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Abstract: A distributed optical fibre acoustic sensor is numerically modelled. To increase the
flexibility of the model, the building blocks of the sensing system are modelled separately and
later combined to form the numerical model. This approach is adopted to facilitate the evaluation
of each of the individual building blocks and their effects on the output of the sensor. The
numerical model is used to assess the effect of parameters such as the linewidth of the laser source,
the width of the probe pulse, and the frequency and amplitude of perturbation on the response of
the sensing system. It is shown that the precision and accuracy of the sensing system are affected
by the frequency and amplitude of perturbation as well as the pulse width and linewidth of the
probe pulse.
© 2017 Optical Society of America
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1. Introduction

The volume of research on distributed optical fibre dynamic strain sensing has increased
substantially during the past five years. The main driving force behind this expansion was the
rising demand for this type of sensors in areas such as oil and gas industry, geophysical sciences,
and civil engineering. Distributed optical fibre acoustic sensors, also known as distributed
vibration sensors (DVS), owe their rising popularity to their capability of mapping vibrations
along a long, narrow, and usually inaccessible subterranean spaces such as boreholes, often under
harsh environmental conditions. The sensing principle of DVS allows the interrogation unit of
such systems to be kept at a safe distance while the sensing fibre connected to the interrogation
unit can be encapsulated in several protective layers to withstand harsh conditions.
Up until now, the main focus of the research studies has been on exploring different optical

mapping techniques using Rayleigh [1–11] or Brillouin scattering [12–15]. A detailed review
of these measurement techniques and their key parameters is documented in [16]. To improve
on the recent studies, numerical analysis of the sensing techniques investigated so far can be
of significant importance. In 2015, Liokumovich et al. have published an article on numerical
modelling of Rayleigh backscattering process with an emphasis on phase-sensitive optical
time domain reflectometry (ϕ-OTDR) sensing technique [17]. In this article, the theory of
Rayleigh backscattering was established followed by mathematical modelling of a ϕ-OTDR
setup introduced by Hartog et al. [18]. The study focused on one of the three ϕ-OTDR sensing
techniques addressed in [16] i.e. the sensing technique which directly measures the phase of
the backscattered light by converting the backscattered traces from the optical domain to the
electrical domain. The study, however, was limited to the analysis of the sensing system under
static conditions and did not incorporate the effect of dynamic perturbations.
The aim of this study is to present an alternative approach to numerical analysis of phase-

sensitive DVS. In this approach, the building blocks of the sensing system such as the sensing
fibre, the probe pulse, and the detection unit are modelled separately and later combined to model
the behaviour of the sensing system. Such an approach offers two advantages: (i) It allows each
element in the system to be modified independently hence facilitating the evaluation of the effect
of each element on the output of the system and, (ii) it allows noises and deficiencies inherent
to each module to be added separately which, in turn, facilitates refining the numerical model.
In this paper, the framework of the numerical analysis is established by modelling the building
blocks of the sensing system in their ideal states. In order to avoid complexity and simplify the
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assessment of the core modules and their interactions, the effect of noises and other deficiencies
are not included in this study. Figure 1 shows the building blocks used to model the behaviour of
the sensor. The content of the blocks and their role in the numerical analysis are described in the
next section.

The new modelling approach is used to assess the behavior of the ϕ-OTDR sensing technique
introduced by Masoudi et al. [19,20]. This technique uses the phase of the Rayleigh backscattered
light to measure dynamic perturbation, but instead of direct phase measurement in the electrical
domain, it measures the relative phase of the backscattered light in the optical domain. In
this technique, the backscattered light from the sensing fibre is launched into an imbalanced
Mach-Zehnder interferometer (IMZI) with two uneven arms to from two similar traces with a
temporal shift. By mixing the two traces at the output of the interferometer, the relative phase
difference between the adjacent sections of the sensing fibre can be measured. The schematic
of the setup used to demonstrate this sensing technique is presented in figure 2. The role of the
symmetric 3 × 3 coupler in the setup is to form three interference signals with a relative phase
difference of 2π/3 in order to avoid interferometer signal fading [21]. In order to avoid coherence
fading, a probe pulse with a relatively broad linewidth was used. Furthermore, the sensing system
showed no polarization-dependent signal fading [22], a phenomenon which was attributed to the
fact that the average beat length of standard single-mode fibre (SMF) was significantly longer
than the gauge length of the sensor.

The rest of this paper is structured as follows: section 2 presents the principle of the numerical
modelling. In this section, the building blocks of the model and their parameters are described and
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Fig. 1. The flowchart of the numerical model used to simulate the operation of phase-sensitive
distributed vibration sensor.
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it is shown how these blocks interact to simulate the operation of the sensor. Section 3 discusses
the simulation procedure and the parameters used to model the sensing system. In section 4,
the effect of the parameters such as the linewidth of the laser source and the pulse width on the
response of the sensing system are simulated and the results presented. Section 5 is dedicated to
the analysis of the simulation results to determine how each parameter affects the output of the
sensor and how these parameters can be modified to optimize the performance of the sensing
system. The final section summarizes the study and establishes the scope for future work.

2. Numerical modelling principles

In order to numerically analyse an OTDR system, the backscattered light from the sensing fibre
of that system needs to be modelled. In ϕ-OTDR systems where the phase of the Rayleigh
backscattering plays an important role, the electric field of the backscattered light has to be
modelled in order to conserve the phase information. The backscattered electric field of a ϕ-OTDR
system can be modelled by analysing the interaction between the probe pulse and the frozen-in
inhomogeneities in the fibre which give rise to Rayleigh scattering.
The flowchart of figure 1 shows the elements used to model the ϕ-OTDR sensing system of

figure 2. These elements include:

• FibGen: The module used to model the sensing fibre;

• Probe Pulse: The module used to specify the probe pulse and its parameters;

• BEF: The module used to model the backscattered electric field as a result of the interaction
between the probe pulse and the sensing fibre;

• IMZI: The module used to simulate the transfer function of the imbalanced MZI;

• PD: The module used to model the response of the photodetectors to the incident electric
field;

• Strain: The module used to simulate the effect of dynamic vibrations on the Rayleigh
scattering in the sensing fibre.

