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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

Electronics and Computer Science

Doctor of Philosophy

AN IMPROVED INSTRUCTION-LEVEL POWER AND ENERGY MODEL FOR

RISC MICROPROCESSORS

by Wei Wang

Recently, the power and energy consumed by a chip has become a primary design con-

straint for embedded systems and is largely affected by software. Because aims vary

with the application domain, the best program is sometimes the most power or energy

efficient one rather than the fastest. However, there is a gap between software and

hardware that makes it hard to predict which code consumes the least power without

measurement. Therefore, it is vital to discover which factors can affect a program’s

power and energy consumption.

In this thesis we present an instruction level model to estimate the power and energy

consumed by a program. Firstly, instead of studying the different instructions individ-

ually, we cluster instructions into three groups: ALU, load and store. The power is

affected by the percentage of each group in the program. Secondly, the power is affected

by the instructions per cycle (IPC) of the program since IPC can reflect how fast the

processor runs.

There are three advantages of this method, and the first one is conciseness. The reason

is that it does not consider the overhead energy as an independent factor or the operand

Hamming distance of two consecutive instructions.

The second one is accuracy. For example, the errors of our method across different

benchmarks with different processors on the development boards are all less than 10%.

The last and the most important advantage of this method is that it can apply to

different processors, such as OpenRISC processor, ARM11, ARM Cortex-A8, and a dual-

core ARM Cortex-A9 processor. We have demonstrated that the previous instruction

level power/energe model cannot be extended to superscalar processors and multi-core

processors.

ww5g09@ecs.soton.ac.uk
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Chapter 1

Introduction

Power/energy consumption is a crucial aspect of modern digital design because a lot

of mobile devices, such as mobile phones, use batteries as energy sources; this makes

power/energy consumption a key issue. To make a low power processor, a number of

hardware techniques have been developed, such as clock gating and power gating.

On the other hand, it is not only the architecture of the processor that can affect the

power/energy consumption but the program as well. This means that a microprocessor

system can have different power/energy consumptions when running different programs.

Therefore, in order to reduce the power/energy usage of a program, it is vital to discover

the significant factors which affect a program’s power/energy consumption.

However, there is a gap between software and hardware that makes it hard to predict

which code consumes the least average power/energy. Tiwari and Lee et al. state that

one of the benefits of an instruction-level analysis is that it provides clues about how to

write effective power-saving software applications [1]. An instruction level energy study

provides a way to determine how software affects energy consumption, and thereby

allows low energy software to be written.

1.1 Motivation and Objects

A number of models for estimating energy consumption at the instruction level have

previously been proposed such as data-dependent models and cycle-accurate models

[2, 3]. However, there are some disadvantages to these methods.

Firstly, the fabrication technology of CMOS and the density of integration of chips are

improving every year. Figure 1.1 shows the transistor counts for microprocessors over

40 years.

1
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Figure 1.1: Transistor counts for microprocessors over time (thousands) [4].

However, a lot of models and methods are created based on old fabrication technologies.

For example, Nikolaos et al. used the ARM7TDMI embedded processor (0.35µm) as

the target processor and created an energy model [5]. There is no guarantee that these

models can work with modern processors. The reason is that the technology is improving,

but the percentage of the static power consumption also increases and may become the

major part of the power consumption [6].

Secondly, the computer architecture technology has improved and the pipeline has be-

come deeper and deeper. However, a lot of models are based on old structures such as

the Intel 486DX2 [7, 8] and ARM7TDMI [9]. The architectures of modern processors

are not the same as old processors. For example, a superscalar processor can fetch more

than one instructions in a single clock cycle, thus is more powerful than a single scalar

processor. They are already commonly used in modern mobile phones such as iphone 4

and 5. On the other hand, the design of the instruction pre-fetch unit, the cache, the

out-of-order pipeline, and the branch prediction unit have improved as well. Therefore,

the old models may not apply to the structure of modern processors and new simple

models may suit better.

Moreover, multi-core processors are also widely used in desktop, laptop and mobile

systems. Amdahl’s law shows that the maximum speedup of a program is limited by

the percentage of time spent in the sequential fraction [10]. Thus, the power and en-

ergy consumption of multi-core processors is affected by the application. However, the

power/energy model of a multi-core processor has not been well studied at instruction

level.

Thirdly, even though some of the previous work could be extended to modern processors,

some is hard to use, such as data dependency models. For example, a lot of models are

concerned with the types and operand values of each different instruction individually,

such as the energy models of the Intel 486DX2 [7,8] and ARM7TDMI processors [5]. If
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a program contains billions of instructions, the models have to trace what these billions

of instructions are and sum the different energy of each instruction. However, some

factors of these old models may not be important any more or could be replaced by

some easily gathered factors. Thus, a new concise model which needs fewer inputs and

easily collected inputs would be more convenient to use.

The objectives of this thesis are listed below:

1. Find methods to create instruction level power models for RISC processors. The

method can be extended for different RISC processors, such as scalar and super-

scalar processors. The accuracy should be reasonable, less than 10%.

2. The methods should be simple and not need a lot of data for creating the model.

3. The created power models should be concise and easily used. For example, the

input values should be few and also easy to collect.

4. Find an easy method for estimating the energy of programs with different RISC

processors. The estimation error should be reasonable, better than 10%.

1.2 Contribution

In this thesis, we present a new instruction-level power model and we prove this method

works in a number of different types of RISC processors including a scalar processor

(OpenRISC), an Out of Order (OoO) scalar processor (ARM11), a superscalar processor

(ARM Cortex-A8), and a dual-core processor (each core is an ARM Cortex-A9). On top

of this, we demonstrate that the power model can be extended to an energy model easily

in each case. Compared with previous methods, our method has several advantages:

1. It provides equal or better accuracy compared with [5,11,12]. The errors of all of

benchmarks in different development boards are less than 10%.

2. It does not need a cycle-accurate simulation and so improves the simulation speed.

A lot of work needs cycle-accurate analyses, such as [13,14], and if the model takes

pipeline stalls into consideration, a cycle-accurate simulation of the program may

be needed [15].

3. Except for the case study of the OpenRISC processor, all of the other processor

case studies, including ARM11, ARM Cortex-A8, and ARM Cortex-A9 Dual-core

system, are validated by physical hardware measurements.

4. The model is more concise. A lot of the previous work concerns each instruction

individually, which makes the models hard to use [1, 15]. Some work takes too

many different aspects into consideration and needs a lot of effort to gather these
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input data before using the model. For example, Steinke et al. created a model

which uses 12-32 parameters for each instruction [16] and the model proposed by

Bazzaz et al. needs 35 different variables. Our method does not need to identify

each instruction individually because we cluster instructions into several different

groups. On top of this, there are only three input variables for our model: the IPC

(instruction per clock cycle), the distribution of instruction types and the speedup

ratio, which is needed by the dual-core power model.

5. Moreover, some previous models use simple or too few benchmarks to test the

performance of the model [17, 18]. The benchmarks we choose include several

well-known mathematical functions, Mibench, and SPLASH2.

Besides these, we also did some research which has not been well studied by others:

1. We did detailed analysis on the power consumption of the superscalar processor,

ARM Cortex A8, at the instruction level. Furthermore, the aspects we have studied

include: how the power consumption of a processor is affected by L1/L2 instruction

and data cache misses; by different instruction types; by dual-issue restriction; by

instruction operands; and by the overhead power cost of two adjacent instructions.

2. We present a concise instruction level power model for the ARM Cortex A8 with

good performance. The power consumption varies in different instructions but

instead of studying each instruction individually, we have classified different in-

structions into three classes: arithmetic/logic, load and store. Therefore, only the

distribution of each class is considered by the model rather than which instructions

they are. On the other hand, the factors which can make the pipeline stall, such

as cache misses, are considered as instructions per clock cycle (IPC).

3. We extend this method and create an instruction-level energy model for a dual-core

system processor. The speedup ratio is used to show the percentage of runtime for

which both cores run and this model shows good performance. Furthermore, we

test nine benchmarks from SPLASH2 and the worst errors are 10.83% and 9.18%

with the single thread and two thread tests, respectively. The average error of the

single thread and two thread tests are 4.6% and 5.95%, respectively.

We have extended the power model to estimate the energy consumed by the processor.

Comparing this with other energy models and methods, the advantage is accuracy and

ease of use. The reason is that instead of creating an energy model, we divide this com-

plex problem into two simple questions: a power model and the runtime of a program.

A power model is easier to create than an energy model and the runtime of a program is

one of the easiest variables to measure. Thus, the energy is simply equal to the average

power times the runtime of the program.
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1.3 Thesis Organization

This thesis is organized into seven chapters.

Chapter 2

Chapter 2 is the literature review of previous work. It presents different models from

different aspects, such as the basic models, data-dependent models, and functional level

models. Different models are concerned with different factors. For example, the basic

energy model covers the base power/energy and overhead energy, which is discussed in

Section 2.1. On the other hand, functional level models split the processors into different

blocks and study each block separately, which is discussed in Section 2.5. We try to find

which factors are the most significant and can be used in our method.

Chapter 3

In this chapter, we choose the OpenRISC OR1200 as the target processor (a 32-bit

Harvard architecture scalar RISC processor with a five stage integer pipeline [19]) and

present an instruction-level power and energy model. The OR1200 is synthesized using

Design Compiler and the power is measured by Primetime. We find that the power of

the processor does not change much for different operations and operand switch rates.

The IO port power is related to the percentage of store instructions and the cache miss

rate. Using linear regression, an accurate IO port power equation is derived. Finally,

the total energy cost of a program is estimated from average power and runtime.

Chapter 4

In this chapter, a new instruction-level power/energy model is created for an ARM1176JZF-

S (a 32-bit Out of Order scalar RISC processor with an eight stage pipeline, and 32kB

data and instruction caches [20]). The instructions are classified into three groups:

ALU, load and store, based on the different power costs. The power model includes

two factors: the components and the instructions per cycle (IPC) of the program. The

energy consumed by the processor is estimated by the average power multiplied by the

runtime, which is the same as the energy model of the OpenRISC. Moreover, we prove

that the Energy per Instruction (EPI) is inversely proportional to the Instructions per

Clock cycle (IPC).

Chapter 5

The method presented in Chapter 4 is extended to an ARM Cortex-A8 (a super scalar

processor with a 13 stage pipeline, two ALU pipelines, and one load/store pipeline, and

32kB for both instruction and data caches). Firstly, the power consumption is analysed

under different conditions, such as the effect of L1/L2 cache misses, the effect of instruc-

tion types, and dual-issue restriction. We find that the previous basic power/energy

model (presented in Equation 2.2) does not work. Secondly, we extend the power model
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of the ARM11 into the Cortex-A8 and the power is estimated by the components and

the IPC. The energy is estimated from runtime and power. The power model is verified

with ten benchmarks. Finally, for a superscalar processor, we prove that increasing the

IPC without changing the components of a program much may reduce the energy per

instruction (EPI).

Chapter 6

This chapter focuses on the power consumption of a dual-core processer, and each core

is an ARM Cortex-A9 (an Out of Order (OoO) superscalar processor with dynamic

multiple issue technology, an efficient 8-stage pipeline, 32kB L1 instruction and data

caches, and 1-MB L2 cache). We assume that the power is affected by three factors:

IPC, speedup ratio and the components of a program. Linear regression is used to create

a power model. Nine benchmarks from SPLASH2 are used to test the performance of the

power model and they are tested in single thread and two thread modes. Moreover, the

energy consumed by a program with a single thread is the same as or less than that with

multiple-threads. The reason is that although more work needs to be done with multi-

threads, such as operating system (OS) schedules, the runtime reduces significantly and

the hardware usage is more efficient. Therefore, multi-threading can reduce the runtime

without sacrificing energy.

Chapter 7

In this chapter, we discuss the limitations of our method and summarise the steps about

how to extend the model to a new RISC processor. This method can only work for RISC

processors, but not CISC processors since one RISC instruction only does one thing but

one CISC instruction may do a lot of work.

Chapter 8

The final chapter summarises our method and discuss the future work. There are three

potential future work ideas. The first one is to extend the method to a more complex

system. The second one is to reduce the energy consumption of the system based on the

prediction of the power model. The third one is to combine the static program analysis

technology with the power model to estimate the energy more quickly.

1.4 List of Publications

1. Wei Wang and Mark Zwolinski, “An improved instruction -level energy model for

RISC microprocessors” In, 9th Conference on Ph.D. Research in Microelectronics

and Electronics (PRIME 2013) , 24 - 27 Jun 2013. Villach, AT, , 349-352.
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2. Wei Wang and Mark Zwolinski, Mark “An improved instruction-level power model

for ARM11 microprocessor” In, High Performance Energy Efficient Embedded

Systems (HIP3ES), Vienna, Austria, 21 Jan 2014.





Chapter 2

Literature Review

Computer architecture is improving every year. For example, Table 2.1 shows the de-

velopment of Intel processers. It is clear that the number of transistors is increasing,

and the clock rate is faster and faster.

Table 2.1: Performance milestones for Intel processors [21].

microprocessor 80486 Pentium Pentium Pro Pentium 4 Core i7

year 1989 1993 1997 2001 2010

Die size(mm2) 81 90 308 217 240

transistors 1,200,000 3,100,000 5,500,000 42,000,000 1,170,000,000

clock rate(MHz) 25 66 200 150 3333

Moreover, RISC processors are more and more widely used, especially in embedded

systems. For example, ARM sold 10 billion units in 2013 [22]. A lot of tablets and

smart phones use ARM processors, such as iPad, iPhone4 and 5.

A number of models for estimating the power/energy consumption have previously been

proposed. However, since the performance of the processors is improving every year, the

fabrication technology, the clock speed, and other factors may affect the power consump-

tion of a processor. Thus, the previous models may not apply to modern processors. The

reason is that the power consumption can be divided into two parts: dynamic power and

static power. Furthermore, the dynamic power is related to the switching rate in CMOS

and the static power is related to the fabrication technology. This will be discussed in

Chapter 3.

Although the previous models are based on old technologies and architectures, such

as ARM7TDMI, they give clues about which factors can affect the power/energy of a

microprocessor and they are listed below [23], [24], [25] [9], [7], [26], [27], [28]:

9
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1. The effect of the instruction base cost.

The base power/ energy cost of an instruction is the minimum average power/en-

ergy cost to finish that instruction.

2. The effect of adjacent instructions.

Adjacent instructions affect the power/energy because they cause the state of a

processor to change and this part is called the instruction overhead power/energy.

3. The effect of cache misses.

Cache misses affect the power/energy of a program and when a cache read misses,

it takes more time to load data from memory and the pipeline will stall.

4. The effect of resource constraints.

Resource constraints can affect the speed of the processor by pipeline stalls, thus

they will affect the runtime of a program.

5. The effect of the operand values.

Operand values are taken into account because the operands in two consecutive

instructions will influence the switching rate of CMOS and more CMOS switches

will consume more power/energy.

6. The effect of the various addressing modes.

Different addressing modes describe where the data comes from and the power/en-

ergy of the instruction may vary, depending on the different addressing modes.

However, some of these factors may not apply to modern processors. In this chapter,

considering these factors, different models are analyzed including the advantages and

disadvantages. Moreover, we do not only focus on the instruction-level power/energy

model but also analyse some other well known methods and models.

2.1 Basic Model

2.1.1 The Base Power/Energy Cost

Different types of instructions have different execution times and use different parts of

the processor, therefore the energy consumed by different instructions may be different.

For example, instructions NOP , ADD and MUL use different units of a datapath and

the energy consumption should not be the same. The base power/energy cost is used

to describe the fundamental cost of an instruction and it can be thought of as the cost

related to the basic processing to run the instruction [7]. For example, assuming the

base energy cost of an ADD is 1 nJ , it means the energy cost of the processor to execute

an ADD, from start (fetch) to finish (Register update), is 1 nJ . This idea works for

both pipeline and non-pipeline processors.
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The base power cost of an instruction, i, can be measured by running a loop, which

only contains the instruction i. Then, the average power consumption of this loop is

the basic power cost of instruction i. However, the size of this loop must be neither too

big nor too small. If the size is too big, it may bring cache misses and if the size is too

small, it cannot fully fill the pipeline. On the other hand, some load/store and branch

instructions also exist in the loop. Thus, a big loop size can reduce the effect of these

instructions.

The base energy cost is the energy consumed by an instruction going through the dat-

apath. The base energy cost of an instruction equals the base power cost times the

number of non-overlapping cycles to execute that instruction. In other words, the base

energy cost of an instruction = the base power cost × the cycle per instruction (CPI)

× 1
clock frequency . For example, if the base power cost of instruction i is 5µW and 1000

instructions need 1000 clock cycles to finish, the CPI will be 1, and the base energy of i

will be 5µW × 1
clock frequency . On the other hand, if it takes 2000 clock cycles to finish,

the CPI will be 2 and the base energy of i will be 5µW × 2 × 1
clock frequency , respectively.

However, the idea of base power and energy cannot be used in a superscalar processor

and this will be discussed in Chapter 5.

2.1.2 The effect of two adjacent instructions

The power (energy) cost of a pair of instructions is bigger than the average (sum) of the

base power (energy) cost of each single instruction. This extra cost is called overhead

power (energy) or circuit state overhead [8]. Tiwari et al. introduced an example of

overhead current (because Power= Current × Voltage and Voltage is a constant in this

example.) [7]. The base current costs of XOR and ADD are 319.2mA and 313.6mA,

respectively. Therefore, the expected base cost current of this pair should be their

average current, which is 316.4mA. However, the actual cost is 323.2mA which is 6.8mA

more and this extra current is the overhead current.

The reason for the overhead power (energy) is that the base cost is determined when

the same instructions are executed again and again, which means the context of each

instruction changes the least. However, when a pair of different instructions is investi-

gated, the context changes more than before. Therefore, the power/energy overhead is

non-zero [7].

A matrix can record the overhead power/energy cost of different pairs of instructions.

Table 2.2 is an example of an overhead matrix. The first column gives the first instruction

of each pair and the first row gives the second instruction of the pair. Therefore the

table can store the overhead energy or the average energy of the different pairs.
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Table 2.2: The energy matrix (nJ) [29].

LDI LAB MOV1 MOV2 ASL MAC

LDI 3.6 13.7 15.5 6.3 10.8 6.0

LAB 2.5 1.9 12.2 20.9 15.0

MOV1 4.0 18.3 10.5 3.8

MOV2 25.6 26.7 22.2

ASL 3.6 8.0

MAC 12.5

The overhead power/energy was first proposed by Tiwari et al. [8] and they assumed

that the sequence of the instruction pairs will not affect the overhead power/energy.

For example, the overhead between ADD and MOV is the same as MOV and ADD.

Therefore, Table 2.2 is a triangular matrix.

The method to measure overhead power/energy is similar to measuring the base pow-

er/energy cost and is to execute the same pair of instructions in a loop. Overhead power

is the difference between the average power of the loop and the average power of the

base power cost of each instruction. Assuming there are 100 pairs of instructions in the

loop, the overhead energy is presented by the following equation:

Eoverhead =
Etotal −N × Ebase Int1 −N × Ebase Int2

2N

Eoverhead =
Etotal − 100× Ebase Int1 − 100× Ebase Int2

200
,

(2.1)

where Etotal is the total energy consumed by this loop, Ebase Int1 and Ebase Int2 are

the base energy cost of the first and second instructions, respectively. There are 200

instructions in the program and the state of the circuit changes 200 times in total.

Sometimes, an overhead cost may appear although these two instructions are not adja-

cent. Tiwari et al. presented the example in Table 2.3 [7, 29].

Table 2.3: An example of a sequence of four instruction where the overhead cost
between 1 and 3 cannot be ignored (mA) [29].

number instruction base overhead cycles

1 MUL:LAB(X0+1),(X1+1) 37.2 (1&2)18.4 1

2 NOP 14.4 (2&3)18.4 1

3 MUL:LAB(X0+1),(X1+1) 36.6 (3&4)18.4 1

4 NOP 14.4 (4&1)18.4 1

Total 102.6(37.2+18.4+36.6+18.4)+73.6(18.4 × 4)=176.2

In this test, the target processor is a Fujitsu 3.3V , 0.5µm, 40 MHz CMOS processor.

The estimated energy is 14.5365nJ (176.2 × 1
40MHz × 3.3V ) but in reality it is 16.83nJ

(204.0mA × 1
40MHz × 3.3V ). The difference in energy consumption is 2.2935nJ (27.8mA

× 1
40MHz × 3.3V , and 27.8mA =204.0 mA-176.2mA) and it comes from the circuit
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state overhead between nonadjacent instructions 1 and 3. The reason is the state of the

multiplier only can be updated when it is used. Thus, the first instruction and the third

one have an overhead energy, which is considered to be 1.14675nJ (13.9 mA × 1
40MHz

× 3.3V , and 13.9 mA = 27.8 mA ÷ 2). Considering the overhead of instruction 1 and

3 can lead to a better estimate.

However, it seems that the effect of circuit states varies in its impact. Sometimes,

the overhead does not affect the total power very much but sometimes it does. For

example, in the case of the 486DX2 (40MHz, 3.3V ) and the Fujitsu SPARClite MB86934

(20MHz, 3.3V ), the circuit state overhead varied in a small range and had a limited

impact. For the 486DX2, the overhead current varied in the range 0-30mA while most

programs varied in the range of 300-420mA. In the case of the ’934, the range of the

overhead current and most programs are 0-20mA and 250-400mA, respectively. On the

other hand, in the case of the Fujitsu proprietary DSP (40MHz, 3.3V ), the average

current for most programs was in the range 20-60mA but the overhead for some pairs

was significant, which is up to 26.7mA and the overhead matrix table is presented

in Table 2.2 [29]. Tiwari et al. said the reason for this difference may be that the

architecture of the 486DX2 is more complex than for a simple DSP. Thus, the major

energy cost of the circuits in complex processors is common to all instructions, such

as pre-fetch, pipeline control, clocks. The overhead of the circuit is swamped by these

common costs [8].

Moreover, because of the different overhead energy, Tiwari et al. stated that reordering

the instruction sequence to get a low overhead energy cost is a method to write a low

energy program although it does not save the number of clock cycles [7].

2.1.3 The Basic Instruction Level Model

Based on the previous analysis, the first instruction level energy model was created by

Tiwari et al. [7, 8, 29]. Although it was created 20 years ago, it is important because

a lot of modern power/energy models are based on it and we name it the basic model.

The model is described as

E =
∑
i

(Bi ×Ni) +
∑
i,j

(Oi,j ×Ni,j) +
∑
k

Ek, (2.2)

where E is the total energy consumed by the program and consists of three parts. The

first part is the sum of the base energy costs of each instruction. Bi is the base cost of

instruction i and Ni is the number of instruction i executed in the program. The second

component is the overhead energy cost due to instruction switching. Oi,j is the overhead

cost due to the instruction sequence (i,j) and Ni,j is the number of occurrences of the

sequence (i,j). The last part Ek is any additional energy due to cache misses or resource

constraints.
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For example, assuming a program has the following instruction sequence: ADD, MOV ,

and SUB, the energy consumed by this program is

Etotal = EADD + EMOV + ESUB + EADD,MOV + EMOV,SUB +
∑

k Ek

However, if the instructions sequence is ADD, SUB, and MOV , the energy will be

Etotal = EADD + EMOV + ESUB + EADD,SUB + ESUB,MOV +
∑

k Ek

Thus, the model is highly related to the instruction sequence.

The main advantage of this model was that it showed how to estimate the energy of

a program for the first time. However, the model has two disadvantages; the first is

the computation cost to measure every possible overhead is too great. Generally, the

measurement times are proportional to the square of the number of instruction types.

For example a model based on a DSP 56K needs 1176 measurements in total [30], because

there are 49 instructions in the instruction set architecture (ISA).

The second disadvantage is the estimation of the cache miss energy or resource con-

straints energy, Ek, because this model does not define any method to compute the

relationship between cache miss rate or pipeline stall and energy.

2.1.4 The extension of the basic model

Bona et al. used a similar idea and extended the basic model to study a very long

instruction word (VLIW) processor: a Lx 4-issue VLIW pipelined processor provided by

STMicroelectronics [31–33], the results are based on gate-level simulations. Assume a

program W has N very long instructions W = {w1···, wn−1, wn, ···, wN}, each instruction

wn has K parallel operations wn = [w1
n · · ·wkn · · ·wKn ], where wkn is the k− th operation

(issued on the k − th lane of the processor) of the n− th bundle of the stream, and the

processor has S pipeline stages. The energy consumed by this program can be calculated

as:

E(W ) ≈
∑

16n6N

∑
∀sεS

[Us(0|0) +
∑
∀kεK

vs(w
k
n|wkn−1) +mn

s ∗ pns ∗ Ss + lns ∗ qns ∗Ms], (2.3)

where Us(0|0) is the base energy cost of stage s during execution of a bundle constituted

entirely of NOP s ([NOP · · ·NOP ]T ). vs(w
k
n|wkn−1) is the energy cost due to the change

of operation (wkn−1 → wkn) on the same lane k. m(l) is the average number of additional

cycles due to data (instruction) cache miss during the execution of the wn in stage s. p(q)

is the average probability that a data(instruction) cache miss can affect one instruction.

S(M) is the average energy consumption of the whole processor during cache misses.
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Equation 2.3 can fit with the basic model:

Bi =
∑
sεS

[US(0|0) + vs(w
i
n|win)] (2.4)

Oi,j =
∑
sεS

[vs(w
i
n|wjn)− vs(win|win)] (2.5)

∑
k

Ek =
∑

16n6N,sεS

[µs + σs],

µns = mn
s ∗ pns ∗ Ss,

σns = lns ∗ qns ∗Ms,

(2.6)

where µs and σs are the data cache miss penalty and instruction cache miss penalty

respectively.

This model shows good performance and the average error is 1.9% with several differ-

ent benchmarks tests including Mediabench applications (namely: G721 encoder and

decoder, EPIC encoder and de-coder, MPEG2), matrix elaboration algorithms and a

set of finite impulse response filters [31]. The disadvantage is that it has to look up the

energy of each operation change (vs(w
i
n|w

j
n)) from this overhead table and sum them

together. Thus it takes a big effort for a program which has millions of instructions.

However, the basic model also has this disadvantage.

Ascian et al. created a power model for a ST20-C2P processor (two stage pipeline,

synthesized in HCMOS7 technology, 0.25µm, 2.5V ) [34]. The power is measured by

Powermill simulation, and a VHDL simulation can provide a cycle accurate trace of the

instruction flow.

Assume an instruction fragment is as follows:

...

1. Iki−1

2. Iki

3. Iki

4. Iki+1

...

The sequence is repeated N times (k ∈ 1, 2, ..., N) and c
(k)
i is the power used by the

i-th instruction of the sequence at the k-th repetition. Thus, the backward and forward
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costs are defined as

(Ii−1 → Ii)back =
N∑
k=1

c
(k)
2 − base(Ii)

N
(2.7)

(Ii → Ii+1)forw =
N∑
k=1

c
(k)
3 − base(Ii)

N
(2.8)

The model is

Cost(Ii) = base(Ii) + (Ii−1 → Ii)back + (Ii → Ii+1)forw, (2.9)

where Cost(Ii) is the base power cost of instruction i, (Ii−1 → Ii)back and (Ii → Ii+1)forw

are the backward and forward costs respectively.

On the other hand, Equation 2.9 can fit with the basic model:

Bi = base(Ii) (2.10)

Oi,j = (Ii−1 → Ii)back + (Ii → Ii+1)forw. (2.11)

However, this model does not work well for the ST20-C2P processor. For example, for

the test, which is a sequence of about 500 random instructions from the ISA, there are

about 140 instructions with an estimated error between -40% to -20%. The reason is the

model does not consider the effect of the data but this affects the power of the processor

very much. The estimated base power cost of each instruction uses zero as the operand,

thus the energy is underestimated. In order to consider the effect of data, an improved

model (a data dependency model) was created and it will be discussed in Section 2.4.3.

On top of this, this model makes the size problem of the overhead cost even worse.

For the basic model, the overhead cost does not distinguish the sequence of a pair of

instructions. For example, the overhead of the pair a and b is the same as the pair b and

a. However, this model considers the overhead cost in two different cases: (Ii−1 → Ii)back

and (Ii−1 → Ii)forw. This makes the model harder to use and it needs a cycle trace

simulation.

2.2 Nop Model

In order to solve the size problem of the overhead power/energy table, Klass et al. used

another method to measure the base power/energy cost of the processor CMU 56000 DSP

(a non pipeline, 24-bit, fixed-point DSP, produced by Motorola Semiconductor [35]) [30].

They calculated the base energy cost of each instruction by using loops which alternate

the target instruction with NOP instructions. Thus, the base energy cost in the NOP
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model can be expressed as

BNOP i = Bi +Oi, (2.12)

where Bi is the base cost of the target instruction i (the same definition as in the basic

model) and Oi is the overhead cost between the target instruction and NOP .

Then, the energy consumption of a program is presented as

E =
∑
i

BNOP i, (2.13)

where BNOP i is the base energy of each instruction i defined in the NOP model. The

authors assumed that the overhead energy caused by the circuit state switching was

considered in the base energy cost. Therefore, the measurement times will decrease

from O(N2) to O(N), where N is the number of instructions in the ISA. The error of

this method is between 1% and 8% with four tests: fir4, fir64, fir4u and fft.

Nikolaidis et al. used this method to study the ARM7TDMI (a three-stage pipeline, 32-

bit RISC CPU designed by ARM [36]). On top of this, they presented a better definition

of the base energy cost in the NOP model – the amount of energy which is consumed for

the execution of an instruction after the execution of a reference instruction (NOP ) [9].

Moreover they analysed the base cost of the NOP model in detail and presented the

relationship of the base cost between the basic model and NOP model.

Firstly, assuming a program which has n instructions and needs n clock cycles to finish,

the energy consumption of the program is the sum of the energy costs of each clock

cycle, and can be presented as:

E M(Instr) = Ecycle 1 + Ecycle 2 + · · ·+ Ecycle n (2.14)

If that program contains only one test instruction and n − 1 reference instructions

(NOP ), then the energy consumed by the test instruction is

E(Instr) = E M(Instr)− (n− 1)ENOP (2.15)

In order to calculate the base cost, a loop which contains one test instruction and

several NOP instructions is executed. Assuming the pipeline has three stages and the

test instruction is executed in three cycles, Table 2.4 shows each pipeline stage.

Based on Equation 2.14, the consumed energy will be

E M(Instr) = Ecycle n+1 + Ecycle n+2 + Ecycle n+3 (2.16)
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Table 2.4: Pipeline stages during the execution of instruction [9].

pipeline stages 3-stage pipeline operation

IF NOP NOP Instr NOP NOP

ID NOP NOP NOP Instr NOP

EX NOP NOP NOP NOP Instr

clock cycles n-1 n n+1 n+2 n+3

On the other hand, if we consider the circuit state effects due to the change of the

pipeline stages (overhead cost), the energy can be described as:

E M(Instr) = EInstr + 2ENOP + ENOP,Instr + EInstr,NOP + ENOP,NOP , (2.17)

where EInstr is the real energy of the instruction and ENOP,Instr, EInstr,NOP , ENOP,NOP

are the inter cycle costs (n,n + 1), (n + 1,n + 2), and (n + 2,n + 3) respectively. Here,

EInstr is the base energy cost defined in Section 2.1. Moreover, based on Equation 2.15,

the energy can be expressed as

E M(Instr) = E(Instr) + 2ENOP (2.18)

Combining Equation 2.17 and 2.18 leads to the following equation:

E(Instr) = EInstr + ENOP,Instr + EInstr,NOP + ENOP,NOP . (2.19)

For example, the base energy cost ofADD in NOP model can be presented as: E(ADD) =

EADD+ENOP,ADD+EADD,NOP +ENOP,NOP (EADD and ENOP,ADD are the base energy

cost and overhead energy defined in the basic model in Section 2.1 respectively).

Similarly, this method can be extended to study the inter-instruction effect of a pair of

instructions. The state of the pipeline is shown in Table 2.5.

Table 2.5: Pipeline states during the execution of instructions for measuring
inter-instruction costs [9].

pipeline stages 3-stage pipeline operation

IF NOP Instr1 Instr2 NOP NOP

ID NOP NOP Instr1 Instr2 NOP

EX NOP NOP NOP Instr1 Instr2

clock cycles n n+1 n+2 n+3 n+4

Thus, the energy consumption from clock cycle n+ 1 to n+ 4 is

E M(Instr1, Instr2) =EInstr1 + EInstr2 + 2ENOP + ENOP,Instr1 + EInstr1,Instr2+

+ EInstr2,NOP + ENOP,NOP
(2.20)
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The inter-instruction effect can be described as

E(Instr1, Instr2) = E M(Instr1, Instr2)− E(Instr1)− E(Instr2)− 2ENOP (2.21)

Combining Equation 2.19, Equation 2.20, and Equation 2.21 yields the following equa-

tion

E(Instr1, Instr2) = EInstr1,Instr2 − EInstr1,NOP − ENOP,Instr2 − ENOP,NOP , (2.22)

where E(Instr1, Instr2) is the inter-cycle cost in NOP model (EInstr1,Instr2 is the over-

head cost defined in Section 2.1).

For example, the overhead energy cost of ADD and MOV in the NOP model can be

presented as: E(ADD,MOV ) = EADD,MOV − EADD,NOP − ENOP,MOV − ENOP,NOP .

Based on Equation 2.19 and Equation 2.22, it is observed that when these two equations

are used to estimate the energy of a program, the inter-cycle costs (such as ENOP,Instr

and EInstr,NOP ) will cancel each other. For example, assuming a program has three

instructions ADD, MOV, and CMP, the base energy cost of ADD, MOV, and CMP and

the overhead cost of E(ADD,MOV ) and E(MOV,CMP ) are shown in Figure 2.1.

Figure 2.1: Estimation of the energy of a program consisting by three instruc-
tions [9].

Figure 2.1 shows that the energy consumed by a program is related to EInstr and

EInstr1,Instr2 and they are the base energy cost and the overhead energy cost defined in

Section 2.1, respectively. Thus, Figure 2.1 shows the relation between the NOP model

and the basic model, and the following equation can be derived:

E =
∑
i

(Bi ×Ni) +
∑
i,j

(Ei,j ×Ni,j) + ENOP,NOP , (2.23)
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where Ei and EInstr1,Instr2 are the base energy cost and overhead energy cost defined

in Section 2.1, respectively. Thus, this result is the same as Equation 2.2 in the basic

model.

Nikolaidis et al. used this method to create a data dependency energy model for the

ARM7TDMI and the detail about this model will be explained in Section 2.4.3. Table 2.6

is a summary of relationship between the basic model and the NOP model.

Table 2.6: The summary of the relationship between the basic model and the
NOP model. The number of NOP varies depending on the processor and it has
to be more than the number of pipeline stages.

Name The basic model [7] The NOP model [9]

Base energy cost mea-
surement method

Int1,Int1,Int1... NOP,NOP,Int1, NOP, NOP ...

Overhead energy cost
measurement method

Int1,Int2,Int1,Int2... NOP,NOP,Int1,Int2, NOP, NOP ...

The value of the base
energy cost

Bi Bi + ENOP,i + Ei,NOP + ENOP,NOP

The value of the over-
head energy cost

Ei,j Ei,j − Ei,NOP − ENOP,j − ENOP,NOP

Energy of a program
E =

∑
i (Ei ×Ni) +∑

i,j (Ei,j ×Ni,j)
E =

∑
i (Bi ×Ni)

+
∑

i,j (Bi,j ×Ni,j) + ENOP,NOP

Penolazzi et al. extended this method to the SPARC LEON3 processor (a 32-bit CPU

microprocessor core, based on the SPARC-V8 RISC architecture and instruction set,

with a 7-stage pipeline) [11]. The method they used is to run 100 × (5 ·NOP, IUT, 5 ·
NOP ) and 100 × (5 ·NOP, IUT1, IUT2, 5 ·NOP ) for an individual instruction energy

test and for a pair of instructions, respectively. Thus the energy consumed by each

instruction and by a pair of instructions will be

EIUT =
Etotal − 1000 · ENOP

100

EIUT1,IUT2 =
Etotal − 1000 · ENOP

100
,

(2.24)

where Etotal is the energy consumed by the program. Table 2.7 shows the results for

several pairs of instructions.

Moreover, they found the overhead energy was negative in 90% of cases, which means

that EIUT1+EIUT2 > EIUT1,IUT2 . However, they did not give a explanation for this.

We think the reason can be explained by Equation 2.22, and the difference between

EIUT1+EIUT2 and EIUT1,IUT2 is EInstr1,Instr2−EInstr1,NOP −ENOP,Instr2−ENOP,NOP ,

which is likely to be negative.

In the NOP model, the base power/energy cost has a new definition [9]. However, the

definition in the basic model is more widely used. Therefore, after this section, both

the base cost and overhead cost assume the definition in Section 2.1 unless otherwise
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Table 2.7: Energy models: 1-instr. Vs. 2-instr.Source: [11].

1-instr-model 2-instr-model

IUT E[pJ] Sum IUT 1-2 E[pJ] Diff.[%]

add 92.75 182.39 add and 120.65 -33.85

and 89.64

and 89.64 188.93 and or 127.72 -32.4

or 99.29

ld 75.17 168.3 ld xor 128.24 -23.81

xor 93.13

stated. On the other hand, based on the result of Figure 2.1, these two methods are

very similar.

2.3 Clustering Instructions Model

To reduce the complexity of the overhead energy model, another method called clus-

tering is introduced [7]. The idea of the method is to cluster instructions into several

different groups. Instead of considering the overhead of every possible instruction pair

individually, the overhead cost comes from the different pairs of clusters. This idea can

be presented by the following equation:

Oi,j =

{
Ei if i, j ∈ Ci
Ei,j if i ∈ Ci, j ∈ Cj

(2.25)

where Oi,j is the overhead cost, Ci is the i-th class. Thus, the number of overhead

measurements will decrease from O(ISA2) to O(C2).

Lee et al. studied a Fujitsu processor (3.3V , 0.5µm, 40 MHz CMOS, two stage pipeline)

and clustered instructions into six classes as shown in Table 2.8 [29].

Table 2.8: Six instruction classes [29].

class addressing

LDI immed → reg (load immediate data to a register)

LAB mem1 → reg A and mem2 → reg B (transfer memory
data to registerss A,B)

MOV1 reg1 → reg2 (move data from one register to another)

MOV2 mem→ reg, or reg→ mem (move data from memory
to a register, or from a register to memory)

ASL reg specified implicitly (add/sub, shift, logi operation
sin ALU)

MAC reg specified implicitly (multiplyy and accumulated in
ALU)

String transfer,compare,search
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It is clear that the clustering is based on the different addressing modes. Moreover,

instructions in the same class use similar parts of the CPU and consume similar power.

Table 2.9 and Table 2.10 show the base cost of each class and the average overhead cost,

respectively.

Table 2.9: The average base cost for unpacked instruction (nJ) [29].

LDI LAB MOV1 MOV2 ASL MAC

range 15.8-22.9 34.6-38.5 18.8-20.7 17.6-19.2 15.8-17.2 17-17.4

average base 19.4 36.5 19.88 18.4 16.5 17.2

Table 2.10: The average overhead cost for unpacked instruction (nJ) [29].

LDI LAB MOV1 MOV2 ASL MAC

LDI 3.6 13.7 15.5 6.3 10.8 6.0

LAB 2.5 1.9 12.2 20.9 15.0

MOV1 4.0 18.3 10.5 3.8

MOV2 25.6 26.7 22.2

ASL 3.6 8.0

MAC 12.5

Bona et al. extended the VLIW basic model in Section 2.1.3 and clustered the instruc-

tions into 11 classes based on the energy of each operation [33, 37]. Moreover, they

presented a method (k-mean clustering algorithm) to decide how many classes should

be created. The idea of this method is to minimize the following equation:

C∑
j=1

nj∑
i=1

(xi,j − cj)2, (2.26)

where the instructions are clustered into j different classes, nj is the number for elements

in the j-th class, xi,j is the i-th element of class j and cj is the center of gravity of the

j-th cluster. When the value of Equation 2.26 is a minimum, the maximum accuracy is

achieved.

Rong et al. studied the ADSP-2189 processor (13.3 ns instruction cycle time, 2.5 V ,

single-cycle instruction execution [38]) and the instructions are split into five families:

ALU, MAC, Shift, MOVE and other instructions [39]. Clustering in this way is appro-

priate because the processor contains three independent computation units: the ALU,

the multiplier– accumulator (MAC), and the Barrel shifter. The first three classes focus

on the different arithmetic and logic calculations and the class MOVE focuses on data

transfer, such as load/store.

Although the NOP model and the Clustering method both reduce the complexity of

the overhead energy matrix, they still do not consider cache misses and pipeline stalls.

Moreover, they all have to identify and count the number of instructions of each class.

On top of this, it takes a lot of effort to record this information and look up the overhead

table when running a big program that includes billions of instructions.
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2.4 Linear Regression Method to Analyze the Power/En-

ergy

This section will introduce the linear regression method to analyse the power and energy.

This method can be used by different types of instruction-level power/energy analysis

and also at other levels, such as functional-level power analysis. In this section, we focus

on the models which widely use the linear regression method.

2.4.1 Introduction to linear regression

The power/energy consumed by the processor is dominated not by one variable but by

many. Thus a power model should consider all of these variables and choose those that

are important while ignoring those less important. Linear regression can be used to

address this problem. Specifically, linear regression analysis estimates the relationship

between the response and a set of variables [40].

Firstly, some input values are chosen as the potential variables, such as cache miss

rate, operand Hamming distance. Then, training tests are designed that have different

behaviour and the potential variables, such as different instruction distributions, pipeline

stall rates, and cache miss rates.

Assuming, in test i, the value of each potential variable is Xi,1, Xi,2, ..., Xi,k, and the

power/energt consumption is Yi, the linear regression model can be presented as

Yi = α+ β1Xi,1 + β2Xi,2 + ...+ βkXi,k + εi, (2.27)

where k is the number of variables which can affect the power consumption and εi is the

error [41]. The idea is to use least squares to find β which can minimize the following

expression:
i=n∑
i=1

(Yi − α− β1Xi,1 − ...− βkXi,k), (2.28)

where n is the number of the tests.

Let Y=


Y1

Y2

...

Yn

, X=


1 X11 X12 ... X1k

1 X21 X22 ... X2k

... ... ... ... ...

1 Xn1 Xn2 ... Xnp

, β=


β1

β2

...

βn

, ε=
(
ε1ε2...εn

)
.

Equation 2.28 can be rewritten as

Y = Xβ + ε (2.29)
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The goal of the linear regression can be represented to minimize the following expression

[41]:

β̂ = (X′X
−1

)X′Y. (2.30)

There are several mathematical algorithms to solve this, such as normal equations [41].

Finally, when the β is determined, the power/energy model with different parameters is

created. Once the input values are given, the corresponding power can be estimated.

2.4.2 Linear Regression Model

The parameters which are considered vary for different processors. For example, Bircher

et al. generated the following linear regression model for the Pentium 4 processor [42]:

Power = α0 + α1 ·metric1 + ...+ αn ·metricn, (2.31)

where α0 and αn are a constant number and the coefficients of the corresponding metrics,

respectively. metricn are the variables they consider and are shown in Table 2.11 and

Table 2.12, However, the abbreviations are not clearly explained by the authors [42].

The correlations were created based on 23 benchmarks from the SPEC2000 benchmarks.

They show whether the effects of these factors are positive or negative and how important

they are. For example, Instr Total/Cycle has a big positive effect (0.84), which means

if a program has a bigger Instr Total/Cycle, the average power will be bigger. However,

L2 Miss/Cycle has a negative effect (-0.333), which means a greater L2 Miss/Cycle will

decrease the average power consumption. Based on these factors, seven different models

are created.

Table 2.11: High
Correlation(|correlation|
>0.32) [42].

metric correlation

Spec Del/Cycle 0.898

Fetched Uop/Cycle 0.84

Instr Total/Cycle 0.84

Completed Uop/Cycle 0.83

Load /Cycle 0.8

Uop /Cycle 0.79

Branch /Cycle 0.78

Stores /Cycle 0.64

Mispred Branch /Cycle 0.41

L2 Miss/Cycle -0.33

Cancelled /Cycle 0.33

Table 2.12: Low
correlation(|correlation|
<0.32) [42].

metric correlation

L2 Hit/Cycle 0.31

Buss Access/Cycle -0.31

TC Del /Cycle 0.32

Bus Util -0.31

Fp Op/Uop -0.22

Prefetch Rate 0.17

TC Build//Cycle -0.15

ITLB Hit/Cycle -0.09

TC Miss/Cycle -0.09

ITLB Miss/Cycle -0.04

L2 Hits/Cycle -0.03

L2 Access/Cycle -0.02
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The properties that they were concerned with are the performance and the speed of the

program, which are internal properties of the program. However, there are two disad-

vantages to this method. The first is that it takes too many factors into consideration,

thus it takes too much effort to measure the weight of each factor with different tests.

Secondly, the weights of these factors are extracted from testing SPEC2000 benchmarks.

However, a lot of these benchmarks (10/22) are used for validation again and the re-

ported error is 2.6% [42]. Thus, it has not been clearly proven that the model can work

well for other tests.

Fei et al. studied the energy consumption of a state-of-the-art extensible processor Ten-

silica’s Xtensa (a 32-bit RISC microprocessor core, five-stage pipeline [43]) [44]. The

results are based on RTL simulation. The technology is the NEC RTL cell library CB11

for the 0.18µm technology. The processor is extensible and the variables have to cover

the energy usage of both the original basic design and the custom design. The basic

idea is still linear regression and the model is

Energy =E0 + E1X1 + E2X2 + · · ·+ EnXn

=Eins(X1, · · ·, Xm) + Estruc(Xm+1, · · ·, Xn),
(2.32)

where E0, E1, · · ·, En are the energy coefficients. Variables X1,X2,· · ·,Xn are chosen

from both the instruction level and structural domains. Eins and Estruc are the energies

due to the original basic processor and custom hardware extensions.

The original basic processor energy, Eins, is described as

Eins =Earith · Cycarith + Eld · Cycld + Est · Cycst + Ej · Cycj + Ebr tk · Cycbr tk
+ Ebr utk · Cycbr utk + Ei ·Numi + Ed · Cycd + Euncache ·Numuncache

+ Einterlock ·Numinterlock + Eside tie · Cycside tie,
(2.33)

where the variables, En, are shown in Table 2.13. Cycn corresponds to the number of

cycles taken by each factor, and Num is the number of times the corresponding factor

occurs.

However, the base instruction may also use custom functional blocks. Thus, for each

base instruction, the activated custom hardware modules have to be chased. The custom

hardware modules are divided into ten different categories, as shown in Table 2.13. Thus,

the energy of the extension part, Estruc, is described as

Estruc = E1 ·
∑
j

C1,jCyc1,j + E2 ·
∑
j

C2,jCyc2,j + · · ·+ E10 ·
∑
j

C10,jCyc10,j , (2.34)

where Cyci,j(i=1,2,...,10) are the number of cycles in which the jth functional block

belonging to component category i is active. There may be more than one functional

block in one category. For example, E2 contains three blocks “+”, “-”, and “comp”. Ci,j
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is the energy complexity of this functional block. Ei(i=1,2,...,10) is the average energy

computation per bit (per entry for the table) per cycle for each kind of resource module

category and they are listed in Table 2.13 . TIE means Tensilica instruction extension,

which is used to customize the instruction set.

Table 2.13: Energy coefficients of the characterized Xtensa processor [44].

coefficient description value(nJ)coefficient description value(fJ )

Earith arithmetic instruction 0.638 E1 * 152

Eld load instruction 0.512 E2 +/-/comp 70

Est store instruction 1.092 E3 log/red/mux 12

Ej jump instruction 0.603 E4 shifter 377

Ebr tk branch taken 0.504 E5 custom register 177

Ebr uk branch untaken 0.345 E6 TIE mult 165

Eside tie side effects 0.616 E7 TIE mac 190

Ei instruction cache miss 2.93 E8 TIE add 69

Ed data cache miss 4.34 E9 TIEcsa 37

Euncache uncached instruction fetch 2.42 E10 table 27

Einterlock processor interlock 0.98

The benefits of this model are its accuracy (the maximum error of ten benchmarks is

-8.5%) and detailed analysis, because it shows how the energy is consumed by different

functions of the processor. For example, a data cache miss will consume 4.34nJ [44].

However, one big disadvantage of this model is its complexity and so it is hard to create

and use.

2.4.3 Data Dependent Model

2.4.3.1 The Effect of Data

The operand values will affect the energy of a program in two different aspects. Firstly,

the base power/energy cost is related to the operand values [1, 7, 25, 45]. For example,

Nikolaidis et al. studied an ARM7TDMI (supply voltage 2.5V) and found that when

the operands of ADD were (0,0) and (55555555,AAAAAAAA), the energy consump-

tion would be 0.95nJ and 1.12nJ respectively. Furthermore, the growth of energy is

proportional to the number of ‘1’s in the operand for ARM7TDMI processors [45].

Figure 2.2 shows the test results for an ARM7TDMI, and Nikolaidis et al. claimed that

although the measurements were not finished completely, there was a relation between

the energy and the number of ‘1’s in the values of their addresses and the operands [45].

The relation is close to linear and the energy is proportional to the number of ‘1’s in the

operand [45].

On the other hand, Tiwari et al. showed that, for the Intel 486DX2, more ‘1’s consume

less energy and the number of ‘1’s was inversely proportional to energy [8]. Table 2.14
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Figure 2.2: Energy consumption of (a) ADD and (b) LDR as a function of the
number of ‘1’s in the operand [45].

shows how operands may affect the base cost of MOV, BX, DATA in the Intel 486DX2

and it is clear that the more ‘1’s exist, the less power is consumed [8]. For example, when

the operand is 0x, the current is 309.5 mA. However, when the operand is 0xFFFF, the

current is 288.5 mA. Compared with the results of an ARM7TDMI, in Figure 2.2, the

effect of the number of ‘1’ is opposite.

Table 2.14: Base cost of MOV BX,DATA.

data 0x0 0xF 0xFF 0xFFF 0xFFFF

No. of 1’s 0 4 8 12 16

Current(mA) 309.5 305.2 300.1 294.2 288.5

Moreover, the more changes between the operands of two consecutive instructions, the

more power/energy will be consumed [2, 11]. The reason is that the bigger Hamming

distance makes the CMOS in the processor switch more often and consume more dynamic

power.

(a) CPU current depending on number of ‘1’s on data
bus.

(b) CPU current depending on Hamming distance on
data bus.

Figure 2.3: The operand can affect the current of the ARM7TDMI [16].

Steinke et al. tested an ARM7TDMI processor AT91M40400 and got a similar result

to Figure 2.2. Moreover, they also tested how the Hamming distance may affect the

power. Compared with Figure 2.3(a) and Figure 2.3(b), the effect of different Hamming

distances on the data bus is stronger than the effect of number of the ‘1’s on the data

bus [16].
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Figure 2.4: Energy change vs. data switching activity [11].

