.
The only parameters in our model which are not fixed by the fit to lepton data are either
the set of three neutrino Dirac couplings yνi or the three RH neutrino Majorana couplings
Mi (i = dec, atm, sol). Once either set has been chosen, the other is fixed by the relation
µi = (vuy

ν
i )2/Mi. We choose as inputs the Dirac couplings.

Due to the structure of SO(10), we anticipate these to be roughly equal to the up-type
quark Yukawa couplings. As we will find, there exists some tension between the up-quark
and neutrino sectors. We begin by noting that the third neutrino does not significantly
affect the results. Thus it is most interesting to examine the yνatm−yνsol space, while setting
yνdec = 0.5. As a consequence, the third neutrino N3 has a mass M3 ≈Mdec ∼MGUT.

Fig. 2 shows the values of the neutrino Dirac parameters yνatm and yνsol which produce
the correct YB, to within 10% and 20% (darker and lighter shades, respectively) as well
as satisfying the phenomenological requirements for correct neutrino masses and lepton
mixing. Each distinct region of parameter space in Fig. 2 is marked in a different
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-0.05 0.00 0.05
0.000

0.002

0.004

0.006

0.008

yatm
ν

ysol
ν

Figure 2: Regions where YB is within 20% (light bands) and 10% (darker bands) of the
observed BAU, in terms of the neutrino Dirac parameters yνatm and yνsol where we have assumed
yνdec = 0.5. Colours denote separated regions in parameter space. Dotted lines correspond to
yνatm = ±yνsol.

colour, which correlate also with the colours in Figs. 3-4. Although the dotted line
(indicating yatm = ±ysol) in Fig. 2 shows that the successful leptogenesis points always
satisfy yνatm > yνsol, the hierarchy is not that strong, bearing in mind that the Dirac
Yukawa matrix associated with yνatm in Eq. 8 has numerically smaller entries than that
associated with yνsol. Consequently both Dirac matrices will contribute significantly to
the second column of the total Dirac mass matrix over the successul leptogenesis regions,
making any analytic approximation highly non-trivial.

Figs. 3-4 show the corresponding RH neutrino mass parameters giving the correct YB
to within 20%, satisfying also the phenomenological requirements for correct neutrino
masses and lepton mixing. Fig. 3 shows input mass parameters Msol,atm while Fig. 4
shows mass eigenvalues M1,2. The assumed strong hierarchy M1 �M2 is always realised
for successful leptogenesis, as shown in Fig. 4 where all points satisfy M1 < 0.1M2 (the
dot-dashed line shows M1 = 0.1M2).

There is however no such strong hierarchy between the mass parameters Msol,atm in Fig. 3.
Although successful leptogenesis points satisfy Msol < Matm over much of parameter
space (the dotted line in Fig. 3 marks where Matm = Msol), it should be noted that the
trace of the matrix associated with Msol in Eq. 8 is about five times larger than that
associated with Matm. We conclude that both these mass matrices will be important
in determining the eigenvalues M1 and M2 over the successful leptogenesis regions, and
simple approximations are generally not reliable.

We find a lower bound on the parameters giving successful leptogenesis, with yνatm & 0.01
and yνsol & 0.002. The narrow red region arises from very particular choices of yνi that also
give the weakest hierarchy of RH neutrino masses M1/M2 ∼ 0.1. Note that the mass M3

10



does not appear in the approximated decay asymmetries and its effect on leptogenesis is
always negligible. M3 is therefore only constrained by the relation imposed by sequential
dominance, i.e. M3 �M1,2.

