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ABSTRACT
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by Simon J. Tudge

The presence of cooperation has long puzzled evolutionary biologists; the resolution to this

puzzle is often attributed to population structure. While the effects of population structure on

cooperation are understood, less is known regarding how population structure is itself subject

to evolution. The research program of Social Niche Construction (SNC) explores these issues.

This thesis presents three related papers that further our understanding of SNC and addresses a

number of issues within the research program.

Firstly, I demonstrate that diploid organisms under the presence of meiotic drive represents an

example of SNC; where assortative mating plays the role of the social niche modifier. I thus

argue that assortative mating may be an adaptation that overcomes meiotic drive.

Secondly, I present a formal argument for why a gene that causes individuals to assort cannot

invade a population of freely-mixed defectors at equilibrium. I present a potential solution to

this problem; namely, that if individuals engage in multiple simultaneous cooperative dilemmas,

then there may be a continued selection pressure for increased assortment.

Lastly, I present a model for the evolution of a cooperative division of labour. Previous game-

theoretic definitions assume cooperation to be a single behaviour. I argue that this is too narrow,

as often the benefits of cooperation come about through the interaction of differing types. To

address this issue I define a class of games; which I call Division of Labour (DOL) games, that

have the property that fitness is maximised by a mixture of different types. I show that DOL

games are not resolved by a positive assortment on phenotype; instead mean fitness is maximised

by positive assortment on a genotype that can exhibit phenotypic plasticity; i.e. express multiple

phenotypes conditionally upon social environment.

Together these models broaden and deepen our understanding of how population structure evolves

and how SNC transforms social dilemmas and modifies social outcomes.
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Preface

This thesis is presented in the three paper format. The papers are written in such a way that

they can be read in isolation from one another. While each paper is a self-contained manuscript,

there are recurring themes and methodologies, which offer a number of conclusions when this

body of work is interpreted as a whole.

In addition to the three papers that constitute the main body of work, this thesis starts with a brief

section that introduces the main themes of the papers; as well as highlighting their commonal-

ities, see section 1. Finally, this thesis ends with a discussion section, the purpose of which is

to set the claims of each paper into a broader context and to propose a way forward for further

research.

Also note that each paper contains some additional material that does not contribute to the

central flow of the argument, but complements or strengthens the central point of the paper.

This may include detailed mathematical proofs, which are important, but may otherwise distract

the reader from the central point if presented in the body of the text. Each of these appendices

are positioned after each respective paper, rather than at the end of the entire thesis.
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Chapter 1

Introduction

1 Themes of the Thesis

Cooperation is a potentially puzzling phenomenon in nature. We often see members of a species

seemingly forgoing reproductive potential in the aiding of those around them. If this behaviour

has a genetic component, and is undirected in its delivery, then selection should always act to

reduce its frequency until that behaviour reaches extinction. Those individuals who do not forgo

reproduction to help others will, by definition, have more offspring than those that do, meaning

that their genes will be represented in the next generation at the expense of their more coop-

erative conspecifics. Despite this convincing argument, cooperation is endemic in the natural

world; as can be seen in eusocial insect, such as ants (Hölldobler and Wilson, 1990), blood

sharing in vampire bats (Wilkinson, 1984), the cells of a multicellular organism (Buss, 1987;

Maynard Smith and Szathmary, 1997; Michod and Roze, 2001), slime moulds (Strassmann

et al., 2000), the reproductive and motile cells of volvocine algae (Michod, 2006a,b, 2007), ho-

mologous genes in diploid organisms that conform to Mendel’s laws (Traulsen and Reed, 2012;

Burt and Trivers, 2009) and the maternally derived organelles of a male cell (Xu, 2005).

The resolution to the puzzle of cooperation frequently takes the form of assortment on coopera-

tive behaviours (Eshel and Cavalli-Sforza, 1983; Michod and Sanderson, 1985; Godfrey-Smith,

2008). If there exists a form of population structure whereby cooperators meet other cooperators

more often than would otherwise be expected, then the benefits generated by cooperation fall

disproportionately on other cooperators; thus, it may be beneficial to the individual to cooper-

ate. If assortment is taken into account then there is no fundamental paradox to the evolution of

cooperation.

As well as the biological themes of this thesis, there are also a collection of tools that I use

throughout this body of work. I make heavy use of the theory of dynamical systems, see for

instance Strogatz (2001). In particular, I use the formalism of the replicator equation (Taylor

and Jonker, 1978; Maynard Smith, 1982; Hofbauer and Sigmund, 1998; Weibull, 1997), which

1



2 Chapter 1 Introduction

is a dynamical representation of social evolution. I always complement a purely mathematical

analysis with a simulation based approach; making use of genetic algorithms, as well as ideas

from agent-based modelling.

Although lacking any immediate practical application, a number of insights are presented that

could be utilised in the future. One example being an understanding of the competing selection

between lower and higher levels of organisation, which has implications for human health. Ge-

netic conflict may cause illness in humans (Haig, 2014; Burt and Trivers, 2009) and, therefore,

a better understanding of it will be beneficial. Cooperation, or lack of, between mother and

child can cause serious health issues during pregnancy (Haig, 1993). This can only be under-

stood properly through understanding the competing strategic interactions of the paternally and

maternally inherited genes present in the offspring.

Cytoplasmic male sterility is caused by competing selection between nuclear and mitochondrial

DNA within the sex cells of a plant (Chase, 2007), and has been shown to have an adverse effect

on the yield of crops such as corn (Schnable and Wise, 1998; Duvick, 1965). The evolution of

cooperation in viruses may be central to understanding the onset of viral infections such as HIV

(Nowak and May, 1992b). Cancer may be explicable in terms of the breakdown of cooperation

between the cells of a multicellular organism (Nunney, 1999). Thus, understanding cooperation

is of importance to human society.

1.1 Cooperation in Evolutionary Biology

The real problem for a theorist is in making sense of the many different formalisms and mech-

anisms that have been proposed to explain cooperation. Nowak (Nowak, 2006b) claims there

are five fundamental mechanisms for cooperation; network reciprocity (Nowak and May, 1992a;

Hauert, 2004; Ohtsuki et al., 2006; Santos et al., 2006b), group selection (Maynard Smith, 1964;

Wilson, 1975; Borrello, 2005), kin selection (Hamilton, 1964a,b; Maynard Smith, 1964; Grafen,

1982, 1985; Dawkins, 1979; Gardner et al., 2011), direct reciprocity (Axelrod and Hamilton,

1981; Axelrod, 1988; Nowak and Sigmund, 1993; Nowak, 1990; Imhof and Nowak, 2010) and

indirect reciprocity (Nowak and Sigmund, 1998b). Other authors such as D. S. Wilson argue

that group selection explains all cooperation (Wilson, 1975), while others claim that it is kin se-

lection that is the fundamental mechanism at play (Gardner et al., 2011; Grafen, 1985; Bourke,

2011). Other authors argue that we can view all of these mechanisms in terms of something

more fundamental, such as assortment (Eshel and Cavalli-Sforza, 1983; Sober, 1992; Fletcher

and Zwick, 2006; Godfrey-Smith, 2008; Michod and Sanderson, 1985).

Part of the problem stems from the fact that there is no consensus on what constitutes coopera-

tion. West et al. (2007) state that cooperation is any behaviour or feature of an organism that was

selected in order to increase the fitness of other individuals. Lehmann and Keller (2006) make

an important point, which I follow, by saying that there is a fundamental distinction between the

types of cooperation that we might observe. The distinction concerns the nature of the benefits
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Increases Recipient’s Fitness Decreases Recipient’s Fitness
Increases Actor’s Fitness (+/+) Mutualism (+,-) Selfishness
Decreases Actor’s Fitness (-/+) Altruism (-,-) Spite

TABLE 1.1: Four types of social behaviour.

of cooperation. Individuals may perform costly actions, but in doing so they more than recoup

their losses during their lifetime. They are able to receive the help of others by virtue of being

a cooperator. This is not strictly altruism, but can be referred to as reciprocity or reciprocal

cooperation. This is in contrast to altruism, in which individuals never recoup the costs of coop-

erating at any point in their life cycle. Altruism can be understood in terms of inclusive fitness

and kin selection.

Hamilton categorises social behaviours into four different varieties, depending both upon the

effect on the actor and the effect on the recipient. The action may increase (+) or decrease (-)

the fitness of the actor or the recipient, the four possible combination of these effects correspond

to the four types of social behaviour, which are summarised in table (1.1). Selfishness and

Mutualism present no special puzzle to Darwinism as the actor’s fitness is increased in each

case. An obvious example of selfishness is predation. Mutualism may often be favoured by

natural selection, note, however, that if fitness is relative this may not be the case. Giving

more benefit to one’s competitors than one receives oneself may decrease one’s relative fitness.

Typical examples of mutualism include all symbiosis, such as between fungi and plants in lichen.

Specifically it was the problem of altruism that lead to the formalisation of group selection

and kin selection. Less well studied, but still important, is spiteful behaviour, which can also

be understood in terms of inclusive fitness, particularly if kin recognition is possible (West

and Gardner, 2010). I will follow these naming conventions in this thesis, but note that other

conventions do exist.

For altruism, or indeed spite, to be stable or to invade a population some manner of population

structuring is required. By population structure I mean any scenario in which the interactions

between individuals occur in a non-random fashion. Godfrey Smith neatly summarises the

conditions for the evolution of altruism verbally as follows:

“Altruism may be favoured if the benefits of cooperation fall disproportionately on those who

are able to pass it on” (Godfrey-Smith, 2009).

Hamilton’s rule is a precise mathematical statement of when this effect is strong enough for

altruism to evolve.

Lehmann et. al. make another distinction in terms of the mechanisms by which this structur-

ing comes about. In the first case individuals are indiscriminate cooperators, and interaction

structure comes about through an aspect of the environment, usually some sort of spatial struc-

ture. The second case involves individuals who are able to cooperate upon some condition,

either by recognising kin (Tarnita et al., 2009; Jansen and van Baalen, 2006; Riolo et al., 2001;
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Traulsen and Schuster, 2003), cooperating on condition of a recipient’s reputation (e.g. indi-

rect reciprocity (Nowak and Sigmund, 1998a)) or conditionally upon previous interactions with

that individual (e.g. direct reciprocity (Imhof and Nowak, 2010; Axelrod and Hamilton, 1981;

Lindgren, 1991)).

1.2 Social Niche Construction

A full explanation of the evolution of cooperation must not only explain how population struc-

ture leads to the evolution of cooperation, but must also explain how this population structure

came about in the first place. Populations of organisms live in a spatial world; therefore interac-

tions will often be correlated. Because of this many of the current explanations of cooperation

take population structure for granted. However, it may be the case that individuals have a genetic

component that affects the manner in which they interact with other individuals. It is therefore

possible that assortment is itself subject to the principles of evolution and can evolve alongside

cooperative behaviours. If assortment can co-evolve with cooperation then it will evolve in such

a way as to support cooperation, provided that the population is polymorphic in the cooperative

trait. (Powers, 2010; Powers et al., 2011; Ryan et al., 2016). The phenomenon whereby the

population structures that support cooperation evolve concurrently with cooperation itself is re-

ferred to as social niche construction (SNC). The notion of SNC is applied and extended in the

papers presented here.

The central notion of SNC is that selection may act upon aspects of individuals that affect the

social environment, or social niche, of an individual. Whether or not cooperation is stable, and

whether it is able to invade, depends not only on the cost and benefit of the cooperative act,

but on the social environment of the individuals in the population. Generally, this amounts to

some form of population structure, whereby individuals interact with a non-random subset of the

whole population. The research program of social niche construction is the idea of endogenising

the population structure into our explanation of cooperation. This involves identifying some

aspect of the environment that is conducive to cooperation and asking what would happen if this

feature were able to evolve alongside the cooperative trait.

Whilst much progress has been made in investigating and understanding social niche construc-

tion, further work needs to be done in order to firmly establish SNC as a solid scientific theory.

Much of the previous work is based largely on simulation models (Powers et al., 2011; Pow-

ers, 2010). More rigorous and general mathematical results would greatly add to the field. In

particular, it would be beneficial to investigate the outcome of the evolution of assortment over

the set of all possible games, under some reasonable set of constraints; such as restricting our

attention to two-player, two-strategy symmetric games. In addition, models of social niche con-

struction and the evolution of assortment lack some key parameters that may be important to

their outcome. Whilst it is not desirable to include many of the details of a real biological sys-

tem, it is important to test that claims are robust to variation in key assumptions. To this end the
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models of social niche construction should include the addition of a cost to assortment. Whilst

the model presented in Powers et al. (2011) did include a cost to assortment, in that individuals

were penalised for living in small groups, this cost was left implicit. The evolution of cooper-

ation from the primitive state of all defect relied upon drift, which would be greatly reduces if

cost were increased. Therefore, a systematic and explicit investigation of cost in such models

would be beneficial. In addition, models of social niche construction could include crossover

between the social niche modifier and the social strategy. A key factor in social niche construc-

tion is the build-up of linkage disequilibrium, which is often reduced by crossover, therefore, it

is important to test the general claims of social niche construction are robust to the inclusion of

crossover.