Figure 2.4 shows the more switching bits there are, the more energy the processor

will consume. The target processor is a SPARC Leon3 which is synthesized to run at

400MHz with TSMC90nm technology [11].

2.4.3.2 Different Data Dependent Models

Because the power/energy is strongly affected by the data in some cases, a data depen-

dent model was created. The main idea of this method is that the base power/energy

cost of each instruction is not a constant but related to the data of operands. Linear

regression is used to analyse how the data may affect the base power/energy cost.

One of the first data dependent models was created by Ascian et al. for a ST20-C2P pro-

cessor (synthesized in HCMOS7 technology, 0.25µm, 2.5V ) [34]. The model is presented

as

Cost(Ii) = base(0)(Ii) + (Ii−1 → Ii)
(0)
back + (Ii → Ii+1)

(0)
forw + f(data), (2.35)

where the variables base(0)(Ii), (Ii−1 → Ii)
(0)
back, and (Ii → Ii+1)

(0)
forw are the base cost,

and the backward and forward costs when the activity on the registers and buses remains

null between two instructions, respectively. f(data) is the power which is affected by

the data. The definitions of (Ii−1 → Ii)back and (Ii → Ii+1)forw were explained in

Equation 2.7 and Equation 2.8.

Moreover, the f(data) part can be defined as

f(data) =

Hamm0→1(xbusi−1, xbusi)× weight0→1
xbus+

Hamm1→0(xbusi−1, xbusi)× weight1→0
xbus+

Hamm0→1(ybusi−1, ybusi)× weight0→1
ybus+

Hamm1→0(ybusi−1, xbusi)× weight1→0
ybus+

Hamm(memaddri−1,memaddri)× weightmemaddr,

(2.36)
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where the function Hammx→y(a, b) gives the number of bits switching x → y when

moving from state a to b. Hamm(memaddri−1,memaddri) shows the bit switching

between the previous memory address and the current address, and does not distinguish

whether it is from 0 to 1 or 1 to 0.

Six benchmarks (sum low, sum high, rand inst, mtx sum, mtx mul, dft) are used to test

the performance of the model and the maximum error is less than 6%. However, some

of these benchmarks are too simple, thus the test result is weak for validation. For

example, rand inst is just a group of random instructions. It should be tested by more

rigorous benchmarks. On the other hand, this model makes the problem of the size of

the overhead cost worse (twice as big as the basic model). Thus, it has to trace the

instructions of the program in detail and is harder to use.

Kavvadias et al. created a data-dependency model for an ARM7TDMI processor [5].

The base energy cost of each instruction is

Ei = bi +
∑
j

ai,jNi,j , (2.37)

where Ei is the total base cost of instruction i, which contains two parts bi and
∑

j ai,jNi,j .

bi is the pure base cost (the methods in the NOP model in Section 2.2) of the instruction

i (the operands are zero). ai,j and Ni,j are the coefficient and the number of ‘1’s of the

energy sensitive factors of the instruction i, respectively. The energy sensitive factor

coefficients are listed in Table 2.15.

Table 2.15: Energy-sensitive factor coefficients [5].

Energy-sensitive factor coefficient

register number ai,1
register value ai,2

immediate value ai,3
operand value ai,4

operand address ai,5
fetch address ai,6

From Equation 2.37, it is clear that even if two instructions have the same opcode, the

energy will be different depending on their operands. Based on the factors in Table 2.15,

Kavvadias et al. analysed each factor separately because they thought the correlation

between each factor to be insignificant. Finally, the energy of a program which has n

instructions can be estimated as:

E =

n∑
1

Ei +

n−1∑
1

Oi,i+1 +
∑

ε, (2.38)
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where the first part is the sum of Ei of each instruction, which has already been presented

in Equation 2.37. Oi,j is the inter-instruction cost of instructions i and j (the methods

in the NOP model in Section 2.2), and ε is the cost of a pipeline stall [5].

Although this model takes the effect of the operand value into consideration and es-

timates the energy very accurately based on testing a real kernel, there are several

disadvantages. Firstly, the benchmarks used to validate the model are too few (only

one), and it is not a common, well-known benchmark. Secondly, the model is hard to

use because it has to consider the overhead energy of two instructions. Moreover, it is

also difficult to get the number of ‘1’s in each operand. Thus, it is hard to predict the

energy of a program which has billions of instructions.

Sarta et al. created a power model for a ST20-C1 processor produced by STMicroelec-

tronics [2]. It has a two stage pipeline and synthesized using a 0.35 µm, 3.3V library.

The test results are based on VHDL simulations and Powermill to analyse the power of

the CPU. Powermill is a simulation tool [46]. The model is described as

poweraverage = Pdata + Pj + Pi,j

= K1 · n1 + · · ·+Kn · nn +K0 + Ci,j ,
(2.39)

where poweraverage consists of three part: the power related with data, the base power

cost of each instructions, and the overhead power cost of instruction pair i and j. Ki and

ni are the weights and the numbers of transitions of the elements which can influence

the power consumption, respectively. Furthermore, the vector K is called the activity

index and includes memory address, data write, x bus, y bus and a fixed cost. K0

is the minimum cost for an instruction. Ci,j is the changing-instruction cost between

instructions i and j, like the overhead cost discussed earlier.

However, this model does not consider cache misses or pipeline stall penalties. Therefore,

if the cache miss rate is high, the model may not be able to accurately predict the energy.

Additionally, the Ci,j term introduces the same problem as the overhead energy, Oi,j ,

whereby it is too complex to compute every possible combination. Moreover, the authors

did not use enough benchmarks to prove the performance of the model.

Steinke et al. studied an ARM7TDMI processor, AT91M40400, and created a model

which considers both the number of ‘1’s and the Hamming distance of two operands in

two adjacent instructions [16]. The model includes four parts: the instruction-dependent

cost inside the CPU(Ecpu instr), the data-dependent cost inside the CPU(Ecpu data),

the instruction-dependent costs in the instruction memory(Emem instr) and the data-

dependent costs in the data memory(Emem data). Therefore, the total energy consumed

by a processor is

Etotal = Ecpu instr + Ecpu data + Emem instr + Emem data (2.40)
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If a program has m instructions and each instruction has s immediate values and t

registers, the energy of the CPU is described as

ECPU instr =

m∑
i=1

(

BaseCPU(Opcodei)+
s∑
j=1

(α1 ∗ ω(Immi,j + β1 ∗ h(Immi−1,k, Immi,j))+

t∑
k=1

(α2 ∗ ω(Regi,k + β2 ∗ h(Regi−1,k, Regi,k))+

t∑
k=1

(α3 ∗ ω(RegV ali,k + β3 ∗ h(RegV ali−1,k, RegV ali,k))+

α4 ∗ ω(IAddri) + β4 ∗ h(IAddri−1, IAddri)+

FUChange(Instri−1, Instri)),

(2.41)

where Imm, Reg, RegV al, and IAddr are the immediate value, the register number,

values within the registers, and the instruction address, respectively. ω is a func-

tion used to model the energy affected by ‘0’s and ‘1’s of the data, such as immedi-

ate values (ω(Immi,j + β1 ∗ h(Immi−1,k, Immi,j))) and register data (ω(Regi,k + β2 ∗
h(Regi−1,k, Regi,k))). Function h is used to model the changing bits of two consecutive

instructions.

Moreover, the data dependent costs inside the CPU for n data accesses are related to

the data address DAddr, the Data itself and the direction dir (read/write). Therefore,

the energy of this part is described as

Ecpu data =

n∑
i=1

(

α5 ∗ ω(DAddri) + β5 ∗ h(DAddri−1, DAddri)+

α6,dir ∗ ω(Datai) + β6,dir ∗ h(Datai−1, Datai))

(2.42)

We concentrate on the average power and energy cost of the CPU, thus the memory

energy consumption is not related to our work and we do not introduce it here. Based

on Equations 2.40, 2.41, and 2.42, a model to estimate the energy consumption of a

program is created [16]. The advantage of this model is that it takes memory access into

consideration(Ecpu data). Memory access normally happens when cache misses occur.

Thus, this model considers the cache miss effect to some extent. However, the disadvan-

tage of this model is its complexity. It has 13 variables and several internal functions.
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Moreover, it has to trace the bit changes of two consecutive instructions and considers

the overhead effect (FUChange(Instri−1, Instri)). Thus, it is difficult to use for a big

program which has billions of instructions. On top of this, this model is not validated

by any benchmarks.

Bazzaz et al. created a model for the AT91SAM7X256 which uses the ARM7TDMI as

the core [15]. 60 specialized training tests are used to analyse the coefficients of each

energy sensitive factor. The energy model is described as

Eapp =
∑
p∈P

Np × coeff(p), (2.43)

where Np is the total number of occurrences of P during execution, P is the full set of

the factors which can affect the energy, and coeff(p) is the energy coefficient of p. The

set P includes 35 parameters and they are listed in Table 2.16 [15]. To compute the

coefficients of the model, linear regression is used.

Table 2.16: Final results of regression of ARM7TDMI [15].

Instruction parameters (related to Opcode)

Param Energy(nJ) Param Energy(nJ) Param Energy(nJ) Param Energy(nJ)

ADD 0.89 MVN 1.13 ADC 1.127 ORR 1.131
RSB 1.153 AND 1.178 RSC 1.119 B 0.79
BIC 1.049 SMLAL 4.391 BL 6.023 SMULL 4.29
STM 1.449 CMP 0.978 STR 1.343 EOR 1.167
LDM 1.94 SWP 3.593 LDR 1.84 TEQS 1.003
TSTS 1.006 MLA 3.423 UMLAL 4.878 MOVS 1.021
MUL 2.931 Shift 0.288 ADDS 1.481 SBC 1.113
CMN 0.976 SUB 1.143 MOV 1.284 UMULL 4.254

Inter instruction parameters
(related to data)

Memory parameters

Parameter Energy (pJ) Parameter Energy (nJ)

Hamming distance 9.23 Flash loads 2.25
Instruction weight 23.6 SRAM loads 0.72
Regbank bit flip 2.81 SRAM stores 0.98

This table merges the basic model and the data dependency model. For example, the

base cost of an instruction comes from the basic model but the Hamming distance

and instruction weight come from the variables in the data dependency model. Seven

benchmarks, which come from MiBench, are used to test the performance of the model

and the results show the worst estimation error is 6% [15]. In this model, the pipeline

stalls are grouped into two cases: fixed length and variable length. The fixed length

pipeline stall is caused by multi-cycle instructions, such as SWAP which takes four

cycles to execute. The variable length stalls are caused for several different reasons,

such as operand values, previously accessed memory address and correct prediction of

a jump. However, this model presents a solution to the fixed pipeline stalls but ignores
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the variable length pipeline stalls. The reason is that estimating the variable length

pipeline stall needs cycle-accurate simulation of the program [15].

Based on the analysis of the previous data dependency models, it is clear that this

kind of model can predict the power/energy accurately. However these models have a

common problem, which is that the model needs a lot of input data. Furthermore, the

number of bit changes of two consecutive instructions is needed, which is hard to trace

when the program is big. Thus, if the model could avoid data dependency, it would be

very concise and convenient to use.

2.4.4 Cycle-accurate Model

Different instructions may use different parts of the pipeline and each block of a pro-

cessor consumes different power. Thus, linear regression can also be extended to study

the power/energy consumption of each different pipeline stage, rather than the whole

processor or the system, to generate a cycle-accurate energy model. On the other hand,

in order to create a cycle-accurate model, the effect of data dependence has to be con-

sidered [13,17].

(a) Energy consumption by the instruction fetch ad-
dress (PC stage).

(b) Energy consumption by the register number (EX
stage).

(c) Energy consumption by the operand value (EX
stage).

(d) Energy consumption by the immediate value (EX
stage).

Figure 2.5: The energy consumption affected by data in different stages [13].
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Chang et al. tested the energy consumed by each stage of a processor ARM7TDMI [13].

They showed that the energy consumption of each pipeline stage was affected by the

opcode, the instruction fetch address, the register number, the register value, the data

fetch address, and the immediate operand. For example, Figure 2.5 shows that the

Hamming distance and number of ‘1’s may affect the energy consumption [13]. Then,

how these factors affect the different pipeline stages: PC stage, EX stage, ID stage, and

IF stage were studied individually. They found that the power is dominated by two

factors: the number of ‘1’s which are in the current binary number (w) and Hamming

distance between current and previous values (h). Thus, a power consumption model of

each pipeline is given:

P = α ∗ h+ β ∗ w + r, (2.44)

where α and β are the weights of h and w respectively, and r is a constant. However, they

concentrated on analysing how data can affect the power/energy rather then creating

an accurate model, thus they do not prove this hypothesized power consumption model

with benchmarks.

Lee et al. studied an ARM7TDMI processor and the variables they were concerned with

were the instruction fetch address, the register numbers, the immediate operand, and

the data values [14]. How different instructions affect the energy of each pipeline stage

are studied individually and if V is the set of all the model variables, the energy of each

pipeline stage es(X,Y ) is calculated as

es(X,Y ) = BX
s +

∑
vεV

fXs (vX, vY ), (2.45)

whereX and Y stand for different two instructions andBX
s is the base cost for instruction

X at pipeline stage s. fXs (vX, vY ) is the energy variation affected by the model variable

v, such as the instruction fetch address and the register numbers.

This model considers the data dependency effect. The total energy of the processor is

the sum of the energy of each stage. However, the pipeline stall was not considered

in this model and needs further investigation. Moreover, the validation benchmark is a

sample program which contains a random mixture of ARM data-processing instructions,

thus it does not prove that this model can be extended to big programs.

Instead of analyzing each stage of the processor, Abrar et al. studied the broad overview

of the ARM7TDMI with gate-level simulation [3]. A cycle accurate energy model is

described as
Ei = Base(Ii) +

∑
sεS

asAsi , (2.46)

where Ei is the energy consumed in cycle i, Base(Ii) is the base cost of instruction

I executed in cycle i, S is the set of signals in the model, as is the energy dissipated

for unit activity on signal s, and Asi is the total activity on signal s in cycle i. They



Chapter 2 Literature Review 35

assumed that the power consumption mainly comes from two parts: execution of the

current instruction (Base(Ii)), and charging/discharging of the internal nodes such as

the data/address buses (
∑
sεS

asAsi ) [3].

Compared with the previous model in Equation 2.45, this model does not analyse each

stage of the pipeline individually but together, which makes the model more concise.

However, this model lacks validation in detail, since Abrar et al. only explained that

the benchmarks were related with mathematical operations and control but without

introducing any benchmarks names [3]. It does not consider the effect of pipeline stalls.

Based on the study of the previous cycle accurate models, it is clear that a common

method of creating a cycle-accurate model is to study each pipeline stage individually

and to find out what can affect the power/energy of each stage. However, sometimes

what the software engineers want is a low energy program. Thus, they do not care about

the instant power consumption, and this cycle-accurate model is not very useful for this

aim. In other words, this model costs too much effort for this aim.

2.5 Functional-level Power Model

The main idea of functional-level power analysis is to spilt the processor into different

parts or blocks such as the instruction management unit (IMU), the processing unit

(PU), and others. Then, factors which can affect the power/energy of each block are

pre-defined. Instead of studying the whole processor, this method studies each block

separately. Furthermore, linear regression is used to analyse the relation between these

factors and the power/energy of each block. For example, the IMU power may be affected

by the rate of instruction dispatching and CPU stall rate [47]. Then, a power/energy

model for each block can be generated and the total power consumption is just the sum

of each block.

The functional-level power model was firstly introduced by Laurent et al. and the target

processor is the TMS320C6021 DSP [48]. It has an 11 stage pipeline and supports VLIW

instructions (256 bits instruction) and parallelism (up to eight instructions in parallel).

Figure 2.6 shows the components of the processor TMS320C6201. The processor is split

into four parts: the Memory Management Unit (MMU), the Instruction Management

Unit (IMU), the Processing Unit (PU), and the External Memory InterFace (EMIF).

Moreover the factors which can affect the power are the frequency(F), the average num-

ber of processing units used per cycle (β), the cache miss rate (γ), the in-external

instructions (program) read rate (ε) and the in-external data access rate (τ). The IMU

can work in four different modes: the MAPPED mode, the CACHE mode, the FREEZE
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Figure 2.6: Functional analysis for the TMS320C6201 [48].

mode, and the BYPASS mode. The power models of each mode are presented in Ta-

ble 2.17.

Table 2.17: Consumption rules of IMU for different memory modes of
TMS320C6201 [48].

memory modes consumption rules

Mapped I=(aα+b)F+cα +d F:MHz
a=5.21mA/MHz;b=4.19mA/MHz
c = 42.4mA; d = 7.6mA

Bypass I=(a+b)F+c a=5.68mA/MHz;b=4.19mA/MHz
c=38.4mA

Cache I=SαFγ + TαF + UFγ + V F +Wαγ +Xα+ Y γ + Z

Freeze I=SαFε+ TαF + UFε+ V F +Wαε+Xα+ Y γ + Z

For the CACHE and FREEZE mode, the coefficients S, T, U, V,W,X, Y , and Z are

related to the ranges of ε or γ. Based on the ranges, the FREEZE mode and the

CACHE mode are divided into two cases(ε 6 25% or ε > 25%) and three cases (γ < 50%,

50% 6 γ 6 75%,γ > 75%), respectively [48].

Similarly, the power model of the PU is

IPU = aβF, (2.47)

where a equals 0.64mA/MHz.

Laurent et al. presented two models for the IMU and the PU, but the MMU block is

not studied. The model works well and the test results of the benchmark FIR 16 shows

that the error is less than 7.4%. However, the relationship between S, T, U, V,W,X, Y, Z

and ε ,γ is not very clearly presented. Moreover, this model only has been proved using

FIR 16 and needs more benchmarks to prove the validity of the method.
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Senn et al. extended this method to a TI C6X processor, a VLIW processor which has

a deep pipeline (up to 11 stages) and parallelism capabilities (up to eight operations in

parallel) [49].

Figure 2.7: Functional analysis for the C6X [49].

Figure 2.7 shows the functional level blocks of the TI C6x. It includes three parts: IMU,

PU, MMU. There are five parameters which can affect the power of each block: the

parallelism rate (α), the processing rate (β), the cache miss rate (γ), the external data

memory access rate (τ), and the activity rate between the data memory controller and

DMA (ε). They created a model based on four fundamental assumptions:

α =
NFP

NEP
× (11− PSR), (2.48)

where NFP, NFP, and PSR are the number of fetch packets, the number of execution

packets, and pipeline stall rate respectively.

β =
1

NPUMAX

NPU

NEP
× (1− PSR), (2.49)

where NPU and NPUMAX are the average number of processing units used per cycle

and the maximum number of processing units ( NPUMAX=8 for the C6x), respectively.

The pipeline stall rate (PSR) is related to the number of pipeline stall cycles (NPS) and

the total number of cycles for execution (NTC). Thus, the following equation can be

stated:

PSR =
NPS

NTC
. (2.50)

Moreover, the pipeline stalls can be split into three cases: 1. the external data access,

which is related to τ ; 2. the instruction memory access, which is related to γ; 3. internal



38 Chapter 2 Literature Review

data bank conflicts. Therefore, the total NPS is the sum of these three cases:

NPS = NPSγ +NPSτ +NPSBS . (2.51)

Senn et al. analysed the factors that can affect the power of each block in detail and

the model shows good performance with nine benchmarks (the average error is less than

5%) [49]. Moreover, this method has been extend to several different processors: C67,

C64, C62, C55, and ARM7 [50].

However there is not a very clear model for the whole CPU system and they only

presented α and β for each test [49]. Furthermore, how to use these parameters to

estimate the power is not shown clearly. Moreover, the benchmarks do not cover several

important cases. For example, they assume the cache miss rate is always zero (γ=0)

and the DMA is not used(ε=0) [49].

Julien et al. extended this work and generate a full power model for TMS320C6201 [51].

The method of dividing the processor into blocks is the same as that of Senn et al.,

which is shown in Figure 2.7. The parameters and the power model of each block in

different modes are shown in Table 2.18 and Table 2.19, respectively.

Table 2.18: Sensitive factors for TMS320C6021 [51].

α parallelism rate

β the utilization rate of the processing units

PSR pipeline stall rate

α′ α(1− PSR)

β′ β(1− PSR)

W data width transferred

γ the program cache miss rate

τ the external data memory access rate

ε the activity level between the data memory controller and the direct
memory access DMA

F clock frequency

Compared with previous work done by Laurent et al. and Senn et al., the work done

by Julien et al. has several advantages. Firstly, the model is more complete because it

covers every block in different modes, such as IMU, PU, and DMA. Moreover, it shows a

clear model that estimates the power based on the pre-defined parameters. Secondly, the

performance of this method has been proved by seven benchmarks, such as FIR, FFT,

and LMS. Moreover, this method works well in several different processors including

C62, C67, C55 and ARM7.

Mostafa et al. studied a TMS320C6416T processor, which is a VLIW processor [47].

Figure 2.8 shows the blocks of the processor. This processor is split into three parts: the

IMU, processing unit and L1 cache memory. The parameters which can affect the power



Chapter 2 Literature Review 39

Table 2.19: The power models for each block of TMS320C6021 [51].

Block name current for each block (mA and MHz)

Instruction manage-
ment unit

Imapped = 5.21αF + 4.19F + 42.4α+ 7.6

Memory modes bypass Ibypass = 9.87F + 38.4

Memory modes freeze (9.07F + 118)α′[−0.14 log(γ)−0.0011]

Memory modes cache (8.55F + 184)α′[−0.1249 log(γ)−0.002276]

Processing unit IPU = 55.12βF

DMA( F is greater than
external memory fre-
quency)

IDMA = (−0.083WF + 4.9F + 24.93W − 476.16)ε

DMA( F is less than
external memory fre-
quency)

IDMA = (0.077WF + 2.12F + 2.05W + 94.72)ε

total current Itotal = IIMU + IPU + IDMA where IIMU is one of the
current: Imapped, Ibypass, Ifreeze, and Icache

of each block are shown in Table 2.20. Each block is studied separately and Table 2.21

shows the power model for each block.

Figure 2.8: Functional analysis for the C6416T [47].
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Table 2.20: Methodology for computing algorithmic parameters for C6416T [47].

Parameter computation methodology

α No. of fetch packets/No. of execution packets

β (No. of executed instructions-do not include NOP instructions)/Total

code cycles

ε (No. of L1D read hits/Total code cycles).100

λ (No. of L1D write hits/Total code cycles).101

δ ((No. of L1D read misses+No. of L1D write misses)/No. of L1D refer-

ence).100

γ (No. of L1P misses/No. of L1P references).100

PSR No. of CPU stall cycles/Total code cycles

Table 2.21: Complete power consumption model for C6416T DSP at
F=1000MMHz [47].

Functional unti Functional unit power consumption submodel

Clock distribu-
tion

PClock Disribution = (0.0006F + 0.0574)× Vcore

IMU PIMU = (−0.0918α2 + 0.284α+ 0.0603)(1− PSR)× Vcore
Processing units PPU = (−0.0049β + 0.0065)(1− PSR)× Vcore
Memory read PMem Read = (−2 · 10−6ε2 + 0.0012ε)(1− PSR)× Vcore
Memory write PMem Write = (−10−5λ2 + 0.0049λ)(1− PSR)× Vcore
L1D cache PL1D = (−2 · 10−5γ2 + 0.0041γ)(1− PSR)× Vcore
L1P cache PL1P = 0.0011δ(1− PSR)× Vcore

In this model, there are seven factors and each one may affect some parts of the processor.

Compared with the previous functional level models, this model takes the instruction

NOP into consideration. Furthermore, it does not use the parallelism factor as the

parameter to describe the usage of the processing units (PUs). The reason is that NOP

does not require any PUs for its execution. Thus a different parameter (β) to describe the

usage of the processor is used. On top of this, the analysis of the effect of cache misses is

more detailed. This model also shows that the PSR may reduce the power consumption

of each block and we also show similar results in Chapter 4. Nine benchmarks are used

to test the performance of the model and the maximum error is 3.3%.

So far, all of the discussed functional level models divide the processor into blocks

based on real hardware units. However, based on the different instruction operations,

Brandolese et al. divided the processor into five functionalities: fetch and decode (F&D),

arithmetic and logic operation (A&L), register write operations (WrReg), load and store

(Ld&St) and branch (Br) [52,53]. Table 2.22 shows the relationship between operations

and related factors.

Different instructions use these functionalities differently. For example, ADD r1, r2, r3

may not use the LD&St block but uses A&L. Then, based on the sensitivity factors,



Chapter 2 Literature Review 41

Table 2.22: The operation class of assembly languages and functionalities [52].

class operation functionalities

Arithmetic&logic add, subtract, and, or, not, exor, multiply,
divide, compare ,shift

F&D, A&L

Data transfer registers, memory, stack F&D

Control unconditional jumps, conditional jumps,
calls and returns

F&D, Br

System exception handling, interrupts, system
calls

F&D, Br

Floating-point add,subtract, compare, multiply F&D, A&L

Decimal divide, BCD arithmetic conversion F&D, Br

String transfer, compare, search F&D,A&L, WrReg

the energy of different instructions is estimated by the sum of the factors. The energy

model is created from sum of the energy of each instruction in an application. This

kind of method has been extended to the ARM7TDMI, Intel i960JF, Intel i960HD and

SPARClite MB86934, and a very long instruction word (VLIW) processor [33].

One of the advantages of the functional level power model is accuracy because it com-

prehensively analyses the problem. Moreover, it describes how a program affects the

power in detail and software engineers may get help from this to write low power or

energy code. However, this method has several disadvantages:

1. To design a functional level power model requires a clear understanding about the

chip architecture, to divide it into different blocks. Which parameters can affect

each block and how each block affects each other has to be predefined carefully.

Otherwise there can be either too few factors for an accurate model or too many

redundant factors for a concise model.

2. It takes time to create all of the models for the whole CPU system, because each

block needs an individual power model. For example, if the processor is split into

four different blocks, at least four power models are required.

3. This method needs a lot of parameters and it takes time to measure all of them.

On top of this, it also takes time to use each model to predict the full CPU system

power. For example, considering Table 2.20 and Table 2.21, seven parameters need

to be measured and seven different individual models have to be used together to

generate a full CPU model.

2.6 Architecture-level Estimation

Although gate level simulation and RTL simulation can provide a good result, the sim-

ulation speed is a bottleneck. Thus, they are hard to use to study big applications and
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software. Some architecture level simulators are designed to address this problem, such

as Wattch which is 1000x faster than the existing layout-level power tools [54].

These simulators analyse how the program changes the circuit activity in each clock

cycle and use capacitive models to estimate the power. For example, the simulator

SimplePower divides the functional unit into two classes: bit-independent functional

units (the operation for each slice has no relation with other bit slices, such as the logic

unit in the ALU) and bit-dependent functional units (the operation for each slice is

related to other bit slices, such as the 32-bit adder) [55]. For a bit-dependent functional

unit, the energy characterization is based on a lookup table which restores all of the

switch possibilities and capacitances (as shown in Table 2.23 ).

Table 2.23: Switch Capacitance Table [55].

index switch Capacitance

previous input vector current input vector (pF)

01...0n 01...0n cap0

01...0n 01...1n cap1

01...0n 01...10n cap2

01...0n 01...11n cap3

... ... cap0

11...1n 11...10n cap02n − 2

11...1n 11...11n cap2n−1

However, there are two challenges in this method. The first one is the size of the lookup

table because it grows exponentially with the size of the inputs. The second is the

performance cost of accessing the lookup table for each component in a cycle [47].

In order to solve these problems, several different approaches have been developed such as

an uncompressed/compressed energy table [56]. Wattch used another method. Without

changing the capacitance model of each block, a parameter α was defined and used to

describe the switch frequency. They generate α as the input to the model based on the

internal cycle level performance simulator [54].

Besides these two widely used simulators, there are several other architecture level sim-

ulators, such as EPS [57] and SoftWatt [58]. The common method of these simulators

for estimating the power/energy of the processor is to analyze how applications affect

the circuit activity during each cycle and to use the capacitive models to estimate the

power [47]. Therefore, an architecture-level estimation may be also a cycle-accurate level

estimation, such as SimplePower [55].

Architecture-level power simulators have some disadvantages. Firstly, the simulators

only support limited RTL level processor models. It is difficult to add commercial

modern processor models, as the details of these processors are not available [15]. On

the other hand, the simulator has its own disadvantages. For example, SimplePower
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simulates an in-order 5-stage pipeline, and some advanced technologies are not used,

such as branch prediction and instruction pre-fetch. On top of this, the clock power

and control logic power are not implemented [55]. Moreover, low power technologies

are not used in Wattch such as clock-gating and dynamic voltage and frequency scaling

(DVFS) [54]. Therefore, the power simulator cannot fully replace real measurements.

2.7 System-level Estimation

Sometimes, people more care about the power/energy of the whole system, thus a

system-level model is created. The components of different systems vary but normally

include the CPU, Memory subsystem, and others, such as LCD/backlight. The idea of

the system-level model is to study each component individually, then add the power/en-

ergy consumption of each component together.

Nunez-Yanez et al. presented a system-level energy model based on the ARM Cortex-A9

dual core processor [59]. The subsystems they studied include CPU, L2 cache, memory

controller, interconnect, and LPDDR2 memory device. The method to create the power

model of each component is regression. Firstly, they created different test benches

with different predefined factors. Then, based on the different energy consumption and

factors of the test, the corresponding coefficients are modelled. For example, there are

two primary types of activity metrics: state-like metrics, such as the time spent executing

or not executing caused by waiting for external memory, and event-like metrics, such

as the number of L1 data cache hits or misses. The following equation is the energy

consumption model:

J∑
j=1

PjTj +
K∑
k=1

EkNk =
J+K∑
l=1

mlal = mTa, (2.52)

where J and K are the number of state like metrics and event like metrics, respectively.

Pj and Tj are the power consumption of state j and the time spent on it. Similarly,

Ek and Nk are the energy cost of event k and the occurrences of that event. Finally, a

simpler expression is used and the activity vector can be presented as: (T1 T2...Tj N1

N2...NK)=(a1 a2...aM )=a. Similarly, the unknown power model coefficients, m, can be

presented as: (P1 P2...Pj E1 E2 E3...EK)T=(m1 m2...mM )=mT . Table 2.24 shows the

factors and coefficients of the energy model.

The model shows good estimation over seven benchmarks: a2time, JPEG enc., JPEG

dec., FFT, Matrix, Route Lookup, Viterbi, CPU stree. The maximum error is less than

7%. A contribution of this work is to provide a method to estimate the energy at system

level at the pre-silicon stage when RTL code is available. On top of this, this method is

tested in a state-of-the-art multiprocessor architecture with realistic benchmarks, such
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Table 2.24: Power models activity counts [59].

Parameter Model summary
Coefficient value Type Description

core state active 100 CPU state Counts the number of cycles the core is in
active state executing instructions

core state stall 112 Counts the number of cycles the core is in
stall state waiting for some additional inputs
before progressing

core state wfi 0.12 Counts the number of cycles the core is in
standby mode with most of the clocks disable

intc state clock enabled 82 Counts the number of cycles during which
the integer clock is enabled

neon state clock enabled 51 Counts the number of cycles the neon data
engine unit is enabled

Integer instruction renaming 0.11 CPU event Number of instructions going through the
register renaming stage

floating point instrucion renaming 0.19 Counts the number of floating point instruc-
tions going through the register rename stage

neon instruction renaming 0.05 Counts the number of neon instructions go-
ing through the register rename stage

d cache miss 0.87 Counts the number of L1 data cache accesses
that resulted in a data cache miss

i cache miss 0.22 Counts the number of L1 instruction cache
misses

data read hit 101.0/93.5/90.5/57.2 L2 cache event Counts the number of L2 data cache read
accesses that result in a cache hit

data read request 131.2/121.0/116.7/83.89 Counts the number of L2 data cache read
accesses

data write hit 103.9/96.2/92.8/59.52 Counts the number of L2 data cache write
accesses that result in cache hit.

data write request 131.2/121.0/116.7/83.89 Counts the number of L2 data cache write
accesses

Instruction read hit 101.0/93.5/90.5/57.20 Counts the number of L2 instruction read ac-
cesses that result in a hit

Instruction read request 131.2/121.0/116.7/83.89 Counts the number of L2 instruction read ac-
cesses

write channel cpu 0 0.065 Interconnect
event

Counts the number of write transfer in the
cpu0/axi interface

read channel cpu 0 0.075 Counts the number of read transfer in the
cpu0/axi interface

write channel cpu 1 0.073 Counts the number of write transfer in the
cpu1/axi interface

read channel cpu 1 0.078 Counts the number of read transfer in the
cpu1/axi interface

write channel tg 0.055 Counts the number of write transfer in the
tg/axi interface

read channel tg 0.043 Counts the number of read transfer in the
cpu/axi interface

read channel slave 0.055 Memory con-
troller event

Counts the number of read transfer in the
memory controller/axi interface

write channel slave 0.056 Counts the number of write transfer in the
memory controller/axi interface

dfi write data enable 112.5 PHY event Counts the number of write enables in the
dfi/memory chips interface

dfi read data enable 112.5 Counts the number of read enables in the
dfi/memory chips interface

activate command 5.98 LPDDR2 event Counts the number of activate commands in
the memory chips

read command 2.16 Counts the number of read commands in the
memory chips

write command 1.83 Counts the number of write commands in the
memory chips

clock enable all banks precharge 24.97 LPDDR2 state Counts the number of clock enable with all
banks precharched events the memory chips

clock disable all banks precharge 0.85 Counts the number of clock disable with all
banks precharched events the memory chips

clock enable some banks precharge 30.46 Counts the number of clock enable with some
banks precharched events the memory chips

as internet browsing. However, the disadvantage is the energy model is too complicated

and it highly depends on the performance counter. Thus, this method is hard to apply

to a processor which does not provide a performance counter or can not supply this

detailed information.

Carroll et al. analysed the energy usage of a smartphone: Freerunner [60]. The smart-

phone includes the following main components: CPU core, RAM (both banks), GSM,

GPS, Bluetooth, LCD panel and touch-screen, LCD backlight, WiFi, audio (codec and

amplifier), internal NAND flash, and SD card. Table 2.25 shows the hardware specifi-

cations in detail.

In this paper, Carroll et al. tested where the energy goes and the results show that the

majority of energy is consumed by the GSM module and the display. Moreover, they



Chapter 2 Literature Review 45

Table 2.25: Freerunner hardware specifications [60].

component specification

SoC Samsung S3C2442

CPU ARM 920T@400MHz

RAM 128 MiB SDRAM

Flash 256 MiB NAND

Cellular radio TI Calypso GSM+GPRS

GPS u-blox ANTARIS 4

Graphics Smedia Glamo 3362

LCD Topploy 480*640

SD Card SanDisk 2GB

Bluetooth Delta DFBM-CS320

WiFi Accton 3236AQ

Audio codec Wolfson WM8753

Audio amplifier National Semiconductor LM4853

Power controller NXP PCF50633

Battery 1200 mAh, 3.7 V Li-Ion

presented an energy model under a number of typical usage scenarios as follow:

Eaudio(t) = 0.32W × t

Evideo(t) = (0.45W + PBL)× t

Esms(t) = (0.3W + PBL)× t

Ecall(t) = 1.05W × t

Eweb(t) = (0.43W + PBL)× t

Eemail(t) = (0.61W + PBL)× t

(2.53)

where Eaudio, Evideo, Esms, Ecall, Eweb, and Eemail are the energy consumption when the

phone is in audio playback, video playback, text messaging, phone call, web browsing,

and emailing scenarios, respectively. In some conditions, the power is related to the

backlight (PBL), such as video.

The advantage of this work is it shows where the energy goes in detail on a smartphone.

However, the energy model is the total energy consumption of the whole system, and

how the different tests affect the power consumption of each component, such as CPU,

and RAM, is not analysed in detail.

Lee et al. studied an ARM926EJ-S processor system which includes processors, bus

fabrics, custom IP blocks, and memories [61]. In their model, the CPU core logic is

considered in two cases: a busy state and an idle state (stalled by interlocks). Moreover,

they found that for an ARM926EJ-S processor, the cache power consumption varies a

lot, which is from 3% up to 60% of the total power. The advantage is the simulation

speed of their method is 100 times faster than gate-level power estimation. However,

the authors did not show a clear model.
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Shye et al studied an HTC smartphone which used a Qualcomm MSM7201A chipset.

The CPU is a 528 MHz ARM11 processor [62]. The system includes: CPU, screen, call,

EDGE network, Wifi, SD card, DSP, and system (the power that is not considered in

the hardware components listed above). Linear regression is used to create the power

model. The details about the hardware components and corresponding coefficients are

listed in Table 2.26.

Table 2.26: Parameters used for linear regression in the power estimation model
[62].

HW unit Parameter Description
Range

(of βi,j)
Coefficient

(cj)unit

CPU
hi CPU util

med CPU util
Average CPU utilization while operating at 384 MHz
Average CPU utilization while operating at 246 MHz

0−100
0−100

3.97 mW/%
2.79 mW/%

Screen
screen on
brightness

Fraction of the time interval with the screen on
Screen brightness

0−1
0−255

150.31 mW
2.07 mW/(step)

Call
call ringing
call off hook

Fraction of the time interval where the phone is ringing
Fraction of time interval during a phone call

0−1
0−1

761.70 mW
389.97 mW

EDGE
edge has traffic

edge traffic

Fraction of time inverval where there is EDGE traffic
Number of bytes transferred with the EDGE network
during time interval

0−1
0

522.67 mW
3.47 mW/byte

Wifi
wifi on

wifi has traffic
wifi traffic

Fraction of time interval Wifi connection is on
Fraction of time interval where there is Wifi traffic
Count of bytes transferred with Wifi during interval

0−1
0−1
≥0

1.77 mW
658.93 mW

0.518 mW/byte
SD Card sdcard traffic Number of sectors transferred to/from Micro SD card ≥0 0.0324mW/sector

DSP music on Fraction of time interval music is on 0−1 275.65 mW
System system on Fraction of time interval phone is not idle 0−1 169.08 mW

If a single measurement in a sample i is βi,j , then the corresponding power consumption

consumed by the hardware is pi,j , which can be presented as:

pi,j = βi,j · cj , (2.54)

where βi,j is the input of the model and cj stands for the coefficients of each hardware

component listed in Table 2.26. Thus, the power consumed by the whole system in

sample i is the sum of the power of each component. Assuming the number of coefficients

is n, the power consumption can be described as:

Pi = k + (pi,0 + pi,1 + pi,2 + ...+ pi,n)

= k + ((βi,0 · c0) + (βi,1 · c1) + (βi,2 · c2) + ...+ (βi,n · cn)),
(2.55)

where k is a constant offset. If for each sample i, xi=(βi,0, βi,1, ..., βi,n) , and c=(c0, c1, ..., cn),

then Equation 2.55 can be represented as:

Pi = k + xi · c (2.56)
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If m samples are measured, the power model will become
P0

P1

...

Pm

 = k ·


1

1

...

1

+


β0,0...β0,n

β1,0...β1,n

...

βm,0...βm,n



c0

c1

...

cm

. (2.57)

Letting P=


P0

P1

...

Pm

, X=


β0,0...β0,n

β1,0...β1,n

...

βm,0...βm,n

, and e=(1...1)T , the final power model is

P = k · e+Xc. (2.58)

If k and c are determined, the whole system power consumption can be calculated from

Equation 2.58, and the power consumption of each hardware component can be modelled

by Equation 2.54.

Moreover, the total energy consumed by the system across a set of samples X with

sampling period, ts, can be presented as

E = ts · sum(P ) =

m∑
i=0

ts · Pi = ts

m∑
i=0

(k + xi · c) (2.59)

However, the phone may be in an idle state and the power consumption becomes con-

stant (pidle ≈ 68.3mW ). The system on ratio from Table 2.26 indicates the percent of

time that the system is in an active state. Taking the active state and idle state into

consideration, the power model becomes

Poweri = system on · (Pi) + (1− system on) · (pidle), (2.60)

when the system is in the active mode, the power is calculated by the linear regression

model presented in Equation 2.58. However, in the idle state, the constant Pidle is used

as the approximation.

The power model has been tested with mobile phone users for a period of time. The test

results shows that the power model has a good performance. Furthermore, 65% of the

individual samples are estimated with less than 10% error, and 90% of the samples are

within 20%. The test results shows that the energy consumption widely varies depending

upon the different users. However, the screen and the CPU are the two largest power

consuming components [62].
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Antti el al. studied an ARM 1136 mobile system (a Nokia Internet Tablet N810) [63].

The considered components of the system are the processor, WLAN interface, and dis-

play. Different variables are chosen to reflect the different activity levels of each com-

ponent. For example, hardware performance counters (HPCs) are used to study the

processors, the downlink and uplink data rates are used for the WNI, and the brightness

level is for the display. They use linear regression to create a full system power model

and there are 21 factors which are considered in the model and they are listed in Ta-

ble 2.27. More specifically, seventeen factors come from the processor, three factors are

used to model the WLAN interface, and one is for the display.

Table 2.27: Description of regression variables [63].

Hardware rescource Considered Factors

Processor HPCs available on ARM 1136:CPU CYCLES,
DCACHE MISS, TLB MISS, ITLB MISS, CY-
CLES DATA STALL, INSN EXECUTED, DTLB MISS,
DCACHE ACCESS, DCACHE MISS, EXP EXTERNAL,
DCACHE ACCESS ALL, IFU IFETCH MISS,
BR INST MISS PRED, CYCLES IFU MEM STALL,
LSU STALL, PC CHANGE, BR INST EXECUTED.

WLAN Interface CAM enable,network data rate (download or upload)

Display Brightness levels on a Nokia N810

Five different categories of benchmarks are used: 1. idle with different brightness levels,

2. audio/video players, 3. audio/video recorders, 4. file download/upload at different

network data rates, and 5. streaming. In each category, there may be more than one

case to test, such as audio/video recorders, and they are described in Table 2.28.

Although 17 different factors (presented in Table 2.27) were studied for the processor, in

order to make the power model concise, only the three most important factors are taken

into consideration, and they are CPU CYCLES, DCACHE WB and TLB MI. After

analysing the relationship between the power and the predefined factors, the following

power model is generated:
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Table 2.28: Descriptions of the workloads used in our energy benchmark [63].

Category Description Test Case

Idle with Different
Brightness Levels

CPU and memory workload: Low
Wireless connection: No
Brightness level: 0-5

Keep the system idle without running any appli-
cations and set the brightness level of the display
to different values.

Audio/Video Players

CPU and memory workload: Low-High
Wireless connection: No
Brightness level: 0 for audio player;
5 for video player.

Media player on N810: mplayer
Media file storage: Phone memory
Audio format: MP3, OGG, RM
Number of audio players in parallel: 1, 2, 3
Video format: AVI, MPEG
Number of video players in parallel: 1, 2

Audio/ Video
Recorders

CPU and memory workload: Medium
Wireless connection: No
Brightness level : 5

Run an embedded audio recorder to record an au-
dio file played on a machine close to the experi-
mental device.
Use the embedded camera to record a video.

File Download/ Up-
load at Different Data
Rate

CPU and memory workload: Low-High
WLAN connection: On
Network data rate: 16KB/s-400KB/s.
Brightness level: 0

N810: netcat
Linux Server: netcat, Trickle (bandwidth limiting
utility)
Data rate limit: 16, 32, 128, 256, and 400KB/s.
CAM: On/off (data rate < 32KB/s); Off (data
rate>32KB/s)
Download Storage: phone memory, /dev/null
Upload storage: phone memory

Streaming

CPU and memory workload: High
WLAN connection: On WLAN
Power saving mode: Enabled
Brightness level: 5

Watch online TV programs transferred from
www.itv.com. Encoding rate: 16-72KB/s
Listen to radio programs from three different radio
websites. Download date rate: around 24KB/s.
Use web browser to watch YouTube videos online.
Download data rate: 46-136KB/s depending on
the network conditions.

Power(W ) =0.7655 + 0.2474× g0(x0) + 0.0815× g1(x1) + 0.0606× g2(x2)

+ 0.0011× g17(x17) + 0.0015× g18(x18) + 0.3822× g19(x19)

+ 0.1255× g20(x20)

g0(x0) =
x0 − 1316.84

1349.423
, x0 =

c0

d
,

g1(x1) =
x1 − 0.000901

0.00045
, x1 =

c1

c0
,

g2(x2) =
x2 − 1316.84

1349.423
, x2 =

c2

c0
,

g17(x17) =x17, x17 : download data rate (KB/S),

g18(x18) =x18, x18 : upload data rate (KB/S),

g19(x19) =x19, x19 : CAM switch,

g20(x20) =x20, x20 : brightnesslevel,

(2.61)

where c0, c1, c2, d are the increments in CPU CYCLES, DCACHE WB, TLB MISS, and

monitoring period, respectively. Seven benchmarks are used to validate the performance

of the power model: radio, liveTV, YouTube, audio recorder, video recorder, upload,

and download. The biggest error comes from the video recorder, which is 13.7% and the

least error is 0.2%.
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The advantage of the model is conciseness and that real hardware is used. The accuracy

is also good except the video recorder test. However, the system does not consider the

energy cost of the memory, which is one of the most important subsystems of a mobile

system.

2.8 Some Other Related Research

Russell et al. studied the 80960JF processor (one instruction/clock execution, 32-bit

processor, 4kB instruction cache, 3.3V supply voltage [64]) and the 80960HD (32-bit

parallel architecture processor, 16kB instruction cache and 8kB data cache, 3.3V supply

voltage [65]) and found that most of the instructions consume similar power [66]. The

power consumption of each instruction is listed in Table 2.29. Based on these results,

they created a simple model in which the power is modelled with a constant parameter

and is not related to the instruction types. Four benchmarks (psdes, heap, fft and

moment) were used to test the performance of the model and the maximum error was

-8.5%.

Table 2.29: Subset of power measurements of 80960JF and 80960HD [66].

JF Processor HD Processor
Instr P̄ave s Cyc. P̄ave s Cyc.
add 1.77 0.03 1 2.87 0.03 0.5
sub 1.74 0.02 1 2.85 0.03 0.5
mul 1.72 0.003 5 2.80 0.02 2.5
div 1.62 0.02 35 2.43 0.02 17.5
mod 1.62 0.02 35 2.49 0.02 17.5

rotate 1.79 0.03 1 2.85 0.03 0.5
and 1.75 0.03 1 2.86 0.04 0.5
xor 1.76 0.02 1 2.87 0.03 0.5

setbit 1.75 0.03 1 2.87 0.03 0.5
bswap 1.62 0.02 10 2.81 0.04 0.5
mov 1.67 0.02 1 2.83 0.03 0.5

extern.ld 1.71 0.01 9 3.18 0.02 6
interrn.ld 1.75 0.02 2 3.40 0.03 0.5
extern.st 1.97 0.05 5 3.23 0.02 5

cmp 1.63 0.02 3 2.76 0.03 0.5
cmpdec 1.62 0.02 3 2.78 0.03 0.5
bswap 1.40 0.01 2 2.57 0.02 1
call/ret 1.56 0.01 14 2.95 0.02 5

However, all of these test results assume cache hits and the effect of cache misses is not

considered. Therefore, a program which has a lot of cache misses may not be estimated

correctly by this model. On the other hand, the 80960HD is a superscalar processor and

the effect of dual-issue is not analyzed. In Chapter 5, we choose a superscalar processor,

ARM Cortex-A8, as an example and analyze the instruction level power in detail.
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Sultan et al. also found similar results for LEON3 which was implemented in an FPGA

[67]. Furthermore, the range of the power consumption of Load/Store instructions is

from 590 nW to 640 nW and the range of all of the other instructions (including arith-

metic instructions, logical instructions, control instructions and shift instructions) is

between 550nW and 568 nW .

Sinha et al. studied the StrongARM processor (a 32-bit scalar processor with a five-

stage classic RISC pipeline, 16kB instruction/data cache. [68]) and they found that the

current variation of six different benchmarks (fft, fir, log sort, dhry, dct) was less than

8% [69]. Therefore, they assumed that the current was only related to the supply voltage

(Vdd) and clock frequency (f), and created a simple energy model:

Etot = VddI0(Vdd, f)∆t, (2.62)

where Vdd is the supply voltage, and ∆t is the runtime of the program. In this model,

they assumed that the current, I0(Vdd, f), was only related to the power supply voltage

and frequency of the processor.

However based on the instruction level current test, they found the maximum variation

for different instructions was about 38%. Therefore, the constant model may not be

accurate if a program contains a big percentage of instructions which consume more

power. In order to avoid this problem, they generated another more accurate model:

I(Vdd, f) = I0(Vdd, f)

K−1∑
k=0

wkck, (2.63)

where wk is a set of weights and ck is the fraction of total cycles of a program, i.e,∑
ck = 1. The cycles are divided into four classes as shown in Table 2.30.

Table 2.30: Weighting factors for K=4 on the Strong ARM.

Class Weight Value

Instruction w1 2.1739

Sequential memory access w2 0.0311

Non-sequential memory access w3 1.2366

Internal cycles w4 0.8289

This model is concise because it only needs four inputs. The model is based on the six

different benchmarks, thus it should be tested by other tests to prove the validation.

However, there are not enough benchmarks to test the model. Moreover, how to get the

fraction of each class is not described.

Konstantakos et al. clustered the instructions based on the instruction clock cycle using

a Motorola HC908GP32 processor (a 8-bit, 4.9152 MHz, 3V/5V power supply, micro

controller [70]) [18]. The energy consumption of each group is described in Table 2.31.
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Table 2.31: Average energy consumption of Motorola HC908GP32 instructions.

instruction group coefficient average energy per cycle(µJ) average deviation

1-cycle cp1 0.05355 0.53%

2-cycles cp2 0.0566 2.85%

3-cycles cp3 0.0585 5.50%

4-cycles cp4 0.0580 3.19%

5-cycles cp5 0.0576 1.34%%

Konstantakos et al. created an energy model:

Emicrocontroller =cp1.#instructions1− cycle+ cp2.#instructions2− cycles

+ cp3.#instructions3− cycles+ cp4.#instructions4− cycles

+ cp5.#instructions5− cycles,
(2.64)

where the variables cp1, ..., cp5 are the average energy for each instruction group [18].

This table also proves the results presented by Russell et al. in Section 2.8, because the

energy per cycle is quite similar. However, this model does not consider the effect of

cache misses and the benchmarks used to validate are inefficient (only one benchmark:

a data-logging application).

Shao et al. created a new instruction-level energy model for Intel’s Xeon Phi Processor

(22nm and containing 60 cores running at 1.09 GHz; each core contains a 512-bit vector

processing unit, a 32 kB L1 instruction/data cache, and a 512kB private L2 cache) and

the key factor is the energy per instruction EPI [71]. Firstly, they designed different

tests to generate the EPI for different instructions with different numbers of cores and

threads. Then, the total energy is calculated from the instruction counts multiplied by

the corresponding EPI. This idea is similar to the basic model in Section 2.1.3. However,

the advantage of this model is it considers multi-core and multi-thread programs. More-

over, this model is tested by five benchmarks (md, scan, reduction, stencil linpack 29k)

from the SHOC benchmark suite and the error is less than 5% [71]. However, this

method is highly dependent on the Intel performance counter and this method cannot

be used, if another processor’s performance counter cannot provide that data in detail.