The effective neutrino couplings yνi that yield viable leptogenesis (as shown by Fig. 2)
are within the range anticipated by the model, according to the magnitudes of the VEVs
that enter into their definition (see Eq. 36 in Appendix B). We note however that the
yνi are different when compared to the effective up-type quark couplings yui required to
obtain correct GUT scale masses mu, mc and mt. This would rule out a naive SO(10)
model, and while it can be accommodated in this model, there is a price to pay as the yνi
necessarily differ from the yui . In particular, yνatm is larger than its corresponding quark
parameter by an O(100) factor. This issue is discussed in full detail in Appendix A.
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Figure 3: Allowed values of RH neutrino input masses Msol,atm, giving YB within 20% of the
observed value, equivalent to the viable choices of Yukawa parameters yνi shown in Fig. 2.
The dotted line corresponds to Matm = Msol.

It is interesting to compare this model to another model which incorporates the CSD3
vacuum alignments, based on A4 × SU(5) with two RH neutrinos [21] (see [22] for a
discussion on leptogenesis in this model). In that model the neutrino Yukawa and RH
Majorana mass matrices may be written as

Y ν =

0 b eiη/2

a 3b eiη/2

a b eiη/2

 , MR =

(
Matm 0

0 Msol

)
, (27)

where a and b are real numbers and Matm = M1 � M2 = Msol. It was found in this
scenario that YB ∝ + sin η, which gives the correct sign of the asymmetry since the phase
is fixed (in both models) to be η = 2π/3 by low energy neutrino phenomenology.

In the present SO(10) model [14], let us first consider the regions of parameter space
where yνatm � yνsol and Matm � Msol, and the third neutrino is entirely decoupled (i.e.
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Figure 4: Allowed values of RH neutrino eigenvalues M1,2 (right), giving YB within 20% of
the observed value, equivalent to the viable choices of Yukawa parameters yνi shown in Fig. 2.
The dot-dashed line corresponds to M1 = 0.1M2.

Mdec → ∞). In these regions of parameter space, which however do not correspond to
the successful leptogenesis regions we have seen, the matrices in Eq. 8 approximate to

Y ν ≈

 yνsol e
iη 3yνsol

3yνsol e
iη yνatm

yνsol e
iη yνatm

 , MR ≈
(
Msole

iη 0
0 Matm

)
. (28)

By the arguments presented in [24], this implies YB ∝ − sin η,8 giving the wrong sign of
the asymmetry and an antimatter universe. This is confirmed by the exact numerical
solutions which show that these regions of parameter space are not allowed, precisely
because they would lead to the wrong sign of the BAU. The correct sign can be achieved,
however, in the regions of parameter space where the above assumptions of a strong
hierarchy between ‘atm’ and ‘sol’ are relaxed. These correspond to the successful regions
shown in Figs. 2 and 3.

We finally note that enforcing the hierarchy Matm � Msol in the present model, as
predicted by the SU(5) model, does not recover the matrix structure of that model (as
seen in Eq. 27). In this limit, which also requires yνatm � yνsol � yνdec, the SO(10) matrices
proportional to yνatm and Matm are negligible, and the total Yukawa and mass matrices
approximate to

Y ν ≈ yνsol e
iη


1 3 1
3 9 3

1 3
yνdec

yνsole
iη

 , MR ≈Mν
sol e

iη


1 3 1
3 9 3

1 3
Mν

dec

Mν
sole

iη

 , (29)

which are markedly different from the form of Eq. 27.

8This can be understood intuitively by noting that Eqs. 27 and 28 differ by a column swap in Y ν .
Under this swap, the relative phase between columns flips sign.
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5 Conclusions

Although SO(10) Grand Unification is a very attractive setting for neutrino mass and
mixing, it is often quite difficult to achieve successful leptogenesis from the lightest RH
neutrino N1 due to the strong relations between neutrino and up-type quark Yukawa
couplings. In this paper we have shown that a realistic model relaxes these constraints,
making N1 leptogenesis viable.