Furthermore, the ideas of social niche construction have not been applied to many real biological

systems. This is of central importance, as a theory must ultimately be judged upon the under-

standing it brings to specific real world systems. Ultimately the theory should make testable

predictions about nature. Connection with experimental biology is also important, as often ob-

servation can bring to our attention key aspects that we had otherwise neglected.

If positive assortment is an evolvable parameter, then high levels of positive assortment may

be stable. However, a freely-mixed population composed of defecting individuals cannot be in-

vaded by an individual with a small value of assortment. Consider a population of freely-mixed

defectors playing a prisoner’s dilemma, if we introduce a small number of cooperators with a

small proclivity to assort, then these cooperators cannot invade such a population. However,

if the population is composed entirely of cooperators who assort, then they cannot be invaded

by non-assorting defectors. In order to reach the assorted cooperative state the population must

cross a fitness valley, therefore the evolution of assortment has difficulty getting started. Thus,

we cannot give a gradualist account of the evolution of assortment, as, whilst assortment is sta-

ble, it cannot invade a population in small quantities. This is an issue that needs to be addressed,

and is the subject of the second of the papers of this thesis.

Often the benefits of cooperation come about through the division of labour. Conventional

studies of the evolution of cooperation, in the world of evolutionary game theory, label a single

strategy as cooperate; in such games the mean fitness of the population is monotonic in the

number of cooperators; more is better. However, in many biological systems cooperation is

manifest in the interaction of differing types, this can be seen in the interaction between spore

and stalk cells in cellular slime moulds (Strassmann et al., 2000), in the differing castes in

eusocial insects (Hölldobler and Wilson, 1990) or in the different types of zooids in communal

siphonophorae (Dunn et al., 2005; Dunn and Wagner, 2006). In such a scenario we cannot label

any one strategy as cooperate, as it is not the case that the mean fitness is monotonic in the

number of any one type. A slime mould population composed only of stalk cells would have

zero fitness; likewise a population composed only of spores would not be of high fitness. Instead

high fitness is obtained by having some intermediate mixture of the two types. Nonetheless,

there is some manner of cooperative dilemma present here, as one of these two types (the stalk)

is more costly for the individual, there is therefore no incentive for an individual to play this
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strategy. The typical resolution to cooperative dilemmas is a positive assortment of cooperative

strategies. However, assortment, by its very nature, is such that it reduces those interactions that

are between unlike types. Therefore, assortment may actually be detrimental to the mean fitness

of a population; this is an issue that is addressed at length in the final paper of the thesis.

1.3 The Major Transitions in Evolution

A central application of the concepts of social niche construction is the major transitions in

evolution (Maynard Smith and Szathmary, 1997; Buss, 1987; Bourke, 2011; Godfrey-Smith,

2009; Jablonka and Lamb, 2006). The thesis of Maynard Smith and Szathmary’s book is born

from the observation that the biological world is hierarchical in nature. Individuals are formed

of collections of cells. Cells are themselves formed of both nuclear DNA and collections of

organelles. The nuclear DNA is itself subdivided into chromosomes. These are, in turn, at

least roughly speaking, formed of multiple genes. The claim of the major transitions research

program is that these lower level entities are the decedents of individuals that were once freely

living individuals in their own right. The history of life, at the macro-scale, is characterised by

the coming together of individuals into higher level entities. The parts of the higher level entity

become co-dependent to such an extent that they are incapable of independent reproduction, we

may thus think of these colonies as individuals in their own right.

Selection can act on the lower level entities, which can potentially disrupt the continuity of the

evolutionary unit above. This is the problem of “subversion” from within (Queller, 1997, 2000;

Bourke, 2011). Inseparable from communal living is the potential for a cooperative dilemma.

Individual components always have the option of not contributing to the fitness of the higher

level entity and instead gaining a fitness advantage via a more direct route. Many of the char-

acteristics of individuals that we observe in nature can thus be thought of as adaptations that

overcome this fundamental problem. Thus, the evolution of higher level entities is actually an

example of social niche construction. Understanding SNC is then not simply a topic in ethology

(the study of animal behaviour) but is central to understanding the nature of biological individ-

uality (Clarke, 2011).

More generally the central theme of this thesis is in determining which features of the biological

world can be understood as adaptations that resolve cooperative dilemmas. This is of interest

because it allows us to make some very general statements about evolution and biology. All

biological systems are subject to evolution, and all evolutionary systems in which there is social

evolution may potentially be subject to the tragedy of the commons (Hardin, 1968) (i.e. a co-

operative dilemma). Thus, anything that evolves as a response to the presence of a cooperative

dilemma may be thought of as a general biological property, rather than a contingent fact about

a particular species in a particular niche.
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2 Paper Synopses

Each paper is presented with its own abstract, but here an outline of each is presented with more

of an emphasis on their commonalities.

2.1 Paper 1

Game theory, meiotic drive and the evolution of assortative mating

This paper takes the notion of the evolution of cooperation and applies it to a more specific

example in biology, namely that of meiotic drive. Meiotic drive is the phenomenon whereby

certain alleles cheat Mendel’s laws (Lindholm et al., 2016; Sandler and Novitski, 1957; Silver,

1993; Burt and Trivers, 2009). They are thereby present in more than half of the individual’s

gametes. This is a cooperative dilemma and can be modelled with the machinery of evolutionary

game theory (Traulsen and Reed, 2012). We draw on the parallel between assortment in evolu-

tionary game theory and of inbreeding in diploid genetics; showing that these two concepts are

isomorphic. The central claim of the paper is that assortative mating can be understood as an

adaptation that reduces the efficacy of meiotic drive. Whilst this is an interesting hypothesis in

its own right, we are also interested in the fact that there is a complete isomorphism between

diploid genetics and evolutionary game theory, and suggest that this would be a fruitful line of

inquiry to pursue further.

The paper presents a model of the co-evolution of assortment and cooperation, but with an

emphasis on a particular biological system. We recognise that meiotic drive is a cooperative

dilemma, which is solved by assortative mating and thereby ask what would happen if meiotic

drive were to co-evolve with a preference to mate assortatively. This model is therefore an

application of the idea of social niche construction.

2.2 Paper 2

Multiple games and the evolution of assortment

This paper presents a model of the evolution of cooperation, with a particular focus on the co-

evolution of assortment and cooperation. This is done in an abstract sense in order to have as

wide an applicability as possible.

Assortment is observed in nature. Furthermore, this assortment often comes at a cost to the in-

dividual and therefore, I argue, represents an adaptation; i.e. there is, or was, an active selective

pressure towards increased positive assortment. However, I show that the concurrent evolu-

tion of assortment with cooperation has difficulty “getting started”; in that there is no selective

pressure for the evolution of positive assortment unless cooperation already exists in non-zero
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frequencies. The problem is particularly apparent when there is a cost to assortment. We present

a possible solution to this problem, namely, that the “getting started problem” can be resolved if

the individuals engage in multiple simultaneous games.

To investigate this we develop a model involving the concurrent evolution of multiple games be-

ing played simultaneously. The notion of multiple games has not been studied in an evolutionary

context before. Moreover, we show how the presence of multiple games can lead to the fixation

of cooperation even in those games in which cooperation is not present in the well-mixed case.

This is a feature that previous models of the co-evolution of cooperation and assortment do not

take into account.

The contribution of this paper towards the ideas of social niche construction is in formalising

a particular problem with social niche construction, namely the getting started problem, and

presenting a potential resolution to this issue.

2.3 Paper 3

Game theoretic treatments for the differentiation of functional roles in the transition to
multicellularity

This paper presents an abstract model for the evolution of functional specialisation. It is intended

to be a general model for any such system, but, for concreteness, particular reference is made

to the early stages of the evolution of multicellularity. This paper argues that the conventional

interpretation of cooperation, based largely on Dawesian cooperative dilemmas (Dawes, 1980),

in which there is a single cooperative strategy, is too narrow in scope. Particularly the benefits of

cooperation come about through the interaction of multiple types, rather than in simply having

a large number of cooperators. Thus, as well as presenting a model of the evolution of func-

tional specialisation, this paper attempts to broaden our definition of the notion of a cooperative

dilemma by defining a new type of game; which I call division of labour games. Division of

labour games are those games in which fitness is maximised by a mixture of complementary

types.

In such games interactions between individuals that are of differing strategies are beneficial.

This is an issue when one considers the evolution of assortment, as assortment leads to a reduc-

tion in heterogeneous interactions. However, phenotypic plasticity is able to resolve the tension

between the need for assortment and heterogeneity. Phenotypic plasticity means that individuals

can be genetically assorted whilst playing different roles. Understanding phenotypic plasticity

in detail is important for our account of the evolution of assortment, particularly as applied to the

major transitions in evolution. Phenotypic plasticity is essential for the evolution of cooperation

when considering division of labour games and hence the model in this paper can be viewed

as a manner of social niche construction, where it is the plasticity that is evolving alongside

cooperation, rather than assortment.



Chapter 2

Game Theory, Meiotic Drive and the
Evolution of Assortative Mating

Abstract

There exists an exact correspondence between the game theoretic study of two-player games and

the population genetics of diploid individuals. This isomorphism is particularly useful when one

considers the dynamics of meiotic drive; in which case the population genetics is described by

a family of well-known cooperative dilemmas. Cooperative dilemmas are typically resolved by

positive assortment on cooperative strategies. We extend upon previous studies of the isomor-

phism between evolutionary game theory and diploid genetics by showing that the coefficient

of inbreeding, F is equivalent to α, the value of assortment typically used in evolutionary game

theory. We thus show that populations with assortative mating will be less susceptible to mei-

otic drive. We take recent models of the concurrent evolution of assortment and cooperation in

game theory and apply them here, asking whether inbreeding can be partially understood as an

adaptation that mitigates the effects of meiotic drive. We solve the evolutionary dynamics of

such a co-evolutionary situation and find that assortative mating preferences can indeed evolve

as a response to the presence of meiotic drive. This effect is strongest at intermediate levels of

drive efficacy and low levels of dominance and is robust to varying level of crossover. However,

assortative mating preferences can never reach fixation if they come at a cost to the individual

and will always coexist with some non-zero level of meiotic drive. We discuss the hypothesis

that such dynamics are one of a number of reasons for the wide spread prevalence of assortative

mating in nature and the relative scarcity of meiotic drive.

9
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1 Introduction

Evolutionary game theory is the study of the evolutionary dynamics of individuals who engage

in strategic interactions (Weibull, 1997; Hofbauer and Sigmund, 1998). Typically it is the phe-

notype of the individual that constitutes the strategy of the game. Population genetics, on the

other hand, is the study of the change in frequency of genes within a population in terms of

the fitness effects they have on the individual in which they reside (Hartl and Clark, 1998).

Recently, however, a number of authors have noted that there exists a complete isomorphism

between the study of two-player evolutionary games and the population genetics of diploid indi-

viduals (Traulsen and Reed, 2012; Bohl et al., 2014; Gardner et al., 2007; Chastain et al., 2014).

The correspondence between these two theories exists only if we consider the alleles, not the

organism in which they reside, as the strategies in the game. This analogy is useful in so far as

it allows us to transfer results and intuitions from one field into the other.

Cooperative dilemmas have been a major area of study in evolutionary game theory (Nowak

and May, 1992a; Nowak and Sigmund, 1998a; Lindgren, 1991; Santos et al., 2006b; Hauert,

2004). A game is considered a cooperative dilemma if there is a strategy, cooperate, for which

the population’s welfare would be maximised if every agent performed this strategy, but for

which, at the individual level, there is nonetheless an incentive not to perform the cooperative

action (Dawes, 1980) (however see Tudge et al. (2016b) and Stark (2010) for an important

caveat). There is thus conflict between what is good for the population, and what is good for

the individual. Positive assortment of strategy is one mechanism by which the interests of the

individual may become aligned with that of the population (Eshel and Cavalli-Sforza, 1983;

Sober, 1992; Fletcher and Zwick, 2006; Godfrey-Smith, 2008; Michod and Sanderson, 1985).

Here positive assortment means that each phenotype is more likely to meet another individual

of its own type than would be expected if individuals were to meet at random.

