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Sub-pixel land cover classification for improved urban area estimates 

using Landsat 

 

Urban areas are Earth’s fastest growing land use that impact hydrological and 

ecological systems and the surface energy balance. The identification and 

extraction of accurate spatial information relating to urban areas is essential for 

future sustainable city planning owing to its importance within global 

environmental change and human-environment interactions. However, 

monitoring urban expansion using medium resolution (30-250m) imagery 

remains challenging due to the variety of surface materials that contribute to 

measured reflectance resulting in spectrally mixed pixels. This research integrates 

high spatial resolution orthophotos and Landsat imagery to identify differences 

across a range of diverse urban subsets within the rapidly expanding Perth 

Metropolitan Region, Western Australia. Results indicate that calibrating Landsat 

derived sub-pixel land cover estimates with correction values (calculated from 

spatially explicit comparisons of sub-pixel Landsat values to classified high 

resolution data which accounts for over (under) estimations of Landsat) reduces 

moderate resolution urban area over (under) estimates by on average 55.08% for 

the Perth Metropolitan Region. This approach can be applied to other urban areas 

globally through use of frequently available and/or low cost high spatial 

resolution imagery (e.g. using Google Earth). This will improve urban growth 

estimations to help monitor and measure change whilst providing metrics to 

facilitate sustainable urban development targets within cities around the world. 

Keywords: Urban expansion, multispatial comparison, Landsat, High spatial 

resolution, policy 

1. Introduction 

Urban areas are estimated to cover only 0.5% of Earth’s surface yet are one of the 

fastest growing land use per area basis (Schneider, Friedl, and Potere 2010; Bettencourt 

and West 2010; Schneider, Friedl, and Potere 2009). Population growth has resulted in 

increased urbanisation with 54% of the planet’s seven billion people in 2014 residing in 

urban areas with an additional 2.5 billion urban dwellers projected by 2050, whilst 



concurrently increasing the proportion of world’s urban population to 66% (Sexton et 

al. 2013; Powell and Roberts 2010; Sharifi and Lehmann 2014; United Nations, 

Department of Economic and Social Affairs 2014; Powell et al. 2007; Song et al. 2016). 

Alteration of natural land cover to anthropogenic impervious surfaces has been 

identified as the most extreme cumulative effect of land cover change, generating 

numerous socio-economic consequences including: amenity provision efficiency, 

ecological degradation and the Urban Heat Island (UHI) effect (Cai et al. 2016; Howard 

1988; L. Hu and Brunsell 2015; Xie and Zhou 2015). Accurate information on urban 

Land Cover and Land Use (LULC) is therefore imperative for monitoring expansion 

and planning policy targeting for future sustainable development of our cities 

(Bettencourt and West 2010; Wu and Murray 2003). Earth Observation (EO) enables 

consistent, detailed characterisation of the actual urban footprint of a city having been 

mapped and monitored using remotely sensed data at a range of spatial and temporal 

scales for associated implications (Schneider, Friedl, and Potere 2010; Imhoff et al. 

1997; Sexton et al. 2013; Akbari, Rose, and Taha 2003; Friedl et al. 2002). However, 

accurate and consistent monitoring of urban land cover is frequently precluded by 

coarse spatial (e.g. 1 km2 Moderate Resolution Imaging Spectroradiometer (MODIS) 

land cover product) and temporal (e.g. 2000 and 2010 GlobeLand30 product) resolution 

of such datasets (Song et al. 2016; Lu et al. 2014).  

Urban mapping remains challenging due to the heterogeneity of surface 

materials and surface structure which contributes to pixel surface reflectance that are 

often difficult to disentangle (Herold et al. 2002; Lu, Moran, and Hetrick 2011; 

Varshney and Rajesh 2014; Schneider 2012). When delineating urban land cover from 

remotely sensed data, spatial resolution is considered the most important factor which 

provides increased visibility of discrete surface features (e.g. buildings) and greater 



pixel homogeneity over medium to coarse spatial resolution satellite imagery (e.g. 

Landsat and MODIS) (Myint et al. 2011). Nevertheless, high spatial resolution data 

often lack temporal acquisition consistency (e.g. airborne orthophotos) or are expensive 

to purchase (e.g. commercial satellite imagery). Consequently, in order to best monitor 

urban LULC change, datasets must have an adequate spatial and temporal resolution to 

discern change. In this regard, data from the Landsat series of satellites provides the 

longest time-series of consistent, medium spatial resolution imagery that has been 

extensively applied to urban area mapping (Powell et al. 2007; Schneider and Mertes 

2014; Sundarakumar et al. 2012; Wilson et al. 2003; Yuan et al. 2005; Song et al. 2016).  

Accurate quantification of anthropogenic landscape modification is of critical 

importance due to associated environmental, anthropogenic and climatic impacts 

(Kalnay and Cai 2003). Urban estimates from Landsat data have been used within 

global biogeochemistry and climate models (Z. Zhu and Woodcock 2014), further 

scientific studies such as UHI investigations (Y. Hu et al. 2015) and targeted urban 

development policies (Schneider, Seto, and Webster 2005; Hepinstall-Cymerman, Coe, 

and Hutyra 2013). Whilst comparative studies (e.g. Li et al. 2014) have shown marginal 

holistic image accuracy difference between algorithm selection on per-pixel Landsat 

classification assuming sufficient training data. Traditional per-pixel methods, such as 

the maximum likelihood classifier (discussed in supplementary section 1), have been 

found to significantly over or underestimate urban area from Landsat data (Lu, Moran, 

and Hetrick 2011; Wu and Murray 2003). Addressing this error is important when 

accurate classifications are required for monitoring change in land use patterns whereby 

calculations of urban extent can influence decision-making (e.g. policy for sustainable 

urban development) (Schneider, Seto, and Webster 2005; Hepinstall-Cymerman, Coe, 

and Hutyra 2013; Miller and Small 2003; Bagan and Yamagata 2014).  



Due to the heterogeneity of urban areas, sub-pixel classification methodologies 

have been increasingly applied to medium spatial resolution data to more accurately 

represent the mixture of land covers within a pixel (Lu, Moran, and Hetrick 2011; Lu 

and Weng 2006; Powell and Roberts 2008; F. Weng and Pu 2013; Wang et al. 2013). 

This has been achieved through variations of Spectral Mixture Analysis (SMA) where a 

set number of representative endmembers, frequently following the Vegetation, 

Impervious and Soil (V-I-S) framework, are used to model the entire image based on 

their spectral characteristics (Powell et al. 2007; Ridd 1995). However, endmembers 

may not fully represent image spectral variability or a pixel may be modelled by 

endmembers that do not represent materials within its field of view resulting in an 

inability to adequately portray the high spectral heterogeneity of the urban landscape 

(Powell et al. 2007). Support Vector Machine (SVM) spectral unmixing attempts to 

resolve this issue through consideration of a large number of training pixels which 

provides preferential accuracy in comparison to SMA although high dimensional data 

and large training samples can hinder its performance (Wang et al. 2013).  