To illustrate this we have calculated the baryon asymmetry of the Universe YB from
flavoured N1 leptogenesis in a recently proposed ∆(27)×SO(10) SUSY GUT of Flavour.
In this model the lepton mass matrices have a universal structure, and each mass matrix
(for charged leptons, Dirac neutrinos and RH neutrinos) is given in terms of three real
free parameters, which multiply submatrices that are fixed by the VEVs of ∆(27) triplet
flavons. We have shown that also the mass matrix of the light left-handed neutrinos after
seesaw has this same structure. Hence all the low-energy flavour observables are fitted
with only 6 real parameters: neutrino mass-squared differences, charged lepton masses
and the entire PMNS matrix, a total of 12 parameters (including Majorana phases). This
leads to a predictive and highly successful model.

Within the ∆(27) × SO(10) SUSY GUT of Flavour, we have shown that the BAU can
be successfully generated via thermal leptogenesis arising from the decay of the lightest
RH neutrino. The flavoured Boltzmann equations have been solved numerically, and
comparison with the observed YB constrains the allowed values of RH neutrino masses and
neutrino Yukawa couplings. The correct BAU can be obtained in a region of parameter
space corresponding to RH neutrino masses M1 ∼ 1010−11 GeV and M2 ∼ 1011−13 GeV,
with a strong hierarchy M1 � M2 and a temperature T > M1. However we have seen
that there is no strong hierarchy involving Matm, Msol, i.e. RH neutrino mass eigenstates
arise from strongly mixed combinations of N c

atm, N c
sol.

The region of parameter space that has viable BAU has a modest hierarchy between the
two relevant neutrino Yukawa couplings, as anticipated by the model. This is in tension
with the viable up-type quark Yukawa couplings, which have a stronger hierarchy. The
required difference between up and neutrino couplings rules out naive SO(10) models, but
can be reconciled in this GUT flavour model, due to the presence of an SO(10) adjoint
field H45.

We conclude that, contrary to expectations based on naive SO(10)-inspired assumptions,
N1 leptogenesis is viable in flavoured SO(10) SUSY GUTs. In particular we have shown
that the flavoured GUT model detailed in [14] is not only fairly complete and predictive
in the lepton sector, but can also explain the BAU through leptogenesis with natural
values in the lepton sector albeit with some tuning in the quark sector.
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A Quark and lepton masses in the model

In naive SO(10) GUT models, the Yukawa couplings of up-type quarks and neutrinos are
the same. As a simple example, in the basis where they are diagonal,

Y u = Y ν =

yu 0 0
0 yc 0
0 0 yt

 . (30)

From this correspondence and the observed values for the light neutrino masses one
derives, after seesaw, an expected range for each of the heavy RH neutrino masses M1,2,3,
using the relation in Eq. 12. This reveals a hierarchy in Mi like 106 : 1010 : 1015.

This equality between up-type quarks and neutrinos isn’t necessarily in place in all SO(10)
models. Indeed, in the model from [14] which we consider here, there are contributions
to Yukawa matrices that are common to both up-type quarks and neutrinos, but there
are also terms that contribute only to Y u.

The terms listed in Eq. 4 show the effective superpotential after integrating out heavy
messengers χ at a mass scale Mχ. In the full superpotential, there are additional terms
wherein the messengers χ couple to a superfield H45 (an SO(10) adjoint) which we assume
to acquire a real VEV 〈H45〉. As such, each mass insertion Mχ may be replaced by 〈H45〉.
The full superpotential is

WY = ΨiΨjH
u
10

[
φidecφ

j
dec

2∑
n=0

λ
(u)
dec,n

〈H45〉nM2−n
χ

+φiatmφ
j
atmξ

3∑
n=0

λ
(u)
atm,n

〈H45〉nM3−n
χ

+φisolφ
j
solξ

2

4∑
n=0

λ
(u)
sol,n

〈H45〉nM4−n
χ

+φisolφ
j
decξ

(
λ

(u)
sd,1

〈H ′45〉
2Mχ

+
λ

(u)
sd,2

〈H ′45〉
2〈H45〉

)]

+ ΨiΨjH
d
10

[
φidecφ

j
decξ

3∑
n=0

λ
(d)
dec,n

〈H45〉nM3−n
χ

+φiatmφ
j
atmξ

2

4∑
n=0

λ
(d)
atm,n

〈H45〉nM4−n
χ

+φisolφ
j
solξ

3

5∑
n=0

λ
(d)
sol,n

〈H45〉nM5−n
χ

]
.