2.8.1 The Effect of Cache

The cache is needed because it solves the speed mismatch problem between the CPU and

main memory. If a cache miss happens, it is necessary to fetch the missing instruction

from a lower level memory, such as main memory. However, visiting a lower level memory

will cost a lot more energy [7, 8]. Moreover, cache misses will lead to longer times to

execute the program.
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When cache misses exist, for an in-order scalar processor, the pipeline will stall and

the power consumption will be lower [8]. For example, the base power cost of in-

struction MOV in the 40MHz Intel 486DX2-S Series CPU (8kB cache) is 1021.68mW

(1021.68mW=309.6 mA × 3.3V ) but when cache misses, the average power is 712.8mW

(712.8mW=216 mA × 3.3V ) [8]. However, considering the time spent on fetching data

from lower memory, the total energy will be more.

Sridhar et al. presented a method to calculate the average cache miss penalty [24]:

Ave.CacheMissPenalty =
Ecode −

∑Num. of Instructions
i=0 BaseCosti

Number of Cache Misses
(2.65)

where Ecode is the total energy consumption of the program and BaseCosti is the base

cost of each instruction.

Based on Equation 2.65, the total cache penalty is given by the following equation :

 Cache

Miss

Penalty

 =


Number

of

Memory

Access

×
CacheMiss

Rate

×


Avg.

Cache

Miss

Penalty

 (2.66)

It is clear that the total cache miss penalty is related to three factors: the number of

memory accesses, the cache miss rate, and the average cache miss penalty. However,

this method is not validated by any benchmarks. Moreover, these three factors are not

easy to get without a cycle accurate simulation, which takes a long time.

On top of this, the cache miss penalty is harder to measure for a modern processor, such

as an out-of-order processor and non-blocking cache design. In this design, if a cache

miss happens and the following instructions are not related to the missing data, the

processor keeps running without waiting for the missing data. Thus the processor usage

is more efficient. However, it is hard to tell for how many clock cycles the processor will

stall because of a cache miss, since the penalty varies.

On the other hand, a lot of modern processors use a random replacement policy to

decide which cache line is evicted, such as the TI AM3359 processor (it uses the ARM

Cortex-A8 as the CPU ) [72]. Because of this replacement policy, it is hard to measure

the cache miss penalty and to calculate an accurate cache miss rate for a program.

Moreover the memory hierarchy becomes complex and a lot of modern processors have

several different level caches. Thus, the miss penalty of a level one cache is very different

from level two. However, cache misses coming from level one or level two are highly

dependent on the program and cache design.
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2.8.2 The Effect of The Different Hazards

There are three types of hazard: structural hazards, data hazards and control hazards

[21]. These hazards may affect the performance of the processor by stalling the pipeline.

If a pipeline stalls, it will consume extra energy because the runtime of the program will

be longer. However, this part of the energy penalty is not considered in the previous

work, since they do not show a clear method to estimate it.

Structural hazards occur when the resources are not replicated sufficiently and several

instructions want to get data from the same resource at the same time. Data hazards

occur when an instruction’s input value depends on the result of a previously uncom-

pleted instruction. Therefore, the pipeline has to wait until the required data is ready.

Control hazards occur when a branch exists in the program and the pipeline has to flush

if wrong instructions are executing.

There are some existing technologies to solve these problems, such as forwarding logic

and pipeline scheduling, but they do not address them completely. Therefore, the

pipeline may stall because of these hazards.

Penolazzi et al. introduced a data dependency test based on the simulation of a SPARC

Leon3 processor and Table 2.32 shows the energy of the test pairs [11] .

Table 2.32: Registers conrrelation analysis [11].

Pair With corr. No corr. cyclesDiff.

E(pj) cyc. E(pj) cyc.

ld add 269.66 4 125.53 2 2

smul smul 332..46 11 495.41 10 1

xor st 180.85 3 184 3 0

sll add 136.2 2 141.34 2 0

Table 2.32 is split into two groups horizontally. The upper portion is for when the

register correlation increases the number of cycles, such as the ld add pair. The add has

to wait until the ld instruction is finished, since one of the operands of add comes from

the previous instruction, ld. Therefore, it will take two extra cycles and consume more

energy. For the lower group, the data dependency does not affect the execution time.

The authors explained that the first instruction in the pair only takes one cycle to finish

which is too short to allow any level of parallelization.

Sridhar et al. explained how to calculate the pipeline stall penalty [24]. The pipeline stall

is divided into two cases: conditional and unconditional stall. The following equations

show how to calculate them, respectively:
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(
Stall

Penalty

)
=

UncondStall

Penalty

+

 Cond

Stall

Penalty

 (2.67)

UncondStall

Penalty

 =


Number

ofCalls

Uncond.

Branches

×
 Instr

Stall

Penalty

 (2.68)

 Cond

Stall

Penalty

 =


Number

ofCond

Branchs

×
(

Branch

Probability

)
×

 Instr.

Stall

Penalty

 (2.69)

However, this method may not apply to modern processors because modern processors

are able to predict the decision and the target address of a conditional branch. If a

branch is predicted correctly, it will not cause a pipeline stall. In other words, only the

branches which are predicted incorrectly by the branch predictor can cause a pipeline

stall.

There are a lot of reasons for a pipeline stall, such as a multi-cycle instruction, data

hazards, incorrect prediction of jumps, and cache misses [15]. However, when a pipeline

stalls, the processor has to wait and do nothing until the problem is solved. Therefore, if

a model can analyse these different reasons together rather than individually, the model

will be concise.

2.8.3 The Effect of Memory and The Various Address Models

Tiwari et al. mentioned that the memory and the various addressing modes can affect the

energy very much [7]. They studied the Intel x486 processor and found that instructions

with memory operands consumed more energy compared to instructions with register

operands. For example, instructions using only register operands cost about 300 mA.

However, memory reads that hit the cache cost upwards of 430mA and memory writes

cost upwards of 530 mA when the cache is a write-though cache. The difference is

nearly double. Thus, the power/enenrgy model has to consider the various addressing

modes [7].
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2.9 Conclusion

2.9.1 Summary of The Previous Work

This chapter has discussed an overview of different power and energy models at various

levels. The basic model (discussed in Equation 2.2 in Section 2.1) is the first instruction

level model developed 20 years ago [8]. However, many other models are based on it,

such as the idea of basic energy and overhead energy [15, 42, 73]. However, this model

has several disadvantages. The first disadvantage is that the overhead energy needs too

many experiments to cover all of the possibilities of different pairs. The second one is

that the model does not consider the effect of cache misses.

In order to solve these problems, a lot of research has been done, such as the NOP

model [30] (Section 2.2) and clustering instructions [33, 37] ( Section 2.3). For the

NOP model, a new definition of the base power/energ cost and overhead energy are

created, which reduced the measurements from O(N2) to O(N), where N is the number

of instructions in the ISA [30]. On the other hand, for clustering instructions, the

instructions are divided into different groups based on the power or energy consumption.

Instructions that come from the same group do not have overhead power/energy in the

power/energy model.

Linear regression is a common method to derive the power and energy model and a

lot of models have been developed based on this method [5, 16, 47, 74]. Firstly, some

variables are predefined, then different tests are run to gather the data about how these

variable affect the power or energy. Finally, different coefficients are given to different

parameters (Section 2.4).

A functional-level power model has been used to study VLIW processors [48,51]. Firstly,

the processor is divided into different functional blocks. Then, what can affect the power

of each block is studied separately. Finally, the total power of the processor is the sum

of the power of each block.

Some architectural level power estimation software has been developed. The advantage

of these tools are quick estimations and they can present cycle accurate power infor-

mation. However, these tools are hard to use for commercial modern processor models

since the details of these processors are not available.

2.9.2 Trends and Changes

Nowadays, processors have been well developed compared with 20 years ago and a lot

of technologies which can make the processor have a better performance are used and

further developed, such as out-of-order pipelines, instruction prefetch units, and branch
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prediction. For example, the cache sizes are bigger and multi-level caches are widely

used, such as in the Intel i7 (three level cache, L1 instruction/data cache is 32kB, L2 is

256 kB, and L3 is 2 MB per core) [21]. The pipeline becomes much deeper than before.

For example, the ARM Cortex-A8 contains a three-stage instruction fetch pipeline, five-

stage instruction decode pipeline and a five-stage instruction execute and load/store

pipeline [75].

Besides the change to the computer architecture, the manufacturing technology has also

improved. Figure 2.9 shows how fabrication technology has improved. It is clear that

the size of the CMOS is smaller and smaller. A lot of previous models are based on old

manufacturing technologies. For example, Tiwari et al. studied a Intel 486DX2 which

used 1 micron technology [76]. However, nowadays, 65 nm and 45 nm are widely used

for high performance processors.

Figure 2.9: Process generations [77].

Because of the development of the manufacturing technology, the clock speed of the

processor has increased. For example, Figure 2.10 shows the development of the Intel

processors.

On the other hand, the RISC processor becomes more and more popular, especially in

embedded systems.

The power/energy models have become more and more complex without improving

accuracy much, such as functional level power models. Based on these changes, a new

model or method to estimate the power and energy of a program is required. However,

the energy model is hard to create because there are a lot of factors that affect the

energy of a program. For example, the types of instructions, the Hamming distance of

two adjacent instructions and the pipeline stall can all affect the energy consumption.
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Figure 2.10: Clock frequencies of Intel microprocessors [77].

One of the most important factors is the pipeline stall, but there are also a lot of causes

that can make the pipeline stall, such as cache misses, write buffer limitation, etc. Thus,

an energy model which considers everything is hard to create.

Instead of establishing the energy model directly, we think it is easier to formulate

the energy of a program in two steps: 1) creating the power model, and 2) measuring

the runtime. The runtime of the program can be both measured easily, such as by the

program counter, and simulated by modern instruction set simulators, such as gem5 [78].

Therefore, the power model can also be extended to study the energy easily.
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OpenRISC

3.1 Target Processor

We choose OpenRISC as our first target processor because it is open source, which can

let us easily analyse the inside behaviour of the processor. The OpenRISC 1200 is a

32-bit Harvard architecture scalar RISC processor with a five stage integer pipeline and

some basic DSP capabilities. It supports both instruction and data caches with the

inclusion of an MMU [19]. The outside data bus and address bus use the WISHBONE

standard. OpenRISC 1200 can be changed by the users, for example, to delete or reduce

the area of cache. Therefore, OR1200 is a high performance, low power, extensible RISC

processor.

Figure 3.1: The architecture of CPU/DSP [79].

Figure 3.1 shows the architecture of the CPU/DSP which is 32-bit and the central unit

of the OR1200 processor. This CPU consists of seven parts: instruction unit, exceptions,

59
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system, GPRs(General Purpose Registers), Integer Execution Pipeline, MAC Unit, and

Load/Store Unit. [79]:

• Instruction Unit

The instruction unit implements the basic instruction pipeline. It is used to fetch

instructions, dispatch and record the history to make sure that the operations

finish in the right order. Moreover, it also executes the jump instructions, including

conditional jump and unconditional jump.

• Exceptions

The exceptions unit is used to handle the exceptions which come from external

interrupt requests, certain memory access conditions, internal errors, system calls,

and internal exceptions.

• System Unit

The System Unit is used to link all other signals of the CPU/DSP that are not con-

nected through instruction and data interfaces. It implements all system special-

purpose registers, such as the supervisor register.

• General-Purpose Registers

There are 32 general-purpose 32-bit registers in the OpenRISC processor and each

general-purpose register file has as two synchronous dual-port memories.

• Integer Execution Pipeline

Integer execution pipeline is the core of the pipeline which is used to implement

arithmetic instructions, compare instructions, logic instructions, and rotate and

shift instructions.

• MAC Unit

The MAC unit is used to execute DSP MAC operations and is fully pipelined.

Thus, it can accept one new MAC operation (32 × 32 with 48-bit accumulator) in

each new clock cycle.

• Load/Store Unit

The Load/Store unit is used to transfer data between the GPRs and the CPU

internal bus. When load/store instructions are issued, the LSU needs to check

if all of the operands (including the address register operand, the source data

register operand (for store), and the destination data register operand (for load))

are available.
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3.2 Experimental Tools

3.2.1 Synthesis tool: Design Compiler

A standard RTL synthesis tool, Synopsys Design Compiler, was used to implement

the OpenRISC to a seven layer metal, 1.05V , low-power, high-threshold-voltage 65nm

process. A maximum clock speed of 111MHz was achieved. Two files are generated: a

netlist file and a Standard Delay Format file (SDF), which is used to record the delay

of each gate and pin.

3.2.2 CMOS power dissipation and power analysis tool: Primetime

3.2.2.1 CMOS power dissipation

For a CMOS circuit, the power consumption can be divided into two main categories:

dynamic power and static power. The dynamic power results from transistor are switch-

ing. The static power is the power consumed when the transistors are stable [80].

Static Power

The static power includes three parts: sub-threshold leakage current when the tran-

sistors are off, tunnelling current through the gate oxide, and leakage current through

reverse biased diodes. However, the most significant part is the first one: source-to-drain

sub-threshold leakage current. The sub-threshold leakage occurs because when the tran-

sistors are off, there will still be a little current which prevents the gate from completely

turning off. The following equation shows how to calculate the static power [81]:

LeakagePower = V × Ileagage (3.1)

Dynamic Power

Yip et al. explained that dynamic power is caused by changing the voltage on a net

due to some stimulus [82]. Furthermore, dynamic power consumes the most significant

part of the power consumption and the CMOS power analysis tool, Primetime, divides

it into two parts: the switching power and internal power.

Switching Power

When a net is switching, the CMOS circuit needs to charge the various capacitive loads

of outputs and this part of the power consumption is called the switching power. The

following equation shows how to calculate the switching power:

SwitchingPower =
1

2
· Cload · V 2 · f, (3.2)
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where Cload is the sum of the net and gate capacitances on the driving outputs and the

frequency. f is the rate of state transitions [82].

Internal Power

Internal power is caused by the charging of the internal loads. For example, for a NAND

gate, the input A equals one, the input B equals zero and the output is one. However,

if the input A becomes zero and the input B becomes one, the output is the still same

but the internal signals have switched and the gate will consume power from charging

internal capacitances. Therefore, this part of the power consumption inside the gate

belongs to internal power.

The other part of internal power is short circuit power. When a CMOS gate is switching,

both the NMOS and PMOS transistors may conduct for a very short time and this is

called short circuit power. The following equation shows how to calculate interrnal

power:

InternalPower =
1

2
· Cint · V 2 · f + V · Isc (3.3)

The diagram below shows how these different power figures relate to a simple buffer cell.

Figure 3.2: Components of power dissipation [82].

From Figure 3.2, the leakage current Ileak varies depending on the transistor states. For

example, the leakage will be different when the N transistor is on or off. When the input

signal In changes from low to high, the Isc of the left inverter will change because the N

transistor turns on and the P transistor turns off. Thus, the internal power is consumed

due to the switching of Isc and Iintsw, and charging and discharging Cint. Additionally,

the switching current on the Out net charges and discharges Cload.



Chapter 3 OpenRISC 63

3.2.2.2 Power analysis tool: Primetime

Primetime is designed by Synopsys and provides users a single convenient platform to

perform full-chip, power analysis, concurrent timing, and signal integrity. Primetime

can analyse all of the power consumption discussed above very accurately. On top of

this, the power analysis engine of Primetime supports composite current source (CCS)

power models, which are used to model the CMOS cell library very accurately and also

supports multiple signal activity formats [82].

The following are the requirements for using Primetime:

• Netlist Data: the Netlist data includes the information about the connectivity and

types of the cells.

• Cell library power models: the cell library is provided by library vendors and it contains

the cell models for each cell, such as the information about the static and dynamic power

consumption.

• Signal activity: The dynamic power is directly proportional to the switching rate of

CMOS. The Value Change Dump file (VCD)records how signals switch.

3.3 Experimental Methodology

Figure 3.3: The test flow of OR1200.

Figure 3.3 shows the main test flow:

Firstly, based on the discussion in Section 3.2.1, the RTL of OpenRISC is synthesized

by Design Compiler, and a Netlist and an SDF file are generated.

Secondly, in order to load the tests into the memory and debug the system, there are

several files that need to be generated including: input.c, input.elf (the executable and
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linkable format), input.bin (the binary code), input.asm (the assembly code), and in-

put.vmem (verilog memory). The relationship between each file is shown below in Fig-

ure 3.4, and the OpenRISC tool chain supply all of the compiling and linking tools (the

compile commands are shown in Appendix A.1.1).

Figure 3.4: OR1200 tool chain.

In Figure 3.4, the input.c file is the source code which can be compiled into an input.elf

file. The input.elf can be compiled into an input.bin code and an input.asm code. The

input.asm code is the assembly code which includes the machine code and mnemonic

and can be used to debug. Then, the input.bin file can be compiled into a input.vmem

file which is our target file and it records all of the machine code.

The following is an example of the compiled input.asm code and the corresponding

input.vmem code.

Figure 3.5: An example of the generated assembly code and machine code.

The first column of the assembly code is the address of each instruction, and the first

column of the machine code is the number of each instruction. Because each instruction

takes four memory spaces (the instruction is 32 bit, 4 bytes), the ratio between them

is four. They are both displayed in hexadecimal. For example, the first instruction of
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“main” is d7e117fc whose address is 2250 in the memory and it is the 894th instruction

in the machine code.

Thirdly, the ModelSim simulator is used to simulate the different instructions and

programs. For different tests, we need to generate all of these files and load the fi-

nal input.vmem file into the modelled RAM file (more specifically, the RAM file is

“ram wb b3.v”). After the simulation, all of the signal switching information is stored

into a VCD file.

Lastly the Netlist and VCD file are used by the Synopsys Primetime simulator to analyze

the power for each test.

3.4 Power Analysis of Basic Test

3.4.1 Design Of The Tests

As all the models showed in Chapter 2, one of the most significant components is the

base power/energy cost of each instruction. The method to test the base power cost is

to run the test instructions in an infinite loop. This method has already been discussed

in Section 2.1. However, on top of this, there are three factors should be taken into

consideration together.

In order to measure the base power cost, the first factor is how big the loop size should

be. The loop size may be either too big or too small. If the loop size is too big, it may

be bigger than the cache size and cause some cache misses. On the other hand, if the

loop size is too small, it may reduce accuracy.

The second factor is the cache miss, and this should be considered for measuring the

effect of cache misses. The reason is the cache misses may affect the power of the

processor and also the runtime of a program. However, this effect was neglected in some

of the previous work. A lot of models did not take the cache miss effect into consideration

at all or did not show a clear method to calculate this effect.

Considering these two factors together, for measuring the base power cost, the size of

the loop of the tests is configured as 100 instances of an individual instruction type. The

reason is the cache size is 4kB, the loop size has to be less than 4kB. For measuring the

effect of cache misses, in order to get cache misses as many as possible, we configured

another tests whose loop size is close to 8kB (7912B, double the cache size). It does not

have to be exactly 8kB but should be more than 6kB at least. The reason is OpenRISC

uses a direct-map cache.

An important thing is that the contents of these two group of tests are the same and

the only difference is the size of the loop. For example, the test for measuring the
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base power cost of “ADD” is “ADD, ADD.....ADD”, and there are 100 instances. The

corresponding test to measure the effect of cache misses is still “ADD, ADD.....ADD”,

but there are 1978 instances (one instruction takes four bytes).

The third factor is the switching rate of the operands between two consecutive instruc-

tions since it may affect the power; [2,11,34], it is also necessary to evaluate this precisely.

After analyzing the energy and power usage of the OR1200 processor, we modified the

design a little because the IO ports consumed a lot of power, at times even more than

the core itself. The reason for this was that even in the case of a cache hit, the IO port

interfaces were used unnecessarily in logic instruction execution. Thus, preventing IO

ports from sending useless data reduces the power consumption significantly. Therefore,

we modified the design to filter data, and the processor sends data only when it needs

to communicate with memory.

In order to generate the input.vmem file of each test, we created a very simple C program

(for(i=1;i<100;i++)i=i+1;) and modified the contents of the resulting input.vmem file.

The reason we do this is there are a lot of initialization codes before running the main

function in C, such as enable cache. Thus, after the OpenRISC goes into the main

function, we modify the input.vmem and make the processor jump to an empty space

where we can write our own code. Because we just need the initialization code, the C

code is not important and should be simple.

Figure 3.6: The method of creating our own tests.

Figure 3.6 shows an example of how to reuse the code generated from the OpenRISC tool

chain. We modified the code “00 00 00 08” to “00 00 17 67” which is an unconditional

jump to an empty space (@00002000 in memory). Verilog can be used to modify the
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code more easily compared with writing the machine code in input.vmem directly and

this is demonstrated in Appendix A.1.2.

Considering the three factors discussed above: the cache can either hit or miss, mean-

while the operand switch rate can either be high or low, there are four cases in each type

of instruction. For the low operand switch rate, the Hamming distance of the operands

of two consecutive instructions is less than four, but it is more than twelve for a high

operand switch rate. The following is an example of the assembly code of the tests.

{

// For base power cost, the loop size is 400B (100*4);

// For the effect of cache misses, the loop size is close 8kB (7912B).

// For low operand switch rate, the Hamming distance of r2 and 5, and r3 and

r6 are both less than 4.

// For high operand switch rate, the Hamming distance of r2 and 5, and r3 and

r6 are both more than 12.

LOOP: add r1, r2, r3;

add r4, r5, r6;

add r1, r2, r3;

add r4, r5, r6;

...............

add r1, r2, r3;

add r4, r5, r6;

J LOOP

}

Table 3.1: The opcode and operand of the basic test.

low switch high switch

initial r5:0x3r6: 0xcr7:0xf r5:0x30aar6: 0x355r7:0xc55

movhi movhi r7, 0xamovhi r6, 0x5 movhi r7, 0x1555movhi r6, 0x2aaa

add add r3, r6, r5add r2, r5, r7 add r3, r6, r5add r2, r5, r7

addi addi r2, r5, 0x5addi r3, r6, 0xf addi r2, r5, 0x0addi r3, r6, 0x3fff

mul mul r3, r6, r5mul r2, r5, r7 mul r2, r6, r5mul r3, r5, r7

muli muli r6, r7, 0x6muli r3, r5, 0xf muli r6, r7, 0x1fffmuli r3, r5, 0x0

and and r2, r6, r5,r3, r5, r7 and r2, r6, r5,r3, r5, r7

andi andi r2, r6, 0xaandi r3, r5, 0x1f andi r2, r6, 0x39a7andi r3, r5, 0x638

or or r2, r6, r5r3, r5, r7 or r2, r6, r5r3, r5, r7

ori ori r2, r6, 0x1fori r3, r5, 0x10 ori r2, r6, 0x38ffori r3, r5, 0x700

xor xor r2, r6, r5xor r3, r5,r7 xor r2, r6, r5xor r3, r5,r7

xori xori r2, r6, 0xexori r3, r5, 0x5 xori r2, r6, 0x7f0xori r3, r5, 0x380f

sub sub r3, r7, r6sub r2, r6,r5 sub r3, r6, r5sub r2, r5, r7

lbs lbs r2, r6, 0x7lbs r3, r5, 0xa lbs r2, r6, 0x7lbs r3, r5, 0xa

sb sb 0x0(r5), r5sb 0xf(r7), r5 sb 0xff(r5), r5sb 0x0(r7), r5

sh sh 0x5(r5),r6sh 0x7(r7),r5 sh 0x2807(r7),r5sh 0x3007(r6),r6
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Table 3.1 shows the opcode and operand for the basic test. In order to have different

cache miss rate, the instruction numbers in the loop can be varies and the full details

are presented in Appendix A.1.2.

3.4.2 Test Results

Figure 3.7 shows the power consumption measurement of the OR1200. In this figure,

“CacheH”, “LowS”,“CacheM”,“HighS”, “Core” and “IO” mean a cache hit, operand

low switch, cache misses, operand high switch, the power consumption of the core and

the IO respectively. For each group of tests, the first two bars show the average power

consumption when the cache hits and the last two bars show when the cache misses.

The top part of each column is the IO power consumption and the bottom part is the

core.

The test result is from simulation and because there is no randomness included in the

model, the measurement results will be always be the same if the test is the same.

Therefore, there is no need to run each test more than once and so there is no variation

and no margin of error.

For different instructions, the core power consumption is quite similar. For a cache

hit, the maximum difference is 15.4% which comes from “and” and “sh” in the high

switching case. For a cache miss, the maximum difference is only 6.7% which comes

from “xor” and “sh” in the high switching case. The reason for this is that nearly all

of the instructions need five pipeline stages. The load/store instructions use the same

first three pipeline stages as the arithmetic and logic instructions. On the other hand,

no matter what the instruction is, the ALU always performs all the different operations

and only chooses a specific one as an output. Therefore, all of the instructions use quite

similar hardware, especially the arithmetic and logic instructions. Similar results are

also presented in [66,67,69].

Data switching can affect the core power, but in a very limited way. For example, the

maximum difference is 4.46%, which comes from “addi” with a cache hit. For the high

switching case, the core power is slightly higher than for low switching. The reason is

that the high switching case has a bigger CMOS signal switching rate than low switching,

which will mean more CMOS dynamic power. On the other hand, the average number

of switching bits of a register is about seven [11]. Therefore, the average power should

be not affected by the data Hamming distance and the power found for “low switching”

can be used as the standard power consumption of the core in the model.

A cache miss does not affect the core power very much either. For example, the maximum

difference is 10.7%, which comes from “and” in the high switching group. Therefore,

when analysing the core power consumption, it is not necessary to consider the difference

between a cache hit and a cache miss. The effect of cache misses can be modelled at
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runtime, since cache misses make the pipeline stall. Thus, a constant number can be

used to estimate the base power of the core. On the other hand, a cache hit happens

more frequently than a cache miss. This method makes the model more concise.

In the case of a cache hit, the IO ports consume similar power to the load, the arith-

metic, and logic instructions. The data switching rate of the operands of two adjacent

instructions does not affect the power much, and the maximum difference is 4.46%.

However, for a store, the IO consumes a lot more power. For example, 42.6% of the

energy cost of “sh” in the high switching case is from IO. The reason is that the cache

is a write-though cache without a write buffer. Thus, the write-though cache will write

data to main memory and consume more power whenever store instructions execute.

For the cache miss case, the IO port’s power is considerably affected by data switching,

especially for immediate addressing mode instructions. The reason is that two consecu-

tive immediate operands may have a large Hamming distance, while the range of possible

indirect operands is smaller.

Basically, the IO ports consume more power only when communication happens between

processor and memory. This will only occur with a cache miss, or execution of store

instructions. Therefore, our hypothesis is that the IO power consumption is related to

the cache miss rate and store instruction percentage. A load does not contribute because

if the data cache hits, the data asked for by the load comes from the data cache but not

from the main memory. Thus, it will not communicate with main memory and consume

more IO power.

From the analysis above, we can draw two key conclusions: (1) Regardless of which

instructions are run, or whether there is a cache hit or miss, the core of the processor

consumes similar power. (2) The IO ports consume a lot of power, but only when

communication happens between processor and memory. This will only occur following

a cache miss, or during execution of a store instruction. However, these two observations

cannot be guaranteed to apply to other processors and need to be checked. For example,

when a cache misses happen, the power consumption is related to the cache miss time

penalty, which will be discussed in Section 5.3.

3.5 Instruction Level Modeling

Sometimes, we are more interested in the energy consumed by a chip rather than the

power. Thus, the following section defines an energy model based on the instruction
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level power analysis. The model is described by Equation 3.4.

E =

∫ T

0
P (t)× dt

E = P̄ × T

= (P̄core + P̄io)× (Tcache hit + Tcache miss penalty),

(3.4)

where P̄ is the average power, T is the total run time. P̄core is the average power of

the core, which can be considered as a constant, based on the analysis above. P̄io is

the average power of the IO ports, which is related to the cache miss rate and store

instructions. Therefore, the following equation can be stated:

P̄io = P̄io(cache miss rate, st rate), (3.5)

Tcache hit is the time taken when there is a cache hit for the instruction:

Tcache hit =
4∑
i=1

Ni × Ti, (3.6)

where based on the function and the runtime of each instruction, instructions are di-

vided into four groups: MAC (data calculation, five clock cycles to finish), ALU (data

calculation, one clock cycle to finish), load (load data from memory, two clock cycles to

finish), and store ( store data, six clock cycles to finish). Ni is the number of instructions

in each group (MAC, ALU, load and store) and Ti is the timing for each group.

Tcache miss penalty is the time penalty for a cache miss, equation (3.7).

Tcache miss penalty = Rcache miss ×Ntotal × Tpenalty,

= Rcache miss ×
4∑
i=1

Ni × Tpenalty,
(3.7)

where Rcache miss is the cache miss rate for the whole program, Ntotal is the number of

the instructions of the program, Ni is the number of instructions in each group (MAC,

ALU, load and store), and Tpenalty is the timing penalty.

Based on the analysis above, from Equation 3.4 to Equation 3.7, we derive the following

equation:

E =(P̄core + P̄io(cache miss rate, ld st rate))×

(
∑
i

Ni × Ti +Rcache miss ×
4∑
i=1

Ni × Tpenalty).
(3.8)
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3.6 Estimation And Analysis

3.6.1 Design of the tests

In order to analyze how the cache and store instruction affect the energy usage, we

synthesized two different versions of OpenRISC: (1) 512B instruction cache and 512B

data cache. (2) 4kB instruction cache and 4kB data cache. To provide a more realistic

program environment, we decide to analyse full length programs. The main bodies of

the tests are loops. The components of each test are divided into three cases based on

the percentage of store instructions: low percentage (about 5%), mid percentage (about

10%), and high percentage (about 25%). On the other hand, for 512B cache, we can set

the cache miss rate of the tests by changing the loop size of each test and create three

groups of tests: small (nearly zero), mid (about 30%), and big (about 50%). Thus, there

are three different tests (the percentage of store is low, mid, and high) in each group

(cache miss rate is low, mid, and high).

Moreover, we designed another two simple programs to enrich our test coverage: a “3*3

matrix times another 3*3 matrix”, and a “(for(a=1;a<500;a++)a=a+1;)”. The first

program is considered as a fourth group since it has MAC instructions that the other

tests do not have. The second program is put into the first group (low cache miss rate

group), because the cache miss rate is low (0.2% and cache misses only happen when the

loop is first run). Consequently, eleven different tests (four from the first group, three

from the second group, three from the third group, and one from the last group) were

designed.

The method used to create these tests is similar to the base power cost tests in Sec-

tion 3.4. We only need to modify the contents of the loop in the input.vmem file

directly. The following is an example of the program which has a low percentage of

store instructions, including input.c, input.asm and input.vmem. The size of the loop

in input.vmem is controlled by the input.c file, since more instructions will be compiled

if there are more instructions in the loop of the input.c file. Moreover, the size of the

loop will determine the cache miss rate of the 512B cache.

int main()// the contents of the program is not important, because we need to

modify it.

// However, the length of the loop is important (the machine code lines of the

loop),

// because it affects the cache miss rate of the 512B processor.

int a=0;

int b=0;

......

int g=0;

for (a=0;a<50;a++)

{
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a=1+a;

b=b+a;

c=c+b;

......

f=f+e;

g=g+f;

}

asm volatile("l.nop 0x3\n\t");

return a;

Figure 3.8: An example of the test program.

Figure 3.8 shows the compiled assembly file and modified .vmem file. The modified

codes are highlighted. The code of the eleven tests is presented in Appendix A.1.3.
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Figure 3.9: The components of each test.

Figure 3.9 shows the components of each test program, in terms of instructions. There

are three columns in each test. The first column shows the components of each test

including load instructions, ALU instructions, store and multiply instructions. The

second and third columns shows the cache miss rate for the 512B cache and 4kB cache

respectively.

As in the discussion above, the tests are divided into four groups. We do not include the

branch and NOP components because branches only appear at the end of the program.

In the first group, there are four tests and the test loop size is short enough to be stored

in the instruction cache (both 512B cache and 4kB cache) completely. In the second

group, there are three tests and the loop size is a little bigger than 512B but smaller

than 4KB, which means cache misses occur for the 512B cache but does not for 4kB

cache. In the third group, there are three tests and the loop size is bigger than in the

second group, but smaller than 1kB. Thus the cache miss rate of 512B cache is higher

than before but cache hits still occur. For the 4kB cache, the cache miss rate is low since

cache misses only happen when the loop runs for the first time. Group four consists of

a single program to validate the instruction level energy model, and is based on matrix

multiplication.

Test G1.1 in group one is a simple looping C program. Tests G1.2, G2.1 and G3.1, in

groups 1, 2 and 3 respectively, have a higher percentage of store instructions compared

with other tests in the same group. For tests G1.3, G2.2, and G3.2, the main components

of the loop are logic instructions. Tests G1.4, G2.3 and G3.3 have a balance of store, and

logic instructions. On top of this, all of instructions are distributed evenly and the codes

of each test are presented in Appendix A.1.3. Although we have proved that the effect

of the Hamming distance between operands is small, less than 4.46% in Section 3.4.2,

we still need to set this value to a reasonable number. Considering the behaviour of
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a program, low bit switching would be a better than high switching. For example,

Montserrat etc. studied the Hamming distance for a VLIW processor (TI TMS320C6x)

and showed that most of the Hamming distance between instructions can be assumed to

be less than 10 [83]. On the other hand, Penolazzi et al. found that the average number

of switching register bits is seven [11]. Moreover, we also tested the register switching

bits for five different benchmarks and came to a similar conclusion, as described in

Section 3.7, below.

On the other hand, in Section 3.4 we also proved that the operand switching rate only

significantly affected the IO power. This register switching rate will be tested in Sec-

tion 3.7. There are many other factors that can affect the IO power, such as the cache

miss rate. Thus, for convenience, the effect of the operands can be neglected.

3.6.2 Test Result

Figure 3.10: The power consumption of each test.

Figure 3.10 shows the power usage of each test program. The first bar and second bar

of each group is the power consumption for the 512B cache and 4kB cache, respectively.

The top part of each bar is the IO power consumption and the bottom part is the core

power consumption. These simulation results do not include any randomness, so each

result is measured once, and there is no margin of error. From Figures 3.9 and 3.10, the

following points can be observed.

As hypothesized above, the core power of different programs is almost constant, and

the maximum difference between test programs is 3.1% and 4.2% for the 512B and 4kB

caches respectively. The average power is 52.7 µW and 86.7 µW, respectively. We take

52.7 µW and 86.7µW as the estimated power for the core with a 512B and 4kB cache,

respectively.



76 Chapter 3 OpenRISC

The IO power is related to the proportion of store instructions, as expected. Group 1

shows that the higher the percentage of store instructions is in the program, the more

IO power will be consumed. The reason for this is that the cache is a one-way direct

mapped cache, which means any time the processor transfers data to memory, it will

communicate with both cache and memory via IO ports.

The IO power is also related to the cache miss rate. For the 512B-cache processor in

groups two and three, we observe that the lower the cache miss rate, the less IO power

is consumed (this can be seen by comparing tests G2.1, G2.2, G2.3 with G3.1, G3.2,

G3.3, respectively). Furthermore, for the 4kB processor the cache can store the whole

program, which means the processor only experiences cache misses in the first loop

iteration, whereas the 512B-cache processor cannot store the whole program. Therefore,

it is quite clear that any time a cache miss happens, the 512B-cache processor will

communicate with memory via IO ports, and hence will consume more IO power than

the 4kB one.

Based on Figure 3.9 and 3.10, we can derive equation 3.9 by linear regression to describe

the IO power, with the cache miss rate and store instruction rate.

Powerio =13.633 + 48.5273× pST + 48.3817× pmiss−

3.0835× pST × pmiss,
(3.9)

where the pST is the percentage of store instructions in the whole program and pmiss is

the average cache miss rate. We also use this equation to estimate the power of the 4kB

instruction cache processor.

Equation 3.10 is used to calculate the difference between estimation and measurement

as the ratio of the difference and the measured value.

∆E

E
=
Eestimation − E

E
, (3.10)

where ∆E and E are the difference between the estimated and the measured values of

energy and the measured energy, respectively.

Figure 3.11 shows the difference between the measured results and the model. It shows

that the worst estimate comes from test G3.1 which is in error by 8.2% for the 512B

cache. For most of the other case, the difference is less than 5%. The minimum difference

is only -0.5% and -0.7% for 512B and 4kB, respectively. There are several reason the

errors. The first one is we use a constant value for estimating the core power consumption

of 512B cache case (52.7 µW) and 4kB cache case (86.7 µW). The second one comes

from the IO power estimation. The reason is when cache misses happen, instructions

have to be fetched from memory. However the IO switching rate varies according to

the Hamming distance of the machine codes of two consecutive missing instructions.
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Figure 3.11: Estimation result of basic test.

Therefore, for some tests, the Hamming distance is small, and the IO switch rate is

low and consumes less energy. But those tests whose Hamming distance is big consume

more power.

3.7 Comparison

Five benchmarks are used to test the performance of the model: Fibonacci, FIR filter,

Quicksort, Tak and Tower of Hanoi, and the input.c source codes are presented in

Appendix A.1.4. The input values of each test are shown in Table 3.2. We do not use

very complex tests or complex input data, because both the Modelsim simulation and

Prmietime power analysis are time-consuming. Although these tests are simple, the aim

of the OpenRISC experiments is to briefly test our idea: designing an energy model

based on the average power consumption and the runtime. On the other hand, more

input data just increases the runtime of the test but the instruction types do not change,

such as in FIR and Quicksort. Moreover, we have already shown that the data may not

affect the power significantly in Section 3.4. Thus, we do not consider the disadvantages

of these benchmarks to be very important.

Table 3.2: The input value of each benchmark

Test name Description of the input

Fibonacci Generate 15 Fibonacci number

FIR 20 inputs number with 5 coefficients

Quicksort 25 random numbers from 0 to 99

Tak tak(10,5,3)

Hanoi five discs
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Figure 3.12: The components of each benchmark test program.

The detail of each benchmark is shown in Figure 3.12. The first bar shows the percentage

of NOP , branch, Load, ALU , store, and MUL respectively. The second bar shows the

cache miss rate of each test. In this test, we focus on the 4kB cache processor.
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(a) The distribution of the register switching bits in Fi-

bonacci.

(b) The distribution of the register switching bits in Fir.

(c) The distribution of the register switching bits in

Quicksort.

(d) The distribution of the register switching bits in Tak.

(e) The distribution of the register switching bits in

Hanoi.

Figure 3.13: The distribution of the register switching bits.

Table 3.3: The average changing bit of each test

Fibonacci Tak FIR Hanoi Quicksort

Average changing bit 2.26 2.39 8.78 2.55 10.69

Figure 3.13 and Table 3.3 show the distribution of the register switching bits and the

average switching bits of each test, respectively. It is clear that the average number of

switching bits in Fibonacci, Tak, and Hanoi is less than three, but the number in FIR

and Quicksort is more than seven. The average switching rate of these five benchmark

is 5.334. The first reason could be the operands of the tests do not need to have a

big change, such as Hanoi. Thus, the register switching bit is low. Secondly, the tests
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does not need to have a big jump because of the small instruction code size. Thus, the

register which record the address does not need to change much to jump, which results

in a small Hamming distance change. Hence, we assume the low switching rate case

as the core power consumption is reasonable although the power is not related with it

much (less than 4.46%). The relative test details are presented in Appendix A.1.4.

Table 3.4: Estimation results for standard benchmarks

Test io m io e io dif% Pcore m Ptotal dif% T diff% Energy diff%
Fibonacci 27.1 22.22 -18.01 86.1 -3.78 -6.80 -10.58
FIR 26.5 23.66 -10.72 86.1 -1.99 -4.01 -6.00
Quicksort 26.1 21.88 -16.17 86.9 -3.91 -7.37 -11.28
Tak 26.2 24.42 -6.79 85.5 -0.52 -6.54 -7.06
Hanoi 25 25.56 2.24 85 2.05 -4.75 -2.69

Table 3.4 shows the results of applying our model to benchmarks. Columns “io m”

and “io e” show the simulated and estimated IO power in µW, respectively. “io dif”

shows the percentage difference between “io m” and “io e”. “Pcore m” and “Ptotal dif%”

show the measured power consumption of the core and the total power difference between

estimation and measurement (including IO and core power). “T diff%” shows the timing

error, and finally, “Energy diff%” shows the total energy difference between estimation

and measurement. The test result is from simulation (no random parameters). Thus,

we measure each test once, and there is no margin of error. Here, we use 86.7µW as

the estimated power consumption of the core, because it is the average of the power

consumption in Section 3.6.2.

From Table 3.4, it is clear that the IO power has a maximum error of -18.01% (Fi-

bonacci). Most of the “IO” errors are negative. The reason is in our IO power model,

we only take the percentage of store instruction and average cache miss rate into consid-

eration. However, we do not consider the the Hamming distance of the machine code of

the two missing instructions. In our training test, the Hamming distance is smaller than

real tests because a lot of the instructions are similar, such as the example presented in

Figure 3.8. However, the power consumption of the core is much bigger than IO: 3.31

times bigger on average. Thus, this prediction is good enough to present an accurate

power model of the full processor. For example, the maximum power estimation error

of the five benchmarks is -3.91% (Quicksort). On the other hand, the energy estimation

is also accurate: the maximum error is -11.28% (also Quicksort).

The timing errors column (“T diff%”) shows the difference between the timing modelled

by Equation 3.7 and measurement. The reason for the mismatch is that our timing model

is too simple. For example, it ignores all of the data cache misses and pipeline stalls,

such as control and data hazards. Moreover, all cache misses assume the same constant

timing penalty. On the other hand, for a modern processor, a lot of new technologies

are used to avoid cache misses and to try to minimise the timing costs caused by branch

instructions. Thus, it becomes harder to create an accurate timing model, and so we will
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not model timing further but measure the time in order to generate power and energy

models. Therefore, we do not further investigate timing errors.

On top of this, the following calculation can be used to approximate the difference

between estimation and the measurement:

∆E

E
=
Eestimation − E

E

=
(Ptotal + ∆Ptotal)× (T + ∆T )− Ptotal × T

Ptotal × T

=
Ptotal ×∆T + T ×∆Ptotal + ∆Ptotal ×∆T

Ptotal × T

=
∆Ptotal
Ptotal

+
∆T

T
+

∆Ptotal ×∆T

Ptotal × T

≈ ∆Ptotal
Ptotal

+
∆T

T

(3.11)

From Table 3.4, the error in the power estimation is less than the timing error. More

specifically, the timing and the average power estimation errors are 5.894% and 2.45%

respectively. Thus, the largest part of the energy misprediction comes from the timing

model. Improving the timing model or finding a better method to predict the time

would make the energy model more accurate.

Table 3.5: Comparison with Previous Work: Energy Estimate Percentage Error

Our method [5] [11].model 1 [11].model 2 [12]

Fibonacci -10.58% — 15.58% 9.36% —

Fir -6.00% -4.05% — — 11.52%

Quicksort -11.28% — 11.41% 3% —

Our method is compared with previously reported results in Table 3.5. The method

reported in [5] tests an ARM7TDMI processor and gives a better estimate because it

considers the overhead energy of each instruction pair as an independent factor. In [11],

Sandro et al. test a SPARC Leon3 processor and create two models. The [11].model

1 does not consider the data dependency but the [11].model 2 takes it into account.

For the first model (Fibonacci: 15.58%, Quicksort: 11.41%), our model has a better

performance but it is worse than the second model (Fibonacci: 9.36%, Quicksort: 3%).

We have a better result than that reported in [12]. Oscar et al. tested a PowerPC 603e

microprocessor, [12], but they use static analysis method, which can analyse the code

and estimate the results fast.

We do not consider the effects of adjacent instructions, and thus save a lot of time in

measurement. Table 3.6 shows how many measurements are needed when considering

the effect of adjacent instructions. There are 9, 11 and 16 different instructions used

in Fibonacci, FIR filter and Quicksort respectively. Moreover, there are an additional

10, 13 and 25 instruction pairs in Fibonacci, FIR filter and Quicksort that need to
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Table 3.6: Comparison with previous work: measurement times of the models
which consider the overhead energy.

model considering overhead
(The number of different instruction types +

the number of different instruction pairs)

Fibonacci 9+10

Fir 11+13

Quicksort 16+25

General 4325(932/2)

be characterized in the more complex model. However, in our model, the measurement

times are proportional to the numbers of instruction types, therefore we need four tests in

total. There are 93 different opcodes in the ISA and therefore 4325 different instruction

pairs. Another example, which considers the effect of adjacent instructions, shows that

there are 49 instructions in the ISA and this needs 1176 tests for a DSP 56K chip [30].

In our model we consider the energy of the cache miss in terms of a timing penalty.

The reason is that when a cache miss appears, the program needs more time to finish,

and will therefore consume more energy. This approach gives an effective method for

considering how cache misses affects the energy consumption, which is not considered

in [5], [11] or [12].

3.8 Conclusions

We choose OR1200 as the target processor and present an instruction-level energy model

for a single core, in-order RISC processor architecture, in which the effect of cache

misses is considered. Firstly, the power in the processor does not change much for

different operations and operand switch rates, and is thus considered constant. Several

tests based on other processors have found the power of the core is fairly constant for

different instructions, for example, the StrongARM [69]. Thus, the method may be

applied to other RISC processor architectures. Secondly, the IO port power is related

to the percentage of store instructions and the cache miss rate. Using linear regression,

an accurate IO port power equation is derived. Instead of analysing the energy of

each instruction individually, we use average power and run time to estimate the total

energy. Finally, a timing equation considering the cache miss rate is also presented. We

demonstrate that our model is almost as accurate as those that consider the effect of

adjacent instructions, but that the model can be characterized with significantly less

effort.
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3.9 Limitation of the work

This work has several limitations:

Firstly, the architecture of the processor is simplistic. A lot of advanced technologies

which can improve the performance of a processor are not used, such as branch prediction

and instruction pre-fetch. The branch predictor can predict the decision of the branch

instruction: taken or not-taken and the target address. Thus, the processor will not stall

and keep working before the final result of the branch comes [84, 85], thus this makes

the pipeline have a steady flow. The aim of the instruction pre-fetch is similar: improve

the performance of the processor, but the idea is to decrease the latency and wait time

between the cache and the memory. The method is to pre-fetch the instructions from

the lower level memory before they are needed. Therefore, when these instructions are

really needed by processor, they are already in the cache or buffer [86–88].

Moreover, the cache of OpenRISC is a direct map, write-though cache, without a write-

buffer. It is probably the simplest cache design. However, it affects the performance of

the processor. The reason is that a write-though cache is relatively slow compared with

a write-back cache when writing data to the memory. Moreover, a direct map cache has

a higher cache miss rate than a set associative cache. The write-though cache visits the

memory often, so it will consume more power than write-back [89].

Secondly, advanced power saving technologies, such as clock gating, power gating and

dynamic voltage scaling, are not used . A clock tree in a CPU consumes a lot of power

(estimated as 15%-45% [90, 91] and 34% [92]), because it is the one of the most active

networks. Clock gating can save power by adding more logic circuits into the clock tree

to stop the flip-flops in them switching when not necessary. Power gating uses similar

ideas and the method is to cut off the supply voltage when the block of circuit is not

used, [93,94].

On the other hand, the dynamic power is proportional to the square of the supply

voltage. If the power supply for the circuits that are not in the critical path is lower but

still meets the requirements of speed, the power will be much lower [95,96].

Thirdly, the results come from simulation, not a fabricated chip. The result will be

affected by the limitations of the simulation.

In order to extend our method, we decided to analyse the behaviour of a real chip, the

ARM11.
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ARM11

As discussed in Section 2.6 and 3.9, generating a power/energy model based on the RTL

simulation has several disadvantages. Therefore, we extend our previous method to the

ARM1176JZF-S and measure the power and energy on a real processor.

4.1 Target Processor

The ARM11 is designed for high performance and low power and is the first implemen-

tation of the ARMv6 instruction set architecture. Moreover, it supports a lot of tech-

nologies that can improve the performance of the processor, such as dynamic branch

prediction [97]. Figure 4.1 shows the pipeline stages of the ARM11; there are eight

Figure 4.1: Power supply schematic diagram [97].

stages in the ARM11. For the last four stages, ARM11 has three different pipelines for

85
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three different types of instructions. Furthermore, arithmetic and logic instructions use

the stages Ex1, Ex2, Ex3 and WBex. Stage MAC1, MAC2, MAC3 and WBex are used

by Multiply instructions. Both load and store instructions use the ADD, DC1, DC2 and

WBIs stages.

Compared with OpenRISC, the advantages of ARM11 are:

1. Managing instruction branches

Branching can affect the performance of a processor significantly because the re-

sult of the target address is not available until several clock cycles after the branch

instruction is fetched. The processor may do some unnecessary work if the pro-

cessor cannot notice the branch in time. In ARM 11, there are two techniques to

solve this problem: a dynamic branch predictor and a branch target address cache

(BTAC). The dynamic branch predictor is used to check whether the branch has

been fetched before and whether it has a higher chance to be taken or not. The

BTAC is used to predict the destination address of the branch [20].

2. Improved memory access

In order to solve the problem of the speed mismatch between the CPU and memory,

a lot of technologies have been developed, such as caches. However, for a simple

processor, the cache may only allow instructions that do not need to visit the

data cache to be executed during a cache miss. The ARM11 uses a hit-under-miss

operation of the memory system and non-blocking cache design. Because of this

design, it allows the processor to execute instructions that access the data cache

during a cache miss. If three consecutive data misses are encountered, the pipeline

will stall [20].

3. Pipeline parallelism

The ARM11 is an out of order (OoO) scalar processor, which means instructions

can finish earlier than a previous instruction if they do not have dependency on

the result of previous instructions. For example, because of missing data, the

load/store pipeline may stall. However, the consecutive ALU instructions are not

related to the missing load/store instructions. Thus, they can be dispatched into

the ALU pipeline without waiting. This technology makes the processor usage

more efficient.

4.2 Experimental Methodology

A Mini6410 development board with the Samsung S3c6410A embedded processor which

uses the ARM1176JZF-S as the CPU was used [98]. It supports dynamic voltage and
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Table 4.1: Samsung S3c6410A features.

Technology 65nm

Vdd 1.1V

Frequency 533MHz

Prefetch Unit uses both static and dynamic branch prediction

Branch target address cache 128-entry

L1Icache write-though cache with 16kB, 4-way, 2 words
per cycle for all requesting sources,

L1Dcache write-though cache with 16kB, 4-way, 2 words
per cycle for all requesting sources

Figure 4.2: The original power supply schematic diagram [100].

frequency scaling (DVFS) and also has interfaces for low power memory. Table 4.1 shows

the key parameters of the CPU [99].