Comparatively the novel sub and hard pixel Import Vector Machine (IVM) 

classifier permits simultaneous multi-class comparison whilst continuously testing 

training samples for validity providing a more accurate solution (Roscher, Förstner, and 

Waske 2012). IVM has been found to consistently outperform decision trees, artificial 

neural networks and maximum likelihood algorithms (Watanachaturaporn, Arora, and 

Varshney 2008; Kotsiantis, Zaharakis, and Pintelas 2006; Huang, Davis, and 

Townshend 2002), with preferential (Braun, Weidner, and Hinz 2012) and comparable 

results to SVM (Roscher, Waske, and Forstner 2010). However, due to the 

heterogeneity of urban areas it is important to calibrate these sub-pixel approaches 

against high spatial resolution data that capture the diverse characteristics found within 



urban environments (Lu, Moran, and Hetrick 2011). Perth, Western Australia (WA) is 

characterised by extensive urban diversity, surpassing all other major Australian and 

United States cities in terms of suburban development (Kelly, Weidmann, and Walsh 

2011; U.S. Department of Commerce 2013). It therefore provides a suitable case study 

for assessing the ability of Landsat to map urban development, which is a pre-requisite 

for appropriate policy incorporation. This paper describes an approach to map the urban 

extent of the Perth Metropolitan Region (PMR) using an IVM classifier applied to 

medium spatial resolution imagery. The impact of sub-pixel land cover heterogeneity is 

investigated by comparing the urban area estimates to those derived from very high 

spatial resolution (20cm) imagery. An innovative, spatially explicit correction to 

account for over (or under) estimation of urban area is derived which improves the 

urban land cover estimates from medium resolution imagery.  

2. Study area  

The Perth Metropolitan Region (PMR) (Figure 1), WA has experienced sustained urban 

development since the 21st century in response to a rapidly growing resource sector 

(Kennewell and Shaw 2008). The majority of recent urban growth within the PMR has 

transpired as outward low-density development resulting in a maximum population 

density of 3,662 people per square kilometre which is 33% and 24% lower than 

Melbourne (10,827) and Sydney (14,747) respectively (Western Australian Planning 

Commission 2015; ABS 2015). The notion of the ‘Australian dream’, depicted as 

detached living in a green suburb, is most pronounced in Perth (Western Australian 

Planning Commission 2013a). As a result 79% of the current housing is detached, 

compared to 62% in Sydney, 72% in Melbourne and a national average of 74% (Kelly, 

Weidmann, and Walsh 2011; Western Australian Planning Commission 2013b). 

Globally, Australia surpasses other developed countries in terms of detached suburban 



living with England having 42% of housing as either detached or semi-detached 

(Department for Communities and Local Government 2015). Similarly only 64.2% of 

USA housing stock is detached, with Perth eclipsing all of the major 25 USA 

metropolitan areas in terms of detached housing (U.S. Department of Commerce 2013). 

Low population density and outward expansion witnessed in Perth has generated high 

demand for dispersed amenities and services in a non-strategic, “lot-by-lot fashion” 

(Dhakal 2014). Suburbanisation of this nature has been identified as unsustainable due 

to impacts on ecological systems (e.g. habitat fragmentation) and socio-economic issues 

(e.g. amenity provisioning costs), with accurate urban area identification essential for 

sustainable future planning and maximum resource efficiency, particularly in Perth 

owing to its globally high suburbanisation and distributed population (Western 

Australian Planning Commission 2013a).  

 

[Insert Figure 1 here] 

 

Therefore, the PMR provides a globally diverse range of urban characteristics 

(e.g. compact urban central business district, older residential areas and new suburban 

developments) facilitating broad dataset comparison opportunities between Landsat and 

high spatial resolution urban area estimates. The high spatial resolution data identifies 

the complexity of these suburban and urban areas, which is obscured in medium and 

coarse spatial resolution datasets. This permits the extraction of individual features such 

as buildings, roads and vegetation that compose the urban environment and which are 

represented as a spectrally mixed pixel in Landsat imagery (illustrated in Figure 2) 

(Myint et al. 2011). 

 



[Insert Figure 2 here] 

 

Definitive feature detection from high resolution data can assist in refining urban 

area estimates produced from moderate spatial resolution satellite imagery (Lu, Moran, 

and Hetrick 2011; Wu and Murray 2003). More accurate satellite derived urban area 

estimates are imperative for ensuring appropriate data use for policy and environmental 

variable applications in order to mitigate the consequences of unsustainable urban 

development. This aligns with the criteria of effective land use planning within the City 

Resilience Framework (CRF) which is designed to improve city resilience (ARUP and 

The Rockefeller Foundation 2015). 

3. Data 

3.1. Landsat data 

Cloud free Landsat scenes were obtained for 2007 from Landsat 5 Thematic Mapper 

(TM), coinciding with high resolution orthophotos (described in Section 3.2). Imagery 

were acquired within winter months (July path 113 and October path 112) 

corresponding with peak vegetation green-up which limits issues concerning the 

spectral separation between senescent vegetation, bare earth and some impervious 

surfaces (Feyisa et al. 2016; Chen et al. 2014). Landsat imagery was processed to 

standard terrain correction (Level 1T), geometrically and topographically corrected 

using Ground Control Points (GCPs) and a Digital Elevation Model (DEM) from the 

Global Land Survey 2000 dataset (Hansen and Loveland 2012). Landsat 5 TM surface 

reflectance values were derived from the Landsat Ecosystem Disturbance Adaptive 

Processing System (LEDPAS) (Hansen and Loveland 2012; Jeffrey G Masek et al. 

2006) which corrects for atmospheric effects using the Second Simulation of a Satellite 



Signal in the Solar Spectrum (6S) radiative transfer model (Vermote et al. 1997). 

3.2. High spatial resolution airborne imagery 

Radiometrically calibrated multispectral red (0.58-0.77 µm), green (0.48-0.63 µm), blue 

(0.41 µm -0.54 µm) and near-infrared (0.69-1.0 µm) orthophotos were acquired over 19 

cloud free days commencing on 14 March (2007) as part of the Perth and Peel Urban 

Monitor Programme (Caccetta et al. 2012).  Aerial imagery, obtained between 10am 

and 2pm to reduce shadow effects, were captured using a Microsoft UltraCAM-D at a 

height of 1300m resulting in a spatial resolution of 20 cm. Forward and side frame 

overlap of 60% and 30% respectively permitted automatic Digital Surface Model 

(DSM) extraction using geometric control points provided by WA’s land information 

authority (Landgate). Extraction of ground points exclusively representing terrain 

variations facilitated derivation of a Ground Elevation Model (GEM) which, when 

subtracted from the DSM, generated a Relative Elevation Model (REM), depicting 

elevation relative to ground points.        