(31)
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The couplings in Eq. 4 are then defined in terms of the dimensionless couplings above as

λ̃
(u,d,M)
dec

M2
χ

=
2∑

n=0

λ
(u,d,M)
dec,n

〈H45〉nM2−n
χ

,

λ̃
(u,d,M)
atm

M2
χ

=
3∑

n=0

λ
(u,d,M)
atm,n

〈H45〉nM3−n
χ

,

λ̃
(u,d,M)
sol

M2
χ

=
4∑

n=0

λ
(u,d,M)
sol,n

〈H45〉nM4−n
χ

.

(32)

The alignment of 〈H45〉 dictates the Clebsch-Gordan coefficients associated with quarks
and leptons, which are generally different. For example, if the VEV 〈H45〉 is aligned in
the B − L direction then 〈H45〉 = v45/3 for quarks and 〈H45〉 = −v45 for leptons. For
a general alignment, the practical consequence is that the free parameters in the mass
matrices will generally be different for quarks and leptons. However, we assume that
〈H45〉 is real, such that phases only arise from the phases of flavon VEVs, 〈φ〉 and 〈ξ〉.

In the up sector, there is also an additional set of terms allowed by the symmetries and
field content. This is discussed in more detail in [14]. The quark mass matrices can thus
be written as

Y u=yuatm

0 0 0
0 1 1
0 1 1

+yusole
iη

1 3 1
3 9 3
1 3 1

+yudec

0 0 0
0 0 0
0 0 1

+yusde
iηu

0 0 1
0 0 3
1 3 2

,
Y d=ydatm

0 0 0
0 1 1
0 1 1

+ydsole
iη

1 3 1
3 9 3
1 3 1

+yddec

0 0 0
0 0 0
0 0 1

.
(33)

The parameters yui and yνi (for each i = dec, atm, sol) in the up-type quark and neutrino
Yukawa matrices, respectively, come from the same sum of terms involving increasing
powers 〈H45〉 in the denominator, but are generally different due to the alignment of
〈H45〉. This difference may be parametrised by δi, such that

yui = yνi + δi (34)

There is an additional parameter yusd in the up-type quark matrix. If we were to set these
four additional parameters to zero, there would be no difference between the up-type
quark and neutrino Yukawa couplings, and the model would follow the expectation of
naive SO(10) models: there would be just three independent parameters, yudec = yνdec,
yuatm = yνatm and yusol = yνsol which can be eliminated in terms of the GUT scale values for
up, charm and top Yukawa couplings yu, yc, yt.

9

With the additional parameters δi non-zero, yui are related to yνi as shown in Eq. 34.
The numerical fit to the data indicates (cf. Table 3) that yuatm ∼ 10−5. This is the root

9This is always possible to do numerically, even if analytical relations may become non-trivial from
diagonalizing the Yukawa matrices.
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of a fine-tuning in the model that arises when we compare it to yνatm, which, in order to
have viable leptogenesis, requires yνatm ∼ 10−3−10−2, according to Fig. 2. This mismatch
between up-type quark and neutrino couplings is a typical problem for leptogenesis in
SO(10) GUT models, and would invalidate leptogenesis in naive SO(10) models where
the couplings need to be equal.

In the model in question it can be accommodated through a cancellation between yνatm

and δatm both of order 10−3 − 10−2, leaving yuatm ∼ 10−5. It should be noted that in the
model in question [14], yνatm ∼ 10−3− 10−2 is indeed the expected order of magnitude for
the Dirac neutrino coupling (due to the powers of the superfield ξ). It is yuatm ∼ 10−5

that is required by the fit that turns out anomalously small, which is in turn linked to
the mass of the (first generation) up quark, mu (see Table 2).