Figure 4.2 shows the original power supply of the ARM11 processor and how we modified

it. To make the necessary power measurements, a resistor is included between the power

supply and the CPU. However, if the resistance is too low, an oscilloscope cannot measure

it very accurately. If it is too big, the voltage drop between two sides of the resistor will

be too large and the power supply to the CPU will not be enough. Thus, after tests, a

0.51Ω series resistor was chosen. A digitizing oscilloscope, the Agilent MSO7012B, with

a sample rate of 2GSa/s was used to measure the instantaneous power as tests were

carried out. We used two probes to measure each side of the resistor, V1(t) and V2(t).

The instantaneous power, average power and the energy are calculated by the following

three equations:

P (t) = I(t)V (t)

=
V1(t)− V2(t)

R
× V2(t)

=
V1(t)− V2(t)

0.51
× V2(t),

(4.1)
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Paverage =

∫ T

0
P (t)dt/T

=

∫ T

0

V1(t)− V2(t)

0.51
× V2(t)dt/T,

(4.2)

E = Paverage × T, (4.3)

where V1(t) and V2(t) are the instantaneous voltages at test points 1 and 2 in Figure 4.2

respectively. T is the runtime of the program. Linux is used as the operating system.

The runtime of the experiments and benchmark applications can be measured directly.

4.3 Basic Power Consumption of Different Instructions

One of the most significant components of a power model is the base power consumption

of each instruction. Therefore, we wrote different tests to measure it. The main body of

each test is a loop with a number of instances of the same opcode in each loop. In order

to avoid cache misses, we chose 8kB (2000 instructions) as the loop size. All of these

tests can be fully cached, because both the L1 data and instruction caches are 16kB.

The following is an example of pseudo code which is used to measure the base power

cost of AND.

while(1);// use a infinite loop to measure the power

{

asm(" AND r3, r2, r1 ");

asm(" AND r4, r1, r2 ");

asm(" AND r3, r2, r1 ");

asm(" AND r4, r1, r2 ");

...............

asm(" AND r3, r2, r1 ");

asm(" AND r4, r1, r2 ");

// there are 2000 instructions in the loop

}

Table 4.2 shows the operand of each test. ALU stand for any arithmetic logic instruc-

tions. In order to distinguish between addressing modes, we have put “i” or “r” at the

end of the test name, for immediate or register respectively. In the loop, the opcode is

not changed but the operands are changed slightly (the Hamming distance is less than

five). Section 4.4 will demonstrate that the affect of the Hamming distance is small, less

than 4.65% on average. Thus, the key parameter to effect the power is the opcode. An

example of the full test code is presented in Appendix A.2.1.
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Table 4.2: The operand of each basic test.

Test Code Test Code

ALU(i) r1: 0x11
r2: 0x5
ALU r3, r2, #0x3f
ALU r4, r1 , #0xf3

ALU(r) r1: 0x11
r2: 0x05
ALU r3, r2, r1
ALU r4, r1 , r2

Load [r5]=0x11
[r5,#4]=0x5
ldr r3, [r5]
ldr r4, [r5, #4]

Store r1:0x11
r2:0x3f
str r1, [r5]
str r1, [r5, #4]

Table 4.3: The sample standard deviation (STDEVA) and margin of error
(MOE) of the ARM11 basic power test.

MOV (i) MOV (r) MUL ADD(i) ADD(r) AND(i) AND(r) SUB(i) SUB(r)

AVEDEV 0.001717 0.00144 0.001918 0.002013 0.002482 0.002367 0.001122 0.011883 0.018067

MOE(W ) 0.001683 0.001412 0.00188 0.001973 0.002432 0.002319 0.001099 0.011646 0.017705

EOR(i) EOR(r) OR(i) OR(r) ASR(i) ASR(r) LSL(i) LSL(r) Load Store

AVEDEV 0.004786 0.012916 0.001795 0.003221 0.002033 0.013266 0.001243 0.01204 0.003165 0.002235

MOE(W ) 0.00469 0.012658 0.001759 0.003157 0.001992 0.013 0.001218 0.011799 0.003101 0.002191

Table 4.3 shows the sample standard deviation (STDEVA) and margin of error (MOE)

of the ARM11 basic power test. In order to minimize the effect of the cache, we tested

each instruction with four different cache usage patterns (number of instructions in a

loop): 1.6kB, 4kB, 8kB and 16kB. We measured the power twice in each case. If there

was more than 5% difference, we measured again. The MOE is calculated at a 95%

confidence level. For example, the MOE of MOV (i) is 0.001683W , which means that

we can be 95% confident that the power consumption of MOV (i) is the average power

of the measurement plus or minus 0.001683W .

Figure 4.3: The basic power consumption of ARM11.

Figure 4.3 shows the power consumption of arithmetic and logic functions in different

addressing modes, multiply, load, and store. The following conclusions can be drawn:
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• For different arithmetic and logic instructions, the processor power consumption is

similar. The opcode does not affect the power much because all of the arithmetic

logic instructions use the same pipeline stage. (See also [67].) For example, the

instructionMOV (i) consumes the least power, which is 0.195W . However, SUB(i)

consumes the most power, which is 0.2052W . Thus, the maximum difference of the

arithmetic and logic instructions is 5.45%. The standard deviation (σ=0.00304)

divided by the average power (PALU=0.199W ) is 1.53%, so the basic power of

different arithmetic logic instructions is very similar.

• The addressing mode does not affect the power very much. For example, the

minimum difference is -0.03% (between EOR(i) and EOR(r)) and the maximum

difference is 5.02% (between SUB(i) and SUB(r)).

• Load consumes the most power. There are not any instruction or data cache misses

in the load test because all the target operand addresses are the same. Therefore,

the load test runs faster and consumes more power than arithmetic/logic functions.

• Store consumes the least power because the instructions per clock cycle (IPC)

of store is 0.04. Furthermore, the fact that it takes 25 cycles to finish one store

instruction means pipeline stalls happen often. The reason is the cache is a write-

though cache, thus when stores execute, some data will be written to the main

memory. However, writing data back to the main memory takes a relatively long

time and the cache write buffer has to ensure the coherence of the data cache

and the main memory. Consequently, although the processor tries to keep writing

data to memory, the pipeline may stall and has to wait until the buffer is empty

before writing new data. Moreover, the cache write buffer is only 1-2 words in the

ARM11 and is easy to fill. Hence, the processor spends most of the time waiting

for the cache write buffer and so the power of a store instruction is the lowest.

Based on the analysis above, in order to simplify the model, we assume all arithmetic

and logic instructions consume the same base power in all addressing modes since they

use similar hardware. In order to test the effect of the different opcodes, the value

of r1 and r2 in the code example is set to two and four to reduce the effect of data.

On the other hand, the effect of data, such as the Hamming distance of two adjacent

instructions, is not important and it will be discussed in Section 4.4.

On the other hand, cache misses can affect the power and speed of a processor. In order

to study how cache misses affect the power consumption, we increased the loop body

size in different tests and measured how the power changes with the cache miss rate.

Figure 4.4 shows those results, where both the L1 data and instruction caches are 16kB

and the following conclusions can be drawn:

• When the loop body is larger than 16kB, the instruction cache is not sufficiently

large to contain it which causes an increase in the cache miss rate, and hence
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Figure 4.4: Power consumption versus cache miss rate.

arithmetic/logic and load instructions consume less power. This is due to the

processor having nothing to do while the instruction fetch unit is reading from the

instruction memory. Therefore, the power consumption is lower, but the energy

per instruction is higher. As the cache miss rate increases, the processor spends

more and more time waiting and the pipeline stalls happen more often.

• The power consumption keeps decreasing until 32kB. The reason is that when the

size is bigger than 32kB, most of the instructions of the previous loop have been

evicted from the cache when the new loop starts. Thus, most of new instructions

have to be fetched from main memory. The lowest speed of the tests is determined

by the main memory speed. Thus, even though the loop size increases to more than

32kB, the power does not change. The power for an arithmetic/logic instruction

is about 0.170W and for load 0.177W .

• The behaviour of store is quite different. For a cache miss, the power consumption

becomes greater than for a cache hit. The reason is that for a cache hit, because of

the write buffer, the pipeline stalls often and the IPC is low (0.04). However, for

a cache miss, the IPC does not change very much (0.028) and the processor has to

fetch new instructions from main memory. Hence, the communication rate with

main memory is higher and more data goes though the IO ports. Consequently, a

cache miss consumes more power than a cache hit.

4.4 The Power Consumption of Different Hamming Dis-

tances

Previous research suggests that the Hamming distance between the operands of two con-

secutive instructions may affect the power consumption [11,34]. Our third test considers
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this on an ARM11 when the L1 cache always hits.

Table 4.4: The opcode and operand of Hamming distance test.

Test Hamming distance

4 8 12 16

ADD(r) r1: 0x3
r2: 0xc
ADD r3, r2, r1
ADD r4, r1, r2

r1:0xf
r2:0xf0
ADD r3, r2, r1
ADD r4, r1, r2

r1:0x3f
r2:0x3fc0
ADD r3, r2, r1
ADD r4, r1, r2;

r1:0xff
r2:0xff00
ADD r3, r2, r1
ADD r4 , r1 , r2

ADD(i) r1:0x3
r2:0xc
ADD r3, r1, #0x3
ADD r4, r2, #0xc

r1:0xf
r2:0xf0
ADD r3, r1, #0xf
ADD r4, r2, #0xf0

r1:0x3f
r2:0x3fc0
ADD r3, r1, #0x3f
ADD r4, r2, #0xfc0

r1:oxff
R2 oxff00
ADD r3, r1, #0xff
ADD r4, r2, #0xff00

Load [r5]=0x3
[r5,#4]=0xc
ldr r3, [r5]
ldr r4, [r5, #4]

[r5]=0xf
[r5,#4]=0xf0
ldr r3, [r5]
ldr r4, [r5, #4]

[r5]=0x3f
[r5,#4]=0x3fc0
ldr r3, [r5]
ldr r4, [r5, #4]

[r5]=0xff
[r5,#4]=0xff00
ldr r3, [r5]
ldr r4, [r5, #4]

Store r1:0x3
r2:0xc
str r3, [r5]
str r4, [r5, #4]

r1:0xf0
r2:0xf
str r3, [r5]
str r4, [r5, #4]

r1:0x3f
r2:0x3fc0
str r3, [r5]
str r4, [r5, #4]

r1:0xff
r2:0xff00
str r3, [r5]
str r4, [r5, #4]

Table 4.4 shows the opcode and operand of the Hamming distance test. The Hamming

distance between the operands of two consecutive instruction increases from 4 to 16.

The main body of this test is still a loop and an example of the full code is present in

Appendix A.2.2.

Table 4.5: The sample standard deviation (STDEVA) and margin of error
(MOE) of the ARM11 Hamming distance power test.

Bit switches 4 8 12 16

STDEVA MOE(W ) STDEVA MOE(W ) STDEVA MOE(W ) STDEVA MOE(W )

ADD(i) 0.001679 0.002327 0.001122 0.001556 0.001802 0.002039 0001999 0.002771

ADD(r) 4.86E-05 6.74E-05 0.001586 0.001794 0.000235 0.000326 0.002787 0.003863

Load 0.000133 0.000184 0.000124 0.000172 0.003464 0.004801 0.000598 0.000828

Store 0.001819 0.002058 0.002057 0.002328 9.84E-05 0.000136 0.001077 0.001218

Table 4.5 shows the sample standard deviation (STDEVA) and margin of error (MOE)

of the ARM11 Hamming distance power test. We measured each test twice. However, if

the difference between them was bigger than 5%, we measured a third time. The MOE

is calculated at a 95% confidence level. For example, the MOE of ADD(i) is 0.002327W ,

which means that we can be 95% confident that the power consumption of ADD(i) is

the average power of the measurement plus or minus 0.002327W .

Figure 4.5 shows the test results, including ADD(i), ADD(r), Store, Load. In these

figures, the X-axis represents the operand Hamming distance of two consecutive instruc-

tions and we chose 4, 8 12 and 16 for the target experiments.

From Figure 4.5, we can see that the power consumption is increasing with the Ham-

ming distance of the operand. However, Hamming distance does not affect the power

consumption significantly. The maximum difference of each test comes from when the

Hamming distance is 4 (the least power) and 16 (the maximum power). For example,



Chapter 4 ARM11 93

(a
)

T
h

e
p

o
w

er
co

n
su

m
p

ti
o
n

o
f
A
D
D

(i
).

(b
)

T
h

e
p

o
w

er
co

n
su

m
p

ti
o
n

o
f
A
D
D

(r
).

(c
)

T
h

e
p

o
w

er
co

n
su

m
p

ti
o
n

o
f
S
to
r
e.

(d
)

T
h

e
p

o
w

er
co

n
su

m
p

ti
o
n

o
f
L
o
a
d
.

F
ig

u
re

4.
5:

T
h

e
p

ow
er

co
n

su
m

p
ti

on
of

d
iff

er
en

t
H

am
m

in
g

d
is

ta
n

ce
.



94 Chapter 4 ARM11

the maximum difference of ADD(i) is only 8.5%; the maximum differences of ADD(r),

Load and Store are 3.85%, 2.22% and 4.02% respectively. Hence, the maximum and

average difference of all tests is only 8.5% (from ADD(i)) and 4.65%, respectively.

On top of this, previous research shows the average switching number in a program

is about seven [11]. Therefore, in order to have a concise model, we do not put any

Hamming distance variables into our power model.

4.5 The Overhead Power Cost

Previous research suggests that the overhead of two consecutive instructions may affect

the power consumption [7, 8]. However, there are 51 different instructions in the ARM

assembly language set [101] and it would need 1275 (51×50
2 ) measurements to cover every

potential pair. This takes a lot more effort than if we do not consider the overhead power.

For example, the NOP model only needs to measure as many examples as the number

of instruction types [30]. Thus, in considering every instruction pair, the number of

measurements would be about 25 (NO.ofinstructions2 ) times more than the NOP model.

However, for a modern processor, we believe that the effect of the overhead power cost

is very small for arithmetic and logic instructions, since different instructions share a

lot of resources, such as the L1 cache, or the branch predictor. Thus, we assume that

the overhead cost will not be significant and our fourth test will pick four instructions

to analyse the overhead power cost on an ARM11 when the L1 cache always hits.

To demonstrate the overhead power of arithmetic and logic instructions is not important,

we picked four common ALU instructions: ADD(r), AND(r), SUB(r), and OR(r) as

examples. The reason for picking these four instructions is ADD(rank 5), AND(rank 6),

SUB (rank 7) is that they are the most common logic and arithmetic instructions for

the 80x86 [102]. MIPS has similar rankings, based on the mix of instructions for five

SPECint2000 programs [102]. The following is an example of the code, which is used to

measure the overhead cost of SUB(r) and ADD(r).
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while(1);

{

asm (" SUB r3 , r2, r1"); //1

asm (" AND r4 , r1 , r2"); //2

asm (" SUB r3 , r2, r1"); //3

asm (" AND r4 , r1 , r2"); //4

.......................

}

Table 4.6: The opcode and operand of the overhead power test.

Test Code Test Code Test Code

ADD(r) AND(r) ADD r3, r2, r1
AND r4, r1, r2

AND(r) SUB(r) AND r3, r2, r1
SUB r4, r1, r2

SUB(r) ORR(r) SUB r3, r2, r1
ORR r4, r1, r2

ADD(r) SUB(r) ADD r3, r2, r1
SUB r4, r1, r2

ADD(r) ORR(r) ADD r3, r2, r1
ORR r4, r1, r2

AND(r) ORR(r) AND r3, r2, r1
ORR r4, r1, r2

Table 4.6 shows the opcode and operand of the overhead tests. In order to minimize the

effect of the operands, we set both r1 and r2 to be 0. The main body of this test is still

a loop and an example of the full code is presented in Appendix A.2.3.

Table 4.7: The sample standard deviation (STDEVA) and margin of error
(MOE) of each instruction.

ADD(r) AND(r) OR(r) SUB(r)

STDEVA 0.001881 0.001145 0.002388 0.000617

MOE(W ) 0.002128 0.001295 0.002702 0.000698

Table 4.8: The sample standard deviation (STDEVA) and margin of error
(MOE) of instruction pairs.

AND(r) OR(r) SUB(r)

STDEVA ME(W ) STDEVA ME(W ) STDEVA ME(W )

ADD(r) 0.001595 0.002210 0.001663 0.002305 0.000662 0.000917

AND(r) 0.002208 0.00306 0.001509 0.002092

ORR(r) 0.002355 0.003264

As in Section 4.5, we measured each test twice unless the difference was bigger than

5%. Table 4.7 and Table 4.8 shows the sample standard deviation (STDEVA) and the

margin of error (MOE) of each instruction and and of each instruction pair, respectively.

The MOE of each table is calculated at the 95% confidence level.

Table 4.9: The power consumption of each instruction(W ).

ADD(r) AND(r) SUB(r) OR(r)

0.18815 0.18879 0.19716 0.18774
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Table 4.10: The average power consumption of each pair(W ).

AND(r) SUB(r) OR(r)

ADD(r) 0.18740 0.19136 0.18687

AND(r) 0.19276 0.18827

SUB(r) 0.19223

Table 4.9 and Table 4.10 show the power consumption of each instruction and the average

power consumption of each pair, respectively. Because the base power consumption of

each instruction is similar, the average power of each pair is also similar.

Table 4.11: The measured power consumption of each pair(W ).

AND(r) SUB(r) OR(r)

ADD(r) 0.19304 0.20053 0.18868

AND(r) 0.19907 0.18956

SUB(r) 0.20233

Table 4.12: The overhead power and the difference ratio(W ) .

AND(r) SUB(r) OR(r)

ADD(r) 0.0056 (2.92%) 0.00917 (4.57%) 0.00180 (0.96%)

AND(r) 0.00631 (3.17%) 0.00129 (0.68%)

SUB(r) 0.01010 (4.99%)

Table 4.11 shows the measured power consumption of each pair, and Table 4.12 shows

the overhead power and the different ratio between the overhead and the average power

consumption. The first column is the first instruction of each pair and the first row is

the second instruction of the pair. Based on the definition of the overhead power cost

proposed by Tiwari [8], the sequence of the instructions inside of the instruction pairs

will not affect the overhead power/energy. The overhead power cost of Instruction1 and

Instruction2 is the same as Instruction2 and Instruction1 [8]. The reason is that it is

hard to distinguish whether Instruction1 is after Instruction2 or Instruction2 is after

Instruction1 when you run a sequence of instructions “Instruction1, Instruction2,

Instruction1, Instruction2, Instruction1, Instruction2...” to measure the overhead

power. Eventually, both of these two cases exist in this sequence and are considered to

be equal for convenience. Thus Table 4.11 and Table 4.12 are triangular matrixes.

It is clear that the overhead power cost is positive but very small, which is expected.

For example, the minimum ratio is 0.68%, which is from the instruction pair AND and

ORR. The maximum ratio is 4.99%, which is from OR(r) and SUB(r).

Based on these test results, we do not need to consider the overhead cost of different

pairs from the same instruction class since this effect is small but it would need a lot of

effort to measure every possibility.
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4.6 Instruction level power analysis and modeling

In order to study how the different instructions and IPC affect the power in combination,

such as the overhead power between different classes, a more realistic program environ-

ment was created. The instructions are grouped into three classes: ALU logic, load and

store. The reason is that the function and power consumption of classes ALU, load,

and store are very different. Furthermore, ALU instructions focus on calculation, load

focuses on reading data from memory, and store focuses on saving data to the memory.

Thus, these three classes of instructions use different hardware of the processor and

consume different power, which is shown in Figure 4.3. Chapter 7 shows how to clus-

ter instructions into different classes in more details. The components of the program

are coded manually to allow understanding of the distribution of the program in detail

and to change it easily. The following is an example of pseudo code and the different

components are evenly distributed in the program.

while(i<0xFFFF);

{

asm(" AND r3, r2, r1 ");

asm(" ADD r4, r2, r1 ");

asm (" STR r1, [r5]");

asm (" LDR r1, [r5]");

...............

asm(" AND r3, r2, r1 ");

asm(" ADD r4, r2, r1 ");

asm (" STR r1, [r5]");

asm (" LDR r1, [r5]");

// 25% are STR, 25% are LDR and 50% are Logic

}

Table 4.13 shows the test opcodes and operands in detail. R1 and R2 are set to 0x11

and 0x5, respectively. For each test, N is set to 1000, 2000, 3000, 4000, which mean the

cache usage is from 25% to 100% and the final test power is the average of each. In each

test, we try to use as many different instructions as possible, which can minimise the

effect of one single instruction. An example of the full code is presented in Appendix

A.2.4.

We choose 25% as a step size and the percentage of the arithmetic logic instructions

decreases from test 1 to test 9. For example, all of the instructions in test 1 are arith-

metic/logic but only 25% of instructions come from arithmetic/logic in test 7, test 8

and test 9. In contrast, the load and store instruction percentages increase. Finally,

Table 4.13 shows all of the possibilities. The advantage is that we can take the effect

of the instructions between different classes, such as overhead power, into consideration

without involving extra tests. Furthermore, we do not need measure all of the possible



98 Chapter 4 ARM11

Table 4.13: The opcode and operand of the tests for modeling.

Test Code Test Code Test Code

test1 ADD r3, r2, r1
ORR r4, r1, r2
SUB r6, r1, #0xf
EOR r7, r2, #0xf3
ADD r3, r2, r1
AND r4, r1, r2
MOV r6, r1
ORR r4, r1, r2
...
repeat N times

Test2 LDR r3, [r5, #4]
ORR r4, r1, r2
SUB r6, r1, #0xf
EOR r7, r2, #0xf3
LDR r3, [r5,#8]
ADD r4, r1, #0xf
MOV r6, r1
AND r3, r1, r2
...
repeat N times

Test3 STR r3, [r5, #4]
ORR r4, r1, r2
SUB r6, r1, #0xf
EOR r7, r2, #0xf3
STR r2, [r5,#8]
ADD r4, r1, #0xf
MOV r6, r1
AND r3, r1, r2
...
repeat N times

Test4 LDR r3, [r5, #20]
ORR r4, r1, r2
LDR r6, [r5, #0x4]
EOR r7, r2, #0xf3
LDR r3, [r5,#8]
ADD r4, r1, #0xf
LDR r6, [r5, #16]
AND r3, r1, r2
...
repeat N times

Test5 LDR r3, [r5, #20]
ORR r4, r1, r2
STR r1, [r5, #0x4]
EOR r7, r2, #0xf3
LDR r3, [r5,#8]
ADD r4, r1, #0xf
STR r1, [r5, #16]
AND r3, r1 , r2
...
repeat N times

Test6 STR r1, [r5, #20]
ORR r4, r1, r2
STR r2, [r5, #0x4]
EOR r7, r2, #0xf3
STR r1, [r5,#8]
ADD r4, r1, #0xf
STR r2, [r5,
#0x16]
AND r3, r1, r2
...
repeat N times

Test7 LDR r3, [r5, #20]
LDR r4, [r5, #8]
LDR r6, [r5, #0x4]
EOR r7, r2, #0xf3
LDR r3, [r5,#8]
LDR r3, [r5, #12]
LDR r6, [r5, #16]
AND r3, r1, r2
...
repeat N times

Test8 LDR r3, [r5, #20]
STR r3, [r5, #16]
LDR r6, [r5, #0x4]
EOR r7, r2, #0xf3
LDR r3, [r5,#8]
STR r1, [r5, #12]
LDR r6, [r5, #16]
AND r3, r1, r2
...
repeat N times

Test9 LDR r3, [r5, #20]
STR r1, [r5, #24]
STR r3, [r5, #16]
EOR r7, r2, #0xf3
LDR r3, [r5,#8]
STR r3, [r5, #12]
STR r2, [r5, #16]
AND r3, r1, r2
...
repeat N times

different instruction pairs. We ignore the 0% logic case because it is unlikely that a

program does not have any logic instructions.

Table 4.14: The sample standard deviation (STDEVA) and margin of error
(MOE) of the modelling tests.

Test1 Test2 Test3 Test4 Test5 Test6 Test7 Test8 Test9

STDEVA 0.001719 0.000688 0.001827 0.002374 0.002354 0.00082 0.002255 0.001978 0.003249

MOE(W ) 0.001924 0.000778 0.002068 0.002687 0.002664 0.000928 0.002552 0.002238 0.003677

Table 4.14 shows the sample standard deviation (STDEVA) and margin of error (MOE)

of the modelling tests. We measure each test three times unless the difference between

any measurements is bigger than 5%. The MOE is calculated at a 95% confidence level.
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Figure 4.6: Instruction distribution and IPC of each basic test.

Figure 4.6 shows the components and IPC of each test in the first and second columns,

respectively. The first column shows the same data as that present in Table 4.13. The

second column shows the IPC for each test. There are a lot of different reasons why the

pipeline stalls, such as data dependencies and cache misses. But in all cases, the IPC

becomes low and the processor has nothing to do but wait. Thus, IPC can be used as

a parameter to estimate how smoothly a program runs and to reflect the effect of the

cache miss rate and pipeline stall rate.

Figure 4.7: The power consumption of each basic test.

Figure 4.7 shows the power consumption of each basic test. Test 3 and test 6 consume

the least power because the IPC is the lowest in these tests. Therefore, the pipeline

stalls happen more often and the processor has to wait longer than in other tests. Test 9

consumes the most power because the IPC is very high (more than 0.968 for the tests).

It means the processor is extremely busy calculating and has few pipeline stalls. For
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the tests with similar IPCs, if the test has more logic instructions, it will consume less

power, as in test 1 and test 2. Therefore, we use linear regression to generate an average

power model to describe how these factors determine the power:

Poweraverage =0.1882− 0.0601× plogic + 0.0081× pstore
+ 0.1251× IPC,

(4.4)

where the Poweraverage is the average power consumption of the program, and plogic,

pstore and IPC are the logic instruction percentage, store percentage and IPC of the

program respectively. We assume that all of the instructions come from these three

cases. Thus, plogic+pstore+pload = 100%, and pload can be presented by pstore and plogic

after creating the power model by linear regression, such as pload = 100%−plogic−pstore.
Therefore, only plogic and pstore are presented in the model.

Figure 4.8: The estimation results for each basic test.

Figure 4.8 shows the difference error percentage between the model and the measured

results. It is clear that all of the tests are estimated accurately, with errors less than 10%.

The reason for the under-estimation of test 5 is that the IPC of test 5 is lower compared

with other tests, such as test 1 and test 2. There are several factors which may induce

errors. For example, one factor may be measurement since we measure ten times for

each test and there are slight differences between each measurement. Thus, we use the

average value as the final power and this may induce an error. On the other hand, the

effect of the operate system (OS) may be another reason. However, this result also shows

that our estimation is accurate. If all of tests are over-estimated or under-estimated, it

means something is over considered or less considered, and a constant factor should be

added into the model to increase the accuracy.
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4.7 Validation

Six benchmarks: Bitcount, Fibonacci, Tak, FIR filter, Quicksort and Tower of Hanoi

were used to test the performance of the model. The input values of each test are shown

in Table 4.15, and the input.c source code is presented in Appendix A.2.5.

Table 4.15: The input value of each benchmark.

Test name Description of the input

Bitcount Default small test from Mibench

Fibonacci Generate 25 Fibonacci number

Tak Tak(3000,2,3)

Fir 4000 inputs number with 5 coefficients

Quicksort 4000 data from Mibench\ automotive\qsort\input large.dat

Hanoi 9 discs

The components of each test are shown in Figure 4.9. The distribution was generated

by the instruction simulator tool gem5 [78]. We do not need a cycle-accurate simulation

tool and the ARM performance counter also can supply this information. Therefore, the

distribution is fast and easy to measure.

Figure 4.9: The components of each benchmark test program.

Figure 4.9 shows that the lowest IPC is for Tak (0.22), while for Fibonacci it is more

than 0.95. The components of the different tests are also very different. For example,

the logic percentage of Fir is less than 60% but it is more than 80% in Bitcount.

Table 4.16 shows the sample standard deviation (STDEVA) and margin of error (MOE)

of each benchmark. We measure each test twice unless the difference of the two mea-

surements is bigger than 5%. The MOE is calculated at a 95% confidence level.
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Table 4.16: The sample standard deviation (STDEVA) and margin of error
(MOE) of each benchmark.

Bitcount Fib Tak Fir Quicksort Hanoi

STDEVA 0.00174 0.000854 0.001323 0.001294 0.001639 0.002288

MOEW 0.002411 0.001184 0.001834 0.001793 0.002271 0.003171

Figure 4.10: The power consumption of measurement and estimation.

Figure 4.10 shows the measured power (column 1), estimated power from our model

(column 2) and the difference percentage (curve). Tak consumes the least power, which

is 0.177W , because it has the lowest IPC compared with the others. Although Bitcount,

Fir, Quicksort and Hanoi have different IPC and opcode percentages, they consume

similar power. Moreover, the power estimation is very accurate and the maximum

estimation error is less than 9% with an average absolute error of 4.88%. The reason for

errors may be because even when different programs have the same IPC, they may still

have different hardware usage. For example, one program may have more cache misses

but the other may have more branch miss predictions or data dependencies. Thus,

different hardware usage means different power and energy.

4.8 Energy model

Sometimes, people are concerned more with the energy usage of a program than the

power. However, an energy model is hard to create because there are a lot of factors

that affect either the power or the runtime of a program, and all of these factors can

affect the energy. For example, the types of instruction or the Hamming distance of

two adjacent instructions can affect the power, and pipeline stalls can affect both the

runtime and the power.
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Moreover, a pipeline stall has many causes, such as cache misses, write buffer limitations,

etc. Thus, it is hard to consider every possibility. On the other hand, even when the

energy model is created, in order to use it, the target program has to be analysed, which

is usually achieved by an ISA simulater, such as gem5. This is because it is hard to get

the input data for an energy model without a simulator, such as the cache miss rate and

the number of each type of instruction.

Compared with an energy model, an average power model can be generated much more

easily and the parameters of the power model are also easier to obtain. Instead of

establishing the energy model directly, it is easier to formulate the energy of a program

in two steps: 1) create the power model, and 2) measure the runtime. The runtime

of the program can be measured easily using the program counter, for example, and

simulated by instruction set simulators, such as gem5 [78]. Therefore, the power model

can also be extended to model the energy.

In this case study, the runtime of the program is measured from the OS, thus the error in

estimating the energy consumption of a program is the the same as the power estimation

error. The relationship between power and energy is given by Equation 4.3.

4.8.1 Comparison with Previous Work

Compared with the other models, one benefit of ours is its simplicity because the over-

head power of two consecutive instructions is not considered separately. Our method

and tests have already analysed the effect of the overhead cost between the instructions.

In other words, we do not need to do extra tests or work for measuring the overhead

cost. However, if a model considers the overhead energy as an independent factor, the

measurement times will be proportional to the square of the number of instructions in

the instruction set architecture (ISA). For example, ARM assembly language consists

of 51 different instructions [101], so it would need at least 1300 measurements to cover

every potential pair.

Another benefit of our model is that it is easy to create. In order to generate the power

model, we use just nine training tests to achieve minimum and maximum errors of

−0.56% and 9.15% based on six benchmarks, respectively. However, the energy model

for the MeP processor requires sophisticated training tests and considers the standard

deviations of every parameter value [103]. The minimum and maximum error of that

model are 2% and 16%. However, Bazzaz et al. created a model for the AT91SAM7X256

processor which uses the ARM7TDMI as the core [15]. They used 60 specialized tests

to estimate the coefficients of each energy sensitive factor. On top of this, there are 35

parameters for the model including: the ARM7 instruction set, register bank bit flip,

instruction word Hamming distance etc. [15].
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We also consider the effect of cache misses and pipeline stalls to some extent. Further-

more, cache misses and data dependency can make the pipeline stall, hence will affect

the power and energy consumption of a program. We take IPC into account in terms of

these factors and this approach gives an effective method for analyzing them. However,

these factors are not considered much in [5, 11]. For example, Nikolaos et al. did not

provide a detailed method to estimate the effect of cache misses [5]. Sandro et al. did

not present a clear full energy model and only presented several parts of models, such

as 1-instruction-based and 2-instruction-based models [11].

Table 4.17: Comparison with previous work.

Our method [5] [11].model 1 [11].model 2 [12] [104] [15]

Fibonacci 4.47% — 15.58% 9.36% — — —

Fir 8.29% -4.05% — — 11.52% — —

Quicksort -7.51% — 11.41% 3% — 8.98% —

Bitcount 3.8% — — — — — -4.22%

Table 4.17 compares previous work and our method. The compared results come from

the previous research and based on their own processors and testing systems (we did

not redo the tests on our ARM11 system). The Fir test has a better estimation for

an ARM7TDMI processor than ours in [5] because it considers the overhead energy

separately. This will make the model more complex and harder to build but the model

would have a better performance. A better estimation of Quicksort comes from the

second model in [11] because it considers the data dependency. But for the other tests,

our model gives a better prediction. The reason for errors is that even when different

programs have the same IPC, they may still have different hardware usage. For example,

one program may have more cache misses but the other may have more branch mis-

predictions or be data dependent. Thus, different hardware usage means different power

and energy.

4.8.2 Comparison with the Basic Energy Model

In order to compare the performance of our model with other methods shown in Ta-

ble 4.17, we ran the tests using the ARM11 board system. All of the models shown in

Table 4.17 are related to the basic instruction level energy model discussed in Section 2.1

and based on it. Thus, instead of comparing with each different model, we compare the

performance of our model and the basic instruction level energy model.
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The basic instruction level model, discussed in Section 2.1.3, can be represented as the

following equation:

E = EBase + Eoverhead +
∑
k

Ek

EBase =
∑
i

(Bi ×Ni)

Eoverhead =
∑
i,j

(Oi,j ×Ni,j) ,

(4.5)

where the most fundamental factor is the sum of the base energy cost of each instruction

EBase, Bi is the base cost of instruction i andNi is the number of instructions, i, executed

in the program. Eoverhead is the overhead cost, and Ek is any additional energy due to

cache misses or resource constraints [7, 8, 29]. However, none of the methods presented

in Table 4.17 shows how to measure Ek, thus we assume that the cache miss penalty

dominates Ek and the following section will demonstrate how important it is. On the

other hand, we have clustered the instructions into three classes: logic, load, and store,

thus the base energy cost, EBase will be:

EBase =
∑

i∈(logic,load,store)

(Bi ×Ni)

= Blogic ×Nlogic +Bload ×Nload +Bstore ×Nstore,

(4.6)

where Blogic, Bload, and Bstore are the average base energy costs of each class: logic

instructions, load instructions, and store instructions, respectively. Nlogic, Nload, and

Nstore are the number of instructions in each class, respectively.

Firstly, we try to measure the energy cost by EBase. Assuming that the runtime of a

test is T , the corresponding number of clock cycles Ncycles will be

Ncycles = T × F, (4.7)

where F is the clock frequency of the ARM11. Thus, from Equation 4.7, the number of

instructions, N , in the program will be:

N = Ncycles × IPC

= T × F × IPC
(4.8)

On the other hand, the relationship between the total number of instructions, N , and

the distribution of each class of instructions is:

Nlogic = N × plogic
Nload = N × pload
Nstore = N × pstore,

(4.9)
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where plogic, pload, and pstore are the percentage of the logic instructions, load instruc-

tions, and store instructions, respectively. Nlogic, Nload, Nstore are the number of instruc-

tions from logic, load, and store, respectively. Combining Equation 4.6, Equation 4.8,

and Equation 4.9, the following equation can be derived:

EBase = (Blogic × plogic +Bload × pload +Bstore × pstore)× T × F × IPC (4.10)

Because energy is equal to the average power multiplied by time, the base energy cost

of each instruction can be presented as:

Bi = Pi × Ti,

(i ∈(logic, load, orstore))
(4.11)

where Pi is the average base power cost of instruction i and Ti is the time period to finish

the instruction i. Because the base power/energy cost of each instruction is measured

in the circumstance of a cache hit, for all of these three classes: logic, load, and store,

Ti always equals the time period of the clock cycle Tclk (Tclk × F = 1). Combining

Equation 4.10, and Equation 4.11 together, the base energy cost of the program can be

described as:

EBase = (Blogic × plogic +Bload × pload +Bstore × pstore)× T × F × IPC

= (Plogic × plogic + Pload × pload + Pstore × pstore)× Tclk × T × F × IPC

= (Plogic × plogic + Pload × pload + Pstore × pstore)× T × IPC,

(4.12)

On the other hand, the overhead energy can be derived similarly based on Equation 4.5

and Equation 4.10:

Eoverhead = (Ologic load × pload × 2 +Ologic store × pstore × 2)× T × F × IPC (4.13)

where Ologic load and Ologic store are the overhead energy cost between Logic and Load,

and Logic and Store, respectively. pload and pstore are the percentage of Load and Store

instructions, respectively. As the main components of a program are Logic instructions

and we assume all instructions are distributed evenly, there will be only two overhead

energy costs for one Load or Store. For example, for the sequence of code: Logic1,

Store, Logic2, there are two instruction switches: the first is from Logic1 to Store, and

the second is from Store to Logic2.

Based on Equation 2.1, the relation between the overhead energy Oinstruction1 instruction2

of the instruction pair instruction1 and instruction2, and the average power consump-

tion of the instruction pairs, Pinstruction1 instruction2 described in Section 2.1.2, can be
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presented as

Oinstruction1 instruction2 = Tclk × (
Pinstruction1 instruction2 × 2×N

2×N
−

Pinstruction1 ×N − Pinstruction2 ×N
2×N

)

= (Pinstruction1 instruction2 −
Pinstruction1 + Pinstruction2

2
)× Tclk,

(4.14)

where Pinstruction1 and Pinstruction2 are the base power costs of instruction1 and instruction2,

respectively. N is the number of instruction1 and instruction2 in the test.

Based on Equation 4.13 and Equation 4.14, the following equation can be derived:

Eoverhead = ((Plogic load −
Plogic + Pload

2
)× pload + (Plogic store −

Plogic + Pstore
2

)× pstore)

× 2× Tclk × T × F × IPC

= ((Plogic load −
Plogic + Pload

2
)× pload + (Plogic store −

Plogic + Pstore
2

)× pstore)

× 2× T × IPC
(4.15)

Because it is unclear how to model the energy consumed by a pipeline stall,
∑

k Ek,

in [7, 8, 29], we assume that the most fundamental part of this cost is the cache miss

penalty, and the following equation can be derived.

Emiss = Pmiss × Tmiss,

= Pmiss ×Ncycles miss × Tclk,

= Pmiss × (
N

IPC
−Ncycles hit)× Tclk,

= Pmiss × (
N

IPC
−N)× Tclk,

= Pmiss ×N × (
1

IPC
− 1))× Tclk,

(4.16)

where N is the total number of instructions, Pmiss and Tmiss are the cache miss power

consumption and timing penalty, respectively. IPC is instruction per clock cycle. Since

ARM11 is a scalar processor, the IPC is one for a cache hit. Therefore, the number of

clock cycles spent on cache hits, Ncycles hit, is the same as the number of instructions N .

On the other hand, Figure 4.4 shows the cache miss power consumption, Pmiss, depends

on the instruction types. Thus, it can be presented as:

Pmiss =
∑
i

Pmi × pi,

= Pmlogic × plogic + Pmload × pload + Pmstore × pstore,
(4.17)
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where Pmlogic, Pmload, and Pmstore are the cache miss power consumption of instruction

logic, load and store, respectively.

Combining the Equation: Tclk×F = 1, Equation 4.8, Equation 4.16, and Equation 4.17,

the cache miss energy consumption is calculated by the following equation:

Emiss = (Pmlogic × plogic + Pmload × pload + Pmstore × pstore)

× (
1

IPC
− 1))× T × IPC,

(4.18)

thus, based on Equation 4.5, Equation 4.12, Equation 4.15, and Equation 4.18, the total

energy and the average power consumption can be presented as:

E =EBase + Eoverhead + Emiss

=((Plogic × plogic + Pload × pload + Pstore × pstore)+

(Plogic load −
Plogic + Pload

2
)× pload × 2+

(Plogic store −
Plogic + Pstore

2
)× pstore × 2+

(Pmlogic × plogic + Pmload × pload + Pmstore × pstore)× (
1

IPC
− 1))×

T × IPC,

Poweraverage =
E

T

=((Plogic × plogic + Pload × pload + Pstore × pstore)+

(Plogic load −
Plogic + Pload

2
)× pload × 2+

(Plogic store −
Plogic + Pstore

2
)× pstore × 2+

(Pmlogic × plogic + Pmload × pload + Pmstore × pstore)× (
1

IPC
− 1))× IPC,

(4.19)

where Poweraverage is the average power consumption of the basic energy model.

Based on Equation 4.19, Figure 4.11 shows the comparison between the average power

consumption of the base model, Poweraverage, the estimate from our method, and the

measured power. The base power consumption data of each class (Plogic, Pload, and

Pstore) comes from the test results presented in Figure 4.3. The power consumption

data of the instruction pair Plogic load and Plogic store comes from test4 and test6 in

yellow Section 4.6. The cache miss power data of each class (Pmlogic, Pmload, and

Pmstore) comes from Figure 4.4. Both the data for the IPC and the distribution of

different instruction types come from Figure 4.9.
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The first bar of each test is the Poweraverage, which consists of three parts as described

in Equation 4.19: the average base power cost, PBase, the average overhead power cost

Poverhead, and the average cache miss power consumption Pmiss.

Figure 4.11: The estimation of our model, the basic energy model, and the
power consumption of the measurement.

Based on the test results in Figure 4.11, it is clear that our method is more accurate.

For example, the most accurate estimate by the base energy model is Tak, which is in

error by −6.29%. All of the other test errors are between 0% to −30%. The average

absolute error is 20.44%. The reason is that the ARM11 supports branch prediction

and an OoO pipeline, thus the IPC may be low but the processor is still busy. In other

words, a lower IPC does not have to mean a pipeline stall and the processor could do

some useless work and consume more power. Thus, most estimates from the base energy

model are always less than the reality.

It is also very clear that the cache miss power consumption is very important. For

example, for test Tak, the average cache miss power consumption, Pmiss, is 3.07 times

as much as the average base power cost PBase. Thus, if the basic instruction-level energy

model does not consider this, the model is inaccurate.

4.8.3 Discussion: Low Energy Software

Power has a close relationship with energy, thus the power model can be extended to

study the energy usage of a program. In this subsection, we will consider how the power

model might be applied to writing low energy software.



110 Chapter 4 ARM11

Energy per instruction (EPI) describes the energy efficiency of a microprocessor [105].

We use EPI to estimate the energy efficiency as follows:

EPI =
Energy

N
=
P × T
N

=
P

N/T

=
P

N/(Clycles× (1/F ))

=
P

IPC × F
,

(4.20)

where N , P and F are the total number of operations in the program, the average

power and the frequency of the processor, which is 533MHz in this case, respectively.

Combining Equation 4.4 and Equation 4.20 leads to the following equation:

EPI =
P

IPC × F

=
0.1882− 0.0601× plogic + 0.0081× pstore + 0.1251× IPC

IPC × F

=
C1

IPC × F
+

0.1251

F
,

(4.21)

where C1 is 0.1882− 0.0601× plogic + 0.0081× pstore. It is clear that the EPI is inversely

proportional to IPC. Therefore, if programs have similar instruction distributions, the

bigger the IPC, the less energy is consumed by each instruction.

Figure 4.12: The energy per operation VS instruction per clock cycle.

Table 4.18: The benchmarks ranked by EPI and IPC.

Bitcount Fib Tak Fir Quicksort Hannoi

EPI 5 6 1 2 3 4

IPC 2 1 6 5 4 3
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Figure 4.12 shows the Energy Per Instruction and IPC of each test, and Table 4.18 ranks

the workloads by EPI and IPC in detail. They demonstrate the conclusion proposed by

Equation 4.21. For example, the speed of Fib is the fastest but the EPI is the smallest.

In contrast, Tak is the slowest but has the biggest EPI. Furthermore, if pipeline stalls

can be reduced, by reducing, for example, the cache miss rate, the energy usage will be

better. Consequently, it is important to make the pre-fetch unit and branch predictor

run more efficiently to reduce pipeline stalls.

However, the pre-fetch is not always helpful, especially if it fetches wrong instructions

and there are two reasons for this: (1) if new data is fetched into the cache, some useful

data has to be kicked out of the cache because of the limitation of the cache size; (2) it

wastes memory bandwidth in fetching useless data and consumes more energy. Hence,

the software engineer should consider these aspects when designing applications.

4.9 Conclusions

In this chapter, we present a new instruction-level power model to estimate the average

power usage of a program on a single core processor: ARM1176JZF-S. In this model, the

power is affected by two factors: the components and the instructions per cycle (IPC)

of the program. Instead of studying the different instructions individually, we cluster

instructions into three groups: ALU, load and store. The power model is affected by

the percent of each groups in the program. It is not necessary to track and find out

what the instructions are. Thus, this model does not consider the effect of two adjacent

instructions and it is concise and easy to use. On top of this, the maximum error is less

than 9% across six benchmarks and the average absolute error of all tests is 4.88%.

Moreover, pipeline stalls are considered by using IPC instead of cache miss as the metric

and this makes the model both concise and accurate. Pipeline stalls have not always

been well considered in previous models; some models consider too many conditions

under which the pipeline might stall. Such models are hard to generate and use. Models

that do not consider it sufficiently lose accuracy.

The power model has been extended to a method to estimate the energy consumed by

the processor. Comparing this with other models and methods, the advantage is ease

of use without losing accuracy. The reason is that the power model is easier to create

than a energy model and the runtime of a program is one of the easiest variables to

measure. Therefore, we avoid analysing some complicated factors which can affect the

energy, such as pipeline stalls.

Furthermore, we consider conditions under which increasing the IPC leads to decreased

EPI, both theoretically and empirically.
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ARM Cortex-A8

In order to improve performance, superscalar processors have been developed. Compared

with scalar processors such as ARM11, one of the advantages of a superscalar processor is

that it implements a form of parallelism called instruction level parallelism. Furthermore,

the ideal speed of a normal scalar processor is one instruction per clock cycle, but the

speed of superscalar is at least two, depending on the number of pipelines.

The ARM Cortex-A8 is a superscalar processor, widely used in embedded systems such

as the iPhone4 [106]. However, the instruction level power/energy consumption of su-

perscalar processors is not well studied. We find the previous basic model (presented in

2.2) cannot be extended to superscalar processors.

In this chapter, we use the ARM Cortex-A8 as the target processor and analyze the

instruction-level power/energy consumption of a superscalar processor in detail.

1. A detailed instruction level power analysis is given for the superscalar processor

ARM Cortex-A8. Furthermore, the aspects we have studied include: how the

power consumption of a processor is affected by L1/L2 instruction and data cache

misses; by different instruction types, including arithmetic and logical instructions,

load and store; by dual-issue restrictions; by the Hamming distance between the

operands of two consecutive instructions; and by the overhead power cost of two

adjacent instructions.

2. We show that the previous instruction level energy models do not work for a su-

perscalar processor. Thus, we extend the method for the ARM11 to the ARM

Cortex-A8. Furthermore, the model is created based on two factors: the distribu-

tion of each class of instructions and IPC.

3. The power model has been extended to estimate the energy consumed by the

processor.

113
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5.1 Target Processor

The ARM Cortex-A8 processor is a low power, high performance, cached application

processor which provides full virtual memory capabilities [75]. It is targeted at a wide va-

riety of embedded systems such as mobile phones, automotive navigation/entertainment

systems and gaming consoles.

Figure 5.1: Cortex-A8 block diagram [75].

Figure 5.1 shows the architecture of Cortex-A8. This processor contains a three-stage

instruction fetch pipeline, five-stage instruction decode pipeline and a five-stage instruc-

tion execute and load/store pipeline. Furthermore, it also contains two ALU pipelines,

and one load/store pipeline.

Compared with the ARM11, the advantages of the ARM Cortex-A8 are:

1. Superscalar Pipeline

A superscalar pipeline is probably the most significant of these new features of the

ARM cortex-A8 as it can fetch two instructions in one clock cycle. Therefore, the

processor runs two instructions in parallel and the IPC is two in the best case.

The dual ALU pipelines are symmetric and both can handle arithmetic and logic

instructions [75].

2. Support instruction pre-fetch
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The Pre-fetch technique is used to speed up the execution of a program by fetching

instructions from lower level memory before they are actually needed. The desti-

nation of these pre-fetched instructions can be either cache or a pre-fetch buffer

and for the Cortex A8, they are stored in a buffer [75].

3. Dynamic branch prediction

The Cortex A8 uses a more advanced dynamic branch prediction methodology than

the ARM11 and the prediction accuracy rate is 95% across industry benchmarks

[107]. The branch prediction includes two parts: global history buffers(GHB)

and branch target buffers(BTB). Furthermore, the duty of the BTB is to predict

whether or not the return instruction of the current fetch address is a branch

instruction, if so, it gives the branch target address. If a hit appears in the BTB, the

the GHB is accessed. The GHB is used to predict whether or not the conditional

branch should be taken [75].

5.2 Experimental Methodology

A Beaglebone REV A6 development board was chosen since it uses the ARM Cortex-A8

as the CPU [72], as part of a TI AM3359 processor. Moreover, it supports dynamic

voltage and frequency scaling (DVFS) and also has interfaces for low power memory.

The following are the features of this processor which are related to our experiments [75]:

• Full implementation of the ARM architecture v7-A instruction set;

• A pipeline for executing ARM integer instructions;

• Dynamic branch prediction with branch target address cache, global history buffer,

and 8-entry return stack;

• Memory Management Unit(MMU) and separate instruction and data Translation

Look-aside Buffer(TLBs) of 32 entries each;

• Level 1 instruction and data caches of 16kB or 32kB configurable size, in our case

we use 32kB for both instruction and data caches;

• Level 2 caches of 0kB, 128kB through 1MB configurable in size; in our case we use

256kB for the level 2 cache.

Figure 5.2 shows the original power supply of the ARM Cortex-A8 processor and how

we modified it. To make the necessary power measurements, we inserted a 1 Ω series

resistor with 1% tolerance between the power supply and the CPU, and used a digitiz-

ing oscilloscope, the Agilent MSO7012B, with a sample rate of 2GHz to measure the

instantaneous power as tests were carried out. We used two probes to measure each side
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Figure 5.2: Power supply schematic diagram [108].

of the resistor. The instant power model, the average power model and the total energy

model is the same as Equations 4.1, 4.2, and 4.3, which are defined in Section 4.2.

5.3 The Power Consumption of Different Instructions When

Dual-Issue

As the discussion in Chapters 2 and 4 shows, one of the most significant components of

a model is the base power/energy cost of instructions. A superscalar processor, such as

the Cortex-A8, can fetch two instructions in one clock cycle and has two ALU pipelines.

Hence, when the arithmetic and logic instructions do not have data dependency, two

instructions can be run in parallel and the IPC will be two. This section focuses on

this situation and analyses how instruction types and cache misses affect the power

consumption of the processor.