Spatial and temporal inconsistencies in reflectance can arise from atmospheric 

scattering and absorption; instrument noise and Bidirectional Reflection Distribution 

Function (BRDF) effects. The latter describes the systematic variation in reflectance 

across an image due to differences in view and illumination angles and which is 

dependent on the surface 3D structure (Collings, Caccetta, and Campbell 2011). The 

orthophotos were provided as a surface reflectance product, corrected for multiplicative 

and additive errors over frames (e.g. instrument noise and atmospheric effects) and 

within frame viewing and illumination geometry (Caccetta et al. 2012; Collings, 

Caccetta, and Campbell 2011). Image pre-processing consisted of two steps. Firstly, a 

combined BRDF and atmospheric correction procedure was applied to retrieve surface 

reflectance for each image acquisition. Linear BRDF model parameters from the Li 



Sparse reciprocal kernel (Wanner, Li, and Strahler 1995) were used to correct for BRDF 

effects. Atmospheric perturbations were corrected by assuming that the obtained digital 

number represented the relative reflectance affected by spatially dependent 

multiplicative and additive terms. These combined steps generated an internally 

consistent mosaicked dataset. ‘True’ surface reflectance was estimated through fitting 

global offset and gain values to replicate laboratory measured calibration targets based 

on the assumption that relative reflectance requires a linear transformation to true 

reflectance (Collings, Caccetta, and Campbell 2011). 

4. Methodology  

4.1. Landsat pre-processing 

The two Landsat scenes covering the study area were combined to form a seamless 

image mosaic following the methodology of Pan et al. (2009). Voroni diagrams were 

created on the bisector between images with adjacent edges defined as seamlines, 

identifying effective mosaic polygons that specify pixels from each image to include in 

the final mosaic, facilitating less visible boundaries through blending of overlapping 

pixels (Pan et al. 2009) (Figure 1). Due to remaining residual noise in the mosaicked 

imagery caused by factors such as the brightening effect of thin clouds and atmospheric 

correction differences, surface reflectance values were standardised following the 

approach identified by Sexton et al. (2013):  

 𝑝i,b =
𝑝x,b

maxb
 

(1)  

where 𝑝i,b is the standardised pixel value i, from band b based on the original 

surface reflectance x, standardised through division by a waveband specific upper 

reflectance limit which are: 0.1 (blue; 0.48µm), 0.11 (green; 0.56µm), 0.12 (red; 



0.66µm), 0.225 (near-infrared; 0.84µm), 0.205 (shortwave-infrared; 1.65µm), 0.150 

(shortwave-infrared 2; 2.22µm). The standardised values (𝑝i,b) were then normalised 

against the summed band standardised values: 

 
𝑝j,b =

𝑝i,b

∑ 𝑝i,bi
 

(2)  

where ∑ 𝑝i,bi  is the sum of each standardised pixel across all bands (Sexton et al. 

2013). This approach has been found to satisfactorily reduce variations generated from 

inherent residual noise across mosaicked imagery, for example due to differences in 

modelled atmospheric parameters within the LEDAPS algorithm (Sexton et al. 2013; 

Luo et al. 2014) ( 

Figure 3). Statistical assessment of image radiometric normalisation provided in 

MacLachlan et al. (2017a) found that the post-processed Landsat data exhibited 

significantly lower inter and intra Coefficient of Variation (CV) when compared to the 

pre-processed data. 

 

[Insert Figure 3 here] 

 

4.2. Landsat classification  

The 2007 Landsat data was classified as a time series of data for seven sequential 

periods between 1990 and 2015 using an Import Vector Machine (IVM) classifier 

produced in MacLachlan et al. (2017a). The method uses a hybrid strategy which 

assesses whether new samples (termed import vectors) can be removed in each forward 

step in order to provide a smoother decision boundary which ideally leads to a more 

accurate solution (Roscher, Förstner, and Waske 2012). Samples are selected based on 



how much their incorporation decreases the objective function to minimise the decision 

boundary to form the optimal separating hyperplane between overlapping clusters (e.g. 

land cover types) in spectral feature space (Mountrakis, Im, and Ogole 2011; Roscher, 

Förstner, and Waske 2012; J. Zhu and Hastie 2005). IVM generates two outputs: a soft 

(sub-pixel) dataset which defines the probability of a pixel containing a given 

classification value (e.g. land cover type) and a traditional ‘hardened’ classified dataset 

(Braun, Weidner, and Hinz 2012). Training samples were collected from the 2005 July 

Landsat 5 TM image, coinciding with peak vegetation greenness which provides the 

greatest spectral separability between vegetated and non-vegetated surfaces (Feyisa et 

al. 2016; Chen et al. 2014). Six land cover types were defined based on existing 

literature (e.g. X. Hu and Weng 2009; Schneider 2012; Feyisa et al. 2016) and scene 

analysis which are high reflectance urban (e.g. concrete), low reflectance urban (e.g. 

asphalt), forest, water, grassland and bare earth. Two urban land cover classes are 

specified to reduce spectral confusion between spectrally similarly classes (e.g. urban 

and bare earth) (X. Hu and Weng 2009). For each land cover type, 250 pixels were 

randomly identified from across the image for training the IVM classifier which follows 

the approach used by Foody and Mather (2006) and Pal and Mather (2003). The IVM 

algorithm is parameterised using the training data that generates a classification model 

consisting of spectral profiles for each land cover type, which are then matched to the 

Landsat mosaic during classification.  

The resulting per-pixel (hardened) classification indicates that the total urban 

extent of the PMR has increased 45% (sub-pixel estimate of 33%) between 1990 

(hardened estimate 706.88 km2, sub-pixel estimate 736.93 km2) and 2015 (hardened 

estimate 1027.22 km2, sub-pixel estimate 979.84 km2) (MacLachlan et al. 2017a). This 

can be broken down into low reflectance urban cover expanding from a hardened value 



of 592.83 km2 (sub-pixel estimate 668.46 km2) to 839.00 km2 (sub-pixel estimate 

850.87 km2) and high reflectance urban cover increasing from a hardened value of 

114.05 km2 (sub-pixel estimate 135.32 km2) to 188.20 km2 (sub-pixel estimate 214.06 

km2) across the same temporal period.  