The remainder of this section describes these modules separately and delineates the way they
interact to model the sensing system.

Sensing Fibre: As mentioned earlier, Rayleigh scattering occurs as a result of the interaction
between light and inhomogeneities in the sensing fibre. The role of the FibGen module is to

Pulse Gen

DFB
Laser

EDFA1

ΔL

Sensing fibre

3×350/50

EDFA2

IMZI

EOM

D
ata

A
cq

.

Fig. 2. The schematic of the experimental setup modelled using the new simulation technique.
DFB Laser: Distributed feedback laser, EDFA: Erbium-doped fibre amplifier.
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model the inhomogeneities in the fibre. When called, the module generates an n × 2 matrix Fib

Fib =


L1 s1
L2 s2
...

...
Ln sn


. (1)

The first column of the matrix determines the distribution of inhomogeneities as a function of
distance while the second column specifies the size of the inhomogeneities. Here, the size of an
inhomogeneity determines the strength of the scattering from an interval. To generate this matrix,
the following principles were considered:

1. The size of the scatterers in an optical fibre are much smaller than the wavelength of the
probe light [23]. Due to the limited processing power of computers, modelling the individual
inhomogeneities is impractical. The alternative approach adopted is to divide the sensing fibre
into n individual intervals and to represent all the scatterers within each interval by a single
scattering centre. In this approach, the length of the intervals is kept much smaller than the width
of the interrogating pulse.
To model the random distribution of inhomogeneities in the sensing fibre (figure 3), random

locations were assigned to the scattering centres using the following formula:

Lk = k .D + rand[−D/2 , D/2] (2)

where Lk is the location of the k-th scattering centre and D is the length of the scattering
interval. This randomness determines whether the backscattered waves from each interval are
added constructively or destructively which, consequently, forms the peaks and troughs of the
backscattered coherent Rayleigh noise (CRN).

2. The size of the inhomogeneities, sk , are independent random quantities with equal distribu-
tions that define the magnitude of the scattered light from each scattering centre [17]. Unlike
the location of the scattering centres that changes as a result of an external perturbation on the
fibre, the size of the scatterers remain constant when the fibre undergoes strain. This statement is
valid, but only under the assumption that fibre elongation is much smaller than the length of the
scattering interval, D. This assumption guarantees that as the fibre is perturbed: (i) the relative
spacing of the true scattering elements within interval D remains reasonably fixed and, (ii) the
number of the true scattering elements that enter or leave the interval D does not significantly
affects the contribution of the remaining scattering elements.

Probe Pulse: To fully characterize the probe pulse, both the spatial and spectral distribution
of the pulse needs to be specified as shown in figure 4. For each data point on the probe pulse,

......

k-th

interval

s
k

L
k

Fig. 3. Schematic representation of sensing fibre model. The red circles in the picture
represent the scattering points in the fibre. The diameter of the circles represent the size of
the scattering points while the location of the circles indicate the random position of the
scatterers.
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Fig. 4. Spatial and spectral profile of sech-squared probe pulse.

an amplitude and a phase was assigned. Therefore, the probe pulse can be fully specified by
an N × m × 2 matrix called PP where N determines the frequency components forming the
probe pulse, m determines the number of elements used to represent the spatial distribution
of the probe pulse, and PP(q, k, 1) and PP(q, k, 2) determine the amplitude a(q)k = a(λq, dk)
and phase ϕ(q)k = ϕ(λq, dk) of the data points, respectively, where q ∈ (1, N) and k ∈ (1,m).
Defining the probe pulse in this way provides the flexibility to model the system with different
pulse parameters.

The linewidth of the probe pulse was modelled by N individual single frequency components
with a fixed frequency separation of ∆ν/N . The value of ∆ν should satisfy two conditions:

1. The linewidth of a light pulse has to be greater than the Fourier transform limit of the pulse
given by ∆ν × τp = 0.315 for sech-squared pulse, or

∆ν >
0.315
τp

(3)

where τp is the probe pulse duration.

2. The value of the frequency separation, ∆ν/N , has to be determined according to the width
of the probe pulse. The value of the frequency separation should be sufficiently small to
guarantee that the backscattered light from scatterers within the pulse duration interfere.
For a light source with a linewidth of ∆ν/N , the coherence length is give by [24]

LC =
c

n∆ν/N (4)

where n is the refractive index. The value of the frequency separation should be small
enough to satisfy the inequality Lpw � LC where Lpw is the pulse width.

For each spectral component of the probe pulse, the variation in the phase of the probe pulse
depends on the wavelength of that spectral component and the spatial distribution of the pulse.
For the spectral component λq , for instance, a random phase was assigned to the first spatial
element ϕ(λq, d1) and the phase value of the remaining elements was determined through the
following equation

ϕ(λq, dk) = ϕ(λq, d1) +
2πn
λq

k∆d
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where ∆d is the spatial separation between two adjacent elements.

Backscattered Electric Field: In an OTDR system, the interaction between the probe pulse
and the inhomogeneities in the fibre gives rise to the backscattered light.This interaction was
modelled using the fibre (Fib) and probe pulse (PP) matrices introduced earlier. Since the
response of some of the modules in the numerical model are wavelength dependent, a separate
backscattered electric field (BEF) was modelled for each spectral component in the probe pulse.
In other words, for N wavelengths in the probe pulse, λ1 ∼ λN , N individual BEF was formed.
These BEFs were later combined in the photodetector to model the Rayleigh backscattered trace.