5.3.1 The IPC for Each Dual-Issue Test

The test is to study the individual instruction power consumption when instructions are

run in parallel. The main body of each test is a loop where all of the opcodes in the

loop are the same. In order to study how cache misses affect the power consumption,

especially L1 instruction cache misses, we increase the loop body size in different tests.

Here, both the L1 data cache and instruction cache are 32kB and the L2 cache is 256kB.

The following is an example of pseudo code which is used to measure the base power cost

of AND. The operand and opcodes are almost the same as for the ARM11 basic power

test in Section 4.3. The only different is loop size is changed for achieving different cache

miss rate. An example of the full test code is presented in Appendix A.2.1.

while(i<0xFFFF);

{//0xFFFF times the number of the instructions in each loop equals to the

total number of instructions
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// the total number divided by the number of clock cycles equals to the IPC

asm(" AND r3, r2, r1 ");

asm(" AND r4, r1, r2 ");

asm(" AND r3, r2, r1 ");

asm(" AND r4, r1, r2 ");

...............

asm(" AND r3, r2, r1 ");

asm(" AND r4, r1, r2 ");

// the number of loop size varies for different tests

}

Figure 5.3: The IPC (Instruction per clock cycle) of the each dual-issue test.

Figure 5.3 shows the instructions per clock cycle (IPC) for each of the dual-issue tests.

The IPCs of all arithmetic and logic instructions are the same since they use the same

pipeline. The load and store use the same pipeline, hence they have the same IPC

as well. From the figure, it is obvious that when the loop size is bigger than the L1

instruction cache size, the IPC of ALU logic instructions drops substantially but the

IPCs of load and store instructions only drops a little from 0.98 to about 0.82. For

MUL instructions, an L1 instruction cache miss does not change the IPC. The reason is

that the Cortex-A8 has two ALU logic pipelines, one load/store pipeline and one MUL

pipeline. Thus, the arithmetic and logic instructions are consumed faster than the other

instructions. The load/store pipeline and MUL pipeline can get enough instructions to

run and do not have to wait for the instructions to be fetched from the L2 cache. In

contrast, the two ALU logic pipelines do not have enough instructions to execute and

have to wait. Thus, the IPC of the ALU logic pipelines decreases.

From Figure 5.3, we can also find that for the L2 misses, the IPC of all instructions

falls and finally becomes the same, about 0.096. The reason is the time for fetching

instructions from main memory is much longer compared with fetching instructions

from the cache. For example, the access time of cache and main memory is 0.5-15ns,
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and 30-200ns, respectively [21]. An IPC equal to 0.096 means it takes 10.41 cycles, on

average, to fetch one instruction from external memory or main memory. The penalty

is lower compared with the data presented by Hennessy et al. [21] and the reason is

the pre-fetch, so that when the next cache line instruction is actually used, it is already

half-way loaded.

5.3.2 The Power Consumption of Arithmetic and Logic Instructions

Table 5.1: The sample standard deviation (STDEVA) and margin of error
(MOE) of the test of arithmetic and logic instructions when cache hits.

MOV (i) MOV (r) MUL ADD(i) ADD(r) AND(i) AND(r) SUB(i) SUB(r)

STDEVA 0.002654 0.001477 0.000921 0.002462 0.00209 0.002042 0.001907 0.002183 0.001664

MOE(W ) 0.002601 0.001448 0.000903 0.002412 0.002049 0.002001 0.001869 0.00214 0.00163

EOR(i) EOR(r) OR(i) OR(r) ASR(i) ASR(r) LSL(i) LSL(r) LOAD STORE

STDEVA 0.001963 0.001317 0.003004 0.00212 0.002175 0.002318 0.002089 0.002176 0.000985 0.002387

MOE(W ) 0.001924 0.00129 0.002944 0.002077 0.002131 0.002271 0.002048 0.002132 0.000965 0.002339

Table 5.1 shows the sample standard deviation (STDEVA) and margin of error (MOE)

of the ARM Cortex-A8 arithmetic and logic instructions for cache hits. This test aims

to investigate the behaviour of each instruction with different cache miss rates. The

power consumption should be similar for all cache hits. Thus, in Table 5.1 each test is

measured four times with the different cache usages: 4kB, 8kB, 16kB and 32kB. If any

test power was more than 5% different from the average, we measured it again. The

MOE is calculated in a 95% confidence level. For example, the MOE of MOV (i) is

0.002601, which means that we can be 95% confident that the power consumption of

MOV (i) is the average power of the measurement plus or minus 0.002601 W .

Figure 5.4: The basic power consumption of arithmetic and logic instructions.

Figure 5.4 shows the power consumption of arithmetic and logic instructions in different

addressing modes. The following conclusions can be drawn:
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• For different instructions, the average power consumption of the processor is similar

and the opcode does not affect the power much. For a cache hit, where the

loop body size is less than the L1 instruction cache size, the instruction MOV (i)

consumes the most power at 0.176W and the instruction OR(i) consumes the least

power at 0.169W (giving the maximum difference of 3.97%). This is also found in

some other work [67] but their target processor is not superscalar. The reason is

that all these functions pass though the pipeline and the hardware used by these

different logic operations is quite similar.

• For different instructions, the addressing mode does not affect the power much.

For example, the minimum difference between MOV (i) and MOV (r) is 0.032%,

which comes from the 2kB test and the maximum difference is 2.07%, which comes

from the 56kB test.

• The L1 cache misses do not significantly affect the power. For example, the average

power consumption of the 4kB and 36kB tests are 0.176W and 0.170W respectively

(the difference is 3.07%). It is obvious that the power consumption for the 36kB

tests and the 72kB tests is similar and the power curves are nearly straight lines.

For example, the power consumption of ADD(i) is 0.171W and 0.169W in the

36kB and 72kB tests, respectively. The difference is less than 1%. Furthermore, the

average power consumption of these two tests is 0.170W and 0.169W , respectively.

Although the power consumption is quite similar in the 36kB and 72kB tests, the

level one cache miss rate is quite different in these two cases. In the 36kB tests,

cache misses start to appear. In the 72kB, the L1 cache misses are much more

common than cache hits but no level two cache misses occur. However, it is hard to

find the specific and accurate cache miss rate, because the cache replacement policy

is random replacement. For the 36kB test, the cache can hold 88.8% (32kB/36kB)

of all of the instructions. However, for the 72kB test, the cache can only hold

42.1% (32kB/72kB). On top of this, as 72kB is more than twice the size of the

level one instruction cache, most of the useful instructions have been replaced after

one loop of the test. Thus, the cache hit rate for 72kB should be even less than

42.1%. Consequently, we can draw the conclusion that the level one cache miss

rate does not affect the power much.

The reason why an L1 cache miss does not affect the power much is that the IPC

falls, but transferring data from L2 to L1 consumes more power. Consequently,

the pipeline consumes less power but the caches consume more. Overall, the power

is not significantly affected by L1 cache misses.

• Level two cache misses affect the power significantly. When the loop size is bigger

than 256kB, the L2 cache cannot hold all of the instructions and some instructions

have to be fetched from main memory. The average power drops from 0.169W to

0.126W . The reason is that although the pre-fetch strategy can solve part of the
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problem of the speed mismatch between processor and main memory, the processor

still has to wait for the fetched instructions and has nothing to do during the

fetching, hence the IPC falls and hence the power consumption drops substantially.

Both L1 and L2 cache misses affect the energy, especially L2 cache misses. Although

L1 cache misses do not affect the power, the IPC is only half as much as for a cache

hit (compare the IPC of 32K tests and 72K tests shown in Figure 5.3). Therefore, the

energy will double. For L2 cache misses, the IPC of the program will be much less but

consume proportionally more energy.

Based on the previous analysis, in order to produce a simple, concise model, we will

assume all arithmetic and logic instructions consume the same power for dual issue in

all addressing modes, and will not distinguish between them in the rest of the chapter.

5.3.3 The Power Consumption of Load&Store and MUL

Figure 5.5: The power consumption of Load&Store and MUL.

The second experiment is to test the power consumption of load/store and multiply

instructions including both instruction cache misses and hits. Figure 5.5 shows the

experimental results. In order to compare with arithmetic and logic instructions, the

average power consumption of arithmetic and logic instructions is also displayed in the

figure. The following conclusions can be drawn:

• When the L1 instruction cache hits and all of the instructions are fetched from the

L1 instruction cache, the load consumes the most power, which is about 0.182W

on average. The arithmetic and logic instructions consume the second most. The

store consumes about 0.164W on average and the difference between store and load

is less than 8%. However, the MUL instruction consumes the least power, which is
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about 0.147W on average, and the difference is quite big compared with the other

three instruction types. For example, the difference between MUL and load, store

and arithmetic/logic instructions are 23.8%, 11.56%, and 19.04%, respectively.

The reason is that the load and store use a different pipeline to the arithmetic

and logic instructions. For the load test, the operand addresses are the same and

so there are no data cache misses and the processor runs at a high speed. Hence,

load consumes more power than arithmetic logic functions. For the store test, the

target address are always the same, thus the store buffer will never be full. Thus,

the data in the buffer is only updated locally, and the store does not consume more

energy since the data is never sent to external memory. Consequently, store uses

less average power than load although they use the same pipeline. The IPC of a

multiply is lower than the other types of instructions and hence MUL consumes

the least power.

• When the loop body is bigger than 32kB but less than 256kB, which means there

are L1 instruction cache misses but L2 cache hits, the power of arithmetic and

logic instructions falls a little but all of the other three rise. From Figure 5.3, the

IPC for Load/Store falls a little, but stays constant for Multiply. Nevertheless,

the processor still gets enough instructions to (nearly) fill the pipeline and does

not have to wait for the L2 cache.

However, for the ALU instructions, the pre-fetch design cannot solve the cache

miss time penalty problem completely. The ALU instructions are consumed too

fast by the processor and the ALU pipeline is more likely to be hungry than the

Load/Store pipeline. Thus, the processor still has to wait for the fetched ALU

instructions from the L2 cache and the IPC decreases a lot. On the other hand,

fetching instructions from the L2 cache consumes more power. Consequently,

when there is an L1 instruction cache miss, Load, Store and Multiply consume

more power.

• For an L2 cache miss, the power for all of the instructions drops significantly. After

512kB, the power of all of instructions is about 0.128W which is the same as in

the ALU test. The reason is the same: the instructions have to be fetched from

main memory and the processor has to wait. Likewise, the energy increases for

both L1 and L2 cache misses.

5.4 The Power Consumption of Dual-issue Restrictions

However, there are several dual-issue restrictions that mean the processor cannot run

in parallel. For example, instructions cannot be issued if their data is not available.

Furthermore, if one instruction’s operands come from the previous instruction’s results,

it has to wait until the result of its previous instruction are ready. In this section, the
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tests focus on the power consumption when the instructions meet the constraints and

have to be run one by one.

As in the previous tests, the main body is a loop and the opcode is still the same, but

the operand of a new instruction depends on the previous one. However, there are only

15 general registers in Cortex-A8 and it is forbidden to use all of them. Therefore, in our

test, the instruction will repeat every eight instructions. The following is an example of

the code.

while(i<0xFFFF);

{//0xFFFF times the number of the instructions in each loop equals to the

total number of instructions

// the total number divided by the number of clock cycles equals to the IPC

//the first 8 instructions

asm(" AND r3, r2, r1 ");

asm(" AND r4, r3, r2 ") ;

...............

asm(" AND r10, r9, r8 ") ;

// the second 8 instructions

asm(" AND r3, r2, r1 ");

asm(" AND r4, r3, r2 ") ;

...............

asm(" AND r10, r9, r8 ") ;

.......................

}

Table 5.2: The operand of dual-issue restrictions test.

Test Code Test Code

ALU(i) r0: 0x3
r1:0x5
r2: 0x5
ALU r1, r0, #0x3
ALU r2, r1, #0x5
ALU r3, r2, #0x3
ALU r4, r3, #0x5
ALU r5, r4, #0x3
ALU r6, r5, #0x5
ALU r7, r6, #0x3
ALU r8, r7, #0x5
repeat N times

ALU(r) r0: 0x3f
r1:0x11
ALU r2, r1, r0
ALU r3, r2, r1
ALU r4, r3, r2
ALU r5, r4, r3
ALU r6, r5, r4
ALU r7, r6, r5
ALU r8, r7, r6
ALU r9, r8, r7
repeat N times

Table 5.2 shows the operand and opcode of the test. The eight instructions are repeated

N times for achieving different cache miss rates. An example with the full structure is

presented in Appendix A.3.1.
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5.4.1 The IPC of the Dual-issue Restriction Tests

Figure 5.6: The IPC (Instruction per clock cycle) for dual-issue restriction tests.

Figure 5.6 shows the IPC of the dual-issue restriction test and it is quite similar to the

IPC of the basic tests in Section 5.3.1. For the arithmetic and logic instructions, when

the L1 cache misses and the L2 cache hits, the IPC start to drop from about 1.130 to

0.845. After L2 cache misses appear, the IPC drops again to 0.097, which is equal to

that for the basic tests in Section 5.3.

L1 cache misses do not affect the IPC of the MUL instruction at all because of its slow

speed. However, L2 cache misses affect the IPC significantly, because it takes more time

to fetch instructions from main memory.

5.4.2 The Power Consumption of Dual-issue Restrictions

Table 5.3: The sample standard deviation (STDEVA) and margin of error
(MOE) of dual-issue restrictions when cache hits.

ADD(i) ADD(r) AND(i) AND(r) EOR(i) EOR(r)

STDEVA 0.000873 0.000294 0.000155 0.001075 0.001014 0.001085

MOE (W ) 0.000856 0.000288 0.000151 0.001053 0.000994 0.001064

OR(i) OR(r) SUB(i) SUB(r) MUL

STDEVA 0.001238 0.000757 0.000813 0.000812 0.00131

MOE (W ) 0.001213 0.000742 0.000796 0.000796 0.001284

Similar to Table 5.1 in Section 5.3.2, Table 5.3 shows the sample standard deviation

(STDEVA) and margin of error (MOE) of the ARM Cortex-A8 dual-issue restriction

tests when cache hits. In Table 5.3 each test is measured four times with the different

cache usage:4KB, 8KB, 16KB and 32KB unless any test power is more than 5% different

from the average. The MOE is calculated in a 95% confidence level.
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Figure 5.7: The power consumption of dual-issue restrictions.

Figure 5.7 shows the power consumption of dual-issue restrictions. In order to analyze

the instruction cache miss effects, especially the L1 instruction cache effects, the size of

the loop body changes from 4kB to 1MB and the following conclusions can be drawn:

• It is clear that when the L1 instruction cache hits, all of the arithmetic and logic

instructions consume similar power, which is about 0.163W . The reason is that

all of the instructions use similar hardware. However, the MUL still consumes the

least power and even an L1 instruction cache miss will not affect the power very

significantly because the speed of the MUL is the slowest.

• When the L1 instruction cache misses but the L2 cache hits, the power is greater

than before, but not by very much. For example, the average power consumption

of cache hits and cache misses is 0.1636W , and 0.1727W respectively. This is

similar to Figure 5.5. The reason is the processor runs slower than the dual-issue

case because of the dual-issue constraints. For example, the IPC is about 0.9,

compared with about 1.1 in the dual-issue test (Figure 5.3). The power increases

a little overall, because the processor does not lose too much speed compared with

the cache hits,L1 only 18.18%, but accessing the L2 cache consumes more power.

Thus, the power increases from 0.1635W to 0.1726W on average.

5.5 The Power Consumption with Different Hamming Dis-

tances

Previous research suggests that the Hamming distance between the operands of two

consecutive instructions may affect the power consumption [11,34]. Our third test con-

siders this on a Cortex-A8 when the L1 cache always hits. The test codes are the same

as ARM11 in Section 4.4 and an example is presented in Appendix A.2.2.
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Table 5.4: The sample standard deviation (STDEVA) and margin of error
(MOE) of the Cortex-A8 Hamming distance power test.

4 8 12 16

STDEVA MOE(W ) STDEVA MOE(W ) STDEVA MOE(W ) STDEVA MOE(W )

Store 0.000635 0.000718 0.000797 0.000902 0.000329 0.000372 0.000948 0.001072

Load 0.000166 0.000188 0.001327 0.001501 0.000948 0.001072 0.000894 0.001012

ADD(i) 0.000562 0.000636 0.000265 0.000299 0.000123 0.000139 0.000861 0.000974

ADD(r) 0.000649 0.000734 0.001538 0.001741 0.00124 0.001403 0.001223 0.001384

Table 5.4 shows the standard deviation (STDEVA) and margin of error (MOE) of the

Cortex-A8 Hamming distance power test. We measured each test three times. However,

if the difference of any two tests was bigger than 5%, we measured another time. The

MOE is calculated in a 95% confidence level.

Figure 5.8 shows the test results including ADD(i), ADD(r), Store, Load. In these

figures, the X-axis represents the operand Hamming distance of two consecutive instruc-

tions and we chose 4, 8 12 and 16 for the target experiments.

From Figure 5.8, we can see that the power consumption increases with the Hamming

distance of the operand. However, the Hamming distance does not affect the power

consumption significantly. For example, the maximum difference of Store is only 1.96%;

the maximum differences of ADD(i), ADD(r) and Load are 0.80%, 0.24% and 1.74%

respectively. Hence, the maximum and average difference of all tests is only 1.96% (from

Store) and 1.185%, respectively. Because the effect of the Hamming distance is small,

in order to have a concise model, we have not put any Hamming distance variables into

our power model.

5.6 The Overhead Power Cost

Previous research suggests that the overhead of two consecutive instructions may affect

the power consumption [7, 8]. We have proved that the effect on arithmetic and logic

instructions can be ignored on an ARM11 processor in Section 4.5. The fourth test in

this Chapter analyses the overhead power cost of arithmetic and logic instructions on a

Cortex-A8 when the L1 cache always hits. The test codes are the same as ARM11 in

Section 4.5 and an example is presented in Appendix A.2.3.

Table 5.5: The sample standard deviation (STDEVA) and margin of error
(MOE) of each instruction.

ADD(r) AND(r) SUB(r) OR(r)

STDEVA 0.001083 0.001016 0.000834 0.000861

MOEW 0.001225 0.00115 0.000944 0.000975

Table 5.5 and Table 5.6 shows the sample standard deviation (STDEVA) and margin of

error (MOE) of each instruction and instructions pairs respectively. We measured each
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Table 5.6: The sample standard deviation (STDEVA) and margin of error
(MOE) of instruction pairs.

AND(r) SUB(r) OR(r)

STDEVA MOEW STDEVA MOEW STDEVA MOEW

ADD(r) 0.000852 0.000964 0.000944 0.001068 0.001594 0.001804

AND(r) 0.001298 0.001469 0.000727 0.000823

SUB(r) 0.001227 0.001389

test three times unless the difference of any two tests was bigger than 5%. The MOE of

each table is calculated in a 95% confidence level.

Table 5.7: The power consumption of each instruction (W ).

ADD(r) AND(r) SUB(r) OR(r)

0.17505 0.17546 0.17448 0.17511

Table 5.8: The average power consumption of each pair (W ).

AND(r) SUB OR(r)

ADD 0.17525 0.17476 0.17508

AND 0.17497 0.17529

SUB 0.17480

Table 5.7 and Table 5.8 show the power consumption of each instruction and the average

power consumption of each pair respectively. Because the base power consumption of

each instruction is similar, the average power of each pair is close.

Table 5.9: The measured power consumption of each pair (W ).

AND SUB OR(r)

ADD 0.17605 0.18013 0.17878

AND 0.17967 0.18112

SUB 0.17704

Table 5.10: The overhead power and the difference ratio (W ).

AND SUB OR(r)

ADD 0.000798 (0.05%) 0.005371 (0.30%) 0.003702 (0.21%)

AND 0.004702 (0.26%) 0.005831 (0.32%)

SUB 0.002243 (0.13%)

Table 5.9 shows the measured power consumption of each pair, and Table 5.10 shows

the overhead power and the different ratio between the overhead and the average power

consumption. The columns are the first instruction of each pair and the rows are the

second instruction of the pair.

It is clear that for arithmetic and logic instructions, the overhead power cost is positive

but very small, which is expected. For example, the minimum ratio is 0.05%, which is
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from the instruction pair ADD and AND. The maximum ratio is 0.32%, which is from

AND and OR(r).

Compared with the ARM11, the overhead effect of the arithmetic and logic instructions

on the Cortex A-8 is smaller. For example, the average of the overhead ratio of ARM11

is 2.88%, but the ratio of Cortex-A8 is 0.211%. The reason is that the Cortex-A8

is more complicated than the ARM11 and a lot of blocks are shared by the different

instructions, such as L1/L2 cache, MMU. However, the Cortex-A8 has more complex

shared resources, such as the L2 cache, which consumes more power, thus the cost of

the circuit state changes is less important on a Cortex-A8.

Based on these test results, we do not need to consider the overhead cost of different

pairs from arithmetic and logic instructions since this effect is small but needs a lot of

effort to measure every possibility.

5.7 The Power Consumption of Data Cache

The previous tests focus on the power consumption with dual-issue and its restrictions,

and how instruction cache misses affect power. In this section, we consider how data

cache hits and misses affect the power.

5.7.1 Design of the experiment

The data cache is configured as follows. The L1 memory system provides the core

with [75]:

• write through policy,

• fixed line length of 64 bytes,

• cache size of 32kB,

• two 32-entry fully associative ARMv7-MMU,

• 4-way set associative cache structure,

• random replacement policy.

The L2 memory system provides the core with [75]:

• write-allocate policies,

• cache size of 256kB,
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• configurable 64-bit or 128-bit wide AXI system but interface with support for

multiple outstanding requests,

• 8-way set associative cache structure,

• random replacement policy.

The cache of the Cortex-A8 in the TI AM3359 is a high performance write-though cache

with a buffer at the end of a pipeline. Although the write-back policy is power efficient

and faster, the write-though cache gets around a consistency problem and is easier to

implement. With the help of a buffer, as long as any external memory accesses are

only reads from main memory addresses which are not in the write-buffer, then the

write-buffer is able to act independently in the background to update the main memory.

Depending on the implementation, a read from a pending write in the write buffer could

access the data there without stalling the system. Therefore, this write-though cache is

still efficient.

The Cortex-A8 fetch pipeline is a pre-fetch and speculative fetching design. In order to

analyze how data cache misses affect the power, we have to write a program and make

it access the target memory randomly. If the size of the target memory is less than the

cache size, it will get a cache hit, otherwise, cache misses will exist because the cache

cannot hold all of the data. The program tests are like the following pseudo code:

void main()

{

int target[size];//create a target test memory.

while(i<0xFFFF);//the test should run many times and a big number is used

//0xFFFF times the number of the instructions in each loop equals to the total

number of instructions

// the total number divided by the number of clock cycles equals to the IPC

{

asm(" MOV r5, %[va]"::[va] "r"(target));

// move the first address of the target array into register R5.

asm (" LDR r9, [r5, #random_1]");

asm (" LDR r8, [r5, #random_2]");

...........

asm (" LDR r8, [r5, #random_n]");

//random is from 0 to the size of the target memory

}

}

In this code the offset value can be from 0 to the size of target test memory space.

However, the offset value of LDR and STR has a limitation and the compiler will

produce a error if the offset value is bigger than 4095 [109]. Therefore, the test is divided
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into two parts. Firstly, a target memory space is claimed and divided into several sub-

block pieces. Then, an array (baseAddress[i]) is used to store the start address of each

sub-block randomly. The sub-block size is smaller than or equal to 4095 depending on

the different tests. Therefore, the LDR and STR instructions can visit every space of

the sub-block. The data structure is shown in Figure 5.9.

Figure 5.9: The design of the data cache test program.

Figure 5.10 shows the flow chart of the test program: The first part is the initialization.

Firstly, we generate a target memory space which is an array and its size can be changed

from 1kB to 4MB depending on the requirements of different tests. Then, the second

step is the initialization of the array.

Then, we divide the memory space into sub-blocks and use array ‘baseAddress[i]’ to store

the start address of each sub-block in a random sequence. The size of ‘baseAddress[i]’

is determined by the parameter ‘RANDOM BLOCK ARRAY LENGTH’. In order to

distribute the value of each ‘baseAddress[i]’ (here, it is the first address of each sub-

block) uniformly, we make sure that the difference of each two consecutive value is

bigger than one eighth of the size of memory target space. Meanwhile, we also make the

difference of each two consecutive offset value in the main loop bigger than one quarter

of the size of sub-block. This will make sure that no two sub-blocks or offset values are

close to each other.

After initialization, the main body is two loops. Although we want to run this test

many times to test the behaviour when accessing cache or memory, there is a limit

to the size of an array in the C compiler. Thus, it is impossible to only increase the

value of ‘RANDOM BLOCK ARRAY LENGTH’ to make the size of ‘baseAddress[i]’

big enough. Therefore, we put in another variable ‘N’ to make the test run many times

and this is the outer loop.

The inner loop is the core of this test and at the beginning, a new base address will

be sent to register 5 from ‘baseAddress[i]’. The offset values are also randomly picked,
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which makes sure that the speculative fetching does not work. The L2 cache misses exist

when the target memory space is bigger than the L2 cache.
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Figure 5.10: The flowchart of the data cache test.
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The following is the modified pseudo code and the source code Section A.3:

void main()

{

int target[size];

//create a target test memory.

//because each int is 4 Bytes, the target memory space =4 Byte * size

while(i<RANDOM_BLOCK_ARRAY_LENGTH)

{

r = rand()%(BLOCK_NUM);

//pick the rth block in random

baseAddress[i]=target+r*Target_SIZE/BLOCK_NUM;

//Target_SIZE/BLOCK_NUM equals the size of each block

//generate the first address of the rth block address and save into

baseAddress randomly

}

while(i<RANDOM_BLOCK_ARRAY_LENGTH);

{

asm(" MOV r5, %[va]"::[va] "r"(baseAddress[i]));

//baseaddress[i] holds the first address of every sub block and load into r5.

asm (" LDR r9, [r5, #random_1]");

asm (" LDR r8, [r5, #random_2]");

...........

asm (" LDR r8, [r5, #random_n]");

}

5.7.2 The Power Consumption And IPC of The Data Cache Experi-

ment

Figure 5.11: The IPC of the data cache tests.
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Figure 5.11 shows the IPC of these tests. From the figure, we find that when the target

memory is smaller than 32kB, the IPC of load is nearly equal to 1, which means the L1

cache can hold all of data and does not miss, as expected. When the target memory is

bigger than 32kB, the IPC of Load drops significantly, because of the L1 cache misses.

However, when the size of the target memory is greater than 256kB, the IPC of Load

drops again. Finally, beyond 512kB, the IPC is about 0.0268 and no longer changes.

The reason is the size of the target memory is too great and the data cache can only

hold a small percentage of the total data. Thus, nearly every data has to be fetched

from external memory. On top of this, the data pre-fetching is disabled in these tests

because of the random accesses.

The IPC of Store is lower than Load when L1 cache hits, and drops as the size of the

target memory increases until 8kB. When the size of the target memory is bigger than

8kB, the IPC falls to 0.12. Store is not sensitive to L2 cache misses. The reason is the

cache is a write-though cache and the processor is busy writing data to main memory.

Writing data to main memory has a speed limitation.

Figure 5.12: The power consumption of the data cache tests.

Figure 5.12 shows the power results of these tests including load and store. When the

target memory is less than 32kB the load consumes more power as the size of the target

memory becomes bigger. When L1 misses appear, the power does not change much

and reaches the peak, which is from 0.223W about 0.230W . The reason is the same as

mentioned before: activating the L2 cache consumes more power and the processor does

not lose too much speed. However, with L2 cache misses, the power drops substantially

and beyond 512kB the power consumption remains approximately constant at about

0.135W . The reason is the time penalty of L2 misses is too big and a system stall

appears.
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However, the store consumes a constant power which is independent of target memory

space and is from 0.169W to 0.175W . The reason is the cache is a write-though cache

and always writes data to main memory when the write-buffer is full.

5.8 Instruction Level Power Analysis and Modeling

In order to study how different instructions affect the power together, a more realistic

program environment is provided. We analyze the power by changing the distribution

of each type of instruction in different programs and name them the combined tests.

From this, we created an instruction-level power model.

5.8.1 The Power Analysis of the Combined Tests

From the previous tests, we know that the L2 cache affects the power more than the

L1 cache. Typically, the L1 cache miss rate is less than 10% for a 32kB cache [21].

Similarly, the L2 cache hits more often than misses. We focus on the effect of the L1

cache and divide the tests into two cases: L1 cache always hits and L1 cache always

misses. The test codes are almost the same as ARM11 in Section 4.6 and an example is

presented in Appendix A.2.4. The only difference is the loop size had to be changed to

cause the L1 cache to always miss, because the ARM11 has a 16KB instruction cache

and the Cortex-A8 has a 32 KB cache.

Figure 5.13: The components of the combined tests.

Figure 5.13 shows the components of each test. All of the programs are coded manually,

allowing us to understand the distribution of the program details and change it easily. We

chose 25% as a step size and the percentage of the arithmetic logic instruction decreases

from test 1 to test 8. For example, 75% of instructions in test 1 are arithmetic and logic
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instructions but only 25% of instructions come from arithmetic and logic in tests 6, 7

and 8. In contrast, the load and store percentages increase. Finally, Figure 5.13 shows

all of the possibilities. For arithmetic and logic instructions, the 100% and 0% cases are

ignored because it is unlikely that a program consists entirely of purely arithmetic and

logic instructions or has no logic instructions.

Figure 5.14: The IPC of the combined tests.

Figure 5.14 shows the IPC of each test in two cases: the best case and the worst case.

For the best case, the loop size of each test is less than the L1 cache size and there are

no cache misses. However for the worst case, the loop size is 64kB which is twice as large

as the L1 cache size and nearly every instruction has to be fetched from the L2 cache.

It is clear that the IPC of the best case is always bigger than the worst case. However,

the IPC of each test in the best case is not the same. The IPC of tests 6, 7 and 8 is 1.31

but the IPC of the others is 1.97. The reason is explained by Table 5.11.

Table 5.11: The pipeline status of each test.

Test Pipeline Stage

1,2 Logic Logic Logic Logic Logic Logic Logic Logic

logic L/S Logic L/S Logic L/S Logic L/S

3,4,5 Logic Logic Logic Logic Logic logic Logic Logic

L/S L/S L/S L/S L/S L/S L/S L/S

6,7,8 Logic - - Logic - - Logic -

L/S L/S L/S L/S L/S L/S L/S L/S

Table 5.11 presents the status of the pipeline stage in each test. It is clear that there

are bubbles in the pipeline of tests 6, 7, and 8 but no bubbles in the other tests. The

reason is that there is only one Load/Store pipeline in the processor and the 75% of

the instructions in tests 6, 7 and 8 are Load/Store. However the instructions have to

be implemented in the instruction order since the Cortex-A8 is an in-order superscalar
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processor. Therefore, the bottle neck is the the speed of load/store. While the load/store

pipeline is busy, the ALU logic pipeline has nothing to do and has to wait, which

introduces bubbles in the ALU pipeline.

There are a lot of different reasons for a pipeline stall, such as cache misses and data

dependency. However, no matter what the reason is, when the pipeline stalls, the

processor has to wait and the instruction per clock cycle (IPC) becomes lower. Instead

of considering each different factor individually, the IPC can be used as a variable to

describe how smoothly a program runs and to reflect the effect of the pipeline stall rate

and cache miss rate.

Table 5.12: The sample standard deviation (STDEVA) and margin of error
(MOE) of the Cortex-A8 modeling test.

tes1 test2 test3 test4 test5 test6 test7 test8

STDEVA 0.000626 0.001028 0.001123 0.005959 0.000544 0.00063 0.000943 0.001172

MOE(W ) 0.000501 0.000822 0.000899 0.004769 0.000435 0.000504 0.000754 0.000938

Table 5.12 shows the sample standard deviation (STDEVA) and margin of error (MOE)

of the Cortex-A8 Hamming distance power test. The test result will be used to generate

the power model, thus we test it more times than before. Furthermore, we measure each

test two times with different cache usage, which is set to 4kB, 8kB, 16kB. Thus, each

test is measured six times in total. The MOE is calculated in a 95% confidence level.

Figure 5.15: The power of the combined tests.

Figure 5.15 shows the power consumption of the combined tests. In the best case, test

1 consumes the most power, which is 0.2208W , and test 7 consumes the least power,

which is 0.2005W (a difference of 9.18%). In addition, the power consumption of the

first four tests is greater than for the last four tests. The reason is the IPC of the first

four tests is bigger than the last three tests. Although test 5 has a high IPC, which

is 1.95, its power consumption is still lower than for the first four tests. The reason
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is based on the test results in Section 5.3.3, store consumes the least power in all the

different kinds of instructions (ignoring MUL) and 50% of the instructions of test 5 are

store.

However for the worst case, test 8 consumes the most power, which is 0.204W , and the

least power consumption is 0.196W which comes from test 1 (a difference of 3.9%). This

result is different to the best case. Moreover, the power consumption of the last four

tests is bigger than for the first four tests. This result is the opposite to that in the

best case. From the test results in Section 5.3.3, load and store consumes more power

when L1 cache misses exist. The percentage of the load and store in the last four tests

is higher than in the first four tests. Thus, the last four tests consume more power in

worst case.

It is clear that the power consumption can be affected by both IPC and the components

of a program, hence the power model has to consider both.

5.8.2 Instruction Level Model

From the results in Section 5.3.2 and Section 5.4.2, we see that the definition of the base

power/energy cost of instructions explained in Section 2.1 does not work. The reason is

that in both cases: two instructions may be run in parallel or one by one, but the power

consumptions in these two cases are similar to each other. Furthermore, the power of

the dual-issue tests in Section 5.3.2 and the dual-issue restricted tests in Section 5.4.2

are about 0.175W and 0.163W , respectively, and the difference is only 6.85%. However,

the IPC of the dual-issue tests is nearly equal to two but the IPC of dual-issue restricted

tests is nearly equal to one. The different is almost 50%. Assuming that a program

has 1000 instructions and all of these instructions are independent, the energy will be

0.175W ×500×Tclk. However, if these instructions meet the dual-issue restrictions, the

energy will be 0.163W×1000×Tclk. Thus, the energy consumed by these two programs

will be very different and it is impossible to find the base energy for each instruction in

a superscalar processor. Thus, a new model has to be created to predict the energy for

a superscalar processor.

In order to derive a concise model, we divide the instructions into three classes: 1.

arithmetic and logic instructions, 2. load, and 3. store. We assume the power is affected

by both IPC and the components of a program. Therefore, power can be represented

by the following equation:

Poweraverage = k0 + k1 × pinstruction distribution + k2 × IPC (5.1)

We have already analysed eight different tests with two cases. Therefore, we have eight

different distributions, sixteen IPC values and the corresponding power consumption
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(eight from the best case and eight from the worst case). Based on these results, we use

linear regression to derive the model as follows:

Poweraverage =0.1842 + 0.0005× pALU + 0.0026× pLoad
+ 0.0155× IPC,

(5.2)

where Poweraverage, pALU and pLoad are the average power consumption, the ALU

instruction percentage and the load percentage of a program, respectively. We assume

that all of the instructions come from these three cases, thus pALU + pStore + pLoad =

100%. For the same reason discussed in Section 4.6, the pStore is represented by pLogic

and pLoad after linear regression.

Energy is estimated from:

E =

∫ T

0
P (t)× dt

=Paverage × T

=T × (0.1842 + 0.0005× pALU + 0.0026× pLoad
+ 0.0155× IPC),

(5.3)

where T is runtime of the program. The experimental platform uses Angstrom Linux

as the operating system, thus it is easy to measure the runtime of the program.

Figure 5.16: The estimation results of the combined tests.

Figure 5.16 shows the power consumption difference percentage between the model and

the measured results. It is clear that all of the tests are estimated accurately, with

the maximum error less than 5%. On top of this, for 93% of the estimations this

model has less than 3% error. There are several factors which may induce these errors.

For example, the measurement environment changes, such as the temperature of the

processor. In order to avoid this, we measured ten instances of each test and used the
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average value as the power consumption. The effect of the operating system (OS) and the

small number of training tests may be the other reasons of the miss estimation. On top

of this, because the architecture of the superscalar processor is much more complicated

than of the single scalar processor, such as dual-instruction fetch, more ALU blocks,

thus there may be some factors which can induce errors that are not considered well,

such as level 2 cache misses. However, both overestimation and underestimation are

acceptable and necessary because if all tests are over estimated or under estimated, it

means something is over considered or less considered. Then, a constant factor would

be added into the model to increase the accuracy.

5.9 Validation of the Power Model

Ten benchmarks: Stringsearch, Susan.corner, Susan.edges, Bitcount, Sha, Fibonacci,

Tak, FIR filter, Quicksort and Tower of Hanoi were used to test the performance of the

model. Table 5.13 shows the input value of each test.

Table 5.13: The input value of each benchmark.

Test name Description of the input

Stringsearch Default small test from Mibench

Susan.corner Default small test from Mibench

Susan.edges Default small test from Mibench

Bitcount Default small test from Mibench

Sha Default small test from Mibench

Fibonacci Generate 25 Fibonacci number

Tak Tak(3000,2,3)

Fir 4000 inputs number with 5 coefficients

Quicksort 4000 data from Mibench\ automotive\qsort\input large.dat

Hanoi 9 discs

The components of each test are shown in Figure 5.17. The distribution was generated

by the instruction simulator tool, gem5 [78]. However, the ARM performance counter

also can supply this information. Therefore, the distribution is fast and easy to get.

The stringsearch, susan.corner, susan.edges and Bitcount benchmarks were chosen from

Mibench benchmark suites [110].

From Figure 5.17, the lowest IPC comes from Tak (0.66), while for Sha it is more than

1.40. The components of the different tests are also very different. For example, the

logic percentage of Bitcount is more than 80% but for Fir is less than 60%.

Table 5.14 shows the sample standard deviation (STDEVA) and margin of error (MOE)

of the Cortex-A8 benchmarks. We measured each test two times. However, if the

difference is bigger than 5%, we measured another time. The MOE is calculated in a

95% confidence level.
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Figure 5.17: The components of each benchmark test program.

Table 5.14: The standard deviation (STDEVA) and margin of error (MOE) of
the Cortex-A8 benchmarks.

String.search Susan.conrner Susan.edges Bitcount Sha

STDEVA 0.000426 0.001913 0.000217 0.000201 0.000416

MOE(W ) 0.000591 0.002652 0.000301 0.000278 0.000577

Fib Tak Fir QS Han

STDEVA 0.00017 0.000199 0.000693 3.52E-05 0.000176

MOE (W ) 0.000236 0.000276 0.000961 4.88E-05 0.000245

Figure 5.18 shows the measured power (column 1), estimated power from our model

(column 2) and the difference percentage (curve). Quicksort and FiR consumes the least

power, 0.1926W and 0.1932W respectively, and they have the lowest IPC compared with

the others. Because of its high IPC, Sha consumes the most power, 0.215W and the

maximum difference of the benchmark suite is 10.4%.

The maximum and minimum power estimation errors are -6.69% and 0% respectively.

On top of this, the average absolute error is 3.33% and for 70% of the estimations this

model provides less than 4% error.

5.10 Comparison and Discussion

As discussed above, our method is easily extended to an energy model. The runtime of

a program can be achieved from the OS, thus the error in estimating the energy of a

program is equal to the power estimation error. In this section, our model is compared

with some previous power and energy models.
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Figure 5.18: The error between predicted power and measured.

Table 5.15: Accuracy comparison with previous work.

Our method [5] [11].model 1 [11].model 2 [12] [104] [15]

Fibonacci -1.37% 15.58% 9.36%

Fir 2.28% -4.05 11.52%

Quicksort 2.63% 11.41% 3% 8.98% -5.97%

Bitcount 0% -4.22%

Sha -3.88% 5.77%

Stringsearch -6.06% 3.03 %

Table 5.15 shows the comparison of accuracy between our method and previous work.

The results come from the previous research and based on their own processors and

testing systems (not repeated on our ARM Cortex-A8 system). Our method is more

accurate than most of the others except for the Stringsearch test presented in [15]. There

are several possible reasons for the errors, such as the effect of the OS and the different

hardware usage. Even when different programs have the same input values of our model:

IPC, and the distribution of instructions, they may still have different hardware usage.

For example, there are many factors that can make the pipeline stall, such as cache miss,

or data dependency. Therefore, the power/energy consumption can be different.

We try to compare our method to the methods presented in Table 5.15, however, none

of these models is based on a superscalar processor and they are based on the basic

instruction level model and single pipeline processors. We have shown that for a super-

scalar processor, the definition of the base energy does not work in Section 5.8.2. Thus,

we cannot compare those models in Table 5.15.

On the other hand, Jeffry et al. created a simple average power model for superscalar

processors 80960JF and 80960HD [66]. In this model, the power is modelled with a

constant parameter: the average power consumption of each type of instructions. Thus,

the energy consumption of the program is only related with the runtime of the program.
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Based on the data from Figure 5.4, and Figure 5.5, the average power consumption of

each type of instruction is 0.1733W .

However, from Figure 5.5, it is clear that the instruction ALU, Load, and Store consume

different power. It is not suitable to the assumption in [66]. Thus, we modify this model

as the following equation:

Paverage =
∑
i

Pi × pi

= PALU × pALU + PLoad × pLoad + PStore × pStore,
(5.4)

where Poweraverage, PALU , PLoad, and Pstore are the total average power consumption,

the power consumption of the ALU instruction, Load, and Store, respectively. pALU ,

pLoad, and PStore are the ALU instruction percentage, the Load percentage, and the

Store of a program, respectively.

On the other hand, the overhead power consumption between different instruction classes

could be still important. Although the definition of the base energy cost is not available

anymore because of the dual-issue constraints, we can assume that the overhead cost

is the power different when instructions are always run in parallel. Thus, similar with

Equation 4.15, the following equations can be derived:

Eoverhead = ((Plogic load −
Plogic + Pload

2
)× pload + (Plogic store −

Plogic + Pstore
2

)× pstore)

× 2× Tclk × T × F × IPC

Poverhead = ((Plogic load −
Plogic + Pload

2
)× pload + (Plogic store −

Plogic + Pstore
2

)× pstore)

× 2, ×IPC
(5.5)

where Plogic load is the average test to run instruction pairs Logic and Load. pload, pstore

are the percentage of instruction Load and Store in the program.

Table 5.16: The estimation of the modified constant power model (Equation 5.4)
and overhead power cost(W ).

module name String.search susan.conrner susan.edges Bitcount Sha

The modified constant model 0.1742 0.1752 0.1754 0.1753 0.1751

The overhead power 0.0198 0.0234 0.0225 0.0062 0.0233

Fib Tak Fir Qs Han

The modified constant model 0.1748 0.1748 0.1756 0.1761 0.1750

The overhead power 0.0196 0.0232 0.0288 0.0258 0.0180

Table 5.16 shows the power consumption of the modified constant model (Equation 5.4)

and the overhead. The data of PALU , PLoad, and Pstore is fromFigure 5.5, and the data

of pALU , pLoad, and pstore is from Figure 5.17. The data of Plogic load, and Plogic load is

from test3 and test5 in Figure 5.13 in Section 5.8.1.
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Table 5.17: The errors of the constant power model ( [66]) and our method.

Power Method Stringsearch susan.conrner susan.edges Bitcount Sha

The original constant model -18.68% -17.10% -18.77% -14.69% -19.52%

The modified constant model -18.23% -16.21% -17.76% -13.72% -18.69%

The modified constant model2 -8.96% -4.99% -7.2% -10.73% -7.82%

Our method -6.06% -3.36% -4.72% -0.06% -3.88%

Fib Tak Fir Qs Han

The original constant model -12.84% -13.25% -10.31% -10.05% -18.81%

The modified constant model -12.09% -12.49% -9.11% -8.55% -18.03%

The modified constant model2 -2.21% -0.87% 5.78% 4.85% -9.58%

Our method -1.37% -2.28% 2.28% 2.63% -6.69%

Table 5.17 shows the errors of the original constant power model presented in [66],

the modified constant power model, the modified constant power model2 (modified

model1+overhead power), and our method, respectively. It is clear that neither the

original power model nor the modified1 model apply to the ARM Cortex-A8. However,

after considering the power consumption effect of different instructions (the overhead

power), the modified constant model has a better performance. On top of this the best

performance is still our model.

Furthermore, the average absolute error of the original constant power model, the mod-

ified model1, the modified model2 one, and our method is 15.41%, 14.49%, 6.3%, and

3.33% respectively. The reason of this mismatch could be that the effect of cache misses

for different instructions is not the same, which is presented in Figure 5.5. The constant

power model does not consider the effect of the cache miss.

Our model has shown a good estimation base on the ten benchmarks, and there are

three main reasons for this:

1. The Cortex-A8 uses a lot of low power design methods, which make the power

consumption low and stable. For example, the L1 cache misses cannot affect the

power very much (the difference between the average power consumption of the

4kB and 36kB is 3.07%). L2 cache misses are more rare because of the branch

prediction and the instruction pre-fetch strategy.

2. The power model shows good performance, as shown above, because it is easier

to create than an energy model. On the other hand, in our method, part of

the input data (the runtime of a program) comes from measurement rather than

modelling, which makes the overall estimation better than for a pure energy model.

The comparison results also show the advantage of our method which divides a

complex question (energy model) into two simple questions: a power model and

the runtime of a program. The runtime of a program is one of the easiest variables

to measure.

3. The power model considers the effect of cache misses and pipeline stalls. Data

dependency and cache misses can stall the pipeline, hence will affect the energy and
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power consumption of a program. We take IPC into account for these factors and

make the model concise but accurate. However, these factors are not considered

very much in [5, 11].

Compared with other models, as the discussion in Section 4.8.1 shows, one of the benefits

of this method is that the overhead power/energy of two adjacent instructions does not

need to be considered separately. We do not need to create extra test to measure this

effect.

Another benefit of our model is that it is easy to create. In order to generate the

power model, we use sixteen tests (eight group of tests and each group has two different

cases) as the training tests to achieve a model with an average absolute error of 2.7%.

However, sophisticated design of training tests is required for the energy model of the

Mep processor because it has to take the standard deviation of each variable value into

consideration [103]. The minimum and maximum errors of that model are 2% and 16%.

Bazzaz et al. created a model for the ARM7TDMI with 60 specialized tests which are

used to analyse the coefficients of each energy sensitive factor. On top of this, the model

has 35 parameters as the input data including: register bank bit flip, instruction word

Hamming distance and the ARM7 instruction set [15].

5.11 Discussion: Low Energy Software

Based on the power and energy model, we will discuss how the power model might be

applied to writing low energy software for a superscalar processor. Combining the EPI

Equation 4.20 and the superscalar power model (Equation 5.2) yields

EPI =
P

IPC × F

=
0.1842 + 0.0005× pALU + 0.0026× pLoad + 0.0155× IPC

IPC × F

=
C1

IPC × F
+

0.0155

F
,

(5.6)

where C1 is 0.1842 + 0.0005 × pALU + 0.0026 × pLoad. Therefore, the EPI is inversely

proportional to IPC. This result is the same as the ARM11 processor (Section 4.8.3).

Table 5.18: The benchmarks ranked by EPI and IPC.

Stringsearch Sussan.corner Susan.edges Bitcount Sha Fib Tak Fir QS Han

EPI 6 7 8 9 10 1 2 3 4 5

IPC 5 4 3 2 1 10 9 8 7 6

Figure 5.19 shows the energy per instruction and IPC of each test, and Figure 5.18 ranks

the workloads by EPI and IPC in detail. They demonstrate the conclusion proposed by
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Figure 5.19: The energy per operation VS operation per clock cycle.

Equation 4.21 and Equation 5.6. Sha has the fastest IPC but has the lowest EPI. In

contrast, Fib is the slowest but has the biggest EPI. Thus, increasing the IPC without

changing the size of a program much may reduce the EPI.

5.12 Conclusion

In this chapter we present an instruction-level power model for an in order superscalar

processor ARM Cortex-A8. Firstly, we analyze the power consumption of the processor

under various conditions, including: how the power consumption of a processor is affected

by L1/L2 instruction and data cache misses; by different instruction types; by dual-

issue restriction; by the Hamming distance between the operands of two consecutive

instructions; and by the overhead power cost of two adjacent instructions.

We show that the power is related to both the instructions per clock cycle (IPC) and

the instruction types of the program. Pipeline stalls are modelled by the IPC instead of

the cache miss rate. We extend the power model to estimate energy. The performance

of the model is tested in several embedded applications from the MiBench benchmark

suite. The results show the maximum estimation error is 6.69% and the average absolute

estimation error is 3.33%.

In the power model, instead of studying each instruction individually, the instructions

are divided into three types: arithmetic/logic instructions, load and store. Moreover,

we find that the speed of a program can affect the power and we take the IPC into

consideration. The IPC can reflect the factors which can make the pipeline stall, such as

cache miss and data dependency. This model is very concise because it does not consider

the overhead energy as an independent fatcor or the operand Hamming distance of two

consecutive instructions.
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On top of this, we extend the power model to a method of estimating the energy.

Compared with energy model, this method has two advantages: it is easy to create and

is accurate. Finally, we show that energy per instruction (EPI) is inversely proportional

to the instructions per clock cycle (IPC).





Chapter 6

ARM Cortex-A9 Dual-core

Processor

As the discussion in the last chapter shows, a superscalar processor has a better perfor-

mance than a scalar processor. However, it has several disadvantages which are hard to

solve.

Firstly, instruction level parallelism (ILP) has it own disadvantages. For example, the

multi-issue design increases the complexity of the instruction decoding stages in the front

end of the pipeline. In order to achieve higher parallelism, the fetch width could become

bigger. However, the fetched instructions could have more than one branch or have data

dependencies. In order to make the pipeline usage more efficient, more complex designs

have to be developed for the front end of the pipeline. Thus, the pipeline design becomes

more and more difficult, since the instruction fetch width increases.

Secondly, it is hard to achieve high speed performance via high instruction level paral-

lelism. The reason is Read after Write (RAW) data dependencies are a the bottle neck

in a program, which limits the IPC of the program. For example, if a program contains

100 instructions and 40 of them have internal data dependencies, at least 40 clock cycles

are needed to finish, no matter how big the instruction fetch width is, or how many

ALUs there are.

Thirdly, the clock frequency of single core is close to the pipeline limits. In order to

achieve better performance, one solution is to increase the clock speed. However, the

clock speed is also limited by physical materials and a high clock speed also means high

power and temperature. Nowadays, low power has become more and more important.

The power grows super linearly with higher clock speed and more complex Out of Order

logic design.

149
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Between 2000 and 2005, designers attempted to exploit more ILP, but it turned out to be

inefficient. The reason is the power and silicon costs grew faster than performance [21].

However, thread-level parallelism (TLP) is another way to increase performance.

On the other hand, multiprocessing is more and more important and reflects several

major factors [21]:

• A increasing interest in high-end servers such as cloud computing.

• A growing interesting in data-intensive applications related to massive amounts of

data.

• A better understanding about how to benefit from multiprocessors effectively, such

as server environments where there is significant natural parallelism.