In fair (i.e. Mendelian) meiosis, (see inset below), each of the two copies of a gene has an equal

chance of transmission to the gametes. In a diploid individual, if meiosis is fair, then the game

that the alleles play can never be a cooperative dilemma. The only way in which an allele can

increase its representation in the next generation is by contributing to the fitness of the individual

in which it resides. The appropriate parallel to cooperative dilemmas in diploid genetics is the

study of meiotic drive. If an allele is able to affect its probability of transmission to the gametes

then the allele is said to be a meiotic distorter. If, in addition to this, it has a detrimental effect on

the fitness of the individual, perhaps only when the individual is a homozygote for the meiotic

distorter, then the allele can be thought of as a defector in a cooperative dilemma. The allele

that does not attempt to over-represent itself in the gametes can be viewed as the cooperative

strategy. Clearly the individual itself is better off in the absence of meiotic distorters, but the

meiotic distorter alleles will still increase in frequency, hence the situation fits the definition of

a cooperative dilemma, see also table 2.1.
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Meiotic Drive

Meiosis is said to be fair whenever Mendel’s laws are obeyed, that is when both of the homol-

ogous alleles of a diploid organism are present in equal ratios in the gametes. An allele that

violates these laws is said to be a meiotic distorter; these alleles are present in more than fifty

percent of the gametes of the individual. This can happen in both males and females and across

many varying taxa (Lindholm et al., 2016). Meiotic distorters (Sandler and Novitski, 1957),

or more generally selfish DNA, are genetic elements that are able to increase in frequency in a

more direct way, which is often detrimental to the fitness of the organism (Fishman and Kelly,

2015; Lewontin and Dunn, 1960). This may be by killing sperm that do not contain the al-

lele in question and thereby reaching the egg more than half of the time (Presgraves, 2009), by

being copied into the corresponding locus on a partner chromosome (e.g. homing endonucle-

ase genes) (Gimble and Thorner, 1992), by moving directly to the germ line of the individual,

or through over replication, such as in B-chromosomes and transposable elements (Lynch and

Walsh, 2007), as well as in organelles such as mitochondria, see (Rice, 2013). Two well-studied

examples are: segregation distorters in drosophila (Larracuente and Presgraves, 2012) and the

t-haplotype in mice (Silver, 1993), see Burt and Trivers for an extensive review of meiotic drive

(Burt and Trivers, 2009) and (Lindholm et al., 2016) for a briefer and more recent review. Mei-

otic distorters are interesting to evolutionary biology because they represent a situation in which

natural selection inarguably operates on something other than the individual. Once one realises

that selection acts not only on individuals, but also directly on genes, then the logic of meiotic

distorters becomes clear. A meiotic distorter may make the individual in which it resides less

fit. This loss is more than made up for by the additional relative increase in the gametes of the

offspring, the precise dynamics of the situation depend upon the exact ratio of these quantities.

(See also Okasha (2015) for a discussion of meiotic drive in the context of multi-level selection

and kin selection.)

The major problem in understanding meiotic drive lies not in explaining its existence, but in

explaining its scarcity. Why are individuals able to exist at all given the constant potential for

disruptive selection at the lower level? Selection can potentially act at other loci in favour of

other genes that suppress meiotic distorters (Leigh, 1971). This is thus an example of coop-

eration enforced through policing mechanisms (see for example Frank (1995)). However, less

well understood is the role that inbreeding has on the reduction of meiotic distorters. A number

of authors have noted the importance of sexual systems on the prevalence of meiotic distorters

(Giraldo-Perez and Goddard, 2013; Weissing and van Boven, 2001; Lenington et al., 1994). Burt

and Trivers (1998) demonstrate, through a population genetics model, how inbreeding reduces

meiotic drive. What is less clear, however, is an actual conceptual understanding of this result.

In re-deriving this result through game theory we are able to massively reduce its mathematical

complexity. More importantly, we give the following conceptual understanding and connect the

result to existing theory in social evolution. Both Traulsen and Reed (2012) and Sarkar (2016)

have studied the evolutionary dynamics of meiotic drive through the lens of evolutionary game
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theory. However, neither have made the connection between inbreeding in diploid individuals

and the role that assortment has on overcoming cooperative dilemmas.

Assortment can remove or lessen the severity of a cooperative dilemma. In the analogy we are

drawing here assortment corresponds to an allele being paired with a like allele more often than

would be expected if pairings were random. The amount of assortment at the allelic level is

exactly the inbreeding coefficient (see for example Hartl and Clark (1998)). It is determined by

measuring the extent to which a population deviates from the Hardy-Weinberg frequency. One

way in which inbreeding may come about is the violation of the assumption of random mating,

which is the main mechanism we consider here. However, note that there are many other ways

in which a population can exhibit non-zero inbreeding, such as non-addative mortality rates in

heterozgotes (Hartl and Clark, 1998). At this point the power of the analogy between diploid

population genetics and two-player game theory becomes apparent. It is clear that inbreeding

should lower the prevalence of meiotic distorters in a population in the same manner as the

imposition of assortment of strategies lowers the level of defection in a population facing a

cooperative dilemma.

If one assumes the presence of assortment, a priori, one has only partially explained the presence

of cooperation. A full explanation would give an account of why assortment came about in the

first place. Some more recent studies in evolutionary game theory have looked at the concurrent

evolution of social strategies and properties that affect the assortment of those strategies. They

find that, at least in some games, population structure will co-evolve in a way that facilitates

the evolution of cooperation (Powers et al., 2011; Jackson and Watson, 2015; Fort, 2008; Akçay

and Roughgarden, 2011). Given that assortative mating can reduce the efficacy of meiotic drive,

i.e. lead to cooperation at the level of the gene, this then presents us with the hypothesis that

assortative mating is an adaptation that reduces the effects of meiotic drive. That is, if genetic

preferences for assortative mating were able to co-evolve with a gene that may or may not cheat

meiosis, then selection will act in a way that leads to an increase in assortative mating and hence

a reduction in meiotic drive.

Breden and Wade (1991) show, through a two locus model, that selection will favour an allele

that causes a tendency to inbreed when coupled with a kin selection model of the evolution of

cooperation. Peck and Feldman (1988) show that a tendency to mate monogamously will also

coevolve with altruistic behaviours. In both cases these models show that when a population

structuring trait can coevolve with a trait for altruism that is polymorphic, then selection will

favour the trait that increases population structure, in these cases embodied through related-

ness. The present study concurs with these two studies, but the focus here is on intra-genomic

cooperation, rather than on cooperation between differing biological individuals.

Assortative mating is any non-random pattern of mating between members of a species (Lewon-

tin et al., 1968). Random mating occurs whenever the genetic covariance of mating pairs is zero,

and can be reached by pairing a random male with a random female. We employ the more spe-

cific use of the term, however, that implies that assortative mating is the phenomenon whereby
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individuals mate with other individuals who are statistically more similar to themselves than a

random individual would be. Note that we assume no conscious effort on the part of the individ-

ual, and are agnostic as to the method by which this may come about. Assortative mating leads

to a positive coefficient of inbreeding (Hartl and Clark, 1998; Lynch and Walsh, 1998), which

simply measures the excess of homozygotes relative to that expected by random chance alone.

Assortative mating is common in nature across a wide range of taxa (see Jiang et al. (2013) and

references therein), including humans (Guo et al., 2014; Bittles et al., 1993). A recent meta-

analysis suggests that positive assortative mating is much more common than negative or disas-

sortative mating, which may be almost non-existent in animals (Jiang et al., 2013). Assortative

mating may be non-adaptive in many cases. Structure in populations may come about through

spatial segregation, which would likely lead to assortative mating as a bi-product (Crespi, 1989;

Arnqvist et al., 1996; Helfenstein et al., 2004). Alternatively, competition for mates could lead

to the fittest females selecting the fittest male, and thus there would be assortative mating as a

bi-product, when what is really being selected is simply a mating preference for inherently fit

individuals (Crespi, 1989; Henry, 2008). A number of other hypotheses exist for how assortative

mating may be an adaptation. All such explanations rely on there being some form of disrup-

tive selection in action (Kirkpatrick, 2000; Gavrilets, 2004; Arnqvist, 2011), whereby extreme

phenotypes are fit, but intermediate ones are less so. Assortative mating maintains variance and

therefore decreases the production of intermediate phenotypes that are less fit than either ex-

treme (Lynch and Walsh, 1998). Whilst in some cases assortative mating may come about as

a bi-product, it has been shown that it is at least sometimes adaptive (Bonneaud et al., 2006;

Ortego et al., 2009). We suggest a hypothesis for why this might be the case, namely that if

genetic outlaws exist it pays to create assortment in order to mitigate the effects of meiotic dis-

tortion. The hypothesis that we propose is in no way mutually exclusive with other explanations,

it simply states that this is an additional force for the evolution of assortative mating.

The structure of the rest of the paper is as follows: we begin by reviewing the salient points

regarding evolutionary game theory. We then briefly review the notion of meiotic drive and go

on to show how this can be framed as an evolutionary game. We demonstrate that the inbreeding

coefficient is equivalent to the measure of assortment, α, that is typically used in evolutionary

game theory (see van Veelen (2011)). Finally, we present a model of the concurrent evolution of

assortative mating and fair meiosis, this is split into two separate cases: the tightly linked case

and the case in which there is crossover.

2 Evolutionary Game Theory and Diploid Genetics

In this section we briefly review the evolutionary game theory of two-player cooperative dilem-

mas and the notion of assortment.
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The TS-plane

Any two-player, two-strategy, symmetric game can be represented by the payoffs given by:

M =

(
a b

c d

)
(2.1)

which represents the payoff the column-player receives on meeting the row-player. If the game

is well mixed, i.e. players meet at random, “A” players receive an average payoff given by:

πA = axA + bxB , where xA/xB are the frequencies of As/Bs. Likewise Bs receive a payoff

given by: πB = cxA + dxB . The mean payoff, π̄, is given by: π̄ = xAπA + xBπB . Typically, it

is assumed that the total size of the population is fixed and one may set xA = x and xB = 1−x.

The change in frequency of type A in the population is given by the replicator equation (Taylor

and Jonker, 1978):

ẋ = x (πA − π̄) (2.2)

A standard result from evolutionary game theory is that the replicator dynamics remain un-

changed upon addition to the payoff matrix by a constant and by multiplication by a positive

constant (Nowak, 2006a; Tudge and Brede, 2015), in other words an affine transformation of

the payoff matrix. Thus, if a > d we can transform the above matrix into a standard form,

removing two arbitrary degrees of freedom:(
a b

c d

)
⇒

(
a−d
a−d

b−d
a−d

c−d
a−d

d−d
a−d

)
⇒

(
1 S

T 0

)
(2.3)

where S = b−d
a−d and T = c−d

a−d . Thus, any two-player game can be represented as a point on

the TS-plane (Santos et al., 2006b). If S + T < 2 then the population’s mean fitness will be

maximised if every individual is an A. If in addition either S < 0 or T > 1 then there is some

incentive to play B. In which case the game is a cooperative dilemma and strategy A is labelled

C for cooperate and B is labelled D for defect.

Analysis of the properties of these games comes from analysing the fixed points of the replicator

equation. Cooperation is stable against invasion by defection if T < 1, and defection can be

invaded by cooperation if S > 0. Four fundamental games are represented in the TS-plane, they

are:

1. T > 1 and S > 0: the snowdrift game; the ESS contains a mixture of cooperate and

defect. The single stable fixed point, x∗, is given by:

x∗ =
S

(S + T − 1)
(2.4)

2. T >= 1 and S <= 0: the prisoner’s dilemma; total defection is the only stable fixed

point (x∗ = 0).
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3. T < 1 and S < 0: the stag-hunt game; both defection and cooperation are stable (x∗ =

{0, 1}). Which one is reached depends on the initial conditions. The tipping point, xT , is

given by:

xT =
S

(S + T − 1)
(2.5)

4. T <= 1 and S >= 0: the harmony game; only total cooperation is stable (x∗ = 1). This

is not a cooperative dilemma.

Assortment

In evolutionary game theory we can mathematically model the role of assortment by noting that:

a game given by payoff matrix, M , under a level of assortment, α, is dynamically equivalent to

a payoff matrix, M ′, under no assortment, such that the elements of M ′ are given by:

M ′ij = αMii + (1− α)Mij (2.6)

We can thus understand the effects of assortment as an effective transformation of the underly-

ing game (van Veelen, 2011). In a more general formulation we can specify the payoff of an

individual i in terms of the payoff matrix M and a matrix of conditional probabilities P , where

Pij specifies the probability of meeting an individual of type i given that one is of type j (van

Veelen, 2011). The payoff to an individual is thus:

πi =
∑
j

MijPij (2.7)

For two-player games we can define the matrix P with a single parameter α, as above. The rows

and columns of P must sum to one, meaning there is only one degree of freedom. In which

case:

Pij = αδij + (1− α)xj (2.8)

Here δ is the Kronecker delta matrix, the values of which are equal to one when the indices are

equal and zero otherwise. The matrices M and P completely define the dynamics of a game

with population structure.

2.1 Diploid Genetics as a Two-Player Game

In this section we illustrate how the population genetics of meiotic drive can be construed as an

evolutionary game and show that the inbreeding coefficient, I , is isomorphic to assortment, α.

Consider two alleles, C and D, which may occupy a particular locus in a genome. Here D,

for defect, represents the meiotic drive allele and C, for cooperate, the fair allele, i.e. one

that does not distort meiosis. There are thus 3 potential genotypes: DD, DC and CC. The

respective fitnesses are labelled by: ω00, ω01 and ω11. (Note, we are arbitrarily labelling defect
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as zero and cooperate as one for convenience). Following Traulsen and Reed (2012), we do not

consider fitness at the level of the individual, but at the level of the allele. In each generation an

allele is paired with another allele to form a diploid organism, syngamy is thus the equivalent

of the meeting of two agents in a game. Traulsen and Reed (2012) show that the standard

Fisher-Wright process used to model this situation is equivalent to the replicator dynamics, if

we take the allele’s marginal fitness as the fitness that appears in the replicator equation (see

also Bohl et al. (2014)). The fitness of an allele is the fitness of the individual in which it

resides, multiplied by the probability of being represented in the gametes of the individual.