The BEF from any point on the sensing fibre is the superposition of m individual backscattered
electric fields corresponding to m spatial elements of the probe pulse. For the spectral component
λ = λq , the BEF from position p on the fibre is given by:

EF(λq, Lp) =
m∑
u=0

su+p a(q)u exp[ j(2βqLu+p + ϕ(q)u)]

=

m∑
u=0

A(λq, Lp)u exp[ jδ(λq, Lp)u ] (5)

where j is the imaginary number and
A(λq, Lp)u = su+p a(q)u

δ(λq, Lp)u = 2βqLu+p + ϕ(q)u .
(6)

In this equation, su+p and Lu+p denote the size and location of the scattering points in the sensing
fibre (Eq. (1)), and βq is the wavenumber for λ = λq . This equation shows that the amplitude of
the BEF is determined by the product of the size of the scattering points su+p and the intensity of
the probe pulse a(q)u . The phase of the BEF, on the other hand, is determined by the location of
the scattering points Lu+p , the wavenumber βq , and the phase of the probe pulse ϕ(q)u . Using
trigonometric identities, Eq. (5) can be simplified to:

EF(λq, Lp) = A(λq, Lp) exp[ j(φ(λq, Lp))] (7)

where

[A(λq, Lp)]2 =
m∑
u=0

m∑
v=0

A(λq, Lp)u A(λq, Lp)v × cos[δ(λq, Lp)u − δ(λq, Lp)v ] (8)

and

tan[φ(λq, Lp)] =

m∑
u=0

A(λq, Lp)u sin(δ(λq, Lp)u )
m∑
u=0

A(λq, Lp)u cos(δ(λq, Lp)u )
. (9)

Using Eqs. (7)-(9), the backscattered electric field can be defined by a N × r × 2 matrix EF
where N determines the spectral components present in the BEF, r determines the number of
the data points in the BEF trace, and EF(p, 1, λq) and EF(p, 2, λq) determine the amplitude
A(λq, Lp) and phase φ(λq, Lp) of the BEF, respectively.

Imbalanced MZI: The role of this module is to model the effect of the imbalanced MZI
(IMZI) on the backscattered electric field matrix EF. According to the experimental setup shown
in figure 2, the BEF from the sensing fibre is fed into the IMZI via a symmetrical 2 × 2 coupler.
After propagating through the two unequal arms with a path different of ∆L, the electric fields
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are mixed in a symmetrical 3 × 3 coupler. The emergent electric fields from the three arms of the
3 × 3 coupler, O1∼O3, can be represented by three N × r × 2 matrices. Figure 5 illustrates the
mathematical procedure used to convert the backscattered electric field EF to the outputs of the
IMZI. The amplitudes of the electric fields at points A and B are equal to the amplitude of the
EF divided by

√
2. The arm of the coupler connected to A is assumed to be the through port of

the coupler and, as a result, the phase of the electric field at point A remains unchanged. The
other arm of the coupler connected to B is the coupled port and its phase can be calculated by
adding π/2 to the phase of EF.
The delay line is modelled by adding zeros to the beginning of the electric field matrix. The

introduction of zero rows to the beginning or the electric field matrix is equivalent to temporally
shifting the backscattered field forward in time. The number of zero rows added to the matrix
depends on the path imbalance, ∆L, and the spatial separation between data points of the BEF.
Therefore, the matrix that represents the electric field at point Ā can be formed by adding zero
rows to the beginning of the electric field matrix at point A.

The electric fields at the output of the IMZI can be calculated using the electric field matrices
at Ā and B̄. Each output arm of the 3 × 3 coupler receives a third of the energy of each input arm.
Therefore, the amplitude of the electric fields at Ā and B̄ should be multiplied by 1/√3 before
being combined in the outputs. The phase relationship between an input and an output port of a
3 × 3 coupler depends on whether the input and output arms form a through port or a coupled
port. For instance, the input port Ā and the output port O1 form a through port which means there
are no phase difference between the phase of the electric field at Ā and O1. On the other hand,
the input port B̄ and the output port O1 form a coupled port which means there is 2π/3 phase
difference between the electric fields at the two ports. Using these principles, the electric fields at
the output of the 3 × 3 coupler is given by:

2

EF
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AeA
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= l
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Fig. 5. Mathematical procedure used to convert the backscattered electric field EF to the
outputs of the IMZI. The solid arrows indicate through ports while the dashed arrows indicate
coupled ports.

                                                                                          Vol. 25, No. 25 | 11 Dec 2017 | OPTICS EXPRESS 32028 





EO1 = 1√
3
(EĀ + EB̄ e j 2π

3 )

EO2 = 1√
3
(EĀ e j 2π

3 + EB̄ e j 2π
3 )

EO3 = 1√
3
(EĀ e j 2π

3 + EB̄).

(10)

In this equation, EĀ and EB̄ are both sum of sinusoidal waves and can be written as:

EĀ =
λN∑
i=λ1

EĀ(i) exp[ j(ωit + αi)]

EB̄ =
λN∑
i=λ1

EB̄(i) exp[ j(ωit + βi)].