The best fit parameters for quarks and leptons are given, respectively, in Tables 2 and 4.
The corresponding input parameters are given in Tables 3 and 5.

Observables Model
Data fit 1σ range

(from [28])

θq12 /◦ 13.020 12.985 → 13.067

θq13 /◦ 0.2023 0.1866 → 0.2005

θq23 /◦ 2.238 2.202→ 2.273

δq /◦ 69.89 66.12→ 72.31

mu /MeV 0.602 0.351→ 0.666

mc /MeV 249.5 240.1→ 257.5

mt /GeV 93.37 89.84→ 95.77

md /MeV 0.511 0.744→ 0.929

ms /MeV 15.80 15.66→ 17.47

mb /GeV 0.947 0.930→ 0.953

δχ2 16.0

Table 2: Model predictions in the quark sector, for
tanβ = 5. The quark contribution to the total χ2 is
16.0. Observables are at GUT scale.

Parameter Fitted value

yuatm 3.478 ×10−5

yusol 2.075 ×10−4

yudec 5.389 ×10−1

yusd 5.774 ×10−3

ηu 1.629π

ydatm -3.199 ×10−4

ydsol 2.117 ×10−5

yddec 2.792 ×10−2

η 2π/3

Table 3: Quark sector input pa-
rameter values (with η fixed by
the theory).
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Observables Model
Data fit 1σ range

(from [28])

θl12 /◦ 33.13 32.83 → 34.27

θl13 /◦ 8.59 8.29 → 8.68

θl23 /◦ 40.81 40.63 → 43.85

δl /◦ 280 192 → 318

me /MeV 0.342 0.340 → 0.344

mµ /MeV 72.25 71.81 → 72.68

mτ /GeV 1.229 1.223 → 1.236

∆m2
21 /eV2 7.58 ×10−5 (7.33 → 7.69) ×10−5

∆m2
31 /eV2 2.44 ×10−3 (2.41 → 2.50) ×10−3

m1 /meV 0.32 −

δχ2 1.3

Table 4: Model predictions in the lepton sector, for
tanβ = 5. Observables are at GUT scale.

Parameter Fitted value

yedec 3.366 ×10−2

yeatm 2.217 ×10−3

yesol -1.025 ×10−5

µdec /meV 2.052

µatm /meV 26.60

µsol /meV 2.571

η 2π/3

Table 5: Lepton input parameter val-
ues (with η fixed by the theory).

B Yukawa and Majorana parameters in terms of the

fundamental model parameters

The Yukawa and Majorana mass matrices appearing in the seesaw Lagrangian in Eq. 7
are related to the real (due to CP symmetry) fundamental model parameters by the
following relations,

(Y ν
ij )
∗=

λ̃
(u)
atm

M3
χ

〈φiatmφ
j
atmξ〉+

λ̃
(u)
sol

M4
χ

〈φisolφ
j
solξ

2〉+ λ̃
(u)
dec

M2
χ

〈φidecφ
j
dec〉,

(Y e
ij)
∗=

λ̃
(d)
atm

M4
χ

〈φiatmφ
j
atmξ

2〉+ λ̃
(d)
sol

M5
χ

〈φisolφ
j
solξ

3〉+ λ̃
(d)
dec

M3
χ

〈φidecφ
j
decξ〉,

(MN
ij )∗=〈H16〉

2

[
λ̃

(M)
atm

M3
χM

4
Ωatm

〈φiatmφ
j
atmξ

4〉+ λ̃
(M)
sol

M4
χM

4
Ωsol

〈φisolφ
j
solξ

5〉+ λ̃
(M)
dec

M2
χM

4
Ωdec

〈φidecφ
j
decξ

3〉

]
,

(35)