Under fair meiosis this probability is always one half. However, meiotic distorters, by definition,

are present in gametes with a frequency greater than one half. We use the parameter δ, which

we call drive efficacy, to quantify the effectiveness of the meiotic distorter allele. δ linearly

interpolates between the two extremes in which meiosis is fair (δ = 0) and in which cheating

meiosis is one hundred percent effective (δ = 1), i.e. an allele that, in heterozygotic form,

is present in all gametes. We assume that ω11 > ω00, that is an individual composed of two

meiotic distorters is less fit than one which is free of meiotic distorters. We assume also that

ω11 ≥ ω01 ≥ ω00, that is the heterozygote can be as fit as either homozygote, or anywhere

in-between. Typically in population genetics the three genotype fitnesses are parametrised as

follows: ω11 = 1, ω01 = 1 − hs and ω00 = 1 − s. Where s is the selection coefficient and

parametrises the difference in fitness of the two homozygotes and h is the degree of dominance

(Hartl and Clark, 1998). h defines the degree to which the heterozygotic fitness differs from

the mean fitness of the two homozygotes. h > 1/2 means that the heterozygote is more fit

than the mean of the two homozygotes, and conversely h < 1/2 refers to the case in which the

heterozygote is less fit that the mean of the two homozygotes. The alleles engage in the game

shown in table 2.1.

C D

C 1 (1− δ) (1− hs)
D (1 + δ) (1− hs) 1− s

TABLE 2.1: The matrix of diploid games under standard population genetics parametrisation.

We can perform the standard normalisation of games onto the TS-plane:

S =
(1− δ)(1− hs)− (1− s)

s
(2.9)

T =
(1 + δ)(1− hs)− (1− s)

s
(2.10)

Note that if δ = 0 then S = T . This is a so called partnership game (Weissing and van Boven,

2001), in which there is no conflict, and represents a line on the TS-plane. We can thus represent
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all possible two-player games as points in the hδ-plane, in an equivalent manner to the TS-plane.

The equilibria of these games are shown in figure 2.1. Note that the parameter s sets the scale of

the game, and represents a simple linear transform of the space. Thus, we may understand the

full set of dynamic possibilities without varying s.

FIGURE 2.1: The diploid universe. The outcome of selection for two alleles, one of which
may be a meiotic distorter. Either the ‘fair‘ allele goes extinct (equivalent to the prisoner’s
dilemma game), reaches fixation (harmony game), coexists (snowdrift game), or the system
is bi-stable, whereby one of the alleles will reach fixation, but which one depends upon the
initial conditions (stag-hunt game). This is in exact correspondence to the space of all possible

two-player cooperative dilemmas. Note that, here, s = 2/3.

As previously noted, the action of assortment can be seen as an effective transformation of

the underlying game. This transformation is shown schematically in figure 2.2, and can be

mathematically represented as the following transformation equations:

h′ = (1− α)h+ α/2 (2.11)

δ′ =
2δ (1− α) (1− hs)αs

2 (1− hs)− α (1− 2h) s
(2.12)

The action of assortment is to move games towards the game h = 1/2, and towards the fair game

in which δ = 0.
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FIGURE 2.2: The effective transformation of h and δ when one considers the action that
assortment has on the underlying game. The tail of each arrow lies on a particular game given
by h and δ, and the head of the arrow is the effect of the transformation given by equations

(2.11) and (2.12), with α = 0.025.

Inbreeding and Assortment

In population genetics the coefficient F measures the extent to which a population is inbred. If

there are two alleles in a population, A and B, with frequencies given by xA and xB respectively,

then the Hardy-Weinberg frequency for heterozygotes is given by 2xAxB (see any text on pop-

ulation genetics, e.g. Hartl and Clark (1998)). F measures the extent to which the population

deviates from this frequency. If the measured number of heterozygotes is given by fAB then:

F = 1− fAB
2xAxB

(2.13)

On the level of description that takes the allele as the agent in a game F plays the role of

assortment. It is the extent to which alleles meet alleles of the same type above which would be

predicted at random. In a population of interacting agents the frequency of interactions that are

between unlike types is fAB = xAPAB + xBPBA, using equation (2.7) it follows that:

fAB = xA (1− α)xB + xB (1− α)xA (2.14)

= 2 (1− α)xAxB (2.15)

and hence that:

α = 1− fAB
2xAxB

(2.16)
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It is clear that α = F . Given what is known about the effects of assortment on cooperative

dilemmas it should then be immediately clear that inbreeding acts to suppress meiotic distorters.

Using equation (2.6) and (2.1) one can write down the effects a level of inbreeding F has on the

game, see table (2.2).

C D

C 1 (1− δ) y + F

D (1 + δ) y + F 1− s

TABLE 2.2: Diploid game under the effects of inbreeding, where y = (1− F )(1− hs).

Again, this can be transformed to the ST parametrisation following the standard procedure:

S =
(1− δ)(1− F )(1− hs) + F − (1− s)

s
(2.17)

T =
(1 + δ)(1− F )(1− hs) + F − (1− s)

s
(2.18)

In order for cooperation to be stable, that is for a meiotic driver allele to be unable to invade,

we require that T < 1. We can write this condition in terms of a minimum level of inbreeding

needed to suppress a given strength of meiotic drive:

F >
δ

δ + s
(2.19)

Likewise, for cooperators to be able to invade, that is for a non-meiotic distorter to invade a

population of meiotic distorters, we require that S > 0 and hence:

F >
1− s− (1− δ) (1− hs)

(1− δ) (1− hs) + 1
(2.20)

Equations (2.19) and (2.20) together summarise the key results for the evolution of meiotic drive

with inbreeding, by stipulating the minimum level of inbreeding that is needed in order that: (A)

meiotic drive cannot invade a population and; (B) that a population of meiotic distorters can be

invaded by a fair allele.

3 The Evolution of Assortative Mating

We have established that a given level of inbreeding will lead to a reduction in the level of

meiotic drive. We now go on to investigate whether the presence of meiotic drive can cause an

adaptive pressure towards an increase in the levels of inbreeding via a preference for assortative

mating. For this purpose we present an abstract model, which is analysed both mathematically

and via simulation.
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We consider a population of diploid individuals with two loci, one of which potentially cheats

meiosis, and another that determines the tendency to mate assortatively. These can be interpreted

as a social trait and a social niche modifying trait respectively, see Powers et al. (2011); Powers

(2010); Ryan et al. (2016). We analyse the evolutionary dynamics of the underlying game via

the corresponding replicator equation. This is analysed in two ways, firstly through numerical

integration and secondly through stability analysis of the fixed points. These two approaches

show near perfect agreement. The exact mathematical form of these solutions are complex and

the details are left to appendix A. We also complement this with an agent-based simulation

model, which supports these results, the details of which are left to appendix C.

Assortment could be modelled as a continuous parameter or a discrete choice. However, the

simulation model with continuous strategies shows that this choice is unimportant. Furthermore,

this result is backed up by a result from evolutionary game theory that states that a bi-population

model will never show polymorphism if the fitness of members of population A are only deter-

mined by their interaction with members of population B (see Hofbauer and Sigmund (1998)

for a proof). This case pertains here, as we may think of a bi-locus model as selection occurring

between two interacting populations (see also Gardner et al. (2007)), and furthermore the allele

for assortment only affects the fitness of the individual via interactions with the other locus. We

therefore restrict our attention to discrete values of assortment.

The model proceeds as follows. We initialise a population of diploid individuals. These indi-

viduals have two loci, one of which, a, controls the tendency to mate assortatively, this allele

may take the value of either 0 (i.e. mate at random), or 1, (i.e. always attempt to find a mate

with the same genetic value as oneself). The second gene, m, determines whether or not the

allele distorts meiosis. This may either take on the value of 0 (i.e. defect, try to cheat meiosis)

or 1 (cooperate, don’t cheat meiosis). The fitness of the individual is determined by the locus

m, such that the homozygote with m = 1 has a fitness of 1. The heterozygote has a fitness of

1− hs, and the homozygote with m = 0 has fitness 1− s. In addition, individuals incur a cost

for having a tendency to assort. There are many reasons why assortative mating may incur a cost

to the individual, such as an energetic cost to finding a suitable mate, or inbreeding suppression

(Charlesworth and Charlesworth, 1987). Here we include a generic cost to assortment in order

to account for all such possibilities. The cost incurred to an individual is 1/2c (a1 + a2), where

1 and 2 index the homologous (i.e. the maternal and paternal) alleles of the individual.

We then proceed by selecting individuals for the next generation by fitness proportionate se-

lection. The total number of individuals in the population is N . We select 2N individuals

with replacement. Each of these individuals produce one gamete, so that the total size of the

population is conserved. The gametes are selected not uniformly at random (i.e. according to

Mendelian laws), but according to the rules of meiotic distortion. A heterozygotic individual

will produce a gamete with m = 0 with probability 1/2(1 + δ) (and therefore a gamete with

m = 1 with probability 1/2(1− δ)).
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The extent to which crossover occurs is parametrised via k, where k = 0 corresponds to the

complete absence of crossover, and k = 1 corresponds to the case where the two genes are

inherited statistically independently. If the allele m1 is selected, then with probability 1 − k

allele a1 is selected, and with probability k the allele at the a locus is selected at random.

Now that 2N alleles have been selected they are paired to form the next generation of individ-

uals. For this purpose we split the population into two equal halves at random. We call the

sub-populations, somewhat arbitrarily, male and female. We go through each female in turn, if

the value of a = 1 then we pair that gamete with a male gamete that has the same value of m.

Note that we do not specifically pair the gamete with another male with the same value of a, so

that assortment is purely on the meiotic drive locus. If there are no males left with the necessary

value of m we pair the female with a random individual. If the female gamete has a value of

a = 0 then we pair it with a male with a random value of m.

Note that our model concerns the maintenance of fair meiosis, rather than its origins. We are

studying the case in which fair meiosis has already been established, but is susceptible to the

invasion of cheating mutant alleles. Tudge et al. (2016a) study the conditions under which

assorting cooperators can invade a primitive population of freely mixed defectors.

This entire process of individual formation, selection, and gamete production is repeated for a

predetermined number of generations. We present a mathematical model for the situation de-

scribed, and complement this with a full simulation model in appendix C. The next two sections

look at, respectively: the case of zero crossover, for which there is an analytical solution and the

more general case of non-zero crossover, for which we present numeric solutions.

3.1 Tightly Linked Model

If the two genes a and m are tightly linked, and therefore do not undergo crossover, then we

can model the situation simply by considering the haplotype as the agent in the game. There

are thus four strategies, which we label by the values of their genes at loci a and m. The four

individuals are thus: (0, 0), (0, 1) (1, 0) and (1, 1). The state of the population is specified by

the frequencies of each of the four strategies, which we denote with Xi,j . Note also that the sum

of all frequencies must equal one, effectively reducing our system to three variables.

We define P (i|a,m) to be the conditional probability of meeting an individual with m = i,

given an individual of type (a,m). The exact manner in which P (i|a,m) is calculated is left

to appendix A. With an expression for P (i|a,m) we can construct a replicator equation. We

numerically integrate the replicator equation until a stationary state is reached. We start the

population from random initial conditions when performing the numerical integration, and find

that in all cases the integration reaches the unique stable points of the replicator equation. In

addition, we perform a stability analysis, the details of which are left to appendix A. Both

approaches show excellent agreement.
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In the absence of crossover, depending upon the game parameters h and δ, there are four qualita-

tively different evolutionary outcomes. In addition, the location of these regions on the hδ-plane

depend upon both s and c. These four regions are illustrated in figure 2.3. Here we show both

the fairness (which we define simply as the mean value of m in the population, that is the extent

to which the population does not cheat meiosis) and the mean level of assortative mating in the

population. This is further illustrated in figure 2.4 in which we fix the value of h (= 0.2) and

sweep through values of δ and show the equilibrium level of each of the four strategies. In both

figures we use the standard parameter values of cost (c) of 0.1 and s = 2/3.

The strategy (1, 0) is dominated in all games, as it is a defector that pays a cost to seek out other

defectors. It thus does not feature in the equilibrium in any case. The space can be divided into

four different regions of behaviour, which are described below (with reference to figure 2.3):

1. Region D, which covers the harmony and stag-hunt games. Cooperation dominates even

in the well-mixed case. There is thus no evolution of assortative mating. Note also that

cooperation fixates even in the case of the stag-hunt game, this is unlike the well-mixed

case. This is because the strategy (1, 1) initially increases in frequency, this in turn allows

the strategy (0, 1) to invade. This strategy does better than the (1, 1) when defectors are

scarce, as it does not incur the cost of assortment. Once (0, 1) begins to invade it replaces

(1, 1) and thus reaches fixation. At this point defect cannot invade. The strategy (1, 1)

does not appear in the equilibrium, but it paves the way for co-operation, and makes

defection unstable.