4.3. Google Earth Landsat accuracy assessment 

Google Earth imagery consistent with the Landsat acquisition date was used to assess 

the accuracy of the hardened Landsat classification following previously published 

methods (e.g. Dorais and Cardille 2011; Cunningham et al. 2015; Song et al. 2016; Sun 

et al. 2015; Bagan and Yamagata 2014; Z. Zhu and Woodcock 2014). Using the Google 

Earth imagery, 300 random locations (50 per land cover class) within the PMR which 

were visually identified and compared to the classified land cover data, consistent with 

recommended land cover accuracy sample size of Congalton (2001) (Song et al. 2016). 

The 2007 Landsat classification obtained an accuracy of 84% and a Kappa Coefficient 

of 0.78. Urban land cover estimates had a producer’s accuracy of 83% and user’s 

accuracy of 87.37%. MacLachlan et al. (2017a) provide a full breakdown of urban 

temporal change and associated accuracy for all imagery in the Landsat timeseries 

(1990-2015), with the Landsat classification data available from the pangea open access 

publisher (DOI: 10.1594/PANGAEA.871017) (MacLachlan et al. 2017b).  

4.4. Aerial image classification  

Urban areas are complex, heterogeneous environments which are challenging to classify 

even when using high spatial resolution multi-spectral imagery (Varshney and Rajesh 

2014; Lu, Moran, and Hetrick 2011). Within urban areas, traditional moderate and 

coarse spatial resolution pixel based classification methods present multiple challenges 

due to the land surface spatial heterogeneity and the spectral similarity between urban 



and non-urban materials (Myint et al. 2011). To characterise the influence of spatial 

resolution on the ability to map urban areas, high spatial resolution multispectral ortho-

imagery (20 cm) were classified into the four broad land cover types. To reduce data 

processing requirements, four 3 km2 subsets were chosen that are representative of the 

land cover composition and spatial heterogeneity found within Perth (Figure 1). These 

subsets are an out of town development area (East Beechboro), the Central Business 

District (CBD), an older suburban area (Palmrya, Melville) and a largely vegetated 

region (Keysbrook). Using the high spatial resolution multispectral imagery and a 

relative elevation model, an Object Based Image Analysis (OBIA) method was applied 

to classify each subset into vegetation, urban, bare earth and water (Figure 3). OBIA 

methods are often applied to high spatial resolution imagery as they include spatial, 

textural and spectral information to classify the scene (Myint et al. 2011). Incorporating 

surface elevation measurements into urban classifications has been found to improve 

building (urban) extraction accuracy (Aguilar et al. 2012; Poznanska, Bayer, and 

Bucher 2013). Surface elevation estimates and Normalised Difference Vegetation Index 

(NDVI) data provided additional urban classification parameters, with refinement (e.g. 

additions and alterations) made based on object spatial, spectral and textural properties. 

Unlike the Landsat imagery, the airborne imagery were collected during the late dry 

season when the grass was senescent which resulted in textural and spectral similarity 

between bare earth and roads. To mitigate the impact of potential misclassification 

between these features, Landgate road and, where appropriate, rail vector dataset was 

used for identification of coincident image objects for urban assignment.  

 

[Insert Table 1 here] 

 



4.5. Dataset comparison and Landsat refinement  

In order to compare the orthophoto and Landsat land cover classifications, the two 

urban (high and low reflectance) and two vegetation (woodland and grassland) Landsat 

land cover classes were merged so that both land cover classifications contained four 

identical classes. To facilitate comparison between the high spatial resolution 

orthophoto-derived classification and the Landsat classification, the orthophoto land 

cover data is aggregated to Landsat spatial resolution to provide a ‘soft’ and a ‘hard’ 

land cover dataset. To create the soft 30 m2 orthophoto-derived classification, each 

resampled 30 m2 pixel area contains the proportion of each land cover type within it 

(Lu, Moran, and Hetrick 2011) (Figure 3b). This dataset was subsequently ‘hardened’ 

by assigning the pixel land cover type according to the dominant land cover found 

within the 30 m2 area. 

The comparison methodology is to firstly compare the per-pixel (i.e. hardened) 

Landsat land cover classification with the aggregated (30 m2) orthoimage classification. 

Mis-classified Landsat pixels are assessed further to establish the conditions that lead to 

erroneous classification using the sub-pixel proportion information (i.e. soft 

classification datasets). The latter are also used to identify a spatially explicit correction 

model to improve urban area estimates from moderate spatial resolution imagery.   

5. Results  

5.1. Orthophoto and Landsat land cover comparison  

A comparison is conducted between the orthophoto land cover classification, 

aggregated to 30 m2 spatial resolution using the majority land cover, and the IVM 

‘hardened’ Landsat classification.  At its native spatial resolution (20 cm; Figure 4a-

d(i)), the orthophoto land cover classification (Figure  4a-d(ii)) captures the land cover 



spatial heterogeneity found within each region and highlights the difference in the 

spatial structure between these regions.    

 

[Insert Figure 4 here] 

 

A comparison is carried out between the orthophoto land cover classification, 

aggregated to 30 m2 spatial resolution, and the ‘hardened’ Landsat classification. Figure 

4(iii) illustrates the spatial agreement between these datasets and highlights those pixels 

where the same land cover type (true) has been assigned to a pixel in both 

classifications. The areas which are more homogeneous at Landsat’s spatial resolution, 

such as the CBD (urban, Figure 4b) and Keysbrook (vegetation, Figure 4d), have 

greater level of agreement (73.14% and 95.68% respectively). In contrast, the more 

heterogeneous subsets (East Beechboro and Palmrya, Figure 4a and c), have much 

lower levels of agreement (56% and 32% respectively). The differences in agreement 

result from the sub-pixel heterogeneity at 30 m2 spatial resolution. Table 2 shows the 

percentage of Landsat pixels which contain >50% of a given land cover for each subset 

region.    

 

[Insert Table 2 here] 

 

To investigate the influence of sub-pixel heterogeneity on the ability of Landsat 

to identify the pixel land cover type, the classification accuracy is determined as a 

function of the percentage of urban area within each Landsat pixel for all four subsets 

(Figure 5). The urban percentage cover within each Landsat pixel is derived from the 

orthophoto land cover classification which has been aggregated to 30 m2 and which 



provides the proportion of each land cover within each pixel. The accuracy of the 

hardened Landsat classification was determined through comparison against the 

‘hardened’ (e.g. aggregated to 30m2) orthophoto land cover classification where the per-

pixel land cover type was determined based on the land cover type with the greatest 

sub-pixel proportion. Figure 5 indicates that the hardened Landsat classification results 

in a relatively high accuracy, with an average of 85.4% (excluding Keysbrook), for 

pixels containing >50% urban land cover (according to the high spatial resolution land 

cover classification). In the subsets of East Beechboro, the CBD and Palmrya, the 

overall Landsat classification accuracy drastically declines to 3.5-6.2% when urban land 

cover within a 30 m2 pixel area decreases to 40-50%. The classification accuracy then 

increases with decreasing sub-pixel urban cover which is particularly evident with 

Landsat pixels containing 0-10% urban cover. Keysbrook, on the other hand, is a 

largely vegetated region and exhibits lower accuracy with increasing urban land cover. 