where the complex conjugation arises in going from the superpotential to the Lagrangian.
The structure of these Yukawa matrices is dictated by the complex VEVs of the flavons,
which break ∆(27) and CP symmetry in a specific way, giving the CSD3 alignment (see
Eq. 3).
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The real parameters introduced in Eq. 8 can then be read off explicitly as follows:

yνatm =
λ̃

(u)
atm|vatm|2|vξ|

M3
χ

, yνsol =
λ̃

(u)
sol |vsol|2|vξ|2

M4
χ

, yνdec =
λ̃

(u)
dec|vdec|2

M2
χ

yeatm =
λ̃

(d)
atm|vatm|2|vξ|2

M4
χ

, yesol =
λ̃

(d)
sol |vsol|2|vξ|3

M5
χ

, yedec =
λ̃

(d)
dec|vdec|2|vξ|

M3
χ

Matm =
λ̃

(M)
atm |vatm|2|vξ|4|vH16

|2

M3
χM

4
Ωatm

, Msol =
λ̃

(M)
sol |vsol|2|vξ|5|vH16

|2

M4
χM

4
Ωatm

, Mdec =
λ̃

(M)
dec |vdec|2|vξ|3|vH16

|2

M2
χM

4
Ωatm

,

η=−arg

[
v2

sol

v2
atm

vξ

]
, η′=−arg

[
v2

dec

v2
atm

1

vξ

]
. (36)

C The seesaw mechanism with rank-one matrices

Defining three rank-one matrices in terms of a set of column vectors φa, φb, φc,

A = φaφ
T
a , B = φbφ

T
b , C = φcφ

T
c , (37)

the Dirac mass matrix mD and heavy RH Majorana matrix MR may be written as

mD = maA+mbB +mcC,

MR = MaA+MbB +McC.
(38)

Now let us consider a new set of column vectors φ̃a, φ̃b, φ̃c, which are orthogonal to the
original ones, and satisfy the conditions

φ̃Ti φj = δij, i, j = a, b, c. (39)

For example, for the column vectors used in this paper,

φa = (0, 1, 1)T , φb = (1, 3, 1)T , φc = (0, 0, 1)T . (40)

the corresponding column vectors which satisfy Eq. 39 are,

φ̃a = (−3, 1, 0)T , φ̃b = (1, 0, 0)T , φ̃c = (2,−1, 1)T . (41)

Given these new vectors, we can define some new rank-one matrices,

Ã = φ̃aφ̃
T
a , B̃ = φ̃bφ̃

T
b , C̃ = φ̃cφ̃

T
c . (42)

Then the inverse of the heavy RH Majorana matrix is uniquely given as

M−1
R =

1

Ma

Ã+
1

Mb

B̃ +
1

Mc

C̃. (43)
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It can easily be verified explicitly that this result satisfies MRM
−1
R = I using Eq. 39,

which implies that the cross-terms vanish, e.g. AB̃ = 0. It is also worth noting that
the orthogonality condition in Eq. 39 is sufficient for immediately computing the unique
solution for inverse. As any rank-three (inverse) matrix can be written as the sum of
three rank-one matrices (such as in Eq. 43), the orthogonality condition arises when we
require M−1

R MR to be independent of the scaling factors 1/Mi.

Using Eq. 43 we can explicitly evaluate the seesaw formula, mν = mDM
−1
R mT

D,

mν =
m2
a

Ma

A+
m2
b

Mb

B +
m2
c

Mc

C (44)

where, as before, we have used Eq. 39, which implies cross-terms vanish and AÃA = A,
and so on, from which we see that

mν = µaA+ µbB + µcC (45)

where µa = m2
a/Ma, µb = m2

b/Mb, µc = m2
c/Mc. Clearly this result is valid for any choice

of linearly independent column vectors φa, φb, φc.
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