2. Region C, which exists in the lower region of the snowdrift game. Defection and cooper-

ation coexist. Defection exists in sufficiently low frequencies that it does not pay to assort

(as this comes at a cost) and this solution is in fact identical to the well-mixed case.

3. Region B, which corresponds to the upper part of the snowdrift game and the lower part

of the prisoner’s dilemma. Defection is at higher frequencies in the well-mixed case,

thus assortative cooperators can invade. However, as cooperation increases so does the

temptation to defect. We thus see the coexistence of all three strategies (excluding the

dominated strategy (1, 0)).

4. Region A, which exists in the upper left section of the prisoner’s dilemma. The temptation

to defect is greater here so that the strategy to cooperate without assorting is dominated

by the strategy to cooperate and assort. We thus have a coexistence of the strategies (1, 1)

and (0, 0).
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FIGURE 2.3: The hδ-plane for the case of no crossover, in which four regions of different
evolutionary outcomes are indicated. The panels show both the fairness (i.e. mean value of m,

left) and the assortment (mean value of a, right).

FIGURE 2.4: A sweep across δ, with h = 0.2 and the resulting equilibrium of all the strategies
involved. The left panel shows the equilibrium frequency of each strategy, whereas the right
panel shows the fairness and assortment corresponding to these equilibria. The figures are the
result of the stability analysis presented in appendix A. Here cost, c, = 0.1 crossover, k, = 0

and s = 2/3.

Figure 2.4 shows a sweep through δ, for a fixed value of h (0.2). This value of h is chosen in

order to pass through all four regions with different evolutionary outcomes. These figures clearly

show that a genetic preference for assortative mating may invade in a large region of the game

space. This is provided that the efficacy of the meiotic drive allele, δ, is large enough. However,

if this assortment comes at a cost a population comprised of only assort-cooperate may always

be invaded by the strategy to cooperate without assorting. This in turn means that the defect

strategy can invade, leading to the coexistence of all three strategies. Note also that the level of

fairness and assortative mating are maximised by intermediate levels of drive efficacy. If efficacy

is low then unfair alleles exist in low frequencies, it therefore does not pay to mate assortatively

if this comes at a cost to the individual. Likewise, if efficacy is high it is less beneficial to mate

assortatively; as there are too few fair alleles for this to be an effective strategy.
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3.2 The Effects of Crossover

Next, we analyse the effects that crossover have on the equilibrium levels of fairness and as-

sortative mating. The presence of crossover means that we can’t consider the haplotype as the

unit of selection, as it is potentially broken up by crossover in each generation. Nonetheless, we

proceed by defining the state of the population to be the frequency of each variety of haplotype.

We then calculate the expected frequency of each type of individual given the frequencies of

each type of haplotype and the previously described assortment mechanism. We then calculate

the expected frequencies of each type of individual after one round of selection. Finally, we cal-

culate the expected frequency of each type of haplotype given one round of gamete production.

This leads to a form of differential equation that we can integrate through time. The exact details

are left to appendix B.

Figure 2.5 is equivalent to figure 2.3 for the case of crossover (k) equal to one. The situation is

slightly more complex with crossover, as the previously neglected strategy (1, 0) may be recre-

ated through crossover between (1, 1) and (0, 0). Unlike the case of zero crossover in this model

there are only three qualitative regions of differing evolutionary outcomes, see figure 2.6 for a

clear depiction of this. These three region are: Region C: the trivial one in which cooperation

dominates (i.e. the harmony and stag-hunt game); region B: in which there is no assortative mat-

ing and cooperation and defection coexist; and region A: in which all four strategies co-exist.

The general statement that assortative mating will only be observed above a critical value of

drive efficacy remains true. However, it is no longer the case that assortative mating is max-

imised for an intermediate level of drive efficacy.

FIGURE 2.5: Phase space with crossover between the two loci set to one, showing both fairness
and assortment over the hδ-plane. Here c = 0.1, k = 1 and s = 2/3. Points are the result of
numerically integrating the equations of motion from random initial conditions until stability

is reached.
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FIGURE 2.6: Sweep through δ with crossover. The lines are the result of numerical integration
of the differential equations until fixation is reached. Each run starts from uniform conditions,
in which the frequency of each strategy is 1/4. Here h = 0.2, c = 0.1, k = 1 and s = 2/3.
The left panel shows the equilibrium value of each of the four possible haplotypes and the right

panel shows the corresponding level of fairness and assortment.

Interestingly, crossover can actually increase levels of cooperation; that is suppress meiotic

drive. This is surprising as crossover acts to decrease the level of linkage disequilibrium (LD)

and the evolution of fairness depends upon the build-up of LD between the assortative mating

allele and the fair (m = 1) allele. Compared with the case of no crossover the strategy (0, 1)

does well. Although this strategy may not be as fit as the other strategies, in the sense of the

expected number of offspring, it is more likely to produce a fit offspring. This is because it is

the only strategy that cannot have an offspring that is of the worst possible strategy (1, 0) (as

it is the opposite of this strategy). Note, that we may think of the reason for the success of the

strategy (0, 1) not by virtue of it having more children than the other strategies, but by having

more grandchildren.

The two strategies (1, 1) and (0, 0) will sometimes produce an offspring of the dominated (1, 0)

strategy via crossover if they are paired with each other. As a consequence the (1, 0) strategy

persists as it can be reproduced by crossover in each generation. However, selection acts against

it and hence it only exists in small frequencies. The effect of the strategy (0, 1) becoming

increasingly viable as crossover increases is evident in figure 2.6. Unlike the case with no

crossover this strategy persists even if δ is large.

Despite these differences the overall qualitative results of the model do not change with the

introduction of crossover. Costly assortment will evolve provided δ is large enough and h small

enough. Despite being able to invade the well-mixed population assortment is unable to reach

fixation because, whenever defectors are rare, the strategy (0, 1) will out compete it, which will

in turn allow for the introduction of defectors.

The equilibrium in which (0, 1) and (0, 0) coexist is not significantly effected by crossover as

there is no variation at the first locus and hence crossover will have little effect on the dominant

strategies.
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Note that fairness, and hence the fitness of the individuals, increases with increasing crossover.

However, fairness does not increase because of an increased level of assortative mating, which

actually decreases with increased crossover. This is because, with crossover, the assortment

allele is less fit, as it will sometimes be paired with the unfair allele, in which case it is maladap-

tive. Conversely, a fair allele is more fit if crossover is high, as it may find itself in an organism

that mates assortatively, in which case it is beneficial to be fair. An interesting avenue of further

study might be to look at how the crossover rate could itself co-evolve with a tendency to assort

and fairness, however we leave this study for future investigations.

3.3 Summary of Results

Recent studies have looked at how assortment, and other game changing traits, can co-evolve

with social strategies in a cooperative dilemma (Powers et al., 2011; Jackson and Watson, 2015;

Fort, 2008). In many cases the outcome of such co-evolutionary models is that selection on

traits that modify population structure will do so in such a way as to facilitate the evolution of

cooperation (Powers et al., 2011); this effect is often referred to as social niche construction

(Ryan et al., 2016). This comes about through the build-up of linkage disequilibrium between

the cooperative strategy and the gene for creating an environment conducive to cooperation.

This is exactly the mechanism for the results presented in this paper. We extended models of

social niche construction to include a possible cost for assortment and the inclusion of crossover.

In the former case cost is found to affect the model in such a way that the assortative cooperative

strategy will never reach fixation, as it can always be invaded by an unconditional cooperative

strategy that does not bear the cost of assortment. This in turn opens the door for the defector,

and we thus have the possibility for the coexistence of all three strategies. Which of these

three strategies coexist depends upon the cost of assortative mating, the selection coefficient, the

degree of dominance and the drive efficacy. But for low values of the degree of dominance and

intermediate values of drive efficacy we should see a coexistence of all three strategies. With

the addition of crossover we also see the lowest fitness strategy, assort defect, being created by

crossover, but persisting only in low frequencies. In addition, crossover increases the fitness of

the strategy (0, 1), not because it has more children than the other strategies, but because it has

more grandchildren, as it will never create an offspring of the type (1, 0).

In the absence of crossover the level of fairness and of assortative mating is maximised for

intermediate levels of drive efficacy. It is only worthwhile to bear the cost of assortment if

there is a certain level of defectors in the population, otherwise the cost of assorting outweighs

the additional benefit gained from avoiding defectors. However, if drive efficacy becomes too

high, then the non-assorting cooperators become extinct, in which case defectors are at a relative

advantage, even over the cooperative assorters who then decrease in frequency.

The addition of crossover does not greatly affect the qualitative results. However, and perhaps

surprisingly, crossover can actually lead to a slight increase in the level of fairness, as a drive
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allele may be paired with an assorting allele due to crossover, in which case meiotic distortion

is maladaptive.

4 Discussion

This paper has translated a specific result from evolutionary game theory into the language of

population genetics. The result that assortment facilitates the evolution of cooperation is well

known in the game theory literature. The analogue of this result in diploid genetics is that

inbreeding facilitates the suppression of meiotic distorters. This is a result which is difficult to

derive from standard population genetics models (Burt and Trivers, 1998), yet the result follows

immediately from the translation between the two fields in question.

Models of this type are important for a greater understanding of evolutionary biology. Conven-

tional theories of evolutionary biology take the integrity of the individual for granted, however,

there has been a trend more recently to try to give an adaptive account of the evolution of indi-

viduality (Buss, 1987; Maynard Smith and Szathmary, 1997; Jablonka and Lamb, 2006; Ryan

et al., 2016). A particular question of interest is why is it that selfish genetic elements are

relatively scarce, given the logical fitness advantage they enjoy. The analogy with evolutionary

game theory shows that this is precisely the same problem as the evolution of cooperation, albeit

manifest at a lower level than conventionally considered. Typical explanations for the evolution

of cooperation include: fairness enforcing mechanisms, such as the fairness of meiosis (Frank,

2003); punishment of uncooperative strategies, or policing mechanisms (Boyd et al., 2003; Cant,

2011); or the evolution of cooperation through the positive assortment of cooperative strategies

(Eshel and Cavalli-Sforza, 1983; Fletcher and Doebeli, 2009; Godfrey-Smith, 2008), see also

Lehmann and Keller (2006) for a review of these ideas. The logic of how these mechanisms

lead to cooperation is clear; however, all of these mechanisms are themselves the outcome of

selection of other genes; a full explanation of cooperation or fairness cannot take the presence

of fair meiosis or of population structure for granted. The features of the biological world that

ensure the evolution of cooperation may themselves be the outcome of selection and therefore

deserve an explanation in their own right. Ultimately we want to know why it is that genes are

able to form stable coalitions, why it is that selfish genetic elements are relatively scarce and

what features of the biological world can be explained as adaptations to overcome the social

dilemmas present at the genetic level.

Turning this story on its head our model offers a possible explanation for the evolution of assor-

tative mating. Assortative mating is very common in nature. However, there is no consensus on

whether assortative mating is an adaptation, or a by-product of another process. Furthermore,

there are many potential causes of adaptive assortative mating (see Jiang et al. (2013) and the

introduction of this paper for brief summaries of the current explanations). One potential reason

is that assortative mating is a form of social niche construction that facilitates the evolution of
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fairness at the genetic level. Thus, we can think of a preference for assortative mating as an adap-

tation to mitigate the effects of meiotic drive. Note that we do not claim that this is the exclusive,

or even the principal, reason for the presence of assortative mating in nature. This explanation

is in no way mutually exclusive with other explanations, see introduction. Nonetheless, we

have shown that this mechanism leads to the evolution of an assortative mating preference for

a wide range of parameters, both for tightly linked genes, and for genes residing on different

chromosomes.

Future studies of this nature could look at the co-evolution of the crossover rate between the

mating preference gene and the meiotic distorter gene. Our models show that a high level of

crossover is beneficial for the evolution of fairness. A somewhat surprising result, as social

niche construction depends upon linkage disequilibrium.

It is possible that another allele controlling crossover would find a rate of crossover that was

optimal for the individual as a whole, and lead to an increased level of fairness at the genetic

level. This is reminiscent of one of the major theories for the presence of crossover, which states

that crossover evolved in order to break up tightly linked genetic cartels (Haig and Grafen, 1991),

and so promote harmony at the genetic level.

Drawing analogies and mathematical equivalences between two existing fields is useful to the

extent to which it provides a cross-fertilisation of ideas and tools between the two disciplines.

Both population genetics and game theory are active and fruitful areas of research. The analogy

could be taken further by, for instance, studying polyploidy via the formalism of multi-player

game theory, by looking further at multi-locus models through the multi-population replicator

equation, or studying imprinting through asymmetric games. As well as the equivalence between

genetics and game theory suggesting hypotheses, the analogy is useful in that it allows us a much

broader and general understanding of evolution and selection.

A Appendix: Closed form solutions using stability analysis in the
absence of crossover

This appendix describes the closed form solutions for the case of replication without crossover.

The details of the algebra are omitted, they are long-winded, but essentially trivial.