 

[Insert Figure 5 here] 

 

In order to understand the counter-intuitive behaviour of such as rapid decrease 

in classification accuracy in pixels which contain ~40-50% urban area (Figure 5), an 

analysis of the percentage of pixels classified as a given land cover type is presented. To 

do so, all pixels containing different ranges in urban percentage cover (e.g. 0-10%, 20-

30% etc) were identified using the high spatial resolution land cover dataset. The total 

percentage of each land cover type was calculated for all pixels that contained urban 

percentage cover within each range urban percentage cover (e.g. 0-10%, 20-30% etc) 

using hardened IVM Landsat land cover dataset and the aggregated high spatial 



resolution land cover dataset (i.e. defined by the dominant land cover type within a 30 

m2 pixel area).  

Figure 6 illustrates the percentage of pixels identified as a given land cover type 

as indicated by the hardened Landsat land cover dataset and the hardened high spatial 

resolution orthophoto land cover dataset for pixels which contain differing percentage 

urban cover (e.g. 0-10%) derived using the original high spatial resolution orthophoto 

land cover classification for the East Beechboro subset. This area was selected as it is an 

intermediate area in terms of land cover heterogeneity (Figure 2 and 4). The results 

indicate that the hardened Landsat classification consistently overestimates urban land 

cover when compared to the ‘hardened’ high spatial resolution classification which has 

been aggregated to 30 m2 based on the dominate land cover within the Landsat pixel 

area for pixels with 10-50% urban defined by high resolution data. Table 3 and Figure 7 

illustrates the sub-pixel (30 m2) percentage urban land cover for East Beechboro with 

the original reflectance imagery for this area shown in Figure 2. The hardened high 

spatial resolution land cover dataset (left bar in each plot (Figure 6)) indicates that 

pixels containing <50% urban land cover are largely dominated by vegetation. In 

contrast, Landsat largely identifies these pixels as being either urban or vegetated to 

differing extents and more correctly identifies pixels with 0-10% urban land cover as 

being predominantly vegetated. For example, pixels containing 40-50% urban area are 

correctly identified as being vegetated (98.4% of pixels within this range) by the 

hardened high spatial resolution land cover dataset since these pixels contain on average 

54.72% vegetation, 44.83% urban and 0.45% bare earth. In contrast, the hardened 

Landsat land cover dataset identifies 5.7% of pixels containing 40-50% urban cover as 

being vegetation, 74.3% being urban and 20.1% being bare earth. As the percentage of 

urban land cover decreases, the overall accuracy of the hardened Landsat classification 



increases due to the increase in Landsat vegetation cover which increases from 5.7% 

(40-50% urban cover) to 75.4% (0-10% urban cover). The results are similar for the 

other regional subsets. The rapid decrease in accuracy between 40-50% and 50-60% 

(Figure 5) appears extreme as the subset regions are dominated by vegetation and urban 

land cover (Table 1) which results in the aggregated 30 m2 pixels being assigned to 

vegetation when the percentage urban cover is <50% or urban when the percentage 

urban cover is >50% (Figure 6).  

 

 

[Insert Figure 6 here] 

 

[Insert Table 3 here] 

 

[Insert Figure 7 here] 

 

The results in Figure 6 suggest that the spectral data used to train the IVM 

classification (discussed in section 4.2) contained spectrally ‘mixed’ pixels resulting in 

land cover type misclassification. To investigate this, the spectral reflectance from 

Landsat pixels containing 20-30% urban cover for the Palmrya subset, which had the 

lowest overall agreement and which were identified as being mostly vegetated by the 

hardened high spatial resolution land cover dataset, are extracted and compared to the 

spectral reflectance profiles used to train the IVM classification algorithm. Figure 8 

indicates that there are strong similarities between the average spectral reflectance 

profile used to train the IVM classification algorithm and the average spectral profile of 

the misclassified pixels. This suggests that the IVM classification algorithm is 

accurately representing the Landsat pixel spectral reflectance properties but that the 



training data used to develop the classification model contained a high proportion of 

mixed pixels. 

 

[Insert Figure 8 here] 

 

Pure (i.e. homogeneous) pixels are conventionally selected to train classification 

models (e.g. F. Weng and Pu 2013) but these are inherently difficult to identify in urban 

areas owing to the multitude of land covers within a Landsat pixel area. Using the high 

spatial resolution classification, the percentage of pure pixels, defined here as those 

containing between 90-100% of a single land cover type, were identified (Table 4). It is 

evident that some regions contain a high percentage of pure pixels for a given land 

cover type, such as vegetation in Keysbrook (92%), but that other land cover types 

within a region typically have much lower percentages of pure pixels. Pure urban pixels 

are particularly limited in all subset regions. Whilst the CBD subset obtains a high 

percentage of pure urban pixels (28%) these are predominately urban areas with high 

spectral reflectance (e.g. concrete), differing from subsets with urban areas which have 

urban areas with both high and low spectral reflectance (e.g. East Beechboro; Figure 2). 

 

[Insert Table 4 here] 

5.2. Comparison between Landsat and high spatial resolution impervious 

surface estimates  

Landsat data have been widely applied to map impervious surface area in order to 

assess its effects on: urban growth dynamics (J. G. Masek, Lindsay, and Goward 2000), 

the UHI effect (Y. Hu et al. 2015) and surface run-off (Q. Weng 2001). Figure 6 

indicates that the ‘hardened’ Landsat IVM classification overestimates urban land 



cover, particularly for pixels containing <50% urban area. The IVM classifier also 

provides a ‘soft’ land cover dataset that quantifies the sub-pixel land cover proportions.  