(11)

where αi and βi represent the phase of the through port and coupled port at the output of the
2 × 2 coupler, respectively. Substituting EĀ and EB̄ from Eq. (11) into Eq. (10), gives:

EO1 = 1√
3

λN∑
i=λ1

EO1 (i) exp[ j(ωit + Φ1(i))]

EO2 = 1√
3

λN∑
i=λ1

EO2 (i) exp[ j(ωit + Φ2(i))]

EO3 = 1√
3

λN∑
i=λ1

EO3 (i) exp[ j(ωit + Φ3(i))]

(12)

where

EO1 (i)
2
= EĀ(i)

2
+ EB̄(i)

2
+ 2EĀ(i)EB̄(i) cos(αi − βi − 2π

3 )

EO2 (i)
2
= EĀ(i)

2
+ EB̄(i)

2
+ 2EĀ(i)EB̄(i) cos(αi − βi)

EO3 (i)
2
= EĀ(i)

2
+ EB̄(i)

2
+ 2EĀ(i)EB̄(i) cos(αi − βi + 2π

3 ).

(13)

Equation (13) shows that the intensity of the 3 × 3 coupler outputs are 2π/3 out of phase. The
phase of the 3 × 3 coupler outputs (Φ1(i), Φ2(i), and Φ3(i) in Eq.(12)) are a function of the
electric fields EĀ and EB̄ . But since they do not affect the detectors, they can be ignored.

Photodetectors: The photodetector module converts the backscattered electric field to intensity.
The intensity of the BEF at the photodetectors can be calculated using the superposition principle:
the net electric field at any given time is equal to the sum of all individual fields. Using Eq. (12),
the intensity of the backscattered electric field of, for instance, the first output arm is

IDet =
1
T

∫ T

0

[
λN∑
i=λ1

EO1 (i) cos(ωit + Φ1(i))
]2

dt (14)

where T is determined by the bandwidth of the detector. Expanding this equation gives

IDet =
1
T

∫ T

0

λN∑
i=λ1

(EO1 (i))
2

2 dt + 1
T

∫ T

0

λN∑
i=λ1

λN∑
k>i
[EO1 (i)EO1 (k) cos(∆ωt + ∆Φ)]dt (15)

where ∆ω = (ωi − ωk) and ∆Φ = (Φ1(i) − Φ1(k)). In this expansion, the high-frequency terms,
sin[(ωi + ωk)t + Φ1(i) + Φ1(k)], are ignored since their frequency values are higher than the
bandwidth of the detector.
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Equation (15) consists of two terms: the DC component (the first term on the right hand-side
of the equation) and the frequency-dependent term (the second term on the right hand-side of the
equation). As the BEFs from two separate segments of the optical fibre mix, the backscattered
fields with equal frequencies interfere to form the DC component. According to Eq. (13), the
value of the DC component depends on the difference in the phase of the backscattered electric
field. The frequency-dependent term, on the other hand, appears as the by-product of the BEFs
mix. The value of the frequency-dependent term depends on both the beat frequencies and the
phase differences. Hence, the frequency-dependent term can be viewed as noise, added to the DC
component.

To simplify Eq. (15), the bandwidth of the detector is initially assumed broad enough to detect
the backscattered light from individual scattering centres. Under this assumption, the values of
the intensity and phase of the BEF would be constant within the integration interval 0 ∼ T . As
a result, the frequency-dependent term in Eq. (15) can be modified by reversing the order of
integration and summation as follows:

IDet =
1
T

∫ T

0

λN∑
i=λ1

(EO1 (i))
2

2 dt +
λN∑
i=λ1

λN∑
k>i
[ 1
T

∫ T

0 EO1 (i)EO1 (k) cos(∆ωt + ∆Φ)]dt. (16)

The integration period 0 ∼ T is determined by

T =
n.D

c
(17)

where D is the scattering interval. Since the intensities and phases of the BEFs are constant
within the limits of the integral, Eq. (16) becomes:

IDet =
λN∑
i=λ1

(EO1 (i))
2

2 +
λN∑
i=λ1

λN∑
k>i
[EO1 (i)EO1 (k)

sin(∆ω.T+∆Φ)−sin(∆Φ)
∆ω.T ]. (18)

This equation was used to convert the BEF to the backscattered intensity trace.
The effect of the bandwidth of the detector was modelled using a moving average i.e. the output

of a detector with a bandwidth BW is obtained by calculating the moving average of 1/BW .T data
points on the backscattered intensity trace where T is given in Eq.(17).

Perturbation: The role of this module is to simulate perturbations on a single or multiple
points along the sensing fibre. The effect of a perturbation on the fibre was assumed to be a
periodic elongation of fibre along its main axis. The impact of perturbation on any given section
of the fibre was modelled by rearranging the position of the scattering centres with regards to
the frequency and amplitude of the perturbation at that section. It is worth mentioning that the
rearrangement process does not affect the size of the scattering centres.

The phase of the BEF is a function of both the dimensional and refractive index changes in the
fibre. The relationship between the changes in the phase of the BEF, ∆Φ, and the induced strain
on the fibre, ε , is given by [25]:

∆Φ = ε l { β − 1
2
βn2 [(1 − µ) p12 − µp11 ] } (19)

where l is the length of the fibre under strain, β is the propagation constant, n is the refractive
index, µ is the Poisson’s ratio, and p11 and p12 are strain-optic coefficients. Replacing the
values of refractive index (n = 1.456), Poisson’s ratio (µ = 0.17), and strain-optic coefficients
(p11 = 0.121, p12 � 0.27) [26] in Eq. (19) gives

∆Φ = ε lβ× 0.78. (20)

Equation (20) indicates that the net change in phase is proportional to 78% of the phase change
due to the geometric elongation of the fibre. Therefore, to accurately simulate the effect of induced
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strain on the phase of the BEF, the effect of strain-optic coefficient (i.e. changes in the RI of a
medium as a result of the changes in the strain of the medium) was incorporated in the model.
In order to assess the effect of dynamic perturbation on the numerical model, a dynamic

perturbation loop was added to the model as shown in the flowchart of figure 1. The role of
this loop is to control the periodic changes in the position of the inhomogeneities based on the
amplitude and frequency of perturbations.