In order to get better performance in TLP, multi-core processors have been designed.

Compared with ILP, parallel program techniques can benefit from TLP directly, such as

pthreads. TLP could be more cost-effective because a thread has its own instructions

and data. There are a lot of applications where thread-level parallelism occurs naturally,

such as server applications [102].

6.1 Target Processor

The Cortex-A9 processor is designed to maximize performance while considering the

price sensitivities of embedded devices. Firstly, for low power consumption, the power

efficiency is increased with higher performance. Secondly, for most applications, the

peak performance is increased. Lastly, it has the ability to share tools and investments

in software with different products. Thus, it can make a good solution for any design

requiring high performance in cost sensitive, lower-power, single processor-based design.

Compared with the existing ARM11 processor, it can provide better performance with

similar silicon cost and power budget [111].

Figure 6.1 shows a top level diagram of the Cortex-A9 processor. It contains six main

stages: instruction prefetch stage, dual-instruction decode stage, register rename stage,

dispatch stage, execute stage and OoO write back stage. The following is the pipeline

description [111]:

1. Instruction prefetch stage: up to four instruction cache lines can be prefetched,

which unblocks the potential memory latency caused by branches.

2. Dual-instruction decode stage: two full instructions can be decoded per cycle and

dispatched into the register rename stage.
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Figure 6.1: The architecture of Cortex-A9 [112].

3. Register rename stage: renames physical registers into a virtual register pool. This

stage is used to remove the data dependency between consecutive instructions.

4. Dispatch stage: dispatches instruction to four pipelines (ALU/MUL, ALU, FPU/-

NEON, Address). Once the resources of an instruction are ready, it will be dis-

patched into one of the execute pipelines according to its opcode type.

5. Execute stage: any of the four pipelines (ALU/MUL, ALU, FPU/NEON,Address)

can select instructions from the issue queue. The selected instruction are out of

order and this increases the pipeline utilization.

6. OoO write back stage: the order in which pipeline resources are released is inde-

pendent of the order in which the data are provided by system.

For an in-order processor, after a instruction is fetched, the instruction is dispatched to

the appropriate functional block only when the input operands are available, otherwise

the pipeline will stall and wait until they are available. However, for an OoO processor,

instructions will be dispatched to an instruction queue rather than functional blocks.

Once the inputs of any instructions in the queue are ready, they will leave the queue

and be sent to the appropriate functional unit to execute. Thus, out of order means the

execution sequence does not have to be the same as the instruction fetch sequence. The
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advantage of OoO design is it avoids a class of pipeline stalls and makes the pipeline

usage more efficient.

In order to achieve an OoO design, data hazards have to be considered and one solution

is dynamic scheduling with register renaming. Furthermore, the method is to rename all

destination registers, such as write for an earlier instruction, and make the out of order

write without affecting any instructions that relate to an earlier value of an operand [21].

Figure 6.2: The multi-core processor system diagram [113].

Figure 6.2 shows the architecture of the dual-core processor. It is based on a symmet-

ric multiprocessor (SMP) architecture, which means both of the cores have the same

architecture [113]. The dual Cortex A9 system includes two Cortex-A9 processors, one

L2 cache shared between the two CPUs, and one PLZ310 as an L2 cache controller.

On the other hand, each processor has its private 32kB L1 instruction and data cache

and a separate, dedicated power domain. Compared with the Cortex-A8, the dual-core

processor can run up to four instructions in one clock cycle.

The following are the parameters of Texas Instruments omap4460 [112,114]:

• 45-nm technology;

• SMP architecture;

• Superscalar, dynamic multiple issue technology with an efficient 8-stage pipeline;
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• Out-of-order(OoO) instruction dispatch and completion;

• 32kB L1 instruction and 32-kB L1 data cache-32-byte line size, 4-way set associa-

tive;

• Memory management unit(MMU);

• PL310 L2 cache controller with 1-MB cache size with 16-way set associative and

32-byte line size.

6.2 Experimental Methodology

Figure 6.3: The power supply schematic diagram [115].

Figure 6.3 shows the original power supply of the ARM Cortex-A9 dual core processor

and how we modified it. To make the necessary power measurements, a 0.1Ω series

resistor was included between the power supply and the CPU. Compared with previous

tests, the value of the resistor is the lowest because the current of the Panda board is

nearly ten times bigger than the Beaglebone board at nearly 1A. A digitizing oscillo-

scope, the Agilent MSO7012B, with a sample rate of 2GHz was used to measure the

instantaneous power as tests were carried out. We used two probes to measure each side

of the resistor. The instant power model, the average power model and the total energy

model is the same as Equations 4.1, 4.2, and 4.3, which are defined in Section 4.2.
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6.3 Instruction Level Power Model Analysis for a Dual-

core

As discussed in Chapter 5, the power is related to the speed of the processor and uses

the parameter IPC to reflect the speed. However, for a dual-core processor, the parallel

ratio is also important.

Firstly, it will affect the speed of a program. Amdahl’s law illustrates how the parallel

ratio can affect the speed of a program [10] and it proves that the bottleneck of the

speedup of an application is the part of a program which cannot run in parallel. The

modern form of Amdahl’s law is

Speedup =
1

(1− r) + r
n

, (6.1)

where r is the fraction that can run in parallel and n is the number of cores which run

r.

Figure 6.4: Amdahl’s law: parallel speedup vs sequential fraction.

Figure 6.4 shows the relationship between the speedup and the sequential fraction. It

is clear that the fraction limits the speedup of a program although there are a lot of

processors. For example, if 60% of a program can run in parallel and there are two

CPU cores, the speedup will be Speedup = 1

(1−60%)+ 60%
2

=1.43. No matter how many

processors there are, the maximum speedup is less than 2. Thus, the speed of a program

can be affected by the parallel ratio.

On top of this, the parallel ratio will affect the power of the processor. The reason is

that the more cores are active, the more power will be consumed, assuming the same

clock speed and supply voltage in each core. Considering that our target processor is

a dual core system, the parallel ratio is the factor which reflects the percentage of the
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runtime if only one core runs or both cores run. In the previous example, assuming 60%

of a program can run in parallel, for 57% of the runtime, only one core works and the

other core is idle. For the other 43% of the runtime, the two cores are used together.

This can be explain by Figure 6.5.

(a) The case of a single thread program.

(b) The case of a multi-thread program.

Figure 6.5: The parallel ratio will affect the processor usage.

Moreover, the speedupratio− 1 represents what percentage of the time the second core

is used during the program runs. The reason can be explained by Figure 6.6. From

Figure 6.6, assume r is the part of a program that can be run in parallel and there are two

cores in the processor. Thus, the time percentage of two core working is Ptwo core =
r
2

1− r
2

and the following equation shows the relationship:

Ptwo coree =
r
2

1− r
2

=
r

2− f
=

2

2− r
− 1

=
1

(1− r + r
2)
− 1 = Speedup− 1

(6.2)

Figure 6.6: The speedup ratio and the second core usage.

Therefore, for a multi-core processor, the parallel ratio can affect both the speed and

average power of a program. A power model has to take both these two factors into

consideration.
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The third factor is the components of each program. As in the discussion in Chapter 5,

although two programs may have same parallel ratio and IPC, the power usage may be

different if these two programs have different instruction components.

Hence, we derive a model assuming that the average power of a program is related to

the parallelism ratio, the IPC and the components of the program.

6.4 Experimental Design

Based on the test results in Chapter 5, we assume that all the different logic and arith-

metic instructions consume similar power. Thus, different logic and arithmetic instruc-

tions are not considered individually and instructions are classified into three cases:

ALU, load, and store. In order to analyse how the characteristics of a program (the

components of a program, the parallel ratio and IPC) affect the power, 96 different tests

are designed. The main body of each test is a loop but the components and the loop size

are changed. Furthermore, based on the different components of a program, the tests

are divided into eight different cases. Then, the speedup ratio of a program is divided

into six levels. Each of them is also studied in the best case and the worst case, where

the L1 cache always hits or misses (8× 6× 2 = 96).

Figure 6.7: The components of the combined tests.

Firstly, eight tests which have different components are shown in Figure 6.7, which is

the same as the combined tests in Section 5.8.1.

Secondly, we use the speedup ratio in Equation 6.1 as the parameter to reflect how

much of the program can be run in parallel. The speedup ratio describes how many

cores are used on average. Each of the eight tests is divided into six different further

levels based on the speedup ratio. The speedup ratios were set to 1, 1.2, 1.4, 1.6, 1.8,

and 2; This is set by changing the percentage of the instructions which can be run in



Chapter 6 ARM Cortex-A9 Dual-core Processor 157

parallel. For example, if the speedup ratio is one, it means the program is a purely

single thread program. If the speedup ratio is 1.25, it means 1.25 cores are activity on

average and 40% of the instructions of a program can be run in parallel with two cores

(1.25 = 1

(1−40%)+ 40%
2

).

Lastly, as the previous research shows, the cache hits and misses will affect the power.

In order to test the effect, all of the tests are broken down into two cases: the best case

and the worst case. For the best case, the length of each program is less than half of

the L1 cache size, which makes sure all of the instructions and data can be found in the

L1 cache and there are no cache misses. However, for the worst case, the size of each

program is twice as much as the size of the L1 cache. Thus, nearly every instruction

will be fetched from the L2 cache.

Figure 6.8: The speedup ratio and the second core usage.

Figure 6.8 shows the structure of the test program. A coloured box or a blank box

shows whether the core is active or not, respectively. For each iteration of the test, the

first part is a single threaded program, thus only one core is active. The second part is

a multi-threaded function, which can be run in parallel and two cores are active. The

components of the two parts are the same. The speedup ratio is set by changing the

instruction numbers of the first part. The following code is an example of a test:

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#define THREADS 2

#define N 20000 // the loop number of the second part (multi-thread function )

#define LOOP_TIME 1000 // the total loop number of the test.

void *multi(void *val) // the multi-thread part, which is a loop

{

int thread_id = (int) val;

int i;

for (i = thread_id; i<N; i += THREADS)

{

asm (" sub r4 , r1, #0xf ");
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asm (" orr r1 , r1, r2 ");

asm (" sub r4 , r1, #0xf ");

asm (" eor r6 , r2, #0xf3 ");

............

asm (" ADD r3 , r1, #0xf");

}

}

void main()

{

pthread_t threads[THREADS];

int i;

int k;

int M=LOOP_TIME;

while(M>0)

{

for (k= 0; k<N/8;k++ )

// the single thread part, which is a loop

// the loop size depends on the test( the best case or the worst case)

// the bigger the k is, the more instructions are run in single thread.

{

asm (" sub r4 , r1, #0xf ");

asm (" orr r1 , r1, r2 ");

asm (" sub r4 , r1, #0xf ");

asm (" eor r6 , r2, #0xf3 ");

............

asm (" ADD r3 , r1, #0xf");

}

// k is related with N.

// call the multi-thread function

for (i = 0; i < THREADS; i++)

{

pthread_create(&threads[i], NULL, multi, (void*) i);

/* Create independent threads each of which will execute function */

}

for (i = 0; i < THREADS; i++)

{

pthread_join( threads[i], NULL);

}

/* Wait till threads are complete before continues. */

M--;

}

}
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6.5 Experimental Results

6.5.1 The Test Results of the Best Case

Figure 6.9: The instruction per clock cycle for test 1 to test 8 in the best case.

Figure 6.9 shows the instruction per clock (IPC) of each test with respect to the speedup

and L1 cache hits (the best case). The measured speedup ratio is not the same as the

ideal setting. The reason may be the effect of the OS and I/O peripherals. It is clear

that the IPC is proportional to the parallel speed in all of the eight tests. Test 1 to test

5 have similar gradients (IPC vs the speedup ratio), as do the last three. However, the

gradient of test 1 to test 5 is bigger than test 6 to test 8. Moreover, the top speed of

test 1 to test 5 (when the speedup ratio is the biggest) is about 3.4 but for test 6 to test

8, it is only about 1.6. The reason is there are two ALU pipelines in the Cortex-A9 but

only one load/store pipeline. Thus, when the load or store instructions are too many

to consume by the load/store pipeline, the ideal IPC of each core will be less than 2.

This is explained by Table 5.11 in Section 5.8.1. Thus, the gradient of test 1 to test 5 is

bigger than that of test 6 to test 8.

Figure 6.10 shows the power consumption of the eight tests with changing speedup ratio

in the best case. The power consumption is proportional to the speedup in all of the

eight tests. The power is also affected by the components of the tests but by not much.

Figure 6.10(a) shows the power consumption for test 1 to test 5 in the best case. The

power consumption of test 5 is a little smaller than the others but by not much. Thus,

they still have similar gradients (power vs the speedup ratio). Similarly, Figure 6.10(b)

shows that the power of test 6 to test 8 in the best case are close to each other when

they have a similar speedup ratio, thus they also have similar gradients.

However, the peak power (when the speedup ratio is the highest) and the gradients of

test1 to test 5 are not the same as for test 6 to test8. For example, test 1 to test 5
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(a) The average power consumption of test 1 to test 5.

(b) The average power consumption of test 6 to test 8.

Figure 6.10: The power consumption of the eight tests in the best case.

consume similar peak power, which is around 1.6W (Figure 6.10(a)). In contrast to

this, the peak power of test 6 to test 8 is only about 1.4W (Figure 6.10(b)). The reason

for the difference is that the top speed (IPC) is different.

Figure 6.11 shows the speedup ratio, IPC and the average power consumption of test 1

to test 8 together. Firstly, it shows that both the speedup ratio and the IPC can affect

the power. For example, when different programs have similar speedup ratios, the power

consumption will be different if they have different IPCs, such as test 1-test 5 compared

with test 6-test 8. Secondly, both speedup ratio and IPC have positive effects. The

bigger the speedup ratio and IPC, the more power will be consumed. Moreover, the

IPC has a relation with the speedup ratio, since if the speedup ratio becomes higher,
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Figure 6.11: The speedup ratio, ICP and average power consumption of test 1
to test 8 in the best case.

more instructions can be run in parallel. Thus, the IPC has a high chance to become

bigger.

6.5.2 The Test Result of the Worst Case

Figure 6.12: The instruction per clock cycle for test 1 to test 8 in the worst
case.

Figure 6.12 shows the IPC of the eight tests in the worst case, where nearly all of the

instructions have to be fetched from the L2 cache. It is clear that the IPC is still

proportional to the speedup ratio of each test. Moreover, compared with Figure 6.9 and

Figure 6.12, it is clear that the decrease of IPC in test 1 to test 5 is larger than in test

5-test 7. This effect is the same as in Figure 5.3 in Section 5.3.1, where the reason is
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(a) The average power consumption of test 1 to test 5.

(b) The average power consumption of test 6 to test 8.

Figure 6.13: The power consumption of the eight tests in the worst case.

explained. Based on these reasons, test 1 to test 5 consume less power in the worst case

but test6 to test 7 consume more.

Figure 6.13 shows the power consumption of the eight tests in the worst case. The

power is still proportional to the speedup ratio of each test. In Figure 6.13(a), test 4

consumes the most power but the difference is not much compared with others. On the

other hand, in Figure 6.13(b) test 7 consumes the least power. For test 1 to test 5, the

peak power of each test in the worse case is a little smaller than that in the best case.

For example, compared with Figure 6.13(a) and Figure 6.10(a), the peak power in the

worst case is about 1.5W but it is about 1.6W in the best case. In contrast, for test 6 to

test 8, the peak power consumption in the worst case is a little bigger than that in the

best case. As for the single core, the pipeline usage will be less efficient and the power
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may reduce. However, transferring data from the L2 cache to L1 cache consumes a lot

of power. Thus, although the speed of the tests in the worst case is slower, the overall

power consumption may be more than in the best case.

Figure 6.14: The speedup ratio, ICP and average power consumption of test 1
to test 8 in the worst case.

Figure 6.14 shows the speedup ratio, ICP and the average power consumption of all of

the tests in the worst case. It shows that both the speedup ratio and the IPC can affect

the power just like the best case test. Compared with the best case in Figure 6.11, the

data points of test 1 to test 5 are closer to the points of test 6 to test 8. The reason is

the difference in the IPC between test 1 to test 5 and test 6 to test 8 in the worst case

is smaller than that in best case.

6.5.3 Summary of the Experimental Results

The power consumption in both the best case and the worst case is proportional to the

speedup ratio. The IPC and components of the program also affect the power. When

the speedup ratio is similar, the power consumption of each test in the best case and

the worst case is similar. However, the energy consumption in the worst case is much

more than in the best case. The reason is the IPC decreases from the best case to the

worst case, thus the runtime of a program is much longer.

Based on the comparison between the IPC of each test in the best case (Figure 6.9) and

the worst case (Figure 6.12), it is clear that the instruction pre-fetch unit and branch

predictor works well. For example, for the worst case, although a lot of instructions are

fetched from the L2 cache, the IPC is still about 1.3 (speedup ratio is one) and the lost

speed is only 0.6, which is less than half of the full speed.
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6.6 Instruction Level Power Modeling

In order to generate a concise model, we divide the instructions into three classes: ALU

logic instructions (including arithmetic and logic instructions), load and store. We

assume the power is affected by the speedup ratio, the IPC and the components of a

program. Therefore, it can be represented by the following equation:

Poweraverage = k0 + k1 × pinstruction distribution + k2 × IPC + k3 × Speedup (6.3)

We have already analysed 96 different tests. Based on these results, we use linear

regression to derive the model which is presented as follows:

Poweraverage =0.0606 + 0.1247 ∗ pALU + 0.0633 ∗ pLoad+

+ 0.0829× IPC + 0.6453× Speedup,
(6.4)

where Poweraverage, pALU , pLoad, IPC, and Speedup are the average power consump-

tion, the ALU instruction percentage, the load percentage, the IPC, and the speedup

ratio, respectively. k1 × pinstruction distribution in Equation 6.3 is replaced by 0.1247 ∗
pALU + 0.0633 ∗ pLoad. The reason pLoad is missing is because we assume that all of the

instructions come from these three cases. Thus, plogic+pstore+pLoad = 100%, and pLoad

can be presented by pstore and plogic after creating the power model by linear regression,

such as pLoad = 100%− plogic − pstore. For the same reason discussed in Section 4.6 and

Section 5.8.2, the pload is represented by plogic and pstore after linear regression.

However, the energy is also important and the power model can be extended to a energy

model by Equation 4.3. Ubuntu Linux is used as the operating system, thus measuring

the runtime of the program is very easy. Figure 6.15 shows the measured power and

estimated power. It is clear the power consumption in the best case is estimated ac-

curately. However, there are several bad estimations from the worst case. The power

consumption of the processor has a large range, from 0.8W to 1.6W .

Figure 6.16 shows the error between the estimated and measured power. The error is

less than 10% in most of the cases. However, there are six predictions whose errors

are more than 10% and they all come from the worst case. There are 96 (8 tests ×
6 different speedup level × best case or worst case =96) estimations in total, thus the

bad prediction percentage is only 6.25%. Moreover, the errors of 80 estimations are less

than 5%, and the average absolute error value is 2.92% and 4.972% for the best case

and worst case, respectively. Therefore, this model is accurate.

Although the model is created based on integer tests, this model can also be used for

floating point programs. Firstly, the integer and floating point instructions share a lot
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Figure 6.15: The comparison between measured power and estimated power.

Figure 6.16: The error between predicted and measured power.

of the resources such as L2 cache, L1 cache and TLB. Moreover, they also share most

of the pipeline stages such as instruction fetch stage, register rename stage and dispatch

stages. The only different stage is the execute stage. Therefore, the different power

consumption between an integer and a floating point comes from the execute stage.

As the whole system includes 1MB L2 cache, L1 cache, 48 kB ROM, this difference is

unlikely to be significant.

Secondly, Load/Store, branch and integer instructions make up most of the instruction

types and floating point is less significant. For example, the sum of the percentages of

branch, load and store is bigger than 50% (without considering the percentage of integer

ALU instructions) in most of the benchmarks in the SPEC2006 floating point benchmark

suite [116] and a similar result is presented in [117]. Moreover, the percentage of floating

point instructions will be less in other integer benchmarks and programs.
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Thirdly, the floating point pipeline consumes more power than an integer, because the

floating point pipeline is more complicated than the integer. This may reduce the

accuracy of our model to predict floating point programs and make the estimation lower

than the real measurement. However, the number of execution stages of a floating

point instruction is more than for an integer. Thus, a floating point instruction needs

more clock cycles to finish. If a floating point instruction makes the pipeline stall,

such as with data dependency, the system will stall for more cycles than for an integer.

Therefore, the usage of the pipeline is inefficient, which will reduce the overall average

power consumption. Considering these two factors together: one increases the power

consumption (the floating point pipeline consumes more power than an integer) but

one decreases the power consumption (floating point may stall the pipeline longer than

integer), the effect of the floating point pipeline will not reduce the accuracy much.

Thus, considering these three factors, we will confirm this model can also work for

floating point programs in the next section.

6.7 Validation

In order to test the performance of the model, we use the Stanford Parallel Application

for SHared memory (SPLASH2) as the benchmark [118]. It includes twelve test programs

in total and nine of them were compiled and run successfully.

Table 6.1: The setup for SPLASH2 benchmark suit.

Name Input Value Thread Number

Barnes default input file 1,2

Cholesky cache=32768MB tk15.O 1,2

FMM input.2048 1,2

LU 444 × 444 matrix 1,2

Ocean no 1,2

Radix no 1,2

Raytrace teapot, global memory=64 MB 1,2

Water-Spatial default input file 1,2

Water-nsquared default input file 1,2

Table 6.1 shows the setup of each test. Barnes, Water-Spatial and Water-nsquared use

the default input file. Ocean and Radix do not need any input values. For Cholesky,

the parameter cache size is set to 32768 Bytes and the file “tk15.O” is chosen as the

input. FMM uses the file “input.2048” as the input. The LU test in contiguous blocks

case uses 444 × 444 as the decomposition matrix. All of benchmarks were tested with

both a single thread and two threads.
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There are three input values in our model: speedup ratio, IPC and the components of

each program. Before we validated our model, we used the gem5 simulator in full system

mode [78] to analyse each program and get the distribution of each instruction type and

the total number of instructions in each benchmark.

Figure 6.17: The components of each benchmark.

Figure 6.17 shows the components of each test. It is clear that compared with the other

three instruction types, floating point and ALU instructions are the most significant

parts. Load is the third biggest part and branch is the least significant part. Radix

has a bigger floating point distribution than the others, which is 46.39%. However,

Raytrace has the least floating point distribution of all of the tests, which is 18.97%.

Barnes has the biggest ALU distribution, which is 49.6%, and Water-Nsq has the least

ALU distribution, which is 32.56%

Figure 6.18: The speedup ratio and IPC of each benchmark with a single thread.



168 Chapter 6 ARM Cortex-A9 Dual-core Processor

Figure 6.19: The speedup ratio and IPC of each benchmark with two threads.

Figures 6.18 and 6.19 show the speedup ratio and IPC of each test in single thread

mode and two thread mode. The timing information of the two thread test comes from

the measurement in the OS such as speedup ratio and runtime of a program. IPC is

calculated by Number of Instructions
Clock Frequency × Runtime . The speedup ratio of the single thread tests also

comes from the measurement but the IPC is calculated by IPCtwo
speeduptwo/speedupsingle

. We

assume that the instruction numbers of the program running in a single thread is the

same as in two threads, therefore the IPC is proportional to the speedup ratio.

For tests with a single thread, from Figure 6.18, it is clear that all of the speedup ratios

are close to one. The lowest speedup ratio comes from Radix which is 0.842 and the

largest is Barnes, which is 0.994. Ideally, the speedup ratio in a single thread should

be one. However, because of OS effects, such as task scheduling, the speedup will be a

little less than one.

For tests with two threads, from Figure 6.19, Barnes gets the biggest speedup ratio,

which is more than 1.75, which means it gets the most benefit from parallel threads.

Radix has the lowest speedup ratio, which is less than 1.25. Overall, all of the tests have

similar speedup ratios, which is from 1.25 to 1.5. However, the IPC of each test varies

considerably. Raytrace has the biggest IPC which is more than 1 but Radix’s IPC is

less than 0.175. The reason is that Raytrace has the smallest floating point percentage

but Radix has the largest. Floating point takes more clock cycles to finish and may stall

the pipeline longer than for an integer, as in the true data dependency case.

Figure 6.20 and 6.21 show the test results of the model running the benchmarks with

a single thread and two threads respectively. Each figure includes the estimated and

measured power, and the estimation error.

For tests with a single thread, from Figure 6.20, it is clear that most of the tests consume

similar power, which is about 0.8W . However, Radix consumes the least and the reason
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Figure 6.20: The error between predicted power and measured with a single
thread.

Figure 6.21: The error between predicted power and measured with two threads.

is all of the tests have a similar speedup ratio which is close to one and it has the lowest

IPC. The least predicted error is 0.26%, which comes from Ocean and the largest error

comes from Radix and its estimation error is 10.83%. Except Radix, all of the absolute

estimation errors are less than 8% and the average absolute error value of all tests is

4.6%.

For tests with two threads, from Figure 6.21, Barnes consumes the most power because

it has the largest speedup ratio which is the most significant factor in our model. In

contrast, Radix consumes the least, as its speedup ratio is the smallest. Overall, the

power consumption of all tests is from 0.96W to 1.28W . Although Radix and Ocean

have similar speedup ratios, Ocean has a larger IPC and consumes more power than
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Radix. The largest error is 9.18% which comes from Branes. Radix has the smallest

error which is 1.79%. The average absolute error value of all tests is 5.95%.

Based on the SPLASH2 benchmark results, it is clear that the model works well in both

single thread mode and multi-thread mode.

6.8 Discussion: Energy Consumption and Performance

In this subsection, we will discuss the energy consumed by the program in a dual-core

processor. Because of the architecture difference between the dual-core and single core,

the discussion for the single core (Section 5.11) needs to be proved to apply to a dual

core.

6.8.1 Discussion: EPI vs IPC for a Dual-core Processor

For a dual core system, the CPU usage depends on the applications, since a program

can run with a single thread or two threads. Thus, we have to analyse the EPI and IPC

of an application with both a single thread and two threads.

Based on Equation 4.20 and the power model Equation 7.1, the EPI for a dual core

processor can be presented as

EPI =
P

IPC × F

=
0.0606 + 0.6453× Speedup+ 0.0829× IPCs + 0.1247× PALU + 0.0633× PLD

IPC × F

=
0.0606 + 0.6453× Speedup+ 0.1247× PALU + 0.0633× PLD

IPC × F
+

0.0829

F

=
C

IPC × F
+

0.0829

F
,

(6.5)

where C is 0.0606+0.6453×Speedup+0.1247×PALU+0.0633×PLD
IPC×F . Thus, C is a constant for a

program and the EPI is inversely proportional to the IPC.

Table 6.2: The benchmarks ranked by EPI and IPC with a single thread.

Barnes Cholesky FMM LU Ocean Radix Raytrace Water-S Water-NS

EPI 8 3 5 4 2 1 9 6 7

IPC 2 7 5 6 9 9 1 4 3

Figure 6.22 shows the energy per instruction and IPC of each test with a single thread

and Figure 6.2 ranks the workloads by EPI and IPC. They demonstrate that EPI is

inversely proportional to IPC for a single thread program running in a dual-core pro-

cessor. For example, Radix has the biggest EPI (6.17) but the lowest IPC (0.087). In

contrast, Raytrace has the lowest EPI (0.921), but the highest IPC (0.776).
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Figure 6.22: The energy per operation VS operation per clock cycle with a
single thread.

Figure 6.23: The energy per operation VS operation per clock cycle with two
threads.

Table 6.3: The benchmarks ranked by EPI and IPC with two threads.

Barnes Cholesky FMM LU Ocean Radix Raytrace Water-S Water-NS

EPI 8 3 5 4 2 1 9 6 7

IPC 2 7 5 6 9 9 1 4 3

Figure 6.23 shows the energy per instruction and IPC of each test with two threads and

Table 6.3 ranks the workloads by EPI and IPC. Radix has the biggest EPI (6.22) but the

lowest IPC (0.127). In contrast, Raytrace has the lowest EPI (0.868), but the highest

IPC (1.107).

Increasing the IPC will lead to a lower EPI and make energy usage more efficient.
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Whether the processor is a single core or multi-core, or the program has a single thread

or two threads does not matter. Therefore, the ideas presented for the ARM11 in

Section 4.8.3 about how to write energy efficient code can be extended to multi-core.

For example, if the pipeline stalls can be reduced or the speed of the program is improved,

such as by reducing the cache miss rate, the energy usage will be better.

6.8.2 Discussion: the Energy of a Single Thread Program vs a Multi

Thread Program

A program can run in a single thread or two threads, but which consumes more energy

is not clear. In order to discuss this problem, we assume the energy consumed by a

program which runs with a single thread and multi-threads are Es and Em respectively.

Based on Equation 7.1, we assume that the speedup ratio in single thread mode is one

and the energy ratio between Es and Em is

Ratio =
Es
Em

=
Ps × Ts
Pm × Tm

=
Ps
Pm
× Ts
Tm

=
Ps
Pm
× Speedup

=
0.0606 + 0.6453× Speedups + 0.0829× IPCs + 0.1247× PALU + 0.0633× PLD

0.0606 + 0.6453× Speedupm + 0.0829× IPCm + 0.1247× PALU + 0.0633× PLD
× Speedup

=
C1 + 0.6453× 1 + 0.0829× IPCs

C1 + 0.6453× Speedup+ 0.0829× IPCs × Speedup
× Speedup

=
C1 + 0.6453 + 0.0829× IPCs
C1

Speedup + 0.6453 + 0.0829× IPCs

=
C1 + C2

C1
Speedup + C2

> 1,

(6.6)

where C1 is a constant 0.0606 + 0.1247 × pALU + 0.0633 × pLD, and is related to the

components of a program. C2 is 0.6453 + 0.0829× IPCs and is related to the IPC of a

program with a single thread.

If the number of instructions of a program with a single thread and two threads are the

same (in other words, the amount of the work is the same for both cases: a single thread

and two threads), based on the analysis of Equation 6.6, the EPI of a program running

in two threads will be less than that in a single thread. Furthermore, ideally, the more

parts of a program that can run in parallel, the higher the speedup ratio will be and the

less energy it will consume.

Figure 6.24 shows the experimental results for the both EPI of each benchmark in

single thread mode and multi-thread mode. Barnes, Cholesky, Raytrace and Water-Nsq

consume less EPI in multi-thread than single thread and this is the expected result.

However, FMM, LU, Ocean, Radix and Water-Sp consume more EPI in multi-thread

mode. But the EPI ratio between single and multi-thread is quite close to one. For
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Figure 6.24: The error between predicted power and measured in two thread
mode.

example, the ratios of LU, Radix and Water-S are 0.9988, 0.9922 and 0.9901 respectively.

The reason is that in Equation 6.6 we assume that the speedup of single thread is one but

in fact, it is slightly less than one, thus the IPC of a single thread is also overestimated.

From Figure 6.24, it is clear that the energy consumption of a program with multi-

threads is very close to that with a single thread and may even consume less energy.

Therefore, multi-threading can reduce the run time of a program without sacrificing

energy, and may even save energy. The reason for this can be analysed in another

way. A lot of resources of the processor are shared between the two cores such as the

L2 cache. Therefore, even if only one core works, these resources will still consume

energy. Assume the power consumed by each core is powercore and by the other shared

resources is powershare. The energy of a program with a single thread will be (powercore+

powershare) × T (T is the runtime of the program with a single thread). If the same

program is run with two threads and the speedup ratio is n(n > 1), the energy will be

(powercore × n+ powershare)× T
n . Therefore, it will consume less energy.

6.9 Conclusion

In this chapter, we extend our method to a dual-core ARM Cortex-A9. Firstly, we

classified the instructions into three classes: load, store, and ALU. We assumed that the

power is affected by three factors: IPC, speedup ratio and the components of a program.

96 tests were created to analyze how these three factors affect the power together. Based

on the test results, we used linear regression to create a power model. Nine benchmarks

from SPLASH2 were used to test the performance of the power model and it shows

good performance in both single thread and two thread tests. For example, for each
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test running in one thread, the best prediction error is 0.26% (Ocean) and the largest

error is 10.83% (Radix). The average absolute error of all tests is 4.6%. For each test

running in two threads, the best predication error is 1.79% (Radix) and the largest error

is 9.18% (Barnes). The average absolute error of all tests is 5.78%.

Moreover, we proved that the EPI of a program with a single thread is inversely propor-

tional to IPC with different types of the processor, such as simple scalar, super scalar,

and multi-core processors. The energy consumed by a program with a single thread is

the same as or less than that with multi-threads. Therefore, multi-threading can reduce

the runtime of a program without sacrificing energy.



Chapter 7

How To Apply The Model To

New Processors

So far, we have proved that our method works in several different RISC processors

including ARM11, ARM Cortex-A9 and dual core ARM Cortex-A9. However, there are

a lot of different RISC architectures, such as MIPS and SPARC. In this chapter, we

will discuss the limitations of our method and explain how to apply our model to other

processors.

7.1 The limitation of the method

There are two limitation of the method. Firstly, the method is designed for RISC

processors, therefore it may not apply to a CISC processor. The reason is we use

instruction per clock cycle (IPC) to model the speed of the processor. This means that

a higher IPC implies the processor is busy and consumes higher power. However, for a

complex instruction set computer (CISC), IPC cannot reflect the speed of the processor

so well. The reason is that for a RISC processor, one instruction normally means one

function or one job. However for a CISC processor, one instruction may do a lot of

things. Thus, the IPC of a CISC processor is lower compared with a RISC processor,

but it does not mean the performance of the CISC processor is lower or consumes less

power.

Secondly, before creating our model, we have proved that for our target processors,

the overhead power cost of two consecutive arithmetic and logic instructions and the

data may not affect the power much. For example, the maximum overhead power of

the ARM11 and ARM Cortex-A8 is 0.0101W (4.99%) and 0.0058 (0.32%), respectively.

Thus, we do not need to design more tests to consider these effects and can ignore them

in our model. However, for other processors, especially simple architecture processors,
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these factors may affect the power and energy significantly [8]. For a simple processor, a

lot of hardware which is used to increase the performance in RISC processors is not used.

For example, processors may have smaller cache sizes, shallow pipelines, and no branch

predictor. Thus, the data switching rate of the datapath may become more important

and affect the power more. Finally, this model may not apply to those processors where

the effect of data and the overhead of arithmetic and logic instructions cannot be ignored.

7.2 How to apply the model to new processors

In this section, we will explain how to extend our power model to another ISRC proces-

sor. In order to explain more clearly, we will use MIPS as an example only, but we have

not tested this in a real MIPS processor.

Figure 7.1: How to apply the model to new processors.

Figure 7.1 shows how to apply the model to a new processor. There are five steps to

create the power model.

Step 1 Ideally, we need to test the base power of all the arithmetic, load and store

instructions, such as ADD, AND, LB, SB in MIPS. However, the instructions from

the same category should consume similar power. Thus, if a MIPS processor follows this

rule, there is no need to test all of the instructions. On the other hand, it is not harmful
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to test all of the instructions. Setting up the test is the same as in the ARM example,

Section 4.3.

On the other hand, we need to check that whether the effect of overheads of the instruc-

tions from different instruction categories and data can be ignored. The method is to

run a loop that only contains the target test instructions. The size of the loop has to be

less than the size of the L1 cache. An example of the AND test pseudo code to test the

effect of the operand is shown below and more details of the test harness are presented

in Appendix A.2.1.

while(true);

{

asm(" AND r3, r2, r1 ");

asm(" AND r4, r1, r2 ");

asm(" AND r3, r2, r1 ");

asm(" AND r4, r1, r2 ");

...............

asm(" AND r3, r2, r1 ");

// the size of the loop has to be less than the size of L1 cache

}

We expect that the difference between the minimum operand switching test, such as 0

bits, and the maximum operand switching, such as 16 bits, should be less 5%. However,

we do not know the specific value. Furthermore, the bigger the difference is, the worse

the performance of the model. If this number is more than 5%, the case where the

average number of switching bits is no more than 10 could be a good choice, because we

assume that a low switching rate in a real program is more likely than a high switching

rate. Similarly, the overhead of the instructions from the same category, such as all ALU

instructions, should be less than 5%. Thus, there is not need to test every pair because

different ALU instructions use very similar hardware. Thus, the overhead power or

energy should be very little, again around 5%. The set up of the overhead and operand

switching tests are the same as for the ARM example, Section 4.5 and Section 4.4,

respectively.

Step 2 We then need to cluster the instructions into classes based on the power test

results from step 1. We propose that three classes: logic, load and store are a good

and common classification, based on their different pipeline usage. The reason is most

logic and arithmetic instructions use the the same pipeline, and thus consume similar

power. Compared with the logic and arithmetic instructions, load and store use different

pipelines and consume different power. Thus, for ARM11, ARM Cortex-A8 and ARM-

A9, we cluster the instructions into three classes. Moreover, a lot of RISC processors,

such as MIPS, use load and store to access the memory and the other instructions

focus on calculations. This suggests our clustering method. On the other hand, if
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this clustering method does not work well, Bona et al. presented a general method for

dividing the instructions into different classes, Section 2.3, [33, 37].

The following table is an example of instruction clusters of MIPS; we focus on integer

instructions only.

Table 7.1: An example of clustering MIPS instruction.

Logic Load Store

ADD LB SB

ADDIU LBU SH

ANDI LH SW

ORI LHU SWL

XORI LWL SWR

LUI LWR

ADD

ADDU

SUB

SUBU

AND

OR

XOR

SLL

SRL

We only used one class for OpenRISC, not three. The reason was that the OpenRISC

was an initial test, used to identify which factors could affect the power usage signifi-

cantly, and how the pipeline usage was related to power consumption. Moreover, various

advanced technologies for front-end RTL design, such as branch prediction, instruction

pre-fetch, and back-end P&R (place and route) design were not used. Low power tech-

niques, such as clock gating and power gating, were not included. Thus, these tests could

not fully present the real behaviour of a real processor, but they were good enough for

finding several useful results, such as that different logic instructions consume similar

power. On the other hand, we also found that predicting the timing of a program is

hard if only based on the instructions, due to the Out-Of-Order pipeline and branch

prediction technology. Thus, we use average power × timing to predict the energy of a

program.

Step 3 In our method, there are three main factors that can affect the power: 1. different

distributions of each kind of instruction, 2. different conditions (L1 cache miss and hit),

and 3. different speedup ratios (this is used to model multi-core processors). The third

step is to create the tests by changing the weight of each factor and to gather the

input data for linear regression. The main body of the each test is still a loop and the

components of the loop are changed based on the different weights of the three factors:
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Step 3.1 In order to analyse how different classes of instructions affect the power, we

need to change the percentage of each class in a program. Then, we can test the power

consumption and estimate how the different kinds of instruction affect the power.

Firstly, we need to choose a number as the granularity or the step distance between

different ratios of each instruction class. Then, the test should change the percentage of

each kind of instruction by the step distance to cover all of the different cases. There is

no restriction on the step distance, but the smaller it is, the greater the total number of

simulations without necessarily increasing the accuracy of the model. We suggest that

20% or 25% would be a good number. For example, for the ARM Cortex-A8 processor,

we chose 25% as the step distance, and created eight different settings by decreasing

the percentage of arithmetic and logic instructions and increasing the percentage of load

and store. This is shown in Figure 5.13 in Section 5.8.1.

Step 3.2 In order to analyse how cache misses affect the power, all of the tests have to

be divided into two cases: no L1 cache miss and no L1 cache hit. This can be achieved

by changing the size of the loop. For example, for no L1 cache misses, the loop can be

less than half of the size of the L1 cache. For no L1 cache hit, the size of the loop can

be as much as double the size of the L1 cache.

Step 3.3 For multi-core processors, the speedup ratio can affect the core because a

higher speedup ratio means more cores run at the same time. In order to change the

speedup ratio, the tests can be divided into two parts: a single threaded part and a

multi-threaded part. The speedup ratio can be set by changing the percentage of the

instructions in the two parts.

Furthermore, the highest speedup ratio is equal to the number of cores in the system.

Assuming there are N cores in the system and the granularity is M (M is used to define

the difference of the speedup ratio between each test), there will be N−1
M + 1 different

settings. For example, we presented the power model for a dual core ARM Cortex-A9

system in Section 6.4 where the granularity is 0.2. Thus, there are six different speedup

ratios, which are 1, 1.2, 1.4, 1.6, 1.8 and 2. An example of the pseudo code is shown

below:

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#define THREADS 2

#define N 20000 // the loop number of the second part (multi-thread function )

#define LOOP_TIME 1000 // the total loop number of the test.

void *multi(void *val) // the multi-thread part, which is a loop

{

int thread_id = (int) val;
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int i;

for (i = thread_id; i<N; i += THREADS)

{

asm (" sub r4 , r1, #0xf ");

asm (" orr r1 , r1, r2 ");

asm (" sub r4 , r1, #0xf ");

asm (" eor r6 , r2, #0xf3 ");

............

asm (" ADD r3 , r1, #0xf");

}

}

void main()

{

pthread_t threads[THREADS];

int i;

int k;

int M=LOOP_TIME;

while(M>0)

{

for (k= 0; k<N/8;k++ )

// The single thread part, which is a loop

// The loop size depends on the test( the best case or the worst case)

// The instructions in this part can be set by changing the loop condition

(N/8)

// The bigger the condition is , the more instructions are run in single

thread.

{

asm (" sub r4 , r1, #0xf ");

asm (" orr r1 , r1, r2 ");

asm (" sub r4 , r1, #0xf ");

asm (" eor r6 , r2, #0xf3 ");

............

asm (" ADD r3 , r1, #0xf");

}

// k is related with N.

// call the multi-thread function

for (i = 0; i < THREADS; i++)

{

pthread_create(&threads[i], NULL, multi, (void*) i);

/* Create independent threads each of which will execute function */

}

for (i = 0; i < THREADS; i++)

{
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pthread_join( threads[i], NULL);

}

/* Wait till threads are complete before continues. */

M--;

}

}

Considering the different combinations of the three factors in steps 3.1, 3.2, and 3.3,

there are 8 (step 3.1) × 2 (step 3.2) × (N−1
M + 1) (step 3.3) tests in total. For example,

there are 8 × 2 × 6 = 96 tests in a dual core ARM Cortex-A9 system in Chapter 6.

For a single core processor, step 3.3 can be ignored because the speedup ration is always

one.

Step 4 The fourth step is to measure the power, IPC and the speedup ratio of each test

created in step 3. The current can be measured by an oscilloscope and hence the power

can be calculated. The IPC can be measured as number of instructions
number of clock cycle . The number of

instructions is equal to the product of the loop size and the loop time. The speedup

ratio can be measured by the operating system.

Step 5 The last step is to create the power model based on the test results in step 4.

The input factors are the distributions of each kind of instruction, the IPC, the speedup

ratio, and the measured power. The generated model will be

Poweraverage =α ∗ pALU + β ∗ pload or store
+ γ × Speedup+ δ × IPC + ε,

(7.1)

where α, β, γ, δ, and ε are the coefficients of each type of instruction (we assume that

pALU + pload + pstore=1, thus only two of the three coefficients are needed), the speedup

ratio, the IPC and a constant, respectively. A single core processor, such as ARM11

and ARM Cortex-A8, only has one core, and the speed is always the same as its original

speed. Thus the Speedup is always one. Then, γ can be merged into the constant ε.

Thus, this model covers the ARM11, ARM Cortex-A8 and ARM dual Cortex -A9.

7.3 Conclusion

In this chapter, we discussed how to apply this method to a new RISC processor. Firstly,

we need to test the base power of each instruction, then cluster them into three classes:

Load, Store, and Logic. Then, we need to create training tests based on three factors:

1, the distribution of different instruction types; 2, the L1 cache always hits and the L1

cache never hits; 3, the Speedup ratio if it is a multi-core processor. Finally, based on

the power measurement of the training tests, and different factors, an instruction level
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power model can be created by using Linear regression. The instruction distribution and

instruction number can be found from an ISA simulator, such as gem5, and hardware

components, such as performance counters. Thus, the input values can be generated

easily and this method is easy to use.



Chapter 8

Conclusion and Future Work

8.1 Conclusion

Nowadays, the power or energy consumed by a chip has become a primary design con-

straint for embedded systems and is largely affected by software. The aims vary with

the application domain, the best program is sometimes the most power or energy effi-

cient one. However, there is a gap between software and hardware that makes it hard

to predict which code consumes the least power/energy before measuring it. Therefore,

it is vital to discover which factors can affect a program’s energy consumption and to

create a concise model to estimate it.

In this thesis, we have created instruction level power models for different processors.

We demonstrate that several factors which are considered by previous work may no

longer be important. For example, the base power/energy cost of different arithmetic

and logic instructions are similar to each other, since they use similar blocks. The

Hamming distance between the operands of two consecutive instructions does not affect

the power much. Thus, our hypothesis is that the power is related to the IPC and the

components of a program. We design tests to analyze how these two factors affect the

power. Furthermore, the IPC is affected by the cache miss rate and pipeline stalls. We

cluster instructions into three groups: ALU, load and store and change the percentage

of each group in different tests. Finally, we use a linear regression method to create a

power model for different processors. It is not necessary to track and find out what the

specific instructions are but just to know which group they belong to. Thus, we do not

need a cycle accurate simulator to get this data and so save a lot of effort. Moreover,

the model does not consider the overhead power/ energy cost independently. Thus,

this model is concise and easy to use (objective 3). Moreover, we extend this method

to a dual core processor and the power is affected by the IPC, speedup ratio and the

components of a program.
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This method has been tested by different types of processors including: a scalar processor

ARM11 (Chapter 4), a super scalar ARM Cortex-A8 (Chapter 5), and dual-core pro-

cessor (each core is ARM Cortex-A9 processor Chapter 6) and mosty of the estimation

errors are less than 10% (objective 1).

On the other hand, the tests for creating the model are easily designed and few (objective

2). For example, nine tests and sixteen tests are used to create the power model for the

ARM11 and ARM Cortex-A8 respectively.

On top of this, we have extended the power model to the energy model (objective 4). The

previous work concentrated on estimating the energy of a program. However, there are

a lot of factors that can affect the energy consumed by a program, such as cache misses,

and pipeline stalls. Thus, it is hard and inefficient to consider each factor separately.

The energy model becomes more and more complex without improving the accuracy

much. Instead of establishing the energy model directly, we split this complex work

into two simple steps: 1) create the power model, and 2) measure the runtime. The

energy is simply estimated by multiplying the average power by the runtime. We prove

this method with a simple processor OpenRISC (Chapter 3), a single scalar processor

ARM11 (Chapter 4), a superscalar processor ARM Cortex-A8 (Chapter 5), and a ARM

Cortex-A9 dual-core processor (Chapter 6).

Moreover, we prove that the EPI of the program is inversely proportional to the IPC

based on three different processors: an ARM11, an ARM Cortex-A8, and a dual-core

processor. Thus, it is important to make the pre-fetch unit and branch predictor run

more efficiently to reduce the cache misses and pipeline stalls. We also prove that a

program with two threads will not consume more energy and possibly even less than

one with a single thread. Thus, multi-thread technology can reduce the run time of a

program without sacrificing energy in a dual-core processor. The reason is that although

multi-threading may increase the amount of work, such as creating and deleting threads

by the OS, a lot of the resources of the processor are shared between the two cores, such

as the L2 cache. Even if only one core works, these resources will still consume energy.

Thus, multi-threading, which uses two cores, can make the system run more efficiently;

when two cores run, the power increases, the runtime will reduce, and the energy may

be less than for a single thread (Section 6.8.2).

8.2 Future Work

8.2.1 Apply to more complex systems

The first piece of future work is to extend this method to more sophisticated and complex

processors. In our tests, the multi-core processor only has two cores. Thus it is important

to test whether this method could be extended to a processor which has more cores, such
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as four. On the other hand, the multi-processor and system network becomes more and

more important. Other future work is to test whether this method can be extended to

a multiprocessor system. If it works, it may present some hints as to how to write low

power/energy cost programs.

8.2.2 Reduce the energy consumption of the system

Another piece of future work is to use this method to make the energy usage of a program

more efficient. For example, there are some multi-core processors which have a powerful

core with a high energy cost and a simple core with less energy cost. If we can use the

energy model to predict how to schedule the programs, the overall energy cost will be

lower. On the other hand, General-Purpose computing on Graphics Processing Units

(GPGPU) can be used to perform computations in applications which are traditionally

handled by the CPU. Based on the energy prediction, if the cost for a GPGPU is lower

than for a CPU, the work can be handled by the GPGPU and save energy.

8.2.3 Static program analysis

In order to create the energy model, the run time is necessary. Although we create a

method to predict the average power of a program on various platforms, the run time

of the program comes from measurement (running the program on the platform), such

as the OS. Thus, this is not convenient to fill the gap between the high-level program

structure and the low-level energy models. The power model will be more useful if

the runtime can be analysed without running the application since the energy can be

estimated at the compile time.

Static program analysis and static timing analysis can solve this problem well. This is

a method to analyse the computer software without actually executing it [119]. This

method can predict how many clock cycles are used to finish the program, which can be

used to extend the power model to an energy model easily.

Eder et al. used static timing analysis and an energy model to study the static energy

estimation [120]. The target processor is a multi-threaded architecture, XMOSXS1-L.

The created energy model for XMOSXS1-L can be presented as:

Ep = PbaseNidleTclk +

Nt∑
t=1

∑
iεISA

((MtPiO + Pbase)Ni,tTclk, (8.1)

where Pbase is the base power in both active and idle periods. Nidle and Tclk are the

number of idle periods and clock period, respectively. t, i, Pi, O are the number of

concurrent threads, each instruction in the ISA, the instruction power, and a constant

inter-instruction power overhead, respectively. Mt is a concurrency cost because of the
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level of concurrency at which the processor is executing. Ni is the number of times the

instruction exists at this concurrency level.

All of the input values of the energy model come from the static program analysis, and

this method is tested in five benchmarks: factorial(N) (Calculates N!), fibonacci(N)

(Nth Fibonacci no.), square(N) (Computes N2), poweroftwo(N) (Calculates 2N ), and

power(base,exp) (Calculates baseexp). However, the authors only presented the results

for factorial(N), and the maximum error is -15% when N equals one. When N is bigger

than one, the estimated energy is close to the measurement.

The advantage of this method is that it only needs static program analysis to give a good

prediction. On top of this, the model considers the input value of N since the energy is

highly related to N . However, the benchmarks used to validate the performance of the

method are few and they are not complicated enough.

Jayaseelan et al estimated the worst-case energy consumption (WCEC) of an embedded

system [121]. However, the processor is not a real processor and the test results come

from a simulator, SimpleScalar.