Here we investigate the utility of the sub-pixel Landsat urban land cover 

estimates by comparing them to those derived from the high spatial resolution land 

cover dataset (20 cm) which is used to provide the actual land cover proportion within 

each 30 m2 pixel area. Urban area estimates from each of the four subsets (Figure 1) 

were spatially averaged over different size spatial windows (3030 m, 9090 m, 

150150 m and 210210 m) in order to account for any errors resulting from pixel 

heterogeneity, spatial mis-registration, residual atmospheric and BRDF effects and 

phenological differences (Ju et al. 2012; Liang, Fang, and Chen 2001; Maiersperger et 

al. 2013; Ghimire, Rogan, and Miller 2010; Lu, Moran, and Hetrick 2011) that may 

increase the uncertainty in estimating land cover proportions (Sexton et al. 2013; Lu, 

Moran, and Hetrick 2011). Comparison of impervious surface proportions at 30 m2, for 

example the CBD subset (Figure 9), reiterates the overestimation of urban area at 30 m2 

spatial resolution, with a clustering of values toward the upper percentage boundaries 

associated with lower urban area estimates from the high spatial resolution 

classification. When neighbourhood averaging is applied, the agreement in urban area 

typically improves with increasing window size although the subset specific bias 

remains consistent (Table 5). It is also evident that urban area is still overestimated with 

decreasing urban sub-pixel proportion even when utilising the sub-pixel IVM Landsat 

classification results.  

 

[Insert Figure 9 here] 

 

[Insert Table 5 here] 



 

5.3. Refining Landsat estimations using high spatial resolution data  

Sub-pixel land cover heterogeneity influences Landsat urban area overestimation which 

must be considered in order to reduce the bias and improve Landsat derived urban area 

estimation (Herold et al. 2002; Lu, Moran, and Hetrick 2011; Varshney and Rajesh 

2014; Schneider 2012). The complexity and diversity of urban areas identified here 

from high spatial resolution data, with biases ranging from -2.4% to -34.67%, highlights 

the inappropriateness of applying a single model to adjust the moderate spatial 

resolution urban area estimates in a metropolitan region (e.g. Lu, Moran, and Hetrick 

2011). The Landsat sub-pixel urban areas estimates from all four subsets were stratified 

based on the Landsat sub-pixel derived urban area and calibrated against the percentage 

of urban area from the high spatial resolution classification within each moderate spatial 

resolution pixel area. Both datasets were averaged at the neighbourhood level using a 

210 x 210m window as this provided the best overall relationship (Table 5). 

Stratification of Landsat sub-pixel urban estimates into divisions of 10%, consistent 

with previous results, were selected to develop (using 50% of the data) and test 

(remaining 50% of the data) regression models to improve the dataset agreement (Lu, 

Moran, and Hetrick 2011).  

The applied spatially explicit models reduced the bias and Root Mean Square 

Error (RMSE) between the predicted (moderate spatial resolution) and observed (high 

spatial resolution) estimates (Table 6). It is evident from Table 6 that the adjustment 

made to the Landsat urban area estimates reduced the overestimation difference of 

urban area by between 34.38% and 80.67%, with the largest improvement found within 

Keysbrook. Whilst the corrected Landsat urban area estimates still overestimates the 

urban area compared to the high spatial resolution dataset the corrected moderate spatial 



resolution urban area reduces moderate resolution urban area over (under) estimation by 

on average 55.08% in comparison to the high spatial resolution dataset reducing the 

average overestimation from 11.86 km2 per subset to just 0.09 km2 (Table 6).  In the 

case of this study area, this approach is appropriate for producing more accurate urban 

area statistics. Due to the frequently reported over and under estimation of land cover 

estimates by moderate spatial resolution data this approach can refine urban estimates 

for planning development policies that may inform decision makers (Z. Zhu and 

Woodcock 2014; Schneider, Seto, and Webster 2005; Hepinstall-Cymerman, Coe, and 

Hutyra 2013). However, the derived correction values are not globally applicable since 

the spatial structure and makeup of urban and suburban areas varies regionally, 

nationally and globally. Nevertheless the methodology implemented here could be 

replicated to produce localised correction values from other sources of high resolution 

imagery (e.g. digitisation of Google Earth imagery) to calibrate urban area estimates 

from moderate spatial resolution data. 

 

 

[Insert Table 6 here] 

6. Discussion  

Refined urban estimates are vital in ensuring suitable sustainable and strategic planning 

decisions are implemented (Bettencourt and West 2010; Wu and Murray 2003). The 

hybrid spatial resolution approach applied here to estimate urban area was necessary 

due to the difficulty in accurately estimating urban area using a traditional per-pixel 

classification methods. This was due to a combination of the sensors moderate (30 m2) 

spatial resolution, land surface heterogeneity and the selection of ‘mixed’ pixels for use 

in training the classification algorithm. The overall classification accuracy, determined 



using Google Earth imagery, was on average 84%, which is similar to that found in 

other studies, albeit for different urban areas (e.g. Gislason, Benediktsson, and 

Sveinsson 2006; Bagan and Yamagata 2014; Sundarakumar et al. 2012; Luo et al. 

2014). 

Closer examination of the moderate spatial resolution classification results using 

a higher resolution dataset indicates that when urban land cover within a 30 m2 area 

decreases to 40-50% (based on high spatial resolution classification) the Landsat 

classification accuracy decreased from 85.4% to between 3.5 and 6.2%. This resulted 

from the Landsat classification overestimating urban area in comparison to high spatial 

resolution data (Figure 5) which more correctly identified these pixels as containing a 

greater per-pixel proportion of vegetation. Pixels containing 40-50% urban cover, 

contained on average 54.50% vegetation cover excluding Keysbrook. The dominance of 

vegetation and urban land covers in the regional subset, when ascribed to a 30 m2 pixel 

area based on the majority land cover, results in a rapid change in classification 

accuracy. Strong spectral similarities between training data and misclassified pixels 

(Figure 8) suggests that the spectral reflectance observations used to train the 

classification algorithm contained spectrally mixed pixels. The average percentage 

urban area within a moderate spatial resolution pixel area derived from the high 

resolution data was 16.56%, 65.66%, 42.21% and 0.90% for East Beechboro, CBD, 

Palmyra and Keysbrook respectively. The percentage of ‘pure’ pixels, defined as those 

containing over 90% urban land cover, was 28% for the CBD but <2.5% for the 

suburban regional subsets. This highlights the difficulty in selecting pure pixels at 

moderate spatial resolution and in accurately disentangling mixed spectral reflectance’s 

without the aid of high spatial resolution data. Overestimation of urban extent was most 

prominent in Keysbrook, where vegetation dominates the subset (97.36%, Table 1). In 



this instance, Landsat derived urban area corresponded to 0.28 km2 compared to 0.08 

km2 from high spatial resolution classification; a difference of only 0.2 km2 but which 

equates to 251.74%. In terms of total area difference, the East Beechboro and the CBD 

Landsat subsets were found to contain 1.75 km2 and 1.7 km2 more urbanised area, 

whilst Palmyra data overestimated urban area by 2.8 km2 compared to the high spatial 

resolution equivalent due to its suburban nature and associated pixel heterogeneity 

(Figure 4).  

Spatially averaging the Landsat and orthophoto land cover classifications, to 

account for potential errors in the datasets (Ghimire, Rogan, and Miller 2010), improved 

their relationship although Landsat still overestimated urban area with differing bias per 

subset. Over (under) estimation of urban land from Landsat estimations could result in 

an under (over) prediction on further environmental variables (e.g. UHI) or policy 

applications. Multiple studies have used classified per-pixel moderate spatial resolution 

data to influence policy changes through monitoring urban growth (e.g. Schneider, Seto, 

and Webster 2005; Hepinstall-Cymerman, Coe, and Hutyra 2013). However, per-pixel 

methodologies fail to address the issue of mixed pixels, which, as shown here, can result 

in overestimation of urban area (average: 126.14%, equivalent to 54.79 km2 within the 

PMR) (Lu, Moran, and Hetrick 2011). Sub-pixel methods attempt to remedy this issue, 

but have been found to inaccurately separate impervious land cover from other land 

cover types resulting in poor representation of impervious surface area (Lu, Moran, and 

Hetrick 2011). Consequently over estimation of urban area may have resulted in sub-

optimal policies that fail to maximise resource and amenity efficiency (Turner, Lambin, 

and Reenberg 2010; Downs 2005). 

Calibrating Landsat urban estimates using high spatial resolution data reduces 

the bias, RMSE and improves urban area estimation. However, the range of bias values 



across subsets of differing urban land cover characteristic highlights the 

inappropriateness of a single regression model due to pixel heterogeneity influencing 

overestimation (Lu, Moran, and Hetrick 2011). Spatially explicit models, as presented 

here, permit varying moderate spatial resolution refinement by considering the influence 

of surface heterogeneity. Whilst the limited availability of low cost high spatial 

resolution data can preclude analysis of this type, subset digitisation of Google Earth or 

unmanned aerial vehicle (UAV) imagery may provide a suitable alternative for 

calibrating Landsat data for improved urban area estimates. Enhanced estimates of 

urban area would facilitate planning policies which avoid potential environmental and 

socio-economic consequences of urban development than can result from policies based 

on over (or under) predicted urban area (ARUP and The Rockefeller Foundation 2015). 

For example, classified Landsat data was used to identify spatial clustering, peri urban 

development and specialisation of land use in Chengdu, Sichuan province not 

considered by China’s original 1990 Go West policy, aimed at economically boosting 

the West of the country. Results were used to reform policy and remediate issues of 

urban management including: service, infrastructure and resource deficiencies 

(Schneider, Seto, and Webster 2005). However, traditional Landsat classification may 

over (or under) estimate urban area and result in ineffective planning, environmental 

and policy decisions (Miller and Small 2003; Pravitasari et al. 2015). Therefore 

classified sub-pixel data alongside high spatial resolution imagery (e.g. UAV, Google 

Earth, high spatial resolution aerial or satellite imagery) as presented here can refine 

urban estimates facilitating improved decision making whilst maximising often limited 

financial resources. This is especially important in developing countries in regards to 

directing urban development and resources based on factors including: poverty, 



environmental hazards (e.g. flooding) and current amenity centres (Marfai, Sekaranom, 

and Ward 2014; Suryahadi and Sumarto 2003).  

7. Conclusion  

Landsat imagery from 2007 was used to map the urban extent within the Perth 

Metropolitan Region (PMR) using an Import Vector Machine (IVM) classifier which 

provides both a per-pixel and a sub-pixel classified datasets. The 2007 Landsat 

classification overall average accuracy was 84% with associated Kappa coefficient of 

0.78. Comparison between the Landsat per-pixel urban area and urban area estimates 

obtained from a high spatial resolution (20 cm) orthophoto-derived classification 

indicates that the moderate spatial resolution classification overestimates urban extent 

by 126.14 % on average, which is equivalent to 54.79 km2 in the study area. Similarly, 

when the high spatial resolution urban area estimates are compared to those derived 

using a sub-pixel Landsat classification, the latter still overestimates urban extent by 

120%.  

Accurately quantifying urban expansion within the PMR due to the large 

population growth over the last decade is important in order to make the efficient use of 

current resources and to avoid additional amenity, environmental and health expenditure 

that can impact sprawling cities. Landsat data provides the longest time series of 

medium spatial resolution imagery to map and monitor urban area. However, the 

reported over and underestimation inhibits accurate quantification of urbanised land 

cover which increases uncertainty within global climate models, environmental studies 

and targeted urban planning policy. Neighbourhood averaging, to account for potential 

errors in the datasets, improved the agreement between the two datasets but Landsat 

sub-pixel overestimation still remained. The broad differences in bias between the 

difference subsets indicates that a single regression model is inappropriate to 



heterogeneous urban land cover estimates. Therefore, the moderate spatial resolution 

urban area estimates were corrected using spatially explicit regression models which, on 

average, across the four subsets reduced the bias and Root Mean Square Error (RMSE) 

by 17.02 km2 and 6.65 km2 respectively, whilst reducing moderate resolution urban area 

over (under) estimation by 55.08% 

Current and future Earth Observation (EO) satellites that provide complimentary 

data with enhanced spatial, spectral and temporal resolution, such as Sentinel-2, may 

further reduce over or under estimation of urban area experienced by moderate spatial 

resolution sensors such as Landsat. Similarly, high spatial resolution satellite sensors, 

such as Worldview-3, are able to remediate discrepancies by capturing the fine spatial 

detail of urban environments but their cost and small swath limit their widespread 

application. This might change with companies, such as Planet, which are launching 

large numbers of small micro-satellites that provide high spatial resolution data more 

frequently. Accurate urban land cover and land use mapping is essential in 

understanding the impact of urban expansion on, for example, social-ecological systems 

and human-health and will improve future sustainable planning of our cities. 
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Figure 1. Landsat 8 Operational Land Imager (OLI) true colour image mosaic of the 

Perth Metropolitan Region (2015, August and September). The locations of the high 

spatial resolution aerial image subsets are indicated by coloured overlays. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Figure 2. Comparison of true colour high spatial resolution data (a, acquired in March 

2007) and Landsat surface reflectance (b, acquaired in October 2007 (path 112), 

highlighting the spatial detail captured by high resolution imagery (c) and the same 

areas as observed by Landsat (d) for the subset East Beechboro used within this study. 

 

 

 

 

 

 

 

 

 



Figure 3. Summary of classification procedures for (a) Landsat and (b) high resolution 

orthophoto data. 

 

 

 

 

 

 



Figure 4. (i) High spatial resolution true colour orthophotos, (ii) land cover maps and 

(iii) the agreement between the orthophoto classification resampled to 30 m2 and the 

Landsat classification for: (a) an out of town development area (East Beechboro), (b) 

old inner city urban area (Central Business District), (c) older suburban area (Palmrya, 

Melville) and (d) predominantly vegetated site (Keysbrook). In (iii), areas depicted as 

‘true’ indicate those 30 m2 pixels where the orthophoto land cover type, based on the 

dominant land cover in the 30 m2 area, and Landsat land cover type are in agreement.  

 

 

 

 

 



Figure 5: Landsat classification accuracy as a function of the percentage urban cover 

within Landsat image pixels (as derived from the high spatial resolution land cover 

dataset) for each of the four subsets. In the Keysbrook subset no Landsat pixels 

contained >60% urban land cover.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Land cover type disaggregation for urban land cover (according to the 

orthophoto imagery) Landsat pixels in East Beechboro. The left axis indicates the total 

percentage cover of a given land cover type using all of the pixels within a given range 

of urban percentage cover range (e.g. 0-10%, 10-20%). For each percentage urban land 

cover graph, the left bar illustrates the overall percentage of pixels from the hardened 

high spatial resolution classification identified as a given land types whilst the right bar 

indicates the percentage of hardened Landsat pixels mapped as a given land cover type. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Comparison of percentage urban area aggregated to 30 m2 from high 

resolution data (a) and IVM 'soft' Landsat classification (b) highlighting the 

(overestimation) between the high (c) and moderate (d) spatial resolution estimates for 

the East Beechboro subset. The classified high spatial resolution data is shown in (e) 

with the moderate spatial resolution grid (30 m2) overlaid for context (e).   

 



 

Figure 8. Average spectral reflectance profile for misclassified pixels (red) from the 

Palmrya subset for pixels containing 20-30% urban cover compared to the average 

spectral reflectance profile of pixels used to train the IVM classification algorithm 

(blue). For (a) forest (b) low urban reflectance (c) high urban reflectance and (d) bare 

earth. The error bars show the standard deviation. 

 

 



 

Figure 9. Relationship between the sub-pixel urban area percentage cover estimated 

from the IVM sub-pixel Landsat classification and the high spatial resolution 

orthophoto classification in the Central Business District (CBD) subset for (a) 3030 m 

window, (b) 9090 m window, (c) 150150 m window and (d) 210210 m window. 

 

 

 

 



 

Table 1. The percentage of different land cover types within the classified high spatial 

resolution subsets (Figure 1). 

Table 2. The percentage of pixels which contain >50% of a given land cover type in 

each region. 

Table 3. Urban area estimates (km2) from high spatial resolution orthophoto land cover 

data for each subset and those from the corresponding hard and soft IVM Landsat 

classification. The overestimation of urban area by the hardened Landsat land cover 

classification is evident. 

 

Subset Vegetation (%) Urban (%) Bare earth (%) Water (%) 

East Beechboro 53.93 0.15 0.34 0.03 

CBD 8.98 28.77 0.35 0.00 

Palmrya 5.80 2.13 0.00 0.01 

Keysbrook 92.05 0.00 0.00 0.00 

Table 4. Percentage of ‘pure’ pixels (defined here as comprising 90-100% of given 

landcover within a Landsat pixel area) from the high spatial resolution imagery. 

Subset Vegetation Urban Bare earth Water 

East Beechboro 16.56 81.0 2.37 0.07 
CBD 33.33 65.66 0.91 0.1 

Palmrya 42.21 57.29 0.42 0.08 
Keysbrook 97.36 0.90 1.56 0.18 

Subset Vegetation Urban Bare earth Water 

East Beechboro 87.57 9.84 1.89 0.06 

CBD 26.14 72.81 0.74 0.05 

Palmrya 66.71 32.33 0.21 0.07 

Keysbrook 98.90 0.05 0.88 0.11 

Subset 

High 

resolution 

urban area 

(km2) 

Percentage 

cover of 

subset area 

Landsat 

urban 

area 

(km2) 

Percentage 

cover of 

subset area 

Percent 

difference to 

high 

resolution 

Landsat 

urban area 

sub-pixel 

(km2) 

Percentage 

cover of 

subset area 

Percent 

difference to 

high 

resolution 

East 

Beechboro 
1.47 16.56 3.22 36.21 118.66 3.12 35.06 111.69 

CBD 5.58 65.66 7.28 85.71 30.55 6.78 79.85 21.62 

Palmrya 2.70 42.21 5.50 85.94 103.65 4.90 76.55 81.42 

Keysbrook 0.08 0.9 0.28 3.17 251.74 0.29 3.30 266.26 



Subset Kernel size 

(m) 

Coefficient of 

determination (R2) 

Scatter Bias Root Mean Square Error  

(RMSE) 

East Beechboro 3030 0.41* 26.65 18.68 32.54 

 9090 0.68* 16.95 18.66 25.21 

 150150 0.75* 14.11 18.71 23.44 

 210210 0.80* 12.52 18.74 22.54 

CBD 3030 0.26* 28.41 14.38 31.84 

 9090 0.53* 16.65 14.37 22.00 

 150150 0.61* 13.18 14.38 19.51 

 210210 0.66* 11.30 14.36 18.28 

Palmrya 3030 0.04* 26.65 34.54 43.62 

 9090 0.16* 13.56 34.61 37.17 

 150150 0.19* 10.15 34.64 36.10 

 210210 0.17* 8.45 34.67 35.69 

Keysbrook 3030 0.24* 11.85 2.51 12.11 

 9090 0.52* 7.47 2.51 7.88 

 150150 0.60* 5.89 2.50 6.40 

 210210 0.63* 4.98 2.50 5.57 

Table 5. Comparison between high (20 cm2) and moderate (30 m2) spatial resolution 

sub-pixel impervious surface estimates considering differing kernel sizes over four 

subsets (Figure 1) within the PMR. * = statistically significant relationship (p<0.05).  

 

Subset Coefficient of 

determination 

(R2) 

Bias Root Mean 

Square Error  

(RMSE) 

High 

resolution 

urban (km2) 

Uncorrected Landsat urban 

(km2) and percent 

difference to high 

resolution  

Corrected Landsat urban 

(km2) and percent 

difference to high 

resolution 

East 

Beechboro 
0.84* 1.54 6.76 2.49 5.32 (72.47%) 2.72 (8.83%) 

CBD 0.52* -7.12 14.61 12.26 15.36 (22.45%) 10.88 (-11.93) 

Palmrya 0.12* 7.43 12.53 6.92 12.48 (57.32) 8.10 (15.71) 

Keysbrook 0.62* 0.37 1.38 0.133 0.50 (115.96) 0.19 (35.29) 

Table 6. Comparison between calibrated moderate (30 m2) and high (20 cm2) resolution 

sub-pixel impervious surface estimates with a kernel size of 210m. * = statistically 

significant relationship (p<0.05).  

 