3. Numerical modelling procedure

Prior to any analysis, the reliability of the numerical model was assessed through two tests. The
first test involved examining the CRN level of the backscattered traces generated by the model as
a function of probe pulse linewidth and comparing the results with the mathematical model of
Rayleigh backscattering from a single mode fibre [27, 28]. In this test, the linewidth of 1m probe
pulses were increased from 1pm to 100pm in eight steps and the CRN level of the backscattered
traces were compared. The second test involved evaluating the changes in the CRN pattern at the
output of the IMZI as a result of external perturbation on the fibre and comparing the outcome of
the simulation with the experimental results [29]. For this test, probe pulses with two different
linewidths (3pm and 30pm) were used to generate the backscattered light. The repetition rate of
the probe pulse was set to 10µs to trace the changes in the backscattered light as a result of 1kHz
sinusoidal strain.

Following the reliability tests, the numerical model was used to evaluate the dynamic behaviour
of the model. The main focus of the numerical evaluation was to gain a better understanding of
how different parameters of the system affect the sensor output and how they can be modified to
improve the accuracy of the sensor. The evaluation included assessing the accuracy of the sensor’s
response as a function of parameters such as the frequency and amplitude of perturbations, the
linewidth of the light source, and the width of the probe pulse.
For the first trial, the sensing system was modelled for a simple scenario in which dynamic

strains were imposed on two separate sections of the sensing fibre. The first section was subjected
to a 1kHz sinusoidal strain with an amplitude of 2.5µε. The strain was imposed on a meter long
section of the fibre from the 7th meter to the 8th meter. The second section was subjected to a
2kHz sinusoidal strain with an amplitude of 1.5µε. The strain was imposed on a 2m section of
the fibre between the 19th to the 21st meter. For this test, the pulse width and the linewidth of the
probe pulse was set to 0.5m and 5pm, respectively.

The effect of the frequency and amplitude of perturbations on the accuracy of the sensor was
evaluated by assigning a fixed value to all of the parameters in the sensing system while stepping
the frequency and amplitude of perturbations through a range of values. To examine the effect of
strain, nine different strain levels from 0.1µε to 2.0µε were applied at a fixed frequency of 1kHz.
The effect of frequency was studied by stepping the frequency of perturbation from 250Hz to
2000Hz at a fixed strain level of 0.5µε. For both sets of analysis, the pulse width and linewidth
of the probe pulse were set to 0.5m and 3pm, respectively.

To evaluate the effect of probe pulse linewidth on the accuracy of the sensor, the behaviour of
the system was modelled for a range of linewidths between 0.1pm to 100pm. The same parameters
were used for all five linewidths including 1kHz perturbation with strain rate of 0.5µε. For this
set of analysis, the pulse width was set to 3m. The path-imbalance of the IMZI was set to 6m to
incorporate 3m pulse width.

To assess the effect of pulse width on the accuracy, the sensing systemwas modelled by stepping
the pulse widths from 50cm to 2m in 25cm steps. The frequency and strain of perturbation were
set to 1kHz and 1µε, respectively, for all of the simulations while the path-imbalance of the
IMZI was fixed at 4m. 3pm linewidth was used for the probe pulse in this analysis.
In order to maintain consistency, fixed values were assigned to a number of parameters

of the numerical model such as the detector bandwidth (BWDet = 300MHz), sampling rate
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(FSa = 5GSa/sec), the length of the scattering interval (D = 20mm), and the frequency
separation between the wavelength components (∆ν/N = 0.02pm ≡ 2.5MHz). D = 20mm
guaranteed that the scattering interval is much shorter than 50cm pulse width used to analyse the
model. It also conforms with the assumption that the size of the scattering elements does not
change as a result of perturbation given the maximum elongation assessed in this study was 5µm,
equivalent to 0.025% of the length of the interval.

4. Simulation results

Figure 6 depicts the outcome of the first reliability test. Figure 6(a) shows the backscattered CRN
pattern for three different linewidths, namely, 1pm, 10pm, and 100pm. The dashed line in this
diagram determines the mean value of the backscattered trace i.e. the backscattered trace for
a broadband source with an infinitely broad linewidth. Figure 6(b) represents the probability
density function (PDF) of the intensity of the backscattered CRN for the three linewidths. The
solid traces in this figure display the simulation results while the dashed traces determine the
PDF of the backscattered light obtained through theoretical analysis [27]. The dot-dashed line in
figure 6(b) indicates the normal line, the line which represents the intensity of the backscattered
light with an infinitely short coherence length. Figure 6(c) shows the changes in the CRN level of
the backscattered trace as a function of the square root of the probe pulse coherence-length, Lcoh .

Figure 7 shows the result of the second reliability test of the simulation. In this test, the changes
in the pattern of the backscattered CRN for a fibre under dynamic strain was assessed using probe
pulses of two different linewidths. Each graph comprises of several backscattered traces, each
representing the CRN pattern at a certain time. With the repetition rate of the probe pulse set to
100kHz, each trace represents the backscattered CRN for a 10µs window. The plot on the left
shows the simulation result for a narrow linewidth source (3pm) while the plot on the right shows
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Fig. 6. The first reliability test results. (a) Backscattered CRN pattern for a probe pulse
with 1pm, 10pm, and 100pm linewidths, (b) Probability density function (PDF) of the
backscattered CRN for the three linewidths. The simulation results (the solid curves) are
juxtaposed with the theoretical analysis (the dashed curves), (c) Changes in the CRN level of
the backscattered trace as a function of the square root of the light-source coherence-length.
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the simulation result for a source with a broader linewidth (30pm).
Figure 8 shows the outcome of the numerically modelled sensing system interrogated by a