Assuming B1, ..., BN is the set of basic blocks of the program, Bi is related to the

predicted result of its preceding branch and its cache scenarios. Thus, the set of possible

cache scenarios at Bi is presented as Ω. Considering the two cases: correct/wrong

prediction of the preceding branch, and the possible cache scenarios, the total energy of

a program is described as

Energy =
N∑
i=1

∑
j→i

∑
ωεΩi

energyc,ωj→i ∗ count
c,ω
j→i + energym,ωj→i ∗ count

m,ω
j→i, (8.2)

where energyc,ωj→i is the WCEC of Bi which is executed under the following cases: 1. Bi

is reached from a previous block Bj , 2. Bj does not any conditional jump or the branch

prediction is correct, and 3. Bi is run under a cache scenario ωεΩi. count
c,ω
j→i shows how

many times is the block Bi executed under this scenario. Similarly, energym,ωj→i is the

WCEC of Bi under the following cases: 1. Bi is reached from a previous block Bj , 2.

at the end of Bj , the branch prediction is not correct, and 3. Bi is run under a cache

scenario ωεΩi. countm,ωj→i shows how many times is the block Bi executed under this

scenario.

Eleven benchmarks are used to test the performance of the model, and they are isort, fft,

fdct, ludcmp, matsum, minver, bsearch, des, matmult, qsort, and qurt. The estimated

WCEC value is close to the observed WCEC. The minimum error is 6%, which comes

from ludcmp, and the biggest error is 1.33 which is from fft.

The two models discussed above show that static program analysis and static timing

analysis technology can be integrated into an energy model to predict the energy. Thus,

another future work direction is to gather the inputs of the power model and runtime
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of the program via static program analysis. This method can create a better bridge

between high-level program structure and low-level energy models.





Appendix A

Design Codes and Benchmarks

A.1 The Test Code of Chapter 3

A.1.1 The code of Section 3.3

The following code is the Makefile for generating .c, .elf, .bin, .asm, and vmem file:

CC=or32-elf-gcc

CO=or32-elf-objcopy

CD=or32-elf-objdump

CFLAGS=

LFLAGS=-lm

filename= hanoi-executed

build:

echo "blah" ${CFLAGS}

${CC} ${filename}.c -o ${filename}.elf

${CO} -O binary ${filename}.elf ${filename}.bin

${CD} ${CFLAGS} -d ${filename}.elf > ${filename}.asm

./bin2vmem ${filename}.bin > ${filename}.vmem

clean:

rm ${filename}.elf

rm ${filename}.bin

rm ${filename}.asm

rm ${filename}.vmem

A.1.2 The code of Section 3.4

In this section, we will show the codes for the base test in Section 3.4.
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The following code is the input.c code for Section 3.4, which is used to initial the pro-

cessor. Thus, the main part of the input.c code is not important and a unconditional

jump will be executed.

#include <stdio.h>

int main()

{

int a;

for (a=0;a<1000;a++)

{

a=5+a;

}

asm volatile("l.nop 0x3\n\t");

return a;

}

Then, the corresponding input.vmem file is modified.

00000890 9c210004 8521fffc 44004800 15000000
00000894 d7e117fc 9c410000 9c21fff8 9c600000\\

//9c410000 = unconditional jump to a new empty address\\

// new address=current address+1767*4\\

00000898 d7e21ff8 00001767 15000000 8462fff8
0000089c 9c630001 d7e21ff8 8462fff8 9c630001\\

000008a0 d7e21ff8 8462fff8 bda3270f 13fffff8

After jumping to a new address, which is an empty space, the test code is run. Instead

of write the test machine code by modifying the input.vmem file manually, we change

the memory Verilog file and the following is the changed ram wb b3.v file.

//‘include "synthesis-defines.v"

‘timescale 1ns/1ps

module ram_wb_b3(

wb_adr_i, wb_bte_i, wb_cti_i, wb_cyc_i, wb_dat_i, wb_sel_i,

wb_stb_i, wb_we_i,

wb_ack_o, wb_err_o, wb_rty_o, wb_dat_o,

wb_clk_i, wb_rst_i);

parameter dw = 32;

parameter aw = 32;

parameter memory_file = "mytest_for_long3.vmem";

/*************************the following is the source code of

OpenRISC*********/

input [aw-1:0] wb_adr_i;

input [1:0] wb_bte_i;
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input [2:0] wb_cti_i;

input wb_cyc_i;

input [dw-1:0] wb_dat_i;

input [3:0] wb_sel_i;

input wb_stb_i;

input wb_we_i;

output wb_ack_o;

output wb_err_o;

output wb_rty_o;

output [dw-1:0] wb_dat_o;

input wb_clk_i;

input wb_rst_i;

// Memory parameters

parameter mem_size_bytes = 32’h000_5000; // 20KBytes

parameter mem_adr_width = 15; //(log2(mem_size_bytes));

parameter bytes_per_dw = (dw/8);

parameter adr_width_for_num_word_bytes = 2; //(log2(bytes_per_dw))

parameter mem_words = (mem_size_bytes/bytes_per_dw);

//32’h5000/(32/8)=h’1400

// synthesis attribute ram_style of mem is block

reg [dw-1:0] mem [ 0 : mem_words-1 ] /**/ /* verilator public */

/* synthesis ram_style = no_rw_check */;

// Register to address internal memory array

reg [(mem_adr_width-adr_width_for_num_word_bytes)-1:0] adr;//15-2=13

wire [31:0] wr_data;

// Register to indicate if the cycle is a Wishbone B3-registered feedback

// type access

reg wb_b3_trans;

wire wb_b3_trans_start, wb_b3_trans_stop;

// Register to use for counting the addresses when doing burst accesses

reg [mem_adr_width-adr_width_for_num_word_bytes-1:0] burst_adr_counter;

reg [2:0] wb_cti_i_r;

reg [1:0] wb_bte_i_r;

wire using_burst_adr;

wire burst_access_wrong_wb_adr;

// Wire to indicate addressing error

wire addr_err;



192 Appendix A Design Codes and Benchmarks

// Logic to detect if there’s a burst access going on

assign wb_b3_trans_start = ((wb_cti_i == 3’b001)|(wb_cti_i == 3’b010)) &

wb_stb_i & !wb_b3_trans;

assign wb_b3_trans_stop = ((wb_cti_i == 3’b111) &

wb_stb_i & wb_b3_trans & wb_ack_o) | wb_err_o;

always @(posedge wb_clk_i)

if (wb_rst_i)

wb_b3_trans <= 0;

else if (wb_b3_trans_start)

wb_b3_trans <= 1;

else if (wb_b3_trans_stop)

wb_b3_trans <= 0;

// Burst address generation logic

always @(/*AUTOSENSE*/wb_ack_o or wb_b3_trans or wb_b3_trans_start

or wb_bte_i_r or wb_cti_i_r or wb_adr_i or adr)

if (wb_b3_trans_start)

// Kick off burst_adr_counter, this assumes 4-byte words when getting

// address off incoming Wishbone bus address!

// So if dw is no longer 4 bytes, change this!

burst_adr_counter = wb_adr_i[mem_adr_width-1:2];

else if ((wb_cti_i_r == 3’b010) & wb_ack_o & wb_b3_trans)

// Incrementing burst

begin

if (wb_bte_i_r == 2’b00) // Linear burst

burst_adr_counter = adr + 1;

if (wb_bte_i_r == 2’b01) // 4-beat wrap burst

burst_adr_counter[1:0] = adr[1:0] + 1;

if (wb_bte_i_r == 2’b10) // 8-beat wrap burst

burst_adr_counter[2:0] = adr[2:0] + 1;

if (wb_bte_i_r == 2’b11) // 16-beat wrap burst

burst_adr_counter[3:0] = adr[3:0] + 1;

end // if ((wb_cti_i_r == 3’b010) & wb_ack_o_r)

always @(posedge wb_clk_i)

wb_bte_i_r <= wb_bte_i;

// Register it locally

always @(posedge wb_clk_i)

wb_cti_i_r <= wb_cti_i;

assign using_burst_adr = wb_b3_trans;
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assign burst_access_wrong_wb_adr = (using_burst_adr &

(adr != wb_adr_i[mem_adr_width-1:2]));

// Address registering logic

always@(posedge wb_clk_i)

if(wb_rst_i)

adr <= 0;

else if (using_burst_adr)

adr <= burst_adr_counter;

else if (wb_cyc_i & wb_stb_i)

adr <= wb_adr_i[mem_adr_width-1:2];

/* Memory initialisation.

If not Verilator model, always do load, otherwise only load when called

from SystemC testbench.

*/

// synthesis translate_off

‘ifdef verilator

task do_readmemh;

// verilator public

$readmemh(memory_file, mem);

endtask // do_readmemh

‘else

initial

begin

$readmemh(memory_file, mem);

end

‘endif // !‘ifdef verilator

//synthesis translate_on

assign wb_rty_o = 0;

// mux for data to ram, RMW on part sel != 4’hf

assign wr_data[31:24] = wb_sel_i[3] ? wb_dat_i[31:24] : wb_dat_o[31:24];

assign wr_data[23:16] = wb_sel_i[2] ? wb_dat_i[23:16] : wb_dat_o[23:16];

assign wr_data[15: 8] = wb_sel_i[1] ? wb_dat_i[15: 8] : wb_dat_o[15: 8];

assign wr_data[ 7: 0] = wb_sel_i[0] ? wb_dat_i[ 7: 0] : wb_dat_o[ 7: 0];

wire ram_we;

assign ram_we = wb_we_i & wb_ack_o;
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assign wb_dat_o = mem[adr];

// Write logic

always @ (posedge wb_clk_i)

begin

if (ram_we)

mem[adr] <= wr_data;

end

// Ack Logic

reg wb_ack_o_r;

assign wb_ack_o = wb_ack_o_r & wb_stb_i &

!(burst_access_wrong_wb_adr | addr_err);

always @ (posedge wb_clk_i)

if (wb_rst_i)

wb_ack_o_r <= 1’b0;

else if (wb_cyc_i) // We have bus

begin

if (addr_err & wb_stb_i)

begin

wb_ack_o_r <= 1;

end

else if (wb_cti_i == 3’b000)

begin

// Classic cycle acks

if (wb_stb_i)

begin

if (!wb_ack_o_r)

wb_ack_o_r <= 1;

else

wb_ack_o_r <= 0;

end

end // if (wb_cti_i == 3’b000)

else if ((wb_cti_i == 3’b001) | (wb_cti_i == 3’b010))

begin

// Increment/constant address bursts

if (wb_stb_i)

wb_ack_o_r <= 1;

else

wb_ack_o_r <= 0;

end

else if (wb_cti_i == 3’b111)

begin

// End of cycle

if (!wb_ack_o_r)
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wb_ack_o_r <= wb_stb_i;

else

wb_ack_o_r <= 0;

end

end // if (wb_cyc_i)

else

wb_ack_o_r <= 0;

//

// Error signal generation

//

// Error when out of bounds of memory - skip top nibble of address in case

// this is mapped somewhere other than 0x0.

assign addr_err = wb_cyc_i & wb_stb_i & (|wb_adr_i[aw-1-4:mem_adr_width]);

// OR in other errors here...

assign wb_err_o = wb_ack_o_r & wb_stb_i &

(burst_access_wrong_wb_adr | addr_err);

//

// Access functions

//

// Function to access RAM (for use by Verilator).

function [31:0] get_mem32;

// verilator public

input [aw-1:0] addr;

get_mem32 = mem[addr];

endfunction // get_mem32

// Function to access RAM (for use by Verilator).

function [7:0] get_mem8;

// verilator public

input [aw-1:0] addr;

reg [31:0] temp_word;

begin

temp_word = mem[{addr[aw-1:2],2’d0}];

// Big endian mapping.

get_mem8 = (addr[1:0]==2’b00) ? temp_word[31:24] :

(addr[1:0]==2’b01) ? temp_word[23:16] :

(addr[1:0]==2’b10) ? temp_word[15:8] : temp_word[7:0];

end

endfunction // get_mem8

// Function to write RAM (for use by Verilator).
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function set_mem32;

// verilator public

input [aw-1:0] addr;

input [dw-1:0] data;

mem[addr] = data;

endfunction // set_mem32

/*****************the following is our own code************/

reg [7:0] mem_t [ 0 : 100000 ] ;

reg [32:0] data;

/***********************************************low_switch*********************************************************/

//initialize begins

initial

begin

int i;

i=0;

// move 00000011 (3) to r5

mem_t[32835]= 8’b00000011;

mem_t[32834]= 8’b00000000;

mem_t[32833]= 8’b10100000;

mem_t[32832]= 8’b00011000;

//move 00001111(15) to r7

mem_t[32839]= 8’b00001111;

mem_t[32838]= 8’b00000000;

mem_t[32837]= 8’b11100000;

mem_t[32836]= 8’b00011000;

// move 00001100 (12)to r6

mem_t[32843]= 8’b00001100;

mem_t[32842]= 8’b00000000;

mem_t[32841]= 8’b11000000;

mem_t[32840]= 8’b00011000;

// shift the logic to the right place

// "store" has their own shift logic be careful

//move 00000111 to r7

mem_t[32847]= 8’b10010000;

mem_t[32846]= 8’b00000000;

mem_t[32845]= 8’b11100111;

mem_t[32844]= 8’b10111000;

// move 00010101 to r5

mem_t[32851]= 8’b10010000;

mem_t[32850]= 8’b00000000;

mem_t[32849]= 8’b10100101;

mem_t[32848]= 8’b10111000;

// move 00110001 to r6

mem_t[32855]= 8’b10010000;

mem_t[32854]= 8’b00000000;
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mem_t[32853]= 8’b11000110;

mem_t[32852]= 8’b10111000;

//the following test is for ADD

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b00000000;

mem_t[i+6]= 8’b00101000;

mem_t[i+5]= 8’b01100110;

mem_t[i+4]= 8’b11100000;

mem_t[i+3]= 8’b00000000;

mem_t[i+2]= 8’b00111000;

mem_t[i+1]= 8’b01000101;

mem_t[i+0]= 8’b11100000;

end

/*

//the following test is for movhi (415236101 417333258)

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b00001010;

mem_t[i+6]= 8’b00000000;

mem_t[i+5]= 8’b11100000;

mem_t[i+4]= 8’b00011000;

mem_t[i+3]= 8’b00000101;

mem_t[i+2]= 8’b00000000;

mem_t[i+1]= 8’b11000000;

mem_t[i+0]= 8’b00011000;

end

*/

/*

// the following test is for Addi (2621767685&2623930383)

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b00001111;

mem_t[i+6]= 8’b00000000;

mem_t[i+5]= 8’b01100110;

mem_t[i+4]= 8’b10011100;

mem_t[i+3]= 8’b00000101;

mem_t[i+2]= 8’b00000000;

mem_t[i+1]= 8’b01000101;

mem_t[i+0]= 8’b10011100;

end

*/

/*
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// the following test is for Mul (3762694918&376430630)

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b00000110;

mem_t[i+6]= 8’b00000000;

mem_t[i+5]= 8’b01100110;

mem_t[i+4]= 8’b11100000;

mem_t[i+3]= 8’b00000110;

mem_t[i+2]= 8’b00111011;

mem_t[i+1]= 8’b01100101;

mem_t[i+0]= 8’b11100000;

end

*/

/*

//the following test is for Muli (2959409167& 2965831686)

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b00000110;

mem_t[i+6]= 8’b00000000;

mem_t[i+5]= 8’b11000111;

mem_t[i+4]= 8’b10110000;

mem_t[i+3]= 8’b00001111;

mem_t[i+2]= 8’b00000000;

mem_t[i+1]= 8’b01100101;

mem_t[i+0]= 8’b10110000;

end

*/

/*

// the following test is for AND

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b00000011;

mem_t[i+6]= 8’b00101000;

mem_t[i+5]= 8’b01000110;

mem_t[i+4]= 8’b11100000;

mem_t[i+3]= 8’b00000011;

mem_t[i+2]= 8’b00111000;

mem_t[i+1]= 8’b01100101;

mem_t[i+0]= 8’b11100000;

end

*/

/*

// the following test is for ANDi

for (i=32856;(i<50000);i+=8)
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begin

mem_t[i+7]= 8’b00001010;

mem_t[i+6]= 8’b00000000;

mem_t[i+5]= 8’b01000110;

mem_t[i+4]= 8’b10100100;

mem_t[i+3]= 8’b00011111;

mem_t[i+2]= 8’b00000000;

mem_t[i+1]= 8’b01100101;

mem_t[i+0]= 8’b10100100;

end

*/

/*

// the following test is for OR

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b00000100;

mem_t[i+6]= 8’b00101000;

mem_t[i+5]= 8’b01000110;

mem_t[i+4]= 8’b11100000;

mem_t[i+3]= 8’b00000100;

mem_t[i+2]= 8’b00111000;

mem_t[i+1]= 8’b01100101;

mem_t[i+0]= 8’b11100000;

end

*/

/*uuuu

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b00011111;

mem_t[i+6]= 8’b00000000;

mem_t[i+5]= 8’b01000110;

mem_t[i+4]= 8’b10101000;

mem_t[i+3]= 8’b00010000;

mem_t[i+2]= 8’b00000000;

mem_t[i+1]= 8’b01100101;

mem_t[i+0]= 8’b10101000;

end

*/

/*

// the following test is for XOR

for (i=32856;(i<50000);i+=8)

begin
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mem_t[i+7]= 8’b00000101;

mem_t[i+6]= 8’b00101000;

mem_t[i+5]= 8’b01000110;

mem_t[i+4]= 8’b11100000;

mem_t[i+3]= 8’b00000101;

mem_t[i+2]= 8’b00111000;

mem_t[i+1]= 8’b01100101;

mem_t[i+0]= 8’b11100000;

end

*/

/*

// the following test is for XOR

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b00001110;

mem_t[i+6]= 8’b00000000;

mem_t[i+5]= 8’b01000110;

mem_t[i+4]= 8’b10101100;

mem_t[i+3]= 8’b00000101;

mem_t[i+2]= 8’b00000000;

mem_t[i+1]= 8’b01100101;

mem_t[i+0]= 8’b10101100;

end

*/

/*

// the following test is for lbs (2420506631&2422538250)

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b00000111;

mem_t[i+6]= 8’b00000000;

mem_t[i+5]= 8’b01000110; //EA(12+7)->r2

mem_t[i+4]= 8’b10010000;

mem_t[i+3]= 8’b00001010;

mem_t[i+2]= 8’b00000000;

mem_t[i+1]= 8’b01100101; // EA(3+10)->r3

mem_t[i+0]= 8’b10010000;

end

*/

/*
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// the following test is for sub

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b00000010;

mem_t[i+6]= 8’b00110000;

mem_t[i+5]= 8’b01100111;

mem_t[i+4]= 8’b11100000;

mem_t[i+3]= 8’b00000010;

mem_t[i+2]= 8’b00101000;

mem_t[i+1]= 8’b01000110;

mem_t[i+0]= 8’b11100000;

end

*/

/*

// the following test is for sh

// the target address has to be a even

//move 00000111 (15)to r7

mem_t[32847]= 8’b01010000;

mem_t[32846]= 8’b00000000;

mem_t[32845]= 8’b11100111;

mem_t[32844]= 8’b10111000;

// move 000000011 to (3)r5

mem_t[32851]= 8’b01010000;

mem_t[32850]= 8’b00000000;

mem_t[32849]= 8’b10100101;

mem_t[32848]= 8’b10111000;

// move 00110001 to (12)r6

mem_t[32855]= 8’b01010000;

mem_t[32854]= 8’b00000000;

mem_t[32853]= 8’b11000110;

mem_t[32852]= 8’b10111000;

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b00000101;

mem_t[i+6]= 8’b00110000;

mem_t[i+5]= 8’b00000101;//r6(12)->EA(5+(3R5)==8+1)

mem_t[i+4]= 8’b11011100;

mem_t[i+3]= 8’b00000111;

mem_t[i+2]= 8’b00101000;

mem_t[i+1]= 8’b00000111;

mem_t[i+0]= 8’b11011100; //r5(3)->EA(7+(15R7)==22+1)

end

*/

/*

// the following test is for sb(3624347663&3624216576)
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//move 00000111 (7)to r7

mem_t[32847]= 8’b01010000;

mem_t[32846]= 8’b00000000;

mem_t[32845]= 8’b11100111;

mem_t[32844]= 8’b10111000;

// move 00010101 to (21)r5

mem_t[19551]= 8’b01010000;

mem_t[32850]= 8’b00000000;

mem_t[32849]= 8’b10100101;

mem_t[32848]= 8’b10111000;

// move 00110001 to (49)r6

mem_t[19555]= 8’b01010000;

mem_t[32854]= 8’b00000000;

mem_t[32853]= 8’b11000110;

mem_t[32852]= 8’b10111000;

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b00000000;

mem_t[i+6]= 8’b00101000;

mem_t[i+5]= 8’b00000101;

mem_t[i+4]= 8’b11011000;

mem_t[i+3]= 8’b00001111;

mem_t[i+2]= 8’b00101000;

mem_t[i+1]= 8’b00000111;

mem_t[i+0]= 8’b11011000;

end

*/

/**************************************************high switch

************************************************/

/*

//initialize begins

initial

begin

int i;

i=0;

//move 3157 to r7

mem_t[32835]= 8’b01010101;

mem_t[32834]= 8’b00001100;

mem_t[32833]= 8’b11100000;

mem_t[32832]= 8’b00011000;

// move 12458 (15) to r5

mem_t[32839]= 8’b10101010;

mem_t[32838]= 8’b00110000;

mem_t[32837]= 8’b10100000;
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mem_t[32836]= 8’b00011000;

// move 853 (12)to r6

mem_t[32843]= 8’b01010101;

mem_t[32842]= 8’b00000011;

mem_t[32841]= 8’b11000000;

mem_t[32840]= 8’b00011000;

// shift the logic to the right place

// store has their own shift logic be careful

//move 00000111 to r7

mem_t[32847]= 8’b10010000;

mem_t[32846]= 8’b00000000;

mem_t[32845]= 8’b11100111;

mem_t[32844]= 8’b10111000;

// move 00010101 to r5

mem_t[32851]= 8’b10010000;

mem_t[32850]= 8’b00000000;

mem_t[32849]= 8’b10100101;

mem_t[32848]= 8’b10111000;

// move 00110001 to r6

mem_t[32855]= 8’b10010000;

mem_t[32854]= 8’b00000000;

mem_t[32853]= 8’b11000110;

mem_t[32852]= 8’b10111000;

*/

/*

// the following is for movhi

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b01010101;

mem_t[i+6]= 8’b00010101;

mem_t[i+5]= 8’b11100000;

mem_t[i+4]= 8’b00011000;

mem_t[i+3]= 8’b10101010;

mem_t[i+2]= 8’b00101010;

mem_t[i+1]= 8’b11000000;

mem_t[i+0]= 8’b00011000;

end

*/

/*

// the following test is for Add (3764791296&3762632704)

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b00000000;

mem_t[i+6]= 8’b00101000;

mem_t[i+5]= 8’b01100110;

mem_t[i+4]= 8’b11100000;
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mem_t[i+3]= 8’b00000000;

mem_t[i+2]= 8’b00111000;

mem_t[i+1]= 8’b01000101;

mem_t[i+0]= 8’b11100000;

end

*/

/*

// the following test is for Addi (262346751&2621767680)

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b11111111;

mem_t[i+6]= 8’b00111111;

mem_t[i+5]= 8’b01100110;

mem_t[i+4]= 8’b10011100;

mem_t[i+3]= 8’b00000000;

mem_t[i+2]= 8’b00000000;

mem_t[i+1]= 8’b01000101;

mem_t[i+0]= 8’b10011100;

end

*/

/*

// the following test is for Mul (3764730630&3762694918)

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b00000110;

mem_t[i+6]= 8’b00101011;

mem_t[i+5]= 8’b01000110;

mem_t[i+4]= 8’b11100000;

mem_t[i+3]= 8’b00000110;

mem_t[i+2]= 8’b00111011;

mem_t[i+1]= 8’b01100101;

mem_t[i+0]= 8’b11100000;

end

*/

/*

//the following test is for Muli (2965839871&2959409152)

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b11111111;

mem_t[i+6]= 8’b00011111;

mem_t[i+5]= 8’b11000111;

mem_t[i+4]= 8’b10110000;

mem_t[i+3]= 8’b00000000;
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mem_t[i+2]= 8’b00000000;

mem_t[i+1]= 8’b01100101;

mem_t[i+0]= 8’b10110000;

end

*/

/*

// the following test is for AND

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b00000011;

mem_t[i+6]= 8’b00101000;

mem_t[i+5]= 8’b01000110;

mem_t[i+4]= 8’b11100000;

mem_t[i+3]= 8’b00000011;

mem_t[i+2]= 8’b00111000;

mem_t[i+1]= 8’b01100101;

mem_t[i+0]= 8’b11100000;

end

*/

/*

// the following test is for ANDi

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b11000111;

mem_t[i+6]= 8’b00111001;

mem_t[i+5]= 8’b01000110;

mem_t[i+4]= 8’b10100100;

mem_t[i+3]= 8’b00111000;

mem_t[i+2]= 8’b00000110;

mem_t[i+1]= 8’b01100101;

mem_t[i+0]= 8’b10100100;

end

*/

/*

// the following test is for OR

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b00000100;

mem_t[i+6]= 8’b00101000;

mem_t[i+5]= 8’b01000110;

mem_t[i+4]= 8’b11100000;

mem_t[i+3]= 8’b00000100;

mem_t[i+2]= 8’b00111000;

mem_t[i+1]= 8’b01100101;
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mem_t[i+0]= 8’b11100000;

end

*/

/*

// the following test is for ORi

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b11111111;

mem_t[i+6]= 8’b00111000;

mem_t[i+5]= 8’b01000110;

mem_t[i+4]= 8’b10101000;

mem_t[i+3]= 8’b00000000;

mem_t[i+2]= 8’b00000111;

mem_t[i+1]= 8’b01100101;

mem_t[i+0]= 8’b10101000;

end

*/

/*

// the following test is for XOR

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b00000101;

mem_t[i+6]= 8’b00101000;

mem_t[i+5]= 8’b01000110;

mem_t[i+4]= 8’b11100000;

mem_t[i+3]= 8’b00000101;

mem_t[i+2]= 8’b00111000;

mem_t[i+1]= 8’b01100101;

mem_t[i+0]= 8’b11100000;

end

*/

/*

// the following test is for XORi

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b11110000;

mem_t[i+6]= 8’b00000111;

mem_t[i+5]= 8’b01000110;

mem_t[i+4]= 8’b10101100;

mem_t[i+3]= 8’b00001111;

mem_t[i+2]= 8’b00111000;
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mem_t[i+1]= 8’b01100101;

mem_t[i+0]= 8’b10101100;

end

*/

/*

// the following test is for lbs (2420506624 & 2422538495)

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b00000000;

mem_t[i+6]= 8’b00000000;

mem_t[i+5]= 8’b01000110; //49+7->r2

mem_t[i+4]= 8’b10010000;

mem_t[i+3]= 8’b11111111;

mem_t[i+2]= 8’b00000000;

mem_t[i+1]= 8’b01100101; // 21+10->r3

mem_t[i+0]= 8’b10010000;

end

*/

/*

// the following test is for sub

//move 00000111 (7)to r7

mem_t[19511]= 8’b01010000;

mem_t[32846]= 8’b00000000;

mem_t[32845]= 8’b11100111;

mem_t[32844]= 8’b10111000;

// move 00010101 to (21)r5

mem_t[19503]= 8’b01010000;

mem_t[32850]= 8’b00000000;

mem_t[32849]= 8’b10100101;

mem_t[32848]= 8’b10111000;

// move 00110001 to (49)r6

mem_t[19507]= 8’b01001111;

mem_t[32854]= 8’b00000000;

mem_t[32853]= 8’b11000110;

mem_t[32852]= 8’b10111000;

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b00000010;

mem_t[i+6]= 8’b00101000;

mem_t[i+5]= 8’b01100110;

mem_t[i+4]= 8’b11100000;

mem_t[i+3]= 8’b00000010;

mem_t[i+2]= 8’b00111000;
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mem_t[i+1]= 8’b01000101;

mem_t[i+0]= 8’b11100000;

end

*/

/*

// the following test is for sh

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b00000111;

mem_t[i+6]= 8’b00101000;

mem_t[i+5]= 8’b00000111;//RB21-->EA7+7=14

mem_t[i+4]= 8’b11011100;

mem_t[i+3]= 8’b00000111;

mem_t[i+2]= 8’b00110000;

mem_t[i+1]= 8’b00000110;//RB49->>EA49+7=56

mem_t[i+0]= 8’b11011100;

end

*/

/*

// the following test is for sb

for (i=32856;(i<50000);i+=8)

begin

mem_t[i+7]= 8’b11111111;

mem_t[i+6]= 8’b00101000;

mem_t[i+5]= 8’b00000101;

mem_t[i+4]= 8’b11011000;

mem_t[i+3]= 8’b00000000;

mem_t[i+2]= 8’b00101000;

mem_t[i+1]= 8’b00000111;

mem_t[i+0]= 8’b11011000;

end

*/

/*****************************************************************************************************************/

mem_t[40835]= 8’b00110000;// branch, jump back about 2000 insturciton

mem_t[40834]= 8’b11111000;

mem_t[40833]= 8’b11111111;

mem_t[40832]= 8’b00000011;

mem_t[40839]= 8’b00110000;// branch, jump back about 2000 insturciton

mem_t[40838]= 8’b11111111;//bf
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mem_t[40837]= 8’b11111111;

mem_t[40836]= 8’b00010011;

/*

mem_t[40835]= 8’b10011100;// branch, jump back about 100 insturciton

mem_t[40834]= 8’b11111111;

mem_t[40833]= 8’b11111111;

mem_t[40832]= 8’b00000011;

mem_t[40835]= 8’10011100;// branch, jump back about 100 insturciton

mem_t[40834]= 8’b11111111;

mem_t[40833]= 8’b11111111;

mem_t[40832]= 8’b00000011;

*/

mem_t[40843]= 8’b00000000;//nop

mem_t[40842]= 8’b00000000;

mem_t[40841]= 8’b00000000;

mem_t[40840]= 8’b00010101;

mem_t[40847]= 8’b00000011;

mem_t[40846]= 8’b00000000;//nop

mem_t[40845]= 8’b00000000;

mem_t[40844]= 8’b00010101;

end

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//integer memout;

//initial

//begin

// int i;

// #150000

// for (i = 0; i<2097; i=i+1) //i stands for the lines in the mem

// begin

// memout = $fopen ("memory.txt");

// $fwriteb (memout, mem[i], "\n");

// end

// $fclose(memout);

//end

//

// /////////////////////////////////////////////////////////////////////////

initial

begin

int i;

int j;

i = 0;

j = 32832/4;

for (i = 32832; i<40848; i=i+4)

begin
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data[7:0] = mem_t[i+3];

data[15:8] = mem_t[i+2];

data[23:16] = mem_t[i+1];

data[31:24] = mem_t[i];

mem [j]=data;

j = j+1;

end

end

endmodule // ram_wb_b3

A.1.3 The code of Section 3.6

The method to create these tests is similar to the base power cost tests in Section 3.4.

The only difference is that firstly we create a input.c files whose main body is a loop.

Then we modified the contents of the machine code of the corresponding input.vmem

file directly, rather than jumping to a new space.

The following code is the source c code for test G1.1.

#include <stdio.h>

int main()

{

int a;

for (a=0;a<500;a++)

{

a=1+a;

}

asm volatile("l.nop 0x3\n\t");

return a;

}

The following code is main part of the source input.vmem code for test G1.1:

@00000894 d7e117fc 9c410000 9c21fff8 9c600000

@00000898 d7e21ff8 00001767 15000000 8462fff8

@0000089c 9c630001 d7e21ff8 8462fff8 9c630001

@000008a0 d7e21ff8 8462fff8 bda3270f 13fffff8

@000008a4 15000000 15000003 8462fff8 a9630000

@000008a8 a8220000 8441fffc 44004800 15000000

}



Appendix A Design Codes and Benchmarks 211

The following code is the source c code for test G1.2, G1.3, and G1.4 but be careful that

the input.vmem is the final input file of the Modelsim simulation and the input.c source

file is used for the initialization. The contents of input.vmem is changed manually:

#include <stdio.h>

int main()

{

int a;

int b=0;

int c=0;

int d=0;

int e=0;

int f=0;

int g=0;

for (a=0;a<50;a++)

{

#/*1*/

a=1+a;

b=b+c;

c=c+d;

d=d+e;

e=e+f;

f=f+g;

g=g+a;//repeat these seven lines another two times (3 times totally)

......

/*3*/

a=1+a;

......

g=g+a;//There are 21 (7*3) lines totally

}

asm volatile("l.nop 0x3\n\t");

return a;

}

The following code is main part of the source input.vmem code for test G1.2:

@00000890 9c210004 8521fffc 44004800 15000000

@00000894 d7e117fc 9c410000 9c21ffe0 9c600000

@00000898 d7e21ff4 9c600000 d7e21ff0 9c600000

@0000089c d7e21fec 9c600000 d7e21fe8 9c600000

@000008a0 d7e21fe4 9c600000 d7e21fe0 9c600000

@000008a4 d7e21ff8 00000056 15000000 8462fff8

@000008a8 9c630001 d7e21ff8 8482fff4 8462fff0

@000008ac e0641800 d7e21ff4 8482fff0 8462ffec

@000008b0 e0641800 d7e21ff0 8482ffec 8462ffe8

@000008b4 e0641800 d7e21fec 8482ffe8 8462ffe4

@000008b8 e0641800 d7e21fe8 8482ffe4 8462ffe0
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@000008bc e0641800 d7e21fe4 8482ffe0 8462fff8

@000008c0 e0641800 d7e21fe0 8462fff8 9c630001

@000008c4 d7e21ff8 8482fff4 8462fff0 e0641800

@000008c8 d7e21ff4 8482fff0 8462ffec e0641800

@000008cc d7e21ff0 8482ffec 8462ffe8 e0641800

@000008d0 d7e21fec 8482ffe8 8462ffe4 e0641800

@000008d4 d7e21fe8 8482ffe4 8462ffe0 e0641800

@000008d8 d7e21fe4 8482ffe0 8462fff8 e0641800

@000008dc d7e21fe0 8462fff8 9c630001 d7e21ff8

@000008e0 8482fff4 8462fff0 e0641800 d7e21ff4

@000008e4 8482fff0 8462ffec e0641800 d7e21ff0

@000008e8 8482ffec 8462ffe8 e0641800 d7e21fec

@000008ec 8482ffe8 8462ffe4 e0641800 d7e21fe8

@000008f0 8482ffe4 8462ffe0 e0641800 d7e21fe4

@000008f4 8482ffe0 8462fff8 e0641800 d7e21fe0

@000008f8 8462fff8 9c630001 d7e21ff8 8462fff8

@000008fc bda30031 13ffffaa 15000000 15000003

@00000900 8462fff8 a9630000 a8220000 8441fffc

@00000904 44004800 15000000 d7e14ffc 9c21fffc

The following code is main part of the source input.vmem code for test G1.3:

@00000890 9c210004 8521fffc 44004800 15000000

@00000894 d7e117fc 9c410000 9c21ffe0 9c600000

@00000898 d7e21ff4 9c600000 d7e21ff0 9c600000

@0000089c d7e21fec 9c600000 d7e21fe8 9c600000

@000008a0 d7e21fe4 9c600000 d7e21fe0 9c600000

@000008a4 d7e21ff8 00000056 15000000 9ce6000f

@000008a8 9ce6000f 9ce6000f e0a62000 9ce6000f

@000008ac e0a62000 9ce6000f e0a62000 9ce6000f

@000008b0 e0a62000 9ce6000f e0a62000 9ce6000f

@000008b4 e0a62000 9ce6000f e0a62000 9ce6000f

@000008b8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008bc e0a62000 9ce6000f e0a62000 9ce6000f

@000008c0 e0a62000 9ce6000f e0a62000 9ce6000f

@000008c4 e0a62000 9ce6000f e0a62000 9ce6000f

@000008c8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008cc e0a62000 9ce6000f e0a62000 9ce6000f

@000008d0 e0a62000 9ce6000f e0a62000 9ce6000f

@000008d4 e0a62000 9ce6000f e0a62000 9ce6000f

@000008d8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008dc e0a62000 9ce6000f e0a62000 9ce6000f

@000008e0 e0a62000 9ce6000f e0a62000 9ce6000f

@000008e4 e0a62000 9ce6000f e0a62000 9ce6000f

@000008e8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008ec e0a62000 9ce6000f e0a62000 9ce6000f

@000008f0 e0a62000 9ce6000f e0a62000 9ce6000f
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@000008f4 8482ffe0 8462fff8 e0641800 d7e21fe0

@000008f8 8462fff8 9c630001 d7e21ff8 8462fff8

@000008fc bda30031 13ffffaa 15000000 15000003

@00000900 8462fff8 a9630000 a8220000 8441fffc

@00000904 44004800 15000000 d7e14ffc 9c21fffc

The following code is main part of the source input.vmem code for test G1.4:

@00000890 9c210004 8521fffc 44004800 15000000

@00000894 d7e117fc 9c410000 9c21ffe0 9c600000

@00000898 d7e21ff4 9c600000 d7e21ff0 9c600000

@0000089c d7e21fec 9c600000 d7e21fe8 9c600000

@000008a0 d7e21fe4 9c600000 d7e21fe0 9c600000

@000008a4 d7e21ff8 00000056 15000000 9ce6000f

@000008a8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008ac e0a62000 9ce6000f e0a62000 9ce6000f

@000008b0 e0a62000 9ce6000f e0a62000 9ce6000f

@000008b4 e0a62000 9ce6000f e0a62000 9ce6000f

@000008b8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008bc e0a62000 9ce6000f e0a62000 9ce6000f

@000008c0 e0a62000 9ce6000f e0a62000 9ce6000f

@000008c4 e0a62000 9ce6000f e0a62000 9ce6000f

@000008c8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008cc e0a62000 9ce6000f e0a62000 9ce6000f

@000008d0 e0a62000 8482ffe8 8462ffe4 e0641800

@000008d4 d7e21fe8 8482ffe4 8462ffe0 e0641800

@000008d8 d7e21fe4 8482ffe0 8462fff8 e0641800

@000008dc d7e21fe0 8462fff8 9c630001 d7e21ff8

@000008e0 8482fff4 8462fff0 e0641800 d7e21ff4

@000008e4 8482fff0 8462ffec e0641800 d7e21ff0

@000008e8 8482ffec 8462ffe8 e0641800 d7e21fec

@000008ec 8482ffe8 8462ffe4 e0641800 d7e21fe8

@000008f0 8482ffe4 8462ffe0 e0641800 d7e21fe4

@000008f4 8482ffe0 8462fff8 e0641800 d7e21fe0

@000008f8 8462fff8 9c630001 d7e21ff8 8462fff8

@000008fc bda30031 13ffffaa 15000000 15000003

@00000900 8462fff8 a9630000 a8220000 8441fffc

@00000904 44004800 15000000 d7e14ffc 9c21fffc

The following code is the source c code for test G2.1, G2.2, and G2.3:

#include <stdio.h>

int main()

{

int a;

int b=0;
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int c=0;

int d=0;

int e=0;

int f=0;

int g=0;

for (a=0;a<50;a++)

{

#/*1*/

a=1+a;

b=b+c;

c=c+d;

d=d+e;

e=e+f;

f=f+g;

g=g+a;//repeat these seven lines another four times (5 times totally)

......

/*5*/

a=1+a;

......

g=g+a;//There are 35(7*5) lines totally

}

asm volatile("l.nop 0x3\n\t");

return a;

}

The following code is main part of the source input.vmem code for test G2.1:

@00000890 9c210004 8521fffc 44004800 15000000

@00000894 d7e117fc 9c410000 9c21ffe0 9c600000

@00000898 d7e21ff4 9c600000 d7e21ff0 9c600000

@0000089c d7e21fec 9c600000 d7e21fe8 9c600000

@000008a0 d7e21fe4 9c600000 d7e21fe0 9c600000

@000008a4 d7e21ff8 0000008c 15000000 9ce6000f

@000008a8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008ac e0a62000 9ce6000f e0a62000 9ce6000f

@000008b0 e0a62000 9ce6000f e0a62000 9ce6000f

@000008b4 e0a62000 9ce6000f e0a62000 9ce6000f

@000008b8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008bc e0a62000 9ce6000f e0a62000 9ce6000f

@000008c0 e0a62000 9ce6000f e0a62000 9ce6000f

@000008c4 e0a62000 9ce6000f e0a62000 9ce6000f

@000008c8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008cc e0a62000 9ce6000f e0a62000 9ce6000f

@000008d0 e0a62000 9ce6000f e0a62000 9ce6000f

@000008d4 e0a62000 9ce6000f e0a62000 9ce6000f

@000008d8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008dc e0a62000 9ce6000f e0a62000 9ce6000f
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@000008e0 e0a62000 9ce6000f e0a62000 9ce6000f

@000008e4 e0a62000 9ce6000f e0a62000 9ce6000f

@000008e8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008ec e0a62000 9ce6000f e0a62000 9ce6000f

@000008f0 e0a62000 9ce6000f e0a62000 9ce6000f

@000008f4 e0a62000 9ce6000f e0a62000 9ce6000f

@000008f8 8462fff8 9c630001 d7e21ff8 8482fff4

@000008fc 8462fff0 e0641800 d7e21ff4 8482fff0

@00000900 8462ffec e0641800 d7e21ff0 8482ffec

@00000904 8462ffe8 e0641800 d7e21fec 8482ffe8

@00000908 8462ffe4 e0641800 d7e21fe8 8482ffe4

@0000090c 8462ffe0 e0641800 d7e21fe4 8482ffe0

@00000910 8462fff8 e0641800 d7e21fe0 8462fff8

@00000914 9c630001 d7e21ff8 8482fff4 8462fff0

@00000918 e0641800 d7e21ff4 8482fff0 8462ffec

@0000091c e0641800 d7e21ff0 8482ffec 8462ffe8

@00000920 e0641800 d7e21fec 8482ffe8 8462ffe4

@00000924 e0641800 d7e21fe8 8482ffe4 8462ffe0

@00000928 e0641800 d7e21fe4 8482ffe0 8462fff8

@0000092c e0641800 d7e21fe0 8462fff8 9c630001

@00000930 d7e21ff8 8462fff8 bda30031 13ffff74

@00000934 15000000 15000003 8462fff8 a9630000

@00000938 a8220000 8441fffc 44004800 15000000

The following code is main part of the source input.vmem code for test G2.2:

@00000894 d7e117fc 9c410000 9c21ffe0 9c600000

@00000898 d7e21ff4 9c600000 d7e21ff0 9c600000

@0000089c d7e21fec 9c600000 d7e21fe8 9c600000

@000008a0 d7e21fe4 9c600000 d7e21fe0 9c600000

@000008a4 d7e21ff8 0000008c 15000000 9ce6000f

@000008a8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008ac e0a62000 9ce6000f e0a62000 9ce6000f

@000008b0 e0a62000 9ce6000f e0a62000 9ce6000f

@000008b4 e0a62000 9ce6000f e0a62000 9ce6000f

@000008b8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008bc e0a62000 9ce6000f e0a62000 9ce6000f

@000008c0 e0a62000 9ce6000f e0a62000 9ce6000f

@000008c4 e0a62000 9ce6000f e0a62000 9ce6000f

@000008c8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008cc e0a62000 9ce6000f e0a62000 9ce6000f

@000008d0 e0a62000 9ce6000f e0a62000 9ce6000f

@000008d4 e0a62000 9ce6000f e0a62000 9ce6000f

@000008d8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008dc e0a62000 9ce6000f e0a62000 9ce6000f

@000008e0 e0a62000 9ce6000f e0a62000 9ce6000f

@000008e4 e0a62000 9ce6000f e0a62000 9ce6000f
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@000008e8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008ec e0a62000 9ce6000f e0a62000 9ce6000f

@000008f0 e0a62000 9ce6000f e0a62000 9ce6000f

@000008f4 e0a62000 9ce6000f e0a62000 9ce6000f

@000008f8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008fc e0a62000 9ce6000f e0a62000 9ce6000f

@00000900 e0a62000 9ce6000f e0a62000 9ce6000f

@00000904 e0a62000 9ce6000f e0a62000 9ce6000f

@00000908 e0a62000 9ce6000f e0a62000 9ce6000f

@0000090c e0a62000 9ce6000f e0a62000 9ce6000f

@00000910 e0a62000 9ce6000f e0a62000 9ce6000f

@00000914 e0a62000 9ce6000f e0a62000 9ce6000f

@00000918 e0a62000 9ce6000f e0a62000 9ce6000f

@0000091c e0a62000 9ce6000f e0a62000 9ce6000f

@00000920 e0a62000 9ce6000f e0a62000 9ce6000f

@00000924 e0a62000 9ce6000f e0a62000 9ce6000f

@00000928 e0641800 d7e21fe4 8482ffe0 8462fff8

@0000092c e0641800 d7e21fe0 8462fff8 9c630001

@00000930 d7e21ff8 8462fff8 bda30031 13ffff74

@00000934 15000000 15000003 8462fff8 a9630000

@00000938 a8220000 8441fffc 44004800 15000000

The following code is main part of the source input.vmem code for test G2.3:

@00000890 9c210004 8521fffc 44004800 15000000

@00000894 d7e117fc 9c410000 9c21ffe0 9c600000

@00000898 d7e21ff4 9c600000 d7e21ff0 9c600000

@0000089c d7e21fec 9c600000 d7e21fe8 9c600000

@000008a0 d7e21fe4 9c600000 d7e21fe0 9c600000

@000008a4 d7e21ff8 0000008c 15000000 8462fff8

@000008a8 9c630001 d7e21ff8 8482fff4 8462fff0

@000008ac e0641800 d7e21ff4 8482fff0 8462ffec

@000008b0 e0641800 d7e21ff0 8482ffec 8462ffe8

@000008b4 e0641800 d7e21fec 8482ffe8 8462ffe4

@000008b8 e0641800 d7e21fe8 8482ffe4 8462ffe0

@000008bc e0641800 d7e21fe4 8482ffe0 8462fff8

@000008c0 e0641800 d7e21fe0 8462fff8 9c630001

@000008c4 d7e21ff8 8482fff4 8462fff0 e0641800

@000008c8 d7e21ff4 8482fff0 8462ffec e0641800

@000008cc d7e21ff0 8482ffec 8462ffe8 e0641800

@000008d0 d7e21fec 8482ffe8 8462ffe4 e0641800

@000008d4 d7e21fe8 8482ffe4 8462ffe0 e0641800

@000008d8 d7e21fe4 8482ffe0 8462fff8 e0641800

@000008dc d7e21fe0 8462fff8 9c630001 d7e21ff8

@000008e0 8482fff4 8462fff0 e0641800 d7e21ff4

@000008e4 8482fff0 8462ffec e0641800 d7e21ff0

@000008e8 8482ffec 8462ffe8 e0641800 d7e21fec
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@000008ec 8482ffe8 8462ffe4 e0641800 d7e21fe8

@000008f0 8482ffe4 8462ffe0 e0641800 d7e21fe4

@000008f4 8482ffe0 8462fff8 e0641800 d7e21fe0

@000008f8 8462fff8 9c630001 d7e21ff8 8482fff4

@000008fc 8462fff0 e0641800 d7e21ff4 8482fff0

@00000900 8462ffec e0641800 d7e21ff0 8482ffec

@00000904 8462ffe8 e0641800 d7e21fec 8482ffe8

@00000908 8462ffe4 e0641800 d7e21fe8 8482ffe4

@0000090c 8462ffe0 e0641800 d7e21fe4 8482ffe0

@00000910 8462fff8 e0641800 d7e21fe0 8462fff8

@00000914 9c630001 d7e21ff8 8482fff4 8462fff0

@00000918 e0641800 d7e21ff4 8482fff0 8462ffec

@0000091c e0641800 d7e21ff0 8482ffec 8462ffe8

@00000920 e0641800 d7e21fec 8482ffe8 8462ffe4

@00000924 e0641800 d7e21fe8 8482ffe4 8462ffe0

@00000928 e0641800 d7e21fe4 8482ffe0 8462fff8

@0000092c e0641800 d7e21fe0 8462fff8 9c630001

@00000930 d7e21ff8 8462fff8 bda30031 13ffff74

@00000934 15000000 15000003 8462fff8 a9630000

@00000938 a8220000 8441fffc 44004800 15000000

The following code is the source c code for test G3.1, G3.2, and G3.3:

#include <stdio.h>

int main()

{

int a;

int b=0;

int c=0;

int d=0;

int e=0;

int f=0;

int g=0;

for (a=0;a<50;a++)

{

#/*1*/

a=1+a;

b=b+c;

c=c+d;

d=d+e;

e=e+f;

f=f+g;

g=g+a;//repeat these seven lines another four times (6 times totally)

......