The matrix of conditional probabilities, P , (see equation (2.7) and section 3.1 ) is calculated as

follows: we decompose P (i|a,m) into the female and male portions and note that all individuals

are either male or female with probability one half, therefore:

P (i|a,m) =
1

2
(PF (i|a,m) + PM (i|a,m)) (A.1)

where:

PF (i|a,m) = (1− a) (X0,i +X1,i) + aδi,m (A.2)
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In order to specify the male portion consider a focal male agent. Each time a female selects a

mate one of three things can happen. Either the male is selected by a female of the same value

of m as the male, the male is selected by a female of a different value of m, or the male is

not selected at that time. The male must ultimately be selected at some point, so we are only

interested in the relative probability of being selected by a like and an unlike type at any one

point in time. The overall probability of being selected by a like type can be found from the

ratio of these two quantities. Let Psame be the relative probability (up to multiplicative constant)

of being selected by a like type, and likewise Pdif the probability of being selected by an unlike

type. To be selected by a like type either a female can select assortatively, in which case the pool

of males that can be selected is only those that have the same value of m as the female, or the

female can select at random. Being selected by an unlike type can only happen un-assortatively.

Thus:

Psame(m) =
X1,m

X0,m +X1,m
+X0,m (A.3)

Pdif(m) = x0,1−m (A.4)

Ptotal(m) = Psame(m) + Pdif(m) (A.5)

where Ptotal is, by definition, the total relative probability of being selected. Then:

PM (i|a,m) =
δi,mPsame(m) + (1− δi,m)Pdif(m)

Ptotal(m)
(A.6)

The fitness of each individual is given by:

π(a,m) = P (0|a,m)Mm,0 + P (1|a,m)Mm,1 − ac (A.7)

where M is the payoff matrix given by table (2.1). These expressions can be substituted into the

replicator equation.

We now describe all of the fixed points of the resulting dynamics. Firstly, the region in which

the strategy (0, 1) dominates. This is the region in which:

δ <
hs

1− hs
(A.8)

This solution is exactly as in the well-mixed case, it corresponds to the region for which S < 0,

which can be found from equations (2.9) and (2.10).

Secondly, the region in which the strategies (0, 0) and (0, 1) coexist. Again the solution is

identical to the well-mixed case. We can find it by setting: π0,0 = π0,1. The equilibrium thus

occurs at:

x01 =
s− δ − hs (1− δ)

s (1− 2h)
(A.9)

which can alternatively be found from combining equations (2.4), (2.9) and (2.10). The lower

boundary is given by equation (A.8). The upper boundary is derived by finding the point at
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which π1,1 is equal to π0,1 (or equivalently π0,0) provided (1, 1) exists in infinitesimal quantities.

This is thus the point at which (1, 1) is able to invade. One can think of this as the point at

which defection has become sufficiently common that paying the cost of assortment becomes

worthwhile. This occurs when:

δ =

√
s (c(2− 4h) + h2s)

(1− hs)
(A.10)

The next region is the one for which the three strategies (0, 0), (0, 1) and (1, 1) all coexist. This

can be found directly from the replicator equation. It is the solution of a third order polynomial,

and is found using a computer algebra package:

x01 =
8c3(2h− 1)s+ 2c2((δ − 1)hs− δ)(−4δ + 4δhs+ 2hs+ s) + ((δ − 1)hs− δ)

√
Z +W

4c((δ − 1)hs− δ) (δ2(hs− 1)2 − s (−2ch+ c+ h2s))
(A.11)

where:

W = −((δ + 1)hs− δ)(δ + h(s− δs))2 (A.12)

and:

Z = (4c4(1− 2h)2s2 − 4c3(2h− 1)s((δ − 1)hs− δ)(3δ(hs− 1) (A.13)

−(h+ 1)s)− c2(δ − δhs+ hs)2(
((2− 9h)h− 1)s2 + 7δ2(hs− 1)2 + 2δ(7h− 3)s(hs− 1)

)
+ 2c(δ − δhs+ hs)3

(−δ + δhs− 3hs+ s)((δ + 1)hs− δ) + (δ − δhs+ hs)4(δ − (δ + 1)hs)2

−((δ + 1)hs− δ)(δ + h(s− δs))2

and the frequency of (1, 1) is given by:

x11 =
−
√
E + 6c2(2h− 1)s+ cY + ((δ + 1)hs− δ)(δ + h(s− δs))2

4c (δ2(hs− 1)2 − s (−2ch+ c+ h2s))
(A.14)

where:

Y = ((δ − 1)hs− δ)(s((3δ + 7)h− 1)− 3δ (A.15)

E =
(
L+ ((δ + 1)hs− δ)(δ + h(s− δs))2

)2 (A.16)

−8c(2c− δ + (δ − 1)hs)
(
δ2(hs− 1)2 − s

(
c(2− 4h) + h2s

))(
δ2(hs− 1)2 − s

(
−2ch+ c+ h2s

))
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and:

L = 6c2(2h− 1)s+ c((δ − 1)hs− δ)(s(3δh+ 7h− 1)− 3δ) (A.17)

These solutions afford little intuition, they do however provide a very efficient way to solve the

model when compared to an agent based simulation.

The final region is the one in which the strategies (0, 0) and (1, 1) coexist. This can be found

simply by setting the payoff of these two strategies to be equal. This leads to the following

expression for the equilibrium value.

x11 =

√
Q+ 2c− δ + δhs+ 3hs− 4s

2s(δh+ h− 1)− 2δ
(A.18)

where:

Q = (2c− δ+ s((δ+ 3)h− 4))2− 4(δ− s(δh+h− 1))(−4c− δ+ s((δ− 1)h+ 4)) (A.19)

The boundary between these two regions has no closed form solution that we were able to find,

and is instead calculated by numerical means. The most straight forward way to do this is by

solving x01 = 0 from equation (A.11).

B Appendix: Differential equations for the crossover model

The more general case in which there is an arbitrary level of crossover is modelled through a

population dynamics model. We consider the expected change due to one round of selection

in order to form difference equations. We then translate these into differential equations for

the expected rate of change of each haplotype. (Note that we cannot simply write down the

replicator equation, as haplotypes may combine with other haplotypes to form individuals of

different types).

The state of the population at time t is given by Xa,m, which denotes the frequency of every

possible haplotype. After one generation of selection the frequency changes to X ′a,m. We seek

equations for X ′ in term of X , in order to define the evolutionary dynamics in the form of

difference equations. The difference equations are found by splitting the life cycle into three

distinct phases: firstly, haplotypes combine to form individuals, we thus calculate the expected

frequency of each type of individual given the frequencies of each haplotype; then selection

on individuals occurs, we thus calculate the expected change in frequency of individuals due

to selection; finally, new gametes are produced, we then calculate the expected frequency of

gametes produced given frequencies of each type of individual. These three steps are sufficient

to formulate the difference equations. The difference equations form a very efficient way of

modelling this situation.

An individual is defined by four alleles, a1, a2, m1 and m2. Each of these may take on one of

two values, and there are thus 16 types of individual.
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Firstly we consider the expected frequency of individual (a1,m1, a2,m2), given by Ya1m1,a2m2 .

This is:

Ya1m1,a2m2 =
1

2
(Xa1m1P (a2,m2|a1,m1) +Xa2m2P (a1,m1|a2,m2)) (B.1)

where P (a2,m2|a1,m1) denotes the conditional probability of meeting an a2,m2 given that

one is of type a1,m1.

As before, we split this into a male and a female portion as follows:

P (a2,m2|a1,m1) =
1

2
(PF (a2,m2|a1,m1) + PM (a2,m2|a1,m1)) (B.2)

Where:

PF (a2,m2|a1,m1) = (1− a1)Xa2m2 +
a1δm1m2Xa2,m2

X0,m2 +X1,m2

(B.3)

We further break down the formulae for the probability of being selected by a certain type when

one is a male into four cases, based upon whether one is selected assortatively and whether one

is selected by an individual of the same value of m. These are denoted by subscripts a (for

assort) and n for not assort, as well as s for same and d for different. These four quantities are

given as follows:

ps,a =
X1,m1

X0,m1 +X1,m1

(B.4)

ps,n = X0,m1 (B.5)

pd,a = 0 (B.6)

pd,n = X0,1−m1 (B.7)

PM (a2,m2|a1,m1) is then computed by selecting the appropriate formula from above, i.e. a

if a2 = 1 and n otherwise. And s if m2 = m1 and d otherwise. More formally this can be

expressed as:

PM (a2,m2|a1,m1) =
δm1,m2a2ps,a + δm1,m2 (1− a2) ps,n + (1− δm1,m2) (1− a2) ps,a

ptotal
(B.8)

where:

ptotal = ps,a + ps,n + pd,a + pd,n (B.9)

For these equations we can thus formulate the expected number of each type of individual for

given frequencies of each haplotype. We then compute the expected frequency of the individuals

after one round of selection, and denote this by Y ′a1m1,a2m2
. Where:

Y ′a1m1,a2m2
= Y a1m1,a2m2

πa1m1,a2m2

π̄
(B.10)
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where π is the fitness of a given type of individual, this can be calculated from the payoff matrix:

M =

(
1− s 1− hs

1− hs 1

)
(B.11)

and then:

πa1m1,a2,m2 = Mm1,m2 − c/2 (a1 + a2) (B.12)

where c is the cost of assortment. π̄ is simply the mean fitness, given by:

π̄ =
∑
ijkl

πijklYijkl (B.13)

The expected frequency of each type of gamete after the selected individuals have produced

another set of gametes is given by X ′a,m. We can calculate the expected frequency of a certain

gamete being produced from a given individual as follows. Let:

D =

(
1/2 1/2 (1 + δ)

1/2 (1− δ) 1/2

)
(B.14)

thus, the indices of this matrix correspond to the probabilities of each value of m being trans-

mitted.

Finally, we define the value G(a1,m1, a2,m2, a,m) as the expected frequency of gametes of

the type (a,m) produced from the individual (a1,m1, a2,m2). This is:

G(a1,m1, a2,m2, a,m) = δm,m1δa,a1 (1− k/2)Dm1,m2 (B.15)

+ δm,m1δa,a2k/2Dm1,m2

+ δm,m2δa,a2 (1− k/2)Dm2,m1

+ δm,m2δa,a1k/2Dm2,m1

The expected frequency of each gamete in the next generation is then given by:

X ′a,m =
∑
ijkl

Y ′ijklG (i, j, k, l, a,m) (B.16)

We can then construct an equation for the expected frequency of each type after one round of

selection by combining equations (B.10) and (B.16):

X ′a,m =
1

π̄

∑
ijkl

πi,j,k,lY i,j,k,lG (i, j, k, l, a,m) (B.17)

Without loss of generality we may set a time step of one, as we are making no assumptions

about the time scales of evolution in our models. We can thus formulate a differential equation
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for the expected rate of change of each haplotype:

dXa,m

dt
= X ′a,m −Xa,m (B.18)

C Appendix: Simulation Model with Continuous Assortment

In order to complement the purely mathematical model presented in the main body of the paper

we briefly discuss an agent based model and present the results in this appendix. The model

differs from the mathematical model in three ways: firstly the tendency to mate assortatively

can take on any intermediate level, and is not confined to be either zero or one. Secondly, as this

is a simulation there will be stochastic finite population effects. Finally, we introduce a small

mutation probability for each locus.

The simulation model follows the mathematical model as closely as possible. We initialise a

population of random diploid individuals which have two loci a and m; a controls the tendency

to mate assortatively. However, in this model a may take on any random real number between

zero and one. Initial values are from the uniform distribution. As before m is a binary number,

zero for defect, i.e. cheat meiosis, and one for cooperate, i.e. don’t cheat meiosis. 2N individu-

als are selected via fitness proportionate selection with replacement, where N is the population

size. Each individual then creates one gamete. We select one of them alleles at random, accord-

ing to the definition of δ, see section 2.1. We then perform crossover with probability k. The

gametes are portioned into two equal sub-populations, which we label male and female. The

female gametes are selected in a random order. For each female gamete with a value of assort-

ment a: with probability a we pair the female gamete with a male gamete that has a value of m

equal to that of the female gamete. With probability 1− a we pair it with a male gamete chosen

at random. If no male gametes of the right phenotype are available then the female is paired

with a random male. Note that it is then possible to be paired with an individual of a different

phenotype to oneself even if one has a value of a = 1. This can happen if a female gamete runs

out of male gametes with the correct phenotype, or if a male gamete is chosen at random by a

female gamete. We repeat the whole process for a pre-determined number of generations.

At each generation there is a small probability of mutation. With probability µm the value

of m is switched to its complement. a is handled differently as it is a continuous parameter;

with probability µa, a is changed randomly. The amount it changes is drawn from the normal

distribution with mean zero and standard deviation of 0.05. (Note that the simulation results are

not qualitatively effected by this choice.)

Figure 2.7 shows the sweep through δ in the same manner as figures 2.4 and 2.6. The dotted

lines show the results of the stability analysis of the replicator equation and the solid lines the

results of the simulation. We perform this simulation for k = 0 and k = 1.
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The simulation model shows qualitatively similar results to the mathematical approach over all

explored combinations of parameters. However, the correspondence is not exact. The most

probable cause is that the mathematical expectations for conditional probabilities are approxi-

mate. When a female assorter chooses a mate it may be the case that there are no more males

of the correct phenotype to choose. In this instance, in the agent based model, we have no

choice but to pair the individuals with another random individual. This effect will become more

pronounced when strategies go to smaller frequencies. This effect is not taken into account in

the mathematical formalism of the model. Nonetheless, all the qualitative remarks made about

the mathematical model hold equally well for the simulation. In particular, assortative mating

will evolve, and hence increase fairness, for high levels of drive efficacy, δ, but assortment and

fairness will always co-exist with distorting non-assorting haplotypes. This general statement is

robust to the presence of cost and crossover and the mathematical approximations that we made.

FIGURE 2.7: A sweep through δ with the simulation model. Dotted lines are the fixed points
of the replicator equation, see appendix A, and solid lines that of the simulation. Left panel is
for k = 0 and right for k = 1. The simulation is averaged over twelve independent runs. The
population size was 5000 and the number of generations was 2500. The mutations rates were
µm = 0.01 and µa = 0.02. Otherwise parameters were the same as they are in figure 2.4.





Chapter 3

Multiple Games and the Evolution of
Assortment

Abstract

Cooperation has been a persistent subject of debate in the field of evolutionary biology. Many

of the explanations for its existence involve positive assortment between cooperators. Current

theories of social evolution, such as kin- and multilevel-selection, predict the direction of selec-

tion for a given level of assortment. What remains unclear, however, is how to determine the

direction of selection on assortment, if this were itself subject to individual selection. We anal-

yse a simple model of the evolution of assortment and find that assortment will be favoured, and

thus increase levels of cooperation, in games of weak altruism (such as the snow-drift game),

but in cases of strong altruism (such as the prisoner’s dilemma), where all cooperation is lost at

equilibrium, assortment necessary to support cooperation cannot evolve under individual selec-

tion, in the absence of noise. We further show that if individuals engage in multiple coopera-

tive dilemmas simultaneously then there may be a continued selection on increased assortment,

which is ultimately sufficient to resolve the prisoner’s dilemma. We find that the final value of

evolved assortment is, on average, monotonic in the number of randomly-chosen, two-player

cooperative-dilemmas in which individuals engage. We argue that understanding the evolution

of assortment is a vital, and largely overlooked, step towards a complete account of the evolution

of cooperation.

1 Introduction

The evolution of cooperation was a problem that Darwin labelled his one special difficulty. In a

nave interpretation of Darwinism, cooperation (and particularly altruism) present a fundamental

challenge to the theory of evolution by natural selection. Why would individuals be selected to

37
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perform actions that are beneficial to others at a cost to themselves? The two major attempts at

answers to this question come in the form of inclusive fitness theory (Hamilton, 1964a; Gardner

et al., 2011; Queller, 1985; Maynard Smith, 1964) and multi-level selection (Borrello, 2005;

Eldakar and Wilson, 2011; Maynard Smith, 1964; Nunney, 1985; Wilson, 1975). These two

formalisms have been shown to be mathematically equivalent (Lehmann et al., 2007b; Foster,

2006; Queller, 1992), as they both depend on population structure giving rise to assorted inter-

actions. Here assortment means that like individuals will interact with each other more often

than would be expected from random interactions. Self-interested individuals will cooperate in

an assorted population because, by virtue of being a cooperator, they are more likely to receive

the benefits of other co-operators; assortment is thus a key factor in the evolution of cooperation

(Eshel and Cavalli-Sforza, 1983; Fletcher and Zwick, 2006; Godfrey-Smith, 2008; Michod and

Sanderson, 1985; Sober, 1992; Rosas, 2010).

Current explanations of the evolution of cooperation take the presence of assortment as an as-

sumption, and do not attempt to explain how assortment might arise (Ryan et al., 2016). In

many instances in nature individuals may have traits that in effect modify which other members

of the population they interact with. For instance: kin-groups are often created by limited disper-

sal (Smaldino and Schank, 2012; Pepper and Smuts, 2002; Lehmann et al., 2007a; Penn et al.,

2012), which may have a genetic component and hence be subject to selection; birds may alter

the time at which they leave their natal group (Bulmer, 1994); social wasps may alter the number

of eggs that they lay in one host (Ode and Strand, 1995) or bacteria in biofilms may produce

an intercellular matrix, which determines population structure (Crespi, 1989; Strassmann et al.,

2011; Shapiro, 1998). Furthermore, multicellular organisms undergo a unicellular bottleneck,

which may be an adaptation that increases the genetic homogeneity of the organism (Ryan and

Watson, 2015; Michod and Herron, 2006). Thus, understanding in detail the evolution of indi-

vidual traits that affect assortment is of vital importance to our understanding of cooperation,

as assortment is often not an exogenous parameter, but a variable that is influenced by natural

selection. A number of authors have looked at the evolution of population structure from the

point of view of kin recognition (Tang-Martinez, 2001; Waldman et al., 1988; Giron and Strand,

2004; Rousset and Roze, 2007; Schausberger and Croft, 2001), from the perspective of mating

systems (Peck and Feldman, 1988; Breden and Wade, 1991) or from the perspective of the evo-

lution of limited dispersal (Johnson and Gaines, 1990; Le Galliard et al., 2005; Hochberg et al.,

2008). Each of these studies investigates how specific mechanisms of assortment may evolve.

However, what is lacking is a general treatment of the evolution of assortment that is agnostic

as to the exact mechanism by which assortment comes about, and therefore has a more general

applicability to a wider range of biological phenomena.

The vast majority of the studies of the evolution of cooperation take population structure as

given; a more complete understanding of the evolution of cooperation would be facilitated by

studying how such genetic traits effecting assortment will evolve concurrently with genetic traits

that determine social behaviours. A growing number of recent studies have begun to look at such
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processes. The concurrent evolution of cooperation and population structures that support co-

operation is referred to as social niche construction (SNC) (Powers et al., 2011; Ryan et al.,

2016), so called because individuals modify the selective pressure they experience on their so-

cial behaviour by altering the social niche in which they are evolving. Powers et al. (2011) study

a model in which individuals play a public goods game in a group structured population. In

addition to a gene controlling social strategy (i.e. cooperate or defect) they also look at the con-

current evolution of a gene that determines the group-size preference of the individuals. Because

a population composed of small groups is more highly assorted than a population composed of

large groups (because small samples exhibit greater variance in the proportion of types (Wilson,

1975)), this group-size preference then has the effect of an assortment parameter. However, in

this model the evolution of assortment will only arise if the population supports a non-zero level

of cooperation to begin with; it cannot, therefore, give a gradualist account of the evolution of

assortment from the starting point of a population of freely-mixed defectors.

Jackson (2016) use the formalism of meta-games to investigate the evolutionary dynamics of

game-changing behaviours, such as assortment. In their model each agent has a genetically

determined payoff matrix representing the parameters of the game that an individual plays, as

well as a gene determining their social strategy. They find that a strong linkage disequilibrium

emerges, whereby cooperators are selected such as to alter the underlying game in order to

favour cooperation and, similarly, defectors are selected such as to alter the game to make it

more favourable to defectors. The outcome of the game is determined by the relative frequencies

of cooperation and defection. For selection to have any effect on the underlying game there must

be some polymorphism in the social strategy, which is not the case in the prisoner’s dilemma

at equilibrium. Alternatively, assortment will evolve if one pre-supposes some level of pre-

existing assortment on the game changing gene (Jackson and Watson, 2013). However, as in

Powers et al. (2011), this model does not give an account of the evolution of assortment from

the starting point of freely-mixed defectors.

In both of these models assortment has difficulty getting started; a well-mixed infinite population

facing a cooperative dilemma, such as the prisoner’s dilemma, cannot be invaded by a cooperator

with a small value of assortment. Note, however, that finite population effects may lead to the

evolution of assortment in prisoner’s dilemma games that are close to the boundary with the

snowdrift game. Nonetheless, it remains true that assortment will not evolve, even in finite

populations, for severe cooperative dilemmas that are not close to the snowdrift game. So,

whilst a genetic trait that causes assortment may be stable when at high frequency, it cannot

invade. This is an issue for our account of social niche construction, as the prisoner’s dilemma

represents the biological scenario of strong altruism (West et al., 2007). We can thus give no

gradualist account of the evolution of assortment in the face of strong dilemmas. This is at odds

with the observation that eusocial insects (Hölldobler and Wilson, 1990; Bourke and Franks,

1995), multicellular organisms (Ryan and Watson, 2015; Michod and Roze, 2001), communal

siphonophore (Dunn and Wagner, 2006), and slime moulds (Strassmann et al., 2000) all exhibit

strong altruism and have all evolved from free-living ancestors. These are examples of fraternal
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transitions in evolution, which are thought to have occurred at least fifteen times in evolutionary

history (Grosberg and Strathmann, 2007). Thus, finding a satisfactory solution to the getting

started problem is a major obstacle to our understanding of the major transitions in evolution, as

well as to our account of the evolution of cooperation more generally.

Note that while we present here an explanation for the gradual evolution of assortment, an

alternative explanation could make use of exaptation. i.e. the assortative trait could have evolved

for other reasons. We do not discount these alternative explanations, but note that our account

of the evolution of assortment does not depend upon coincidental factors, and is therefore more

likely to be observed across a wider distribution of organisms. Furthermore, we do not claim that

assortment is always an adaptive trait, merely that there are at least some important instances

when it is so.

A number of authors have looked at the evolution of population structure from within the field

of adaptive networks (Zimmermann et al., 2004; Santos et al., 2006a; Pacheco et al., 2006; Ren

et al., 2006; Van Segbroeck et al., 2009; Cao et al., 2011). They investigate a collection of models

in which individuals play a social dilemma on a network and may, in addition, adjust their social

ties; thereby affecting population structure. These models are attempts at descriptions of human

social networks, and not at more basic biological systems, such as bacterial populations. So,

whilst of some relevance, they do not serve as a general biological account of the evolution

of assortment. Whilst these social dynamics have the effect of altering assortment, this is left

implicit; there is therefore, in addition, a need for a more explicit analytical treatment of the

evolution of assortment.

This paper presents a formal mathematical model to investigate under what conditions there is

a positive selection gradient on assortment. In agreement with previous studies we find that

such a gradient only exists if the population is polymorphic in cooperation. In the language of

two-player games this situation is represented by the snowdrift game. We find that games, such

as the prisoner’s dilemma, that do not allow for coexistence of cooperation and defection, do

not result in a selection for increased assortment, a result that is investigated in previous models,

but is formalised here.

We show a plausible scenario in which assortment can be increased sufficiently by selection to

levels high enough to “solve” the prisoner’s dilemma (or in other words levels high enough to

observe strong altruism). The principal idea is that individuals will be engaged in multiple social

interactions at once, assumed to be controlled by genes at different loci. A simple example

may be a species of bacteria that may produce a number of public goods, each of which is

simply a protein. Each individual bacterium may or may not produce each public good. Thus,

the multiple interactions within the species can be represented via a set of games (rather than

conventional studies, which consider only a single game taking place). Each individual may

be a cooperator or a defector in each game independently of whether or not they cooperate or

defect in other games. In such an instance it may be the case that one of these games is a

snowdrift game and hence provides a positive selection gradient for increased assortment until
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a sufficient level of assortment has arisen to fix cooperation at this locus. As a bi-product of this

process other games will become transformed such that they are then polymorphic (i.e. contain a

mixture of both cooperators and defectors). Given enough games between individuals there will

be a continual selection on increased assortment, so that the population ends up highly assorted

and therefore cooperation can evolve, even for much more severe dilemmas.

Very few authors have looked at the possibility of the outcome of multiple games being played

at once or sequentially between agents/individuals; those that do, do so from within economics

or psychology. In particular a number of authors (Bednar and Page, 2007; Bednar et al., 2012;

Grimm and Mengel, 2012) have looked at the consequences of multiple, and qualitatively dif-

ferent, games being played in sequence between subjects. The key themes of these papers tend

to be to do with cognitive spill-over, i.e. how the outcome of one game might affect another, or

the cognitive load on the individual, i.e. how individuals might use heuristics or rules learnt in

one game to reduce the computation needed to solve other games. To the best of our knowledge

no authors have looked at the dynamics of multiple games from within evolutionary game the-

ory. One reason for the lack of such a study may be that the basic result, i.e. that each game

reaches its own ESS independently (see appendix A), is not of interest unless one allows for

some manner of epistatic interaction between games. In our model this epistasis comes via the

intermediary of the evolving assortment parameter. With this interdependence the presence of

multiple games results in a qualitatively different outcome, as we shall show.

The paper proceeds as follows: we firstly define a mathematical model for the evolution of as-

sortment, allowing for the possibility of multiple games. We then go on to analyse two special

cases of this model: firstly, the case in which there is only one game being played. The key

result here, which we demonstrate analytically, is that there is a critical minimum initial value of

assortment necessary in the prisoner’s dilemma, below which the evolution of assortment cannot

get started. Secondly, we analyse the special case in which there is no evolution of assortment,

but individuals engage in multiple games at once. We show that each social strategy indepen-

dently finds the stationary state of that game, regardless of other social interactions occurring

in parallel. We then go on to present simulation results from the full model, in which we show

that multiple games can lead to the evolution of a level of assortment sufficient to resolve the

prisoner’s dilemma. Finally, we perform some further simulations, complemented with an ana-

lytical argument, to show the statistical dependency of the number of randomly-chosen games

on the evolution of assortment.

2 Model

We shall restrict our analysis to pair-wise interactions; such interactions can be represented via

a two-player game. Santos et al. (2006b) show that the space of all possible two-player, two-

strategy symmetric games is two dimensional, the payoff matrix for which can be parameterised
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FIGURE 3.1: The space of all two-player, symmetric cooperative dilemmas and the effects of
assortment. Each point in the space represents a two-player game parameterised via S and
T . The colour represents the equilibrium frequency of cooperation, given initial condition of
one half cooperators. (One represents cooperate and zero defect). Each arrow represents the
effective transformation of the game under assortment of α = 0.05. Assortment has the effect
of transforming the game towards the harmony (top left) region of game space, (S = 1, T = 0)
thus making it more cooperative. The black lines delimit the four qualitatively different games,
which are: top left: the harmony game, top right: the snowdrift game, bottom left: the staghunt

game and bottom right: the prisoner’s dilemma.

as:

M =

(
1 S

T 0

)
(2.1)

The effect of assortment can be modelled via a transformation of the game. A level of assort-

ment, α, is defined as follows: with probability α an individual is paired with another individual

of the same strategy and with probability 1 − α it is paired with a random individual. It can be

shown that the outcome of a game, M , under assortment, α, is equivalent to the outcome of the

game, M ′, with no assortment (van Veelen, 2011) , where the elements of M ′ are given by:

M ′ij = αMii + (1− α)Mij (2.2)

Thus, one can consider assortment as an effective transformation of the game into a more har-

monious one, as figure 3.1 illustrates.

Furthermore, we introduce the notion of multiple games; whereby individuals engage in multi-

ple social interactions simultaneously. Each individual may cooperate or defect in each game,

independently of their strategy in other games. The strategy in each game is determined at a

separate locus. We assume that all individuals play all games with all other individuals and that

the overall payoff they receive is the sum of the payoffs from all games.
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Let NG be the number of games being played at once. A sequence of matrices determines all of

the games such that the kth game is given by:

Mk =

(
1 Sk

Tk 0

)
(2.3)

Each value of S and T is chosen at random from the uniform distributions: S ∈ [−1, 1] and

T ∈ [0, 2]. The social strategy of individual i is represented by a binary string, si, of length k.

Thus, element sik determines the strategy played by individual i in the kth game. We arbitrarily

label cooperate one and defect zero.

In addition, individuals have a gene for “tendency to assort”: αi. Consider a population of

unicellular organisms that, upon division, either stick to their parent, or interact with another

non-related individual. This may be the case in the early stages of the evolution of multicellu-

larity for instance, where colonies are formed when individuals fail to separate after division.

We construe the gene for the tendency to assort as controlling the probability of sticking with a

clonally related individual. With probability αi individual i interacts with a clonally related in-

dividual, i.e. with an individual that has the same value of s at all loci. With probability 1−αi it

enters a pool of players and, therefore, interacts with an agent chosen randomly from the subset

of those other individuals who have also joined the pool.

Selection proceeds generationally, via fitness proportionate selection. Mutation may occur at a

locus controlling social strategy; with probability µs a locus mutates to its opposite strategy. The

assortment gene is mutated with probability µα and consequently changes by an amount drawn

from the normal distribution, with mean zero and standard deviation 0.01 (the results do not

depend qualitatively on the particular choice of these parameters). If the value mutates outside

of the permitted range it is scaled back to zero/one. Crucially, we also assume that the primitive

state of the population is freely-mixed; we are primarily interested in the transition of free-living

individuals to communally-living individuals. We thus seed our experiments with α = 0 for all

individuals and allow strategy frequencies to reach equilibrium before “turning on” mutation in

α after 100 generations.

In addition, we allow for a small cost to assortment, k × αi, which increases linearly with

the individuals’ assortment. This cost is introduced to ensure that all change in assortment is

adaptive, rather than being due to drift. When all else is equal then selection will not favour an

increase in assortment. Furthermore, it is biologically plausible that assortment may come at a

cost to an individual. This may be in the form of the production of an adhesive protein, or in the

energetic cost expended in seeking out an individual similar to oneself.

We proceed by deriving a number of analytic results by considering an infinite population and

then go on to compare and extend these results with a series of simulations.
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3 Results

We proceed by investigating special cases of the more general model. Firstly, we analyse the

case in which NG = 1. Secondly, we investigate multiple games, but in the absence of assort-

ment; this can be thought of as the case in which µα = 0. Finally, we analyse the full model

with both evolvable assortment and multiple games.

3.1 The Evolution of Assortment with a Single Game

For a single game there is no selective pressure for increased assortment unless the well-mixed

ESS contains a non-zero level of cooperation. There is a critical value of α, for which a cooper-

ator can invade a freely-mixed population of defectors, which depends on the parameters of the

game. We thus argue that there is no gradual adaptive walk towards altruism from a freely-mixed

population. We first sketch a mathematical argument of this point and then go on to compare it

with a simulation based model.

Let the frequency of cooperators in the pool, i.e. those individuals who have not interacted with

clonal partners, be pC and likewise for defectors pD. The payoff an individual with strategy i

gets (as a function of α) is:

πi(α) = αMii + (1− α) (pCMiC + pDMiD) (3.1)

pC is calculated by taking a mean of the number of cooperators, weighted by the chance that

they enter the pool, which is 1 − αi. EC , the expected number of cooperators in the pool, is

given by:

EC =
∑
i

si(1− αi) (3.2)

We neglect the index k as we are considering only one game. Note, that in general there will

be linkage disequilibrium between cooperation and assortment (Powers et al., 2011) and there-

fore Ec does not represent the frequency of cooperate in the whole population. Similarly, for

defectors:

ED =
∑
i

(1− si) (1− αi) (3.3)

It follows that:

pC/D =
EC/D

ED + EC
(3.4)

To proceed, we determine when individuals with a slightly larger than normal level of α can

invade a population. We consider a population composed of individuals who all have the same

value for assortment tendency, α, and then investigate whether a mutant with a slightly larger

value of assortment tendency, α + δα, can invade this population. This is established by deter-

mining whether or not payoff is an increasing function of α. The payoff to cooperators is given
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by:

πc(α) = α+ (1− α) (pC + SpD) (3.5)

= (1− pC − SpD)α+ pC + SpD (3.6)

Because S < 1 it follows that (1− pC − SpD) > 0 and thus πi(α) is an increasing function of

α, which means that there is always a selection pressure for existing cooperators to increase α.

This is intuitive, as cooperators should always seek to interact with other cooperators.

Ultimately, we wish to know when sufficient assortment can evolve to lead to altruism. We

thus consider a population of freely-mixed defectors and ask: for what value of α will a small

frequency of cooperators be able to invade? Because we consider cooperators invading in in-

finitesimal quantities we assume pC = 0 and also pD = 1, see equations (3.5) and (3.6)). Thus:

πc(α) > πd(0) (3.7)

α+ (1− α)S > 0 (3.8)

Equation (3.8) reduces to:

α >
S

S − 1
(3.9)

Therefore, in the limit of infinitesimal increase in α, cooperators can only invade if S > 0

(found by setting α = 0 in equation (3.9)); that is α will only increase in a snowdrift game.

Therefore, there can be no gradual evolution of assortment in the prisoner’s dilemma in an infi-

nite population. However, due to finite population effects assortment may evolve in a prisoner’s

dilemma. This occurs when cooperators with small but finite values of assortment invade a pop-

ulation by chance and subsequently lead to larger values of assortment, until the critical value

of α (equation (3.9)) is reached. This becomes increasingly unlikely as mutation rates decrease

and S becomes increasingly negative, see figure 3.2.

To investigate the effects of finite populations further we complement this mathematical argu-

ment with a simulation. We record the value of mean α and mean cooperation at equilibrium

and plot these over the space of all possible games on the TS-plane. The results are presented in

figure 3.2.
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FIGURE 3.2: Equilibrium levels of cooperation (left) and α (right) over the space of all possible
two-player games. Only snowdrift games provide a positive selective gradient on α. Each
simulation was run with a population size of 1 028 for 10 000 generations. Each data point is

the mean of 12 runs. µs = 0.001, µα = 0.1 and cost = 0.05.

We conclude that a positive selection for assortment may only occur if there exists some pre-

liminary level of cooperation at equilibrium. As there is mutation on strategy there is also a

small amount of selection pressure to increase assortment even in games that are dominated by

cooperators (as is the case in the harmony game and some of the stag hunt game). This can be

understood as protection against the occasional introduction of defectors into the population. In

the snowdrift regions in which the population is almost all cooperate and also in the region in

which S ' 1 there is little increase in assortment. Note that assortment will evolve for only

slightly negative S, as this requires only small mutations in α.

Note, that our argument does not rely on the fact that the population starts with a zero level

of assortment. Instead, it must only be the case that the existing level of assortment, coupled

with the underlying game, is not sufficient to lead to the evolution of altruism. There are other

reasons for why there may be some pre-existing, and non-adaptive, level of assortment (see for

example Ratcliff et al. (2013)). As a general point, we do not claim that assortment is always an

adaptation to overcome a cooperative dilemma, merely that this is sometimes the case, and offer

an explanation for such cases.

3.2 Multiple Games in the Absence of Evolvable Assortment

Before analysing the full model we briefly look at the special case in which assortment is fixed at

zero and evolution acts only upon the social strategy, but individuals engage in multiple games.

Each allele represents the social strategy in an independent game. We find that the evolutionary

dynamics of each social strategy is independent of the other interactions occurring in parallel;

the presence of multiple games does not affect the outcome of selection. This is to be expected,

as there is no epistasis. This is in agreement with results from population genetics that state
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that individual genes will fixate independently in the absence of epistasis (Hartl and Clark,

1998). A more formal justification is presented in appendix A, in which we show that the

replicator dynamics of a single population engaged in multiple games is formally equivalent to

the replicator dynamics of multiple populations, each of which plays only one game.

Figure 3.3 shows a typical output of this model. To aid interpretation we create a scatter plot

of the games being played on the TS-plane alongside the evolution of strategy frequencies. As

expected, each gene fixates at the ESS of the relevant game, indicated by dashed lines.

FIGURE 3.3: A selection of randomly chosen games. We record the frequency of the popu-
lation that plays cooperate at each allele (left). This matches predictions for the ESS of each
game independently (dotted lines). Right panel illustrates where each of these games lies in the
TS-plane. µs = µα = 0 with a population size of 10 000 run for 500 generations. (Note that

the corresponding lines and dots are matched by colour.)

3.3 The Evolution of Assortment with Multiple Games

Finally, we present the results of the full version of the model. In addition to genes determining

social strategies, individuals also have a gene that determines their level of assortment. In this

model there is no explicit epistasis; nonetheless epistasis comes about through the intermediary

of the assortment gene. We cannot, therefore, consider each game in isolation.

Recall that for NG = 1 there was no selective pressure for increased assortment unless the

population was polymorphic in the cooperative trait (see figure 3.2). However, the selective

pressure opposing the evolution of assortment in the prisoner’s dilemma is small. This comes

from the cost to assortment and the small mutation rate in strategy; when cooperators appear it

is beneficial for a defector not to assort. Given a relatively small value for the mutation rate and

the cost of assortment, then the positive selective pressure for increased assortment in snowdrift

games significantly outweighs the negative selective pressure in the prisoner’s dilemma.
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Consider a situation in which the population engages in two cooperative dilemmas, one of which

is a snowdrift game and the other a prisoner’s dilemma. The snowdrift game will create a se-

lective gradient on assortment, which will subsequently increase. As a bi-product the gene

engaging in the prisoner’s dilemma will also become assorted. Thus, the prisoner’s dilemma is

dragged by the snowdrift game into a more cooperative one. This game may itself become poly-

morphic and introduce further selective pressure for increased assortment. Figure 3.4 illustrates

one snowdrift game, in which assortment increases to near unity and one prisoner’s dilemma, in

which assortment does not increase appreciably. We then perform a simulation in which both of

these games are played simultaneously and demonstrate that in this case assortment does evolve.

The prisoner’s dilemma is dragged by the snowdrift game into a more cooperative region of the

TS-plane. We also show an example of how this may work for multiple games. In instances

where there are many games occurring at once any number of these could be polymorphic at

one time; thus creating an evolutionary pressure for increased assortment.

FIGURE 3.4: Four independent realisations of the simulation. Top left: a snowdrift game in
which assortment evolves to a high level. Top right: a prisoner’s dilemma, in which there is no
evolution of assortment. Bottom left: the top two games played together, in which the snow-
drift game drags the prisoner’s dilemma into the Harmony game. Bottom right: evolutionary
dynamics of 7 randomly chosen games. Each panel is composed of three figures, they are:
right: the distribution of games on the TS-plane along with their transformation due to the re-
sultant assortment. Top left: the mean frequency of assortment over time, and bottom left: the
mean value of each strategy gene. In each