probe pulse with a linewidth and pulse width of 5pm and 50cm, respectively, while two regions
of the sensing fibre were sinusoidally modulated. The first section was subjected to a 1kHz
sinusoidal strain with an amplitude of 2.5µε while the second section of the fibre undergone a
2kHz sinusolidal strain with an amplitude of 1.5µε. Figure 8(a) shows the backscattered CRN of
the sensing fibre after the IMZI. The regions where dynamic strains were applied are distinguished
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from the sensing fibre, (b) 3D representation of the differential phase after differentiate and
cross-multiply demodulation in time domain, and (c) 3D representation of the differential
phase after differentiate and cross-multiply demodulation in frequency domain.
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with two blue boxes. The first box identifies a 2m section between the 7th and the 9th meter while
the second box identifies a 3m section between the 19th and the 22nd meter. Figure 8(b) represents
the output of the numerical model following differential and cross-multiply demodulation. The
output of the model represents the differential phase between adjacent sections of the sensing
fibre 1m apart. This diagram demonstrates the dynamic changes in the strain along the sensing
fibre as a function of time. Figure 8(c) provides the 3D representation of the simulation result in
the frequency domain. This diagram was obtained by calculating the FFT of the data shown in
figure 8(b) along the time axis. Signal processing procedure used to analyse the output of the
numerical model was identical to that used for the experimental setup. The two peaks in the 3D
plot correspond to the regions on the fibre subjected to dynamic strain. The first peak identifies a
1001Hz signal with an amplitude of 2.57µε positioned around 8.2m. The second peak in the
diagram identifies a 2002Hz signal with an amplitude of 1.31µε positioned around 20.4m.
Figure 9 shows the behaviour of the numerical model to 1kHz sinusoidal strain at various

strain levels. Figure 9(a) exhibits the output of the numerical model as a function of induced
strain. The model was used to assess the system response to different strain levels between 100nε
and 2µε. The data for each strain level was obtained by averaging the results from twenty separate
realisations of the simulation each with a different random collection of scattering centres. The
error bar assigned to each data point represents the standard deviation of the simulation results at
each strain level. The standard deviation at each point indicates the variation in the outcome of
different realisations of the numerical model. Figure 9(b) illustrates the standard deviation of the
data points shown in figure 9(a) as a function of induced strain.
Figure 10 shows the behaviour of the sensing system to a fixed strain level at different

frequencies. Figure 10(a) exhibits the output of the numerical model to 0.5µε sinusoidal strains
at different frequencies ranging from 250Hz to 2000Hz. Like the previous assessment, the data
for each frequency value was obtained by averaging the results from twenty separate realisations
of the system each with a different random collection of scattering centres. The error bar assigned
to each data point represents the standard deviation of those individual realizations. Figure 10(b)
illustrates the relationship between the frequency of the induced strain and the standard deviations
of the data points in figure 10(a).

Figure 11(a) shows the standard deviation of the simulation results as a function of the linewidth
of the probe pulse. The model was used to assess the effect of five different linewidths between
0.1pm to 100pm on the response of the sensing system. For each data point, the standard deviation
was obtained by measuring the root mean square (RMS) of twenty different realization of the
model, each with a different random collection of scattering centres. The dashed line in the graph
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represents the regression line fitted to the data points. The horizontal axis of this diagram is
plotted in logarithmic scale to clarify the relationship between the linewidth of the probe pulse
and the standard deviation of the results.
Finally, figure 11(b) demonstrates the relationship between the standard deviation of the

simulation result as a function of the width of the probe pulse. The system model was used to
assess the effect of different pulse widths from 50cm to 2m on the output of the sensor. The
standard deviation for each pulse width was obtained by measuring the root mean square of
twenty different realization of the model, each with a different random collection of scattering
centres. The dashed line in the graph represents the regression line fitted to the data points
representing the simulation results.

5. Discussion

The preliminary test results shown in figures 6 and 7 indicate that the behaviour of the numerical
model conforms with the theoretical and experimental studies [27–30]. Figure 6(a) shows an
inverse relationship between CRN level and the square root of the linewidth of the probe pulse,
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Fig. 11. (a) Relationship between the standard deviation of the strain level simulated using
the numerical model and the linewidth of the probe pulse. For this diagram, the sensing
system was modelled for a range of linewidths from 0.1pm to 100pm for a fixed pulse width
of 3m. (b) Relationship between the standard deviation of the strain level simulated using the
numerical model and the width of the probe pulse. For this diagram, the sensing system was
modelled by stepping the pulse widths from 50cm to 2m in 25cm steps while the linewidth
of the probe pulse was fixed to 3pm.
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∆λ. Here, the CRN level is defined as the RMS of the coherent Rayleigh noise where the mean
value used in the calculation is determined by the intensity of the backscattered trace for a
broadband source with an infinitely broad linewidth. It can be seen that a probe pulse with
1pm linewidth has a backscattered trace with significantly larger deviation from the normal line
compared with the backscattered trace of a probe pulse with 100pm linewidth. The relationship
between the coherence length and linewidth of a light source can be calculated by substituting
the frequency-domain linewidth ∆ν in Eq. (4) with its equivalent spectral-domain linewidth ∆λ:

Lcoh =
λ2

n.∆λ
(21)

where λ is the wavelength of the light source. A probe pulse with a long coherence length results
in a highly coherent backscattered light. For a highly coherent backscattered light, the interaction
between the backscattered wavelets from individual scattering centres is more likely to result in
constructive or destructive interference, hence forming the peaks and troughs of the green trace
shown in figure 6(a). A probe pulse with a short coherence length, on the other hand, results
in a backscattered trace which barely deviates from the normal line. That is due to the fact that
incoherent waves do not interact with one another to form peaks and troughs. Instead, such waves
are added on an intensity basis where the total intensity is equal to the sum of the intensities of
uncorrelated wavelengths that form the backscattered light.
The solid curves in figure 6(b) which present the PDF of the backscattered intensities have a

good agreement with the theoretical analysis of Rayleigh scattering in a one-dimensional optical
fibre [27, 28] which are shown by the dashed curves. According to the mathematical analysis, a
highly coherent backscattered trace has a negative exponential PDF. As the coherence length
decreases, the PDF of the intensity distribution starts to converge to the normal line, the line which
represents the intensity of the backscattered light with an infinitely short coherence length. This
behaviour can be observed in the PDF distribution of figure 6(b). The green curve that represents
the PDF of the backscattered light for a source with a long coherence length (∆λ = 1pm ) has
a relatively even distribution which spreads well beyond the normal line (dot-dash line in the
figure). On the other hand, the blue curve that represents the PDF of the backscattered light with
a shorter coherence length (∆λ = 100pm ) has a distribution with a mean value close to the
normal line and a relatively small variance.
The discrepancy between the theoretical analysis (the dashed curves) and the numerical

results (the solid curves), especially for the data at left hand-side of diagram 6(b), is due to
the approximations made in the theoretical analysis. In the theoretical analysis [27], the probe
pulse was divided into M subintervals such that the backscattered light at different intervals
are uncorrelated. In reality, however, any two adjacent intervals have a degree of coherence
depending on their widths, a factor which is incorporated in the numerical analysis. Therefore,
the numerical analysis results predict the behaviour of the system more accurately.
For a probe pulse with a coherence length much shorter than the pulse width (Lcoh � Lpw),

CRN level of the backscattered light, σCRN , is proportional to the square root of the coherence
length. That is because a light pulse with a spatial width to coherence length ratio of N
(Lpw/Lcoh = N) acts as N individual incoherent waves, reducing the CRN level by a factor of
1/
√

N:

σCRN ∝ 1/
√

N ∝
√

Lcoh

Lpw
. (22)

This proportionality is shown by the diagonal dashed-line in figure 6(c).
For a light pulse with a coherence length much longer than the pulse width, on the other hand,

the interaction between the light pulse and the scattering elements in the fibre results in a highly
coherent backscattered light. For such a pulse, the CRN level of the backscattered light reaches
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an asymptotic level, independent of the coherence length. This level is marked by a horizontal
dashed-line in figure 6(c). The data point on the right hand-side of this figure represents CRN
level for a probe pulse between the two extremes. The trend line in this figure shows the evolution
of the CRN level from a large Lpw/Lcoh ratio probe pulse (where the pulse width is much longer
than the coherence length of the probe pulse) to a small Lpw/Lcoh ratio probe pulse (where the
coherence length of the probe pulse is much longer than the pulse width).
The test result depicted in figure 7 shows that the intensity fluctuation of the backscattered

light for a narrow linewidth probe pulse is much larger than that of a broad linewidth probe
pulse, a behaviour that has been experimentally observed [29]. With a narrow linewidth pulse, a
small perturbation along the sensing fibre results in a significant variation in the intensity of the
backscattered light. This interdependency between the linewidth and intensity fluctuation is why
distributed optical fibre intrusion sensors use narrow linewidth or single-frequency laser source
to increase their sensitivity [30].
The results of the two reliability tests showed good agreement with the previously reported

theoretical and experimental studies hence validating the operation of the numerical model and
providing a certain level of confidence in its ability to model OTDR systems.
The results of the preliminary system test, shown in figure 8(a), shows that the backscattered

traces deviates from the normal CRN pattern in the two regions of the fibre where dynamic
strains are applied. The backscattered trace diagram of figure 8(a) shows that while a 1m and
a 2m segments of the fibre underwent dynamic perturbations, a 2m and a 3m sections of the
backscattered trace were affected. This is as a result of the interaction between the probe pulse
with a length Lpw and the section of fibre under perturbation. The backscattered trace starts to
deviates from the normal CRN trace as the front-end of the probe pulse enters the perturbed
region and continues until the back-end exits that region.

The 3D diagrams of figure 8 exhibits a response similar to what has been previously observed
using an experimental setup [20]. Figure 8(b) shows the time domain response of the model for
the first 4ms of the simulation. The two sinusoidal waveforms corresponding to 1kHz and 2kHz
vibrations can be clearly observed. The position and amplitude of the waveforms indicate that the
system model can accurately retrieve the vibration parameters used in the simulation. The two
peaks in figure 8(c) identify the location, frequency, and amplitude of the perturbations. This
result shows that there is no cross-talk between the two regions under strain and the rest of the
fibre. In addition, it can be seen that the spatial span of the affected regions are the same in all
diagrams of figure 8.
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Fig. 12. Distribution of inhomogeneities along two fixed sections of the sensing fibre before
and after longitudinal elongation.
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Figure 9(a) shows a linear relationship between the induced strain and the output of the
numerical model. The graph shows that the standard deviation of the output increases with the
level of the induced strain. The relationship between the strain level and the standard deviation is
shown in figure 9(b). The behaviour of the standard deviation as a function of strain level can
be explained with the help of figure 12. This figure shows the distribution of inhomogeneities
in two fixed sections of the fibre before and after elongation. In the top diagram which shows
the fibre before elongation, the two sections are ` meters apart. The width of each section, W ,
represents the length of the fibre covered by the pulse width. The phase of the backscattered light
from each section is determined by the distribution of inhomogeneities within that section. For an
unperturbed fibre, the phase-difference between the backscattered signals from the two sections is

∆ϕ =
2πn
λ
.2` + ϕ2 − ϕ1 (23)

where ϕ1 and ϕ2 are two random phases.
Any disturbance along the fibre results in redistribution of inhomogeneities within that section.

