1. Supplementary Material
1.1. Classification Methodologies
Currently two main image analysis techniques exist for urban mapping: spectral indices and classification algorithms. Spectral indices such as the Normalised Difference Built-up Index (NDBI) have been used to delineate urban areas from non-urban (Zha, Gao, and Ni 2003). NDBI identifies built up regions using a ratio of the shortwave-infrared (SWIR) and near infrared (NIR) wavebands and assumes that built up areas have higher SWIR reflectance (Xu 2008). In comparison to ground truth observations, NDBI-derived classification from Landsat Thematic Mapper (TM) over Nanjing, China was found to result in an overall accuracy of 92.6% (Zha, Gao, and Ni 2003). However, due to the heterogeneous nature of urban environments, the identification of built up areas by thresholding a spectral index is not always reliable (Xu 2008). 
The Impervious Build-up Index (IBI) attempts to mitigate for this by using a combination of a number of thematic indices namely: NDBI, the Soil Adjusted Vegetation Index (SAVI) and the Modified Normalised Difference Water Index (MNDWI) (Xu 2008). The index amplifies the identification of built up land through the inclusion of ancillary information on the presence of bare surfaces (SAVI) and water bodies (MNDWI) resulting in positive values for pixels identified as being urban (Xu 2008). Nevertheless, urban areas often remain an inseperable mix of impervious and bare earth surfaces which require additional post-processing to delineate (Stathakis, Perakis, and Savin 2012; Sun et al. 2015; Zha, Gao, and Ni 2003). 
In the second instance, classification algorithms are defined as parametric (e.g. Maximum Likelihood (ML)) or non-parametric (e.g. decision trees, DT), depending on whether training samples can be represented by a Gaussian probability density function (Donnay and Unwin 2001; Jensen 2005). Maximum Likelihood accounts for the variance-covariance within class distributions and has been implemented for monitoring land cover change and to derive sub-pixel proportions (Shalaby and Tateishi 2007; Atkinson, Cutler, and Lewis 1997). However, due to the parametric assumption of multivariate normal data, the ML classifier can often fail to represent land cover that might be multimodal (Otukei and Blaschke 2010; Melgani and Bruzzone 2004; Mountrakis, Im, and Ogole 2011). An example of this issue is illustrated in semi-arid locations, such as grasslands, which are sensitive to precipitation timing and volume that can result in differing multimodal spectral-temporal profiles (Friedl et al. 2002). A decision tree methodology was utilised to generate the USA National Land Cover Database 2001 (NLCD 2001) resulting in a non-parametric approach able to handle continuous and nominal data, interpretable classification rules and swift application (Homer et al. 2004). Nevertheless, DTs can be negatively affected by pruning methods, for example pessimistic error pruning (PEP) introduces a continuity correction value, within error estimation on no theoretical basis, resulting in under or over pruning (Otukei and Blaschke 2010; Mahesh Pal and Mather 2003; Esposito et al. 1997).
More recently, Machine Learning Algorithms (MLA) or ‘expert systems’ (e.g. Support Vector Machine, SVM) have been implemented for image classification (Jensen 2005; Okujeni et al. 2014) using an automated inductive approach for identification of patterns in data (Cracknell and Reading 2014). SVM is a non-parametric binary statistical learning methodology that separates a dataset into example classes (training data) based on a decision boundary, or hyperplane, with an aim to minimise misclassification. The optimal maximum margin separating hyperplane divides the data into a predefined number of classes, with points on the margins termed ‘support vectors’ (Foody and Mathur 2004; Foody and Mathur 2006). The underlying benefit of SVM pertains to structural risk minimisation, whereby SVMs are able to minimise error on unseen data without prior assumptions on the distribution (Mountrakis, Im, and Ogole 2011; Vapnik and Chervonenkis 1971). SVMs are linear binary classifiers which, when deriving more than two classes, require implementation of an additional process, either a one-against-all or one-against-one analysis. One-against-all solves for the multiple optimisation problem, which separates one class from the remaining classes. Comparatively one-against-one combines multiple classifiers and performs pair-wise comparisons using a ‘voting’ process to assign a pixel to a land cover class, based on the class assigned the most votes (Chih-Wei, Chih-Chung, and Chih-Jen 2008; Mountrakis, Im, and Ogole 2011; M. Pal and Mather 2005). Within SVMs implementation of soft margin and kernel methods aid separability through the introduction of additional variables that ignore hyperplane outliers and transform data into high dimensional feature spaces (Euclidean or Hilbert) utilising non-linear functions to identify linear solutions respectively (Braun, Weidner, and Hinz 2012; Mountrakis, Im, and Ogole 2011; Melgani and Bruzzone 2004; Cortes and Vapnik 1995). 
SVMs have been extensively used for classification purposes, due to their ability to ignore inherent image errors and to avoid overfitting (Mountrakis, Im, and Ogole 2011; Foody and Mathur 2006). SVMs have obtained broad applicability for land cover classification using data from a multitude of sensors such as HyMAP (Camps-Valls et al. 2004), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) (Zhu and Blumberg 2002) and Landsat (Knorn et al. 2009) producing classification results with accuracies between 85% and 95%.  
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