/*6*/

a=1+a;

......
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g=g+a;//There are 35(7*6) lines totally

}

asm volatile("l.nop 0x3\n\t");

return a;

}

The following code is main part of the source input.vmem code for test G3.1:

@00000890 9c210004 8521fffc 44004800 15000000

@00000894 d7e117fc 9c410000 9c21ffe0 9c600000

@00000898 d7e21ff4 9c600000 d7e21ff0 9c600000

@0000089c d7e21fec 9c600000 d7e21fe8 9c600000

@000008a0 d7e21fe4 9c600000 d7e21fe0 9c600000

@000008a4 d7e21ff8 000000a7 15000000 8462fff8

@000008a8 9c630001 d7e21ff8 8482fff4 8462fff0

@000008ac e0641800 d7e21ff4 8482fff0 8462ffec

@000008b0 e0641800 d7e21ff0 8482ffec 8462ffe8

@000008b4 e0641800 d7e21fec 8482ffe8 8462ffe4

@000008b8 e0641800 d7e21fe8 8482ffe4 8462ffe0

@000008bc e0641800 d7e21fe4 8482ffe0 8462fff8

@000008c0 e0641800 d7e21fe0 8462fff8 9c630001

@000008c4 d7e21ff8 8482fff4 8462fff0 e0641800

@000008c8 d7e21ff4 8482fff0 8462ffec e0641800

@000008cc d7e21ff0 8482ffec 8462ffe8 e0641800

@000008d0 d7e21fec 8482ffe8 8462ffe4 e0641800

@000008d4 d7e21fe8 8482ffe4 8462ffe0 e0641800

@000008d8 d7e21fe4 8482ffe0 8462fff8 e0641800

@000008dc d7e21fe0 8462fff8 9c630001 d7e21ff8

@000008e0 8482fff4 8462fff0 e0641800 d7e21ff4

@000008e4 8482fff0 8462ffec e0641800 d7e21ff0

@000008e8 8482ffec 8462ffe8 e0641800 d7e21fec

@000008ec 8482ffe8 8462ffe4 e0641800 d7e21fe8

@000008f0 8482ffe4 8462ffe0 e0641800 d7e21fe4

@000008f4 8482ffe0 8462fff8 e0641800 d7e21fe0

@000008f8 8462fff8 9c630001 d7e21ff8 8482fff4

@000008fc 8462fff0 e0641800 d7e21ff4 8482fff0

@00000900 8462ffec e0641800 d7e21ff0 8482ffec

@00000904 8462ffe8 e0641800 d7e21fec 8482ffe8

@00000908 8462ffe4 e0641800 d7e21fe8 8482ffe4

@0000090c 8462ffe0 e0641800 d7e21fe4 8482ffe0

@00000910 8462fff8 e0641800 d7e21fe0 8462fff8

@00000914 9c630001 d7e21ff8 8482fff4 8462fff0

@00000918 e0641800 d7e21ff4 8482fff0 8462ffec

@0000091c e0641800 d7e21ff0 8482ffec 8462ffe8

@00000920 e0641800 d7e21fec 8482ffe8 8462ffe4

@00000924 e0641800 d7e21fe8 8482ffe4 8462ffe0

@00000928 e0641800 d7e21fe4 8482ffe0 8462fff8
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@0000092c e0641800 d7e21fe0 8462fff8 9c630001

@00000930 d7e21ff8 8482fff4 8462fff0 e0641800

@00000934 d7e21ff4 8482fff0 8462ffec e0641800

@00000938 d7e21ff0 8482ffec 8462ffe8 e0641800

@0000093c d7e21fec 8482ffe8 8462ffe4 e0641800

@00000940 d7e21fe8 8482ffe4 8462ffe0 e0641800

@00000944 d7e21fe4 8482ffe0 8462fff8 e0641800

@00000948 d7e21fe0 8462fff8 9c630001 d7e21ff8

@0000094c 8462fff8 bda30031 13ffff59 15000000

@00000950 15000003 8462fff8 a9630000 a8220000

@00000954 8441fffc 44004800 15000000 d7e14ffc

The following code is main part of the source input.vmem code for test G3.2:

@00000890 9c210004 8521fffc 44004800 15000000

@00000894 d7e117fc 9c410000 9c21ffe0 9c600000

@00000898 d7e21ff4 9c600000 d7e21ff0 9c600000

@0000089c d7e21fec 9c600000 d7e21fe8 9c600000

@000008a0 d7e21fe4 9c600000 d7e21fe0 9c600000

@000008a4 d7e21ff8 000000a7 15000000 9ce6000f

@000008a8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008ac e0a62000 9ce6000f e0a62000 9ce6000f

@000008b0 e0a62000 9ce6000f e0a62000 9ce6000f

@000008b4 e0a62000 9ce6000f e0a62000 9ce6000f

@000008b8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008bc e0a62000 9ce6000f e0a62000 9ce6000f

@000008c0 e0a62000 9ce6000f e0a62000 9ce6000f

@000008c4 e0a62000 9ce6000f e0a62000 9ce6000f

@000008c8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008cc e0a62000 9ce6000f e0a62000 9ce6000f

@000008d0 e0a62000 9ce6000f e0a62000 9ce6000f

@000008d4 e0a62000 9ce6000f e0a62000 9ce6000f

@000008d8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008dc e0a62000 9ce6000f e0a62000 9ce6000f

@000008e0 e0a62000 9ce6000f e0a62000 9ce6000f

@000008e4 e0a62000 9ce6000f e0a62000 9ce6000f

@000008e8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008ec e0a62000 9ce6000f e0a62000 9ce6000f

@000008f0 e0a62000 9ce6000f e0a62000 9ce6000f

@000008f4 e0a62000 9ce6000f e0a62000 9ce6000f

@000008f8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008fc e0a62000 9ce6000f e0a62000 9ce6000f

@00000900 e0a62000 9ce6000f e0a62000 9ce6000f

@00000904 e0a62000 9ce6000f e0a62000 9ce6000f

@00000908 e0a62000 9ce6000f e0a62000 9ce6000f

@0000090c e0a62000 9ce6000f e0a62000 9ce6000f

@00000910 e0a62000 9ce6000f e0a62000 9ce6000f
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@00000914 e0a62000 9ce6000f e0a62000 9ce6000f

@00000918 e0a62000 9ce6000f e0a62000 9ce6000f

@0000091c e0a62000 9ce6000f e0a62000 9ce6000f

@00000920 e0a62000 9ce6000f e0a62000 9ce6000f

@00000924 e0a62000 9ce6000f e0a62000 9ce6000f

@00000928 e0a62000 9ce6000f e0a62000 9ce6000f

@0000092c e0a62000 9ce6000f e0a62000 9ce6000f

@00000930 e0a62000 9ce6000f e0a62000 9ce6000f

@00000934 e0a62000 9ce6000f e0a62000 9ce6000f

@00000938 e0a62000 9ce6000f e0a62000 9ce6000f

@0000093c e0a62000 9ce6000f e0a62000 9ce6000f

@00000940 e0a62000 9ce6000f e0a62000 9ce6000f

@00000944 e0a62000 9ce6000f e0a62000 9ce6000f

@00000948 d7e21fe0 8462fff8 9c630001 d7e21ff8

@0000094c 8462fff8 bda30031 13ffff59 15000000

@00000950 15000003 8462fff8 a9630000 a8220000

@00000954 8441fffc 44004800 15000000 d7e14ffc

The following code is main part of the source input.vmem code for test G3.3:

@00000890 9c210004 8521fffc 44004800 15000000

@00000894 d7e117fc 9c410000 9c21ffe0 9c600000

@00000898 d7e21ff4 9c600000 d7e21ff0 9c600000

@0000089c d7e21fec 9c600000 d7e21fe8 9c600000

@000008a0 d7e21fe4 9c600000 d7e21fe0 9c600000

@000008a4 d7e21ff8 000000a7 15000000 9ce6000f

@000008a8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008ac e0a62000 9ce6000f e0a62000 9ce6000f

@000008b0 e0a62000 9ce6000f e0a62000 9ce6000f

@000008b4 e0a62000 9ce6000f e0a62000 9ce6000f

@000008b8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008bc e0a62000 9ce6000f e0a62000 9ce6000f

@000008c0 e0a62000 9ce6000f e0a62000 9ce6000f

@000008c4 e0a62000 9ce6000f e0a62000 9ce6000f

@000008c8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008cc e0a62000 9ce6000f e0a62000 9ce6000f

@000008d0 e0a62000 9ce6000f e0a62000 9ce6000f

@000008d4 e0a62000 9ce6000f e0a62000 9ce6000f

@000008d8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008dc e0a62000 9ce6000f e0a62000 9ce6000f

@000008e0 e0a62000 9ce6000f e0a62000 9ce6000f

@000008e4 e0a62000 9ce6000f e0a62000 9ce6000f

@000008e8 e0a62000 9ce6000f e0a62000 9ce6000f

@000008ec e0a62000 9ce6000f e0a62000 9ce6000f

@000008f0 e0a62000 9ce6000f e0a62000 9ce6000f

@000008f4 e0a62000 9ce6000f e0a62000 9ce6000f

@000008f8 e0a62000 9ce6000f e0a62000 9ce6000f
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@000008fc e0a62000 9ce6000f e0a62000 9ce6000f

@00000900 e0a62000 9ce6000f e0a62000 9ce6000f

@00000904 e0a62000 9ce6000f e0a62000 9ce6000f

@00000908 e0a62000 9ce6000f e0a62000 9ce6000f

@0000090c e0a62000 9ce6000f e0a62000 9ce6000f

@00000910 e0a62000 9ce6000f e0a62000 8462fff8

@00000914 9c630001 d7e21ff8 8482fff4 8462fff0

@00000918 e0641800 d7e21ff4 8482fff0 8462ffec

@0000091c e0641800 d7e21ff0 8482ffec 8462ffe8

@00000920 e0641800 d7e21fec 8482ffe8 8462ffe4

@00000924 e0641800 d7e21fe8 8482ffe4 8462ffe0

@00000928 e0641800 d7e21fe4 8482ffe0 8462fff8

@0000092c e0641800 d7e21fe0 8462fff8 9c630001

@00000930 d7e21ff8 8482fff4 8462fff0 e0641800

@00000934 d7e21ff4 8482fff0 8462ffec e0641800

@00000938 d7e21ff0 8482ffec 8462ffe8 e0641800

@0000093c d7e21fec 8482ffe8 8462ffe4 e0641800

@00000940 d7e21fe8 8482ffe4 8462ffe0 e0641800

@00000944 d7e21fe4 8482ffe0 8462fff8 e0641800

@00000948 d7e21fe0 8462fff8 9c630001 d7e21ff8

@0000094c 8462fff8 bda30031 13ffff59 15000000

@00000950 15000003 8462fff8 a9630000 a8220000

@00000954 8441fffc 44004800 15000000 d7e14ffc

The following code is the source c file for test G4:

#include <stdlib.h>

int main()

{

int m1[3][3];

int m2[3][3];

int m3[3][3];

int i=0;

m1[0][0]=1;

m1[0][1]=2;

m1[0][2]=3;

m1[1][0]=4;

m1[1][1]=5;

m1[1][2]=6;

m1[2][0]=7;

m1[2][1]=8;

m1[2][2]=9;

m2[0][0]=1;

m2[0][1]=1;

m2[0][2]=1;
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m2[1][0]=2;

m2[1][1]=2;

m2[1][2]=2;

m2[2][0]=3;

m2[2][1]=3;

m2[2][2]=3;

for (i=0;i<3;i++)

{

m3[i][0]=m1[i][0]*m2[0][0]+m1[i][1]*m2[1][0]+m1[i][2]*m2[2][0];

m3[i][1]=m1[i][0]*m2[0][1]+m1[i][1]*m2[1][1]+m1[i][2]*m2[2][1];

m3[i][2]=m1[i][0]*m2[0][2]+m1[i][1]*m2[1][2]+m1[i][2]*m2[2][2];

}

//for(i=0; i<3; i++)

// printf(" %i\t %i\t %i\n", m3[i][0], m3[i][1], m3[i][2]);

return 0;

}

The following code is main part of the source input.vmem code for test G3.3:

@00000894 d7e117fc 9c410000 9c21ff8c 9c600000

@00000898 d7e21ff8 9c600001 d7e21fd4 9c600002

@0000089c d7e21fd8 9c600003 d7e21fdc 9c600004

@000008a0 d7e21fe0 9c600005 d7e21fe4 9c600006

@000008a4 d7e21fe8 9c600007 d7e21fec 9c600008

@000008a8 d7e21ff0 9c600009 d7e21ff4 9c600001

@000008ac d7e21fb0 9c600001 d7e21fb4 9c600001

@000008b0 d7e21fb8 9c600002 d7e21fbc 9c600002

@000008b4 d7e21fc0 9c600002 d7e21fc4 9c600003

@000008b8 d7e21fc8 9c600003 d7e21fcc 9c600003

@000008bc d7e21fd0 9c800000 d7e227f8 00000089

@000008c0 15000000 8482fff8 a8640000 e0631800

@000008c4 e0632000 b8630002 9c82fffc e0641800

@000008c8 9c63ffd8 84830000 8462ffb0 e0a41b06

@000008cc 8482fff8 a8640000 e0631800 e0632000

@000008d0 b8630002 9c82fffc e0641800 9c63ffdc

@000008d4 84830000 8462ffbc e0641b06 e0a51800

@000008d8 8482fff8 a8640000 e0631800 e0632000

@000008dc b8630002 9c82fffc e0641800 9c63ffe0

@000008e0 84830000 8462ffc8 e0641b06 e0a51800

@000008e4 8482fff8 a8640000 e0631800 e0632000

@000008e8 b8630002 9c82fffc e0641800 9c63ff90

@000008ec d4032800 8482fff8 a8640000 e0631800

@000008f0 e0632000 b8630002 9c82fffc e0641800

@000008f4 9c63ffd8 84830000 8462ffb4 e0a41b06

@000008f8 8482fff8 a8640000 e0631800 e0632000

@000008fc b8630002 9c82fffc e0641800 9c63ffdc
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@00000900 84830000 8462ffc0 e0641b06 e0a51800

@00000904 8482fff8 a8640000 e0631800 e0632000

@00000908 b8630002 9c82fffc e0641800 9c63ffe0

@0000090c 84830000 8462ffcc e0641b06 e0a51800

@00000910 8482fff8 a8640000 e0631800 e0632000

@00000914 b8630002 9c82fffc e0641800 9c63ff94

@00000918 d4032800 8482fff8 a8640000 e0631800

@0000091c e0632000 b8630002 9c82fffc e0641800

@00000920 9c63ffd8 84830000 8462ffb8 e0a41b06

@00000924 8482fff8 a8640000 e0631800 e0632000

@00000928 b8630002 9c82fffc e0641800 9c63ffdc

@0000092c 84830000 8462ffc4 e0641b06 e0a51800

@00000930 8482fff8 a8640000 e0631800 e0632000

@00000934 b8630002 9c82fffc e0641800 9c63ffe0

@00000938 84830000 8462ffd0 e0641b06 e0a51800

@0000093c 8482fff8 a8640000 e0631800 e0632000

@00000940 b8630002 9c82fffc e0641800 9c63ff98

@00000944 d4032800 8462fff8 9c630001 d7e21ff8

@00000948 8462fff8 bda30002 13ffff77 15000000

@0000094c 9c600000 a9630000 a8220000 8441fffc

@00000950 44004800 15000000 d7e14ffc 9c21fffc

A.1.4 The code of Section 3.7

The following codes are main part of the source input.vmem code for Fibonacci:

#include <stdlib.h>

#include <stdio.h>

int fib (int n)

{

if (n<2)

return n;

else

return (fib(n-1)+fib(n-2));

}

int main()

{

int a;

a=fib (15);

return a;

}

The following codes are main part of the source input.vmem code for FIR:

#include <stdio.h>
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#define F_LENGTH 20

#define K_LENGTH 5

void firFixed( int *coeffs, int *input, int *output, int length, int

filterLength )

{

int acc; // accumulator for MACs

int *coeffp; // pointer to coefficients

int *inputp; // pointer to input samples

int n;

int k;

// apply the filter to each input sample

for ( n = 0; n < length; n++ ) {

// calculate output n

coeffp = coeffs;

inputp = &input[n];

acc = 0;

// perform the multiply-accumulate

for ( k = 0; k < filterLength; k++ ) {

acc += (*coeffp++) * (*inputp--);

}

output[n] = acc;

}

}

void main()

{

int input[] = {0, 0, 1, 1, 1, 1, 1, 5, 1, 1,2,3,4,2,1,4,2,1,5,2};

int output[F_LENGTH];

int coeffs[] = { 0, 100, 500, 100, 200};

firFixed(coeffs, input, output, F_LENGTH,K_LENGTH );

}

The following codes are main part of the source input.vmem code for Quicksort:

#include <stdio.h>

#include <stdlib.h>

void quicksort(int list[],int m,int n)

{

int key,i,j,k,temp;

if( m < n)

{

k = (m+n)/2;

//swap(&list[m],&list[k]);

temp=list[m];
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list[m]=list[k];

list[k]=temp;

key = list[m];

i = m+1;

j = n;

while(i <= j)

{

while((i <= n) && (list[i] <= key))

i++;

while((j >= m) && (list[j] > key))

j--;

if( i < j)

// swap(&list[i],&list[j]);

{ temp=list[i];

list[i]=list[j];

list[j]=temp;}

}

// swap two elements

temp=list[m];

list[m]=list[j];

list[j]=temp;

// recursively sort the lesser list

quicksort(list,m,j-1);

quicksort(list,j+1,n);

}

}

void main()

{ const int MAX_ELEMENTS = 15;

//int list[MAX_ELEMENTS];

int i = 0;

int

list[25]={27,74,17,33,94,18,46,83,65,2,32,53,28,85,99,11,68,67,29,82,21,62,90,59,63};

// sort the list using quicksort

asm volatile("l.nop 0x3\n\t");

quicksort(list,0,MAX_ELEMENTS-1);

asm volatile("l.nop 0x3\n\t");

// print the result

//printf("The list after sorting using quicksort algorithm:\n");

//printlist(list,MAX_ELEMENTS);

}

The following codes are main part of the source input.vmem code for Tak:

#include <stdio.h>

int tak(int x, int y, int z)

{
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int a1, a2, a3;

if (x <= y) return z;

a1 = tak(x-1,y,z);

a2 = tak(y-1,z,x);

a3 = tak(z-1,x,y);

return tak(a1,a2,a3);

}

main()

{

take(10,5,3);

//printf("%d\n", tak(10, 5, 3));

}

The following codes are main part of the source input.vmem code for Hanoi:

#include <stdio.h>

int Hanoi(int from, int to , int use, int howmany)

{

if (howmany ==1)

{

//printf("Moving a piece from %d to %d \n", from , to);

return 1;

}

else

{

int imovs =0;

imovs += Hanoi(from, use, to, howmany -1);

imovs += Hanoi(from, to , use, 1);

imovs += 1;

imovs += Hanoi(use, to, from, howmany-1);

//printf("imovs %d \n", imovs);

return imovs;

}

}

void main()

{

Hanoi(3,2,1,5);

}

The following codes are module: test all top orpsoc, which aims to test the average

register switching bit. More specifically, it is used to recode each register value when it

changes.

‘timescale 1ns/1ps

// synopsys translate_on

‘include "or1200_defines.v"
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////////////////////////////////////////////////////////////////////////////////

// Company:

// Engineer:

//

// Create Date: 12:47:42 02/21/2011

// Design Name: all_top

// Module Name: D:/openrisc_test_all/test_all_top.v

// Project Name: openrisc_test_all

// Target Device:

// Tool versions:

// Description:

//

// Verilog Test Fixture created by ISE for module: all_top

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

////////////////////////////////////////////////////////////////////////////////

module test_all_top_orpsoc;

// Inputs

reg clk;

reg rst;

‘include "orpsoc-defines.v"

// Instantiate the Unit Under Test (UUT)

orpsoc_top uut (

.clk_pad_i (clk),

.rst_n_pad_i (rst)

);

always

#4.5 clk <= ~clk;

initial

begin

rst=1;

clk=0;

#200 rst=0;
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#225.75 rst = 1;

end

initial

begin

// #110000 $dumpfile("openrisc_st_65nm_cache1.vcd");

$dumpvars(0,uut.or1200_top0);

end

integer

f0,f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16,f17,f18,f19,f20,f21,f22,f23,f24,f25,f26,f27,f28,f29,f30,f31;

initial begin

#100000

f0 = $fopen("f0.txt","a");

$fmonitor(f0, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[0]);

f1 = $fopen("f1.txt","a");

$fmonitor(f1, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[1]);

f2 = $fopen("f2.txt","a");

$fmonitor(f2, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[2]);

f3 = $fopen("f3.txt","a");

$fmonitor(f3, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[3]);

f4 = $fopen("f4.txt","a");

$fmonitor(f4, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[4]);

f5 = $fopen("f5.txt","a");

$fmonitor(f5, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[5]);

f6 = $fopen("f6.txt","a");

$fmonitor(f6, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[6]);

f7 = $fopen("f7.txt","a");

$fmonitor(f7, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[7]);

f8 = $fopen("f8.txt","a");

$fmonitor(f8, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[8]);

f9 = $fopen("f9.txt","a");

$fmonitor(f9, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[9]);
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f10 = $fopen("f10.txt","a");

$fmonitor(f10, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[10]);

f11 = $fopen("f11.txt","a");

$fmonitor(f11, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[11]);

f12 = $fopen("f12.txt","a");

$fmonitor(f12, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[12]);

f13 = $fopen("f13.txt","a");

$fmonitor(f13, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[13]);

f14 = $fopen("f14.txt","a");

$fmonitor(f14, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[14]);

f15 = $fopen("f15.txt","a");

$fmonitor(f15, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[15]);

f16 = $fopen("f16.txt","a");

$fmonitor(f16, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[16]);

f17 = $fopen("f17.txt","a");

$fmonitor(f17, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[17]);

f18 = $fopen("f18.txt","a");

$fmonitor(f18, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[18]);

f19 = $fopen("f19.txt","a");

$fmonitor(f19, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[19]);

f20 = $fopen("f20.txt","a");

$fmonitor(f20, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[20]);

f21 = $fopen("f21.txt","a");

$fmonitor(f21, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[21]);

f22 = $fopen("f22.txt","a");

$fmonitor(f22, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[22]);

f23 = $fopen("f23.txt","a");

$fmonitor(f23, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[23]);

f24 = $fopen("f24.txt","a");

$fmonitor(f24, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[24]);

f25 = $fopen("f25.txt","a");

$fmonitor(f25, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[25]);
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f26 = $fopen("f26.txt","a");

$fmonitor(f26, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[26]);

f27 = $fopen("f27.txt","a");

$fmonitor(f27, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[27]);

f28 = $fopen("f28.txt","a");

$fmonitor(f28, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[28]);

f29 = $fopen("f29.txt","a");

$fmonitor(f29, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[29]);

f30 = $fopen("f30.txt","a");

$fmonitor(f30, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[30]);

f31 = $fopen("f31.txt","a");

$fmonitor(f31, "%b", uut.or1200_top0.or1200_cpu.or1200_rf.rf_a.mem[31]);

#200000

$fclose(f0);

$fclose(f1);

$fclose(f2);

$fclose(f3);

$fclose(f4);

$fclose(f5);

$fclose(f6);

$fclose(f7);

$fclose(f8);

$fclose(f9);

$fclose(f10);

$fclose(f11);

$fclose(f12);

$fclose(f13);

$fclose(f14);

$fclose(f15);

$fclose(f16);

$fclose(f17);

$fclose(f18);

$fclose(f19);

$fclose(f20);

$fclose(f21);

$fclose(f22);

$fclose(f23);

$fclose(f24);

$fclose(f25);

$fclose(f26);
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$fclose(f27);

$fclose(f28);

$fclose(f29);

$fclose(f30);

$fclose(f31);

// $finish;

end

endmodule

The following codes aims to test the average register switching bit. More specifically,

it is used to analyse the generated files from test all top orpsoc.v and recode the toggle

bits number when register value is changed.

#include <iostream>

#include <string>

#include <fstream>

#include <sstream>

static const int LINE_LENGTH = 32;

static const std::string LOGFILE_PREFIX = "f";

static const std::string LOGFILE_SUFFIX = ".txt";

inline std::string separator()

{

#ifdef _WIN32

return "\\";

#else

return "/";

#endif

}

std::string int2str(int i) {

std::ostringstream ss;

ss << i;

return ss.str();

}

bool scan_file(std::string filename, int* stat) {

std::ifstream logFile(filename.c_str());

if (logFile.fail()) return false;

std::string previousLine = "";

std::string currentLine = "";
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int lineNum = 0;

while (std::getline(logFile, currentLine)) {

lineNum++;

if (previousLine != "") {

// check toggle bits here

int toggledBitNum = 0;

for (int i = 0; i < LINE_LENGTH; i++) {

if (previousLine[i] != currentLine[i]) {

toggledBitNum++;

}

}

stat[toggledBitNum]++;

}

previousLine = currentLine;

}

std::cout << filename << " has " << lineNum << " lines." << std::endl;

return true;

}

int main(int argc, char* argv[]) {

int stat[LINE_LENGTH+1];

int currentStat[LINE_LENGTH+1];

int toggle_total_number=0;

int toggle_totol_times=0;

float toggle_average=0;

for (int i = 0; i <= LINE_LENGTH; i++) {

stat[i] = 0;

}

static const std::string logDirPath(argv[1]);

for (int i = 0; i < LINE_LENGTH; i++) {

std::string fileNum = int2str(i);

std::string currentLogFileName =

LOGFILE_PREFIX + fileNum + LOGFILE_SUFFIX;

// you can print warning for not existing

// files according to the return value here

for (int j = 0; j <= LINE_LENGTH; j++) {

currentStat[j] = 0;

}

std::cout << "=============================" << std::endl;

std::string filePath = logDirPath + separator() + currentLogFileName;

std::cout << "Scan " << filePath << std::endl;

if (scan_file(filePath, currentStat)) {

std::cout << filePath << " scanned." << std::endl;

for (int k = 0; k <= LINE_LENGTH; k++) {
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std::cout << k << " bits toggled: " << currentStat[k] <<

std::endl;

stat[k] += currentStat[k];

}

} else {

std::cout << filePath << " does not exist." << std::endl;

}

std::cout << "=============================" << std::endl;

}

std::cout << "\nFinal Stat:" << std::endl;

std::cout << "=============================" << std::endl;

for (int i = 0; i <=LINE_LENGTH; i++) {

std::cout << i << " bits toggled: " << stat[i] << std::endl;

toggle_total_number=toggle_total_number+stat[i]*i;

toggle_totol_times= toggle_totol_times+stat[i];

}

std::cout << "=============================" << std::endl;

toggle_average=(float)toggle_total_number/toggle_totol_times;

std::cout << " average bit toggled: " << toggle_average << std::endl;

return 0;

}

A.2 The Test Code of Chapter 4

A.2.1 The code of Section 4.3

The following codes are an example code for testing basic power of instruction ADD(r).

For all of the ALU(r) test, the operand is the same. For the tests of Figure 4.4, the

number of instructions is changed in order to have different cache miss rate.

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

int main ( void )

{

int p[20]={1,2,3,4};

size_t r1, r2, r3, r4, r5,r6;

printf ("Now initial finished asdfasdfasdf\n");

int i=1;
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asm(" mov r1, #0x11"); //

asm(" mov r2, #0x05"); //2

while(i<0x7ffff)

{

//400 move instructions

asm(" mov r1, #0x11"); //

asm(" mov r2, #0x05"); //2

asm (" mov r5, %[va]"::[va] "r"(p)); // mov the first address of p to

register r5

asm (" str r1, [r5]"); /// store r1 to the first address of malloce

asm (" str r2, [r5, #4]");

asm (" ADD r3 , r2, r1"); //1

asm (" ADD r4 , r1 , r2"); //2

asm (" ADD r3 , r2, r1"); //3

asm (" ADD r4 , r1 , r2"); //4

asm (" ADD r3 , r2, r1"); //5

asm (" ADD r4 , r1 , r2"); //6

asm (" ADD r3 , r2, r1"); //7

asm (" ADD r4 , r1 , r2"); //8

asm (" ADD r3 , r2, r1"); //9

asm (" ADD r4 , r1 , r2"); //10

//...........

// repeat N instructions, N is depend on the what cache miss reate is need.

//10

asm (" ADD r3 , r2, r1"); //1

asm (" ADD r4 , r1 , r2"); //2

asm (" ADD r3 , r2, r1"); //3

asm (" ADD r4 , r1 , r2"); //4

asm (" ADD r3 , r2, r1"); //5

asm (" ADD r4 , r1 , r2"); //6

asm (" ADD r3 , r2, r1"); //7

asm (" ADD r4 , r1 , r2"); //8

asm (" ADD r3 , r2, r1"); //9

asm (" ADD r4 , r1 , r2"); //10

i++;

}

return(0);

}
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The following codes are an example code for testing basic power of instruction ADD(i).

For all of the ALU(i) test, the operand is the same. For the tests of Figure 4.4, the

number of instructions is changed in order to have different cache miss rate.

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

int main ( void )

{

int p[20]={1,2,3,4};

size_t r1, r2, r3, r4, r5,r6;

printf ("Now initial finished asdfasdfasdf\n");

int i=1;

asm(" mov r1, #0x11"); //

asm(" mov r2, #0x05"); //2

while(i<0x7ffff)

{

asm(" mov r1, #0x11"); //

asm(" mov r2, #0x05"); //2

asm (" mov r5, %[va]"::[va] "r"(p)); // mov the first address of p to

register r5

asm (" str r1, [r5]"); /// store r1 to the first address of malloce

asm (" str r2, [r5, #4]");

asm (" ADD r3 , r1, #0x3f"); //1

asm (" ADD r4, r2, #0xf3"); //2

asm (" ADD r3 , r1, #0x3f"); //3

asm (" ADD r4, r2, #0xf3"); //4

asm (" ADD r3 , r1, #0x3f"); //5

asm (" ADD r4, r2, #0xf3"); //6

asm (" ADD r3 , r1, #0x3f"); //7

asm (" ADD r4, r2, #0xf3"); //8

asm (" ADD r3 , r1, #0x3f");//9

asm (" ADD r4, r2, #0xf3");//10

//.............

// repeat N instructions, N is depend on the what cache miss reate is need.

asm (" ADD r3 , r1, #0x3f"); //1

asm (" ADD r4, r2, #0xf3"); //2

asm (" ADD r3 , r1, #0x3f"); //3

asm (" ADD r4, r2, #0xf3"); //4

asm (" ADD r3 , r1, #0x3f"); //5
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asm (" ADD r4, r2, #0xf3"); //6

asm (" ADD r3 , r1, #0x3f"); //7

asm (" ADD r4, r2, #0xf3"); //8

asm (" ADD r3 , r1, #0x3f");//9

asm (" ADD r4, r2, #0xf3");//10

i++;

}

return(0);

}

The following codes are an example code for testing basic power of instruction Load. For

the tests of Figure 4.4, the number of instructions is changed in order to have different

cache miss rate.

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

int main ( void )

{

int p[20]={1,2,3,4};

size_t r1, r2, r3, r4, r5,r6;

printf ("Now initial finished asdfasdfasdf\n");

int i=1;

asm(" mov r1, #0x11"); //

asm(" mov r2, #0x05"); //2

int a=5,b=10,c=15;

while(i<0x7ffff)

{

//400 move instructions

asm(" mov r1, #0x11"); //

asm(" mov r2, #0x05"); //2

asm (" mov r5, %[va]"::[va] "r"(p)); // mov the first address of p to

register r5

asm (" str r1, [r5]"); /// store r1 to the first address of malloce

asm (" str r2, [r5, #4]");

asm (" ldr r3, [r5]"); //1

asm (" ldr r4, [r5, #4]"); //2

asm (" ldr r3, [r5]"); //3
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asm (" ldr r4, [r5, #4]"); //4

asm (" ldr r3, [r5]"); //5

asm (" ldr r4, [r5, #4]"); //6

asm (" ldr r3, [r5]"); //7

asm (" ldr r4, [r5, #4]"); //8

asm (" ldr r3, [r5]"); //9

asm (" ldr r4, [r5, #4]"); //10

//.........

// repeat N instructions, N is depend on the what cache miss reate is need.

asm (" ldr r3, [r5]"); //1

asm (" ldr r4, [r5, #4]"); //2

asm (" ldr r3, [r5]"); //3

asm (" ldr r4, [r5, #4]"); //4

asm (" ldr r3, [r5]"); //5

asm (" ldr r4, [r5, #4]"); //6

asm (" ldr r3, [r5]"); //7

asm (" ldr r4, [r5, #4]"); //8

asm (" ldr r3, [r5]"); //9

asm (" ldr r4, [r5, #4]"); //10

i++;

}

return(0);

}

The following codes are an example code for testing basic power of instruction Store. For

the tests of Figure 4.4, the number of instructions is changed in order to have different

cache miss rate.

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

int main ( void )

{

int i=1;
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printf ("Now initial the program \n");

size_t r1, r2, r3, r4, r5,r6;

int p[10];

int t;

int *mm=&t;

int *a;

a= (int*)malloc(10*sizeof(int));

printf("the address of a is %u \n", a);

printf("the address of p is %u \n",p);

printf("the address of mm is %u \n",mm);

/*********initial paramter*******/

asm(" mov r1, #0x11"); //

asm(" mov r2, #0x3f"); //2

asm (" mov r5, %[va]"::[va] "r"(p)); // mov the first address of malloc to

register r5

asm (" str r1, [r5]"); /// store r1 to the first address of malloce

asm (" str r2, [r5, #4]");

while(i<0x7ffff)

{

asm(" mov r1, #0x11"); //

asm(" mov r2, #0x3f"); //2

asm (" mov r5, %[va]"::[va] "r"(p)); // mov the first address of malloc to

register r5

asm (" str r1, [r5]"); /// store r1 to the first address of malloce

asm (" str r2, [r5, #4]");

asm (" ldr r6, [r5]");

asm (" str r1, [r5]"); //1

asm (" str r2, [r5, #4]"); //2

asm (" str r1, [r5]"); //3

asm (" str r2, [r5, #4]"); //4

asm (" str r1, [r5]"); //5

asm (" str r2, [r5, #4]"); //6

asm (" str r1, [r5]"); //7

asm (" str r2, [r5, #4]"); //8

asm (" str r1, [r5]"); //9

asm (" str r2, [r5, #4]"); //10

//.........

// repeat N instructions, N is depend on the what cache miss reate is need.
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asm (" str r1, [r5]"); //1

asm (" str r2, [r5, #4]"); //2

asm (" str r1, [r5]"); //3

asm (" str r2, [r5, #4]"); //4

asm (" str r1, [r5]"); //5

asm (" str r2, [r5, #4]"); //6

asm (" str r1, [r5]"); //7

asm (" str r2, [r5, #4]"); //8

asm (" str r1, [r5]"); //9

asm (" str r2, [r5, #4]"); //10

i++;

}

return(0);

}

A.2.2 The code of Section 4.4

The following codes is an example to test the Hamming distance 4. The test case main

body is the same as Section A.2.1.

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

int main ( void )

{

int p[20]={1,2,3,4};

size_t r1, r2, r3, r4, r5,r6;

printf ("Now initial finished asdfasdfasdf\n");

int i=1;

asm(" mov r1, #0x11"); //

asm(" mov r2, #0x05"); //2

while(i<0x7ffff)

{

//400 move instructions
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asm(" mov r1, #0x11"); //

asm(" mov r2, #0x05"); //2

asm (" mov r5, %[va]"::[va] "r"(p)); // mov the first address of p to

register r5

asm (" str r1, [r5]"); /// store r1 to the first address of malloce

asm (" str r2, [r5, #4]");

asm (" ADD r3 , r2, r1"); //1

asm (" ADD r4 , r1 , r2"); //2

asm (" ADD r3 , r2, r1"); //3

asm (" ADD r4 , r1 , r2"); //4

asm (" ADD r3 , r2, r1"); //5

asm (" ADD r4 , r1 , r2"); //6

asm (" ADD r3 , r2, r1"); //7

asm (" ADD r4 , r1 , r2"); //8

asm (" ADD r3 , r2, r1"); //9

asm (" ADD r4 , r1 , r2"); //10

//...........

// repeat N instructions, N is depend on the what cache miss reate is need.

//10

asm (" ADD r3 , r2, r1"); //1

asm (" ADD r4 , r1 , r2"); //2

asm (" ADD r3 , r2, r1"); //3

asm (" ADD r4 , r1 , r2"); //4

asm (" ADD r3 , r2, r1"); //5

asm (" ADD r4 , r1 , r2"); //6

asm (" ADD r3 , r2, r1"); //7

asm (" ADD r4 , r1 , r2"); //8

asm (" ADD r3 , r2, r1"); //9

asm (" ADD r4 , r1 , r2"); //10

i++;

}

return(0);

}

A.2.3 The code of Section 4.5

The following codes is an example to test the overhead affect of ADD SUB. The

test case main body is the same as Section A.2.1. However, for each case, we set the

instruction number 2000, which means the cache usage is 4kB
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#include <stdlib.h>

#include <stdio.h>

#include <math.h>

int main ( void )

{

int p[20]={3,12,3,4};

size_t r1, r2, r3, r4, r5,r6;

printf ("Now initial finished asdfasdfasdf\n");

int i=1;

asm(" mov r1, #0x11"); //

asm(" mov r2, #0x05"); //2

int a=5,b=10,c=15;

while(i<0x7ffff)

//400 move instructions

{

asm (" mov r5, %[va]"::[va] "r"(p)); // mov the first address of p to

register r5

asm (" str r1, [r5]"); /// store r1 to the first address of malloce

asm (" str r2, [r5, #4]");

asm(" mov r1, #0x0"); //

asm(" mov r2, #0x0"); //2

asm (" ADD r3 , r2, r1"); //1

asm (" SUB r4 , r1 , r2"); //2

asm (" ADD r3 , r2, r1"); //3

asm (" SUB r4 , r1 , r2"); //4

asm (" ADD r3 , r2, r1"); //5

asm (" SUB r4 , r1 , r2"); //6

asm (" ADD r3 , r2, r1"); //7

asm (" SUB r4 , r1 , r2"); //8

asm (" ADD r3 , r2, r1"); //9

asm (" SUB r4 , r1 , r2"); //10

//..........

// 2000 instructions totally

asm (" ADD r3 , r2, r1"); //1

asm (" SUB r4 , r1 , r2"); //2

asm (" ADD r3 , r2, r1"); //3

asm (" SUB r4 , r1 , r2"); //4

asm (" ADD r3 , r2, r1"); //5

asm (" SUB r4 , r1 , r2"); //6

asm (" ADD r3 , r2, r1"); //7

asm (" SUB r4 , r1 , r2"); //8

asm (" ADD r3 , r2, r1"); //9

asm (" SUB r4 , r1 , r2"); //10
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}

return(0);

}

A.2.4 The code of Section 4.6

The following codes are an example code for test2, where 25% of the instructions come

from logic and 75% come from ALU logic.

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

int main ( void )

{

int p[20]={1,2,3,4};

size_t r1, r2, r3, r4, r5,r6;

printf ("Now initial finished asdfasdfasdf\n");

int i=1;

asm(" mov r1, #0x11"); //

asm(" mov r2, #0x05"); //2

int a=5,b=10,c=15;

while(i<0x7ffff)

{

//400 move instructions

asm(" mov r1, #0x11"); //

asm(" mov r2, #0x05"); //2

asm (" mov r5, %[va]"::[va] "r"(p)); // mov the first address of p to

register r5

asm (" str r1, [r5]"); /// store r1 to r[5]

asm (" str r2, [r5, #4]");

asm (" ldr r3, [r5,#4] ");

asm (" orr r1 , r1, r2 ");

asm ("sub r4 , r1, #0xf ");

asm ("eor r6 , r2, #0xf3 ");

asm (" ldr r6, [r5,#8]");

asm (" ADD r3 , r1, #0xf");

asm (" mov r6 , r1 ");

asm (" and r3 , r2 ,r1 ");
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...........

//2000 instructions totally

asm (" ldr r3, [r5,#4] ");

asm (" orr r1 , r1, r2 ");

asm ("sub r4 , r1, #0xf ");

asm ("eor r6 , r2, #0xf3 ");

asm (" ldr r6, [r5,#8]");

asm (" ADD r3 , r1, #0xf");

asm (" mov r6 , r1 ");

asm (" and r3 , r2 ,r1 ");

i++;

}

printf ("Finish the test finished asdfasdfasdf");

return(0);

}

A.2.5 The code of Section 4.7

The source code of Bitcount and Quicksort come from websiteL: MiBench Version 1.0

(http://wwweb.eecs.umich.edu/mibench/).

The following codes are main part of the source input.vmem code for Fibonacci:

#include <stdlib.h>

#include <stdio.h>

int fib (int n)

{

if (n<2)

return n;

else

return (fib(n-1)+fib(n-2));

}

int main()

{

int a;

a=fib (25);

i++;

//printf("the value is %d\n", a);

return a;

}
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The following codes are main part of the source input.vmem code for FIR:

#include <stdio.h>

#define F_LENGTH 4000

#define K_LENGTH 5

void firFixed( int *coeffs, int *input, int *output, int length, int

filterLength )

{

int acc; // accumulator for MACs

int *coeffp; // pointer to coefficients

int *inputp; // pointer to input samples

int n;

int k;

// apply the filter to each input sample

for ( n = 0; n < length; n++ ) {

// calculate output n

coeffp = coeffs;

inputp = &input[n];

acc = 0;

// perform the multiply-accumulate

for ( k = 0; k < filterLength; k++ ) {

acc += (*coeffp++) * (*inputp--);

}

output[n] = acc;

}

}

void main()

{

int i=0;

int input[F_LENGTH];

for (i=0; i<F_LENGTH; i++)

{

input[i]=rand()%(F_LENGTH);

//printf("%d \n", input[i]);

}

int coeffs[] = { 0, 100, 500, 100, 200};

int output[F_LENGTH];

firFixed(coeffs, input, output, F_LENGTH,K_LENGTH );

}

The following codes are main part of the source input.vmem code for Quicksort:

#include <stdio.h>

#include <stdlib.h>

#define MAX_ELEMENTS 4000

void quicksort(int list[],int m,int n)

{
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int key,i,j,k,temp;

if( m < n)

{

k = (m+n)/2;

//swap(&list[m],&list[k]);

temp=list[m];

list[m]=list[k];

list[k]=temp;

key = list[m];

i = m+1;

j = n;

while(i <= j)

{

while((i <= n) && (list[i] <= key))

i++;

while((j >= m) && (list[j] > key))

j--;

if( i < j)

// swap(&list[i],&list[j]);

{ temp=list[i];

list[i]=list[j];

list[j]=temp;}

}

// swap two elements

temp=list[m];

list[m]=list[j];

list[j]=temp;

// recursively sort the lesser list

quicksort(list,m,j-1);

quicksort(list,j+1,n);

}

}

void printlist(int list[],int n)

{

int i;

for(i=0;i<n;i++)

printf("%d\t",list[i]);

}

void main()

{

//int list[MAX_ELEMENTS];

const char* input_file_name="input_large.dat";

FILE* file = fopen (input_file_name, "r");

rewind (file);

int i = 0;

int tmp = 0;

int list[MAX_ELEMENTS];
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while (!feof (file))

{

if (i==MAX_ELEMENTS) break;

fscanf (file, "%d", &tmp);

list[i++]=tmp;

}

fclose (file);

printf("The list before sorting is:\n");

printlist(list,MAX_ELEMENTS);

// sort the list using quicksort

quicksort(list,0,MAX_ELEMENTS-1);

// print the result

printf("The list after sorting using quicksort algorithm:\n");

printlist(list,MAX_ELEMENTS);

}

The following codes are main part of the source input.vmem code for Tak:

#include <stdio.h>

int tak(int x, int y, int z)

{

int a1, a2, a3;

if (x <= y) return z;

a1 = tak(x-1,y,z);

a2 = tak(y-1,z,x);

a3 = tak(z-1,x,y);

return tak(a1,a2,a3);

}

main()

{

int a;

a=tak(3000,2,3);

//printf("%d\n",a);

}

The following codes are main part of the source input.vmem code for Hanoi:

#include <stdio.h>

int Hanoi(int from, int to , int use, int howmany)

{

if (howmany ==1)

{

printf("Moving a piece from %d to %d \n", from , to);

return 1;

}|

else
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{

Hanoi(from, use, to, howmany -1);

printf("Moving a piece from %d to %d \n", from , to);

Hanoi(use, to, from, howmany-1);

}

}

void main()

{

int i=0;

Hanoi(1,2,3,9);

}

A.3 The Test Code of Chapter 5

A.3.1 The code of Section 5.4

The following codes is the test code for ADD(r) in Section 5.7: the power consumption

of dual-issue restrictions. To test the other opcodes, the only change is the opcode and

leave the operand the same.

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

int main ( void )

{

printf ("Now initial the program asdfasdfasdfasdfasdfasdf \n");

printf ("Now initial finished asdfasdfasdf\n");

int i=1;

asm(" mov r1, #0x11"); //

asm(" mov r0, #0x3f"); //2

while(i<0x7ffff)

{

asm(" mov r1, #0x11"); //



248 Appendix A Design Codes and Benchmarks

asm(" mov r0, #0x3f"); //2

asm (" add r2 , r1, r0"); //1

asm (" add r3 , r2 , r1"); //2

asm (" add r4 , r3, r2"); //3

asm (" add r5 , r4 , r3"); //4

asm (" add r6 , r5, r4"); //5

asm (" add r7 , r6 , r5"); //6

asm (" add r8 , r7, r6"); //7

asm (" add r9 , r8 , r7"); //8

// Repeat N times

asm (" add r2 , r1, r0"); //1

asm (" add r3 , r2 , r1"); //2

asm (" add r4 , r3, r2"); //3

asm (" add r5 , r4 , r3"); //4

asm (" add r6 , r5, r4"); //5

asm (" add r7 , r6 , r5"); //6

asm (" add r8 , r7, r6"); //7

asm (" add r9 , r8 , r7"); //8

i++;

}

return(0);

}

A.3.2 The code of Section 5.7

The following codes is the setting file for Section 5.7: The Power Consumption of Data

Cache.

#ifndef COMMON_H

#define COMMON_H

#define MEMORY_SPACE 256*1024 /*1KB*/ /*10485760 10240KB*/

#define BLOCK_NUM 64 /*16 <=64k*/ /*32 128k*/ /*64 256k*/ /*128 512k*/

/*256 1M*/ /*512 2M*/ /*1024 4M*/

#define BLOCK_SIZE (MEMORY_SPACE/BLOCK_NUM)

#define INSTRUCTION_NUM 200 /*1K*/

#define SUB_BLOCK_NUM 4
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#define MIN_SHIFT_WITHIN_BLOCK ((BLOCK_SIZE)/8) /*The min address shift

between the loading addresses of two adjacent instructions. */

#define MIN_SHIFT_BETWEEN_BLOCK (BLOCK_NUM*SUB_BLOCK_NUM/8) /*The min index

shift between the loading addresses of two adjacent instructions. */

#define RANDOM_BLOCK_ARRAY_LENGTH 10000

#define TEST_ARRAY_VALUE_RANGE 0xffff

#endif

The following codes, generate code.c, is used to generate the random target address:

#include <stdlib.h>

#include <stdio.h>

#include "common.h"

void main()

{

int r;

int last=0;

int isR8=0;

for (int i=0;i<INSTRUCTION_NUM;i++)

{

r = rand()%(BLOCK_SIZE/4);

while(abs(last-r)<MIN_SHIFT_WITHIN_BLOCK)

{

r = rand()%(BLOCK_SIZE/4);

}

last = r;

if (isR8==1)

{

printf("asm (\" ldr r8, [r5, #%d]\"); \n", r*4);

isR8=0;

} else

{

printf("asm (\" ldr r9, [r5, #%d]\"); \n", r*4);

isR8=1;

}

}

}

The following codes is an example of the generated file from generate code.c:

asm (" ldr r9, [r5, #36]");

asm (" ldr r8, [r5, #4]");
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asm (" ldr r9, [r5, #60]");

asm (" ldr r8, [r5, #8]");

asm (" ldr r9, [r5, #44]");

asm (" ldr r8, [r5, #12]");

asm (" ldr r9, [r5, #48]");

................

asm (" ldr r8, [r5, #8]");

asm (" ldr r9, [r5, #52]");

asm (" ldr r8, [r5, #8]");

asm (" ldr r9, [r5, #48]");

asm (" ldr r8, [r5, #12]");

asm (" ldr r9, [r5, #52]");

asm (" ldr r8, [r5, #0]");

asm (" ldr r9, [r5, #44]");

asm (" ldr r8, [r5, #0]");

The following codes is the final test file:

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <sys/time.h>

#include "common.h"

int main ( void )

{

struct timeval start, end;

int test_memory_space[MEMORY_SPACE/sizeof(int)];//generate the target

memery space

// initial the target memory space and the value is less than 0xffff

for (int i=0; i<MEMORY_SPACE/sizeof(int); i++)

{

test_memory_space[i]=rand()%(TEST_ARRAY_VALUE_RANGE);

//printf("%d\n", test_memory_space[i]);

}

//////////////////////////////generate the address///////////////////////////

unsigned int r=0;

unsigned int last=0;

unsigned int baseAddress[RANDOM_BLOCK_ARRAY_LENGTH];

for (int i=0; i<RANDOM_BLOCK_ARRAY_LENGTH; i++)

{

r = (unsigned int)(rand()%(SUB_BLOCK_NUM*(BLOCK_NUM-1)+1));

while(abs(last-r)<MIN_SHIFT_BETWEEN_BLOCK)

{

r = (unsigned

int)(rand()%(SUB_BLOCK_NUM*(BLOCK_NUM-1)+1));

}

last = r;
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baseAddress[i]=(unsigned

int)(test_memory_space)+r*BLOCK_SIZE/SUB_BLOCK_NUM;

//printf(" the r is %d\n", r);

//printf("target address is %u\n", baseAddress[i]);

}

//while(i<0x7ffff)

int N=0;

printf("Completed array init.\n");

srand( time(NULL) );

gettimeofday(&start, NULL);

while(N<400)

{ // mov the first address of malloc to register r5

for (int i=0; i<RANDOM_BLOCK_ARRAY_LENGTH; i++)

{

asm("mov r8, #0x11"); //

asm(" mov r9, #0x3f"); //2

asm(" mov r5, %[va]"::[va] "r"(baseAddress[i])); //

mov the first address of malloc to register r5

//The following part comes from the generated file of generate_code.c

asm (" str r9, [r5, #36]");

asm (" ldr r8, [r5, #360]");

asm (" ldr r9, [r5, #2672]");

..............................

asm (" ldr r8, [r5, #328]");

asm (" ldr r9, [r5, #2776]");

asm (" ldr r8, [r5, #304]");

}

N++;

}

gettimeofday(&end, NULL);

printf(" took %d seconds, %d us\n", end.tv_sec - start.tv_sec, end.tv_usec -

start.tv_usec);

return(0);

}

A.3.3 The code of Section 5.8

The following codes are an example code for test1, where 25% of the instructions come

from logic and 75% come from ALU logic.

#include <stdlib.h>

#include <stdio.h>

#include <math.h>
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int main ( void )

{

int p[20]={1,2,3,4};

size_t r1, r2, r3, r4, r5,r6;

printf ("Now initial finished asdfasdfasdf\n");

int i=1;

asm(" mov r1, #0x11"); //

asm(" mov r2, #0x05"); //2

int a=5,b=10,c=15;

while(i<0x7ffff)

{

asm(" mov r1, #0x11"); //

asm(" mov r2, #0x05"); //2

asm (" mov r5, %[va]"::[va] "r"(p)); // mov the first address of p to

register r5

asm (" str r1, [r5]"); /// store r1 to r[5]

asm (" str r2, [r5, #4]");

asm (" ldr r3, [r5,#4] ");

asm (" orr r1 , r1, r2 ");

asm ("sub r4 , r1, #0xf ");

asm ("eor r6 , r2, #0xf3 ");

asm (" ldr r6, [r5,#8]");

asm (" ADD r3 , r1, #0xf");

asm (" mov r6 , r1 ");

asm (" and r3 , r2 ,r1 ");

...........

//the number of instructions changes for the best case and worst case

// For the best case test, the number is 2000 (size=2000*4B)

// For the worst case test, the number is 16000 (size=16000*4B)

...........

asm (" ldr r3, [r5,#4] ");

asm (" orr r1 , r1, r2 ");

asm ("sub r4 , r1, #0xf ");

asm ("eor r6 , r2, #0xf3 ");

asm (" ldr r6, [r5,#8]");

asm (" ADD r3 , r1, #0xf");

asm (" mov r6 , r1 ");

asm (" and r3 , r2 ,r1 ");

i++;

}
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printf ("Finish the test finished asdfasdfasdf");

return(0);

}

A.3.4 The code of Section 5.9

The source c files for each benchmark are the same as Chapter A.2.

A.4 The Test Code of Chapter 6

A.4.1 The code of Section 6.4

The example code of the tests are shown in Section 7.2.

A.4.2 The code of Section 6.7

The source code of SPLASH 2 comes from the website:The Modified SPLASH-2 Home

Page (http://www.capsl.udel.edu/splash/Download.html).
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