The diagram at the bottom of figure 12 shows a scenario where the fibre is longitudinally stretched
by ∆` meters. This change in the length of the fibre results in redistribution of inhomogeneities
which leads to variation in the phase-difference between the backscattered light from the two
sections. Following the redistribution, the value the phase-difference, ∆ϕ, is given by:

∆ϕ =
2πn
λ
.2(` + ∆`) + ϕ2 − ϕ1 (24)

where ϕ1 and ϕ2 are the phases of the backscattered light from the same stretch of fibre prior
elongation. The level of change in the phase-difference can be obtained by subtracting Eq. (24)
from Eq. (23):

∆φ = ∆ϕ − ∆ϕ = 2πn
λ
.2∆` + (ϕ2 − ϕ2) − (ϕ1 − ϕ1). (25)

The first term in Eq. (25) represents the linear changes in the phase-difference while the other
two terms correspond to non-linear changes. Equation (25) shows that linear changes in the
phase-difference is directly proportional to the strain level. The non-linear changes in the phase-
difference occur due to redistribution of scatterers within the two regions from which the phase
of the backscattered light are measured. From figure 12, it can be seen that as the fibre stretches,
the relative distance between the inhomogeneities within each section changes (d → d + ∆d).
This relative shift results in disproportionate phase variation between ϕ2 and ϕ2 as well as ϕ1
and ϕ1. For a small strain level, the relative shift between scatterers is negligible and, therefore,
the deviation in ∆φ is small. The deviation starts to increase as the strain level increases. This
correlation can be observed in figure 9(b).

Figure 10(a) shows that the output of the differentiate and cross-multiplying (DXM) demodulator
is frequency independent. The graph shows that the error bar of each data point covers the
expected value of the response. Figure 10(b) shows that low frequency perturbations have higher
standard deviation compared with higher frequency perturbations. For any periodic signal, the
precision of the measurement is proportional to the number of cycles sampled. For a high
frequency perturbation, the signal processing procedure takes advantage of the data acquired
over many cycles to evaluate the strain level. For low frequency perturbation, fewer cycles can be
sampled during the same period. Therefore, the sensing system demonstrate a better standard
deviation for higher frequency perturbations.

The analysis of figure 11(a) indicates that the accuracy of the output of the numerical model is
linearly proportional to the log of the probe pulse linewidth. This relationship can be explained
with the help of Eq. (15). As mentioned earlier, this equation consists of two terms, the DC
component and the frequency-dependent term. From this equation, it can be seen that the
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contribution of the DC component to the intensity of the backscattered light is proportional to
the number of the frequency components present in the probe pulse. Therefore, using a probe
pulse with a broader linewidth increases the influence of the DC component (i.e. the desirable
component) on the output of the detector. In contrast, the effect of the frequency-dependent
term on the output of the detector reduces as the linewidth of the probe pulse increases. The
frequency-dependent term in Eq. (15) consists of sum of all the beat frequencies present in the
probe pulse. This term is a quasi-random number with zero mean. The standard deviation of
this term is inversely proportional to the linewidth of the probe pulse which means that as the
linewidth of the probe pulse increases, it is less likely that the value of the frequency-dependent
term deviates significantly from zero.
Finally, figure 11(b) shows that the standard deviations of the strain levels obtained via

numerical modelling have a linear relationship with the duration of the probe pulse. The linear
relation between the pulse width and the standard deviation can be explained with the help of
figure 12. As mentioned earlier, the non-linear changes in the phase of the backscattered light
occurs due to redistribution of scatterers in the fibre. The level of the non-linear changes depends
on the extent the inhomogeneities within the width of the probe pulse are displaced relative
to one another as the fibre stretches. For a long probe pulse that covers a long section of the
fibre, the separation between the scatterers is large, especially for the scatterers that reside at the
two ends of that section. Therefore, even a low strain level results in a significant redistribution
of the scatterers and, consequently, little correlation between the phase of the backscattered
light from that section before and after strain. For a short probe pulse, on the other hand, the
relative displacement of the scatterers is small since the pulse covers a shorter section of the
fibre. Therefore, the redistribution of the scatterers does not significantly affect the phase of the
backscattered light from that section. This relationship between the width of the probe pulse and
the standard deviation of the measurement can be seen in the diagram of figure 11(b).

6. Conclusion and future work

The simulation results presented in this study provide an insight into the operation of DVS systems
and the application of numerical modelling in determining the limitations of such systems. In this
study, the behaviour of the numerical model in response to changes in various sensing parameters
was assessed. The simulation results showed that the precision of the measurement is a function
of the frequency and amplitude of perturbations. It was shown that the sensing system has a
higher precision when measuring dynamic strains with lower amplitude. The precision of the
sensing system as a function of the pulse width and linewidth of the probe pulse was also assessed.
It was shown that the precision of the sensor can be enhanced by reducing the width of the probe
pulse or by increasing its linewidth.
This work provides a useful basis for an in depth analysis of DVS systems that employ

ϕ-OTDR to map vibrations along the sensing fibre. The numerical model used in this study can
be further expanded to analyse the effect of parameters such as the polarization of the probe
pulse, digitization level of analogue-to-digital converter, non-ideal optical components, and noise
on the behaviour of the sensing system. In particular, addition of ASE noise, detector noise, and
laser phase noise to the numerical model helps to realize a more realistic model of the sensing
system. Future work will also aim to juxtapose the numerical analysis against the experimental
results to validate the numerical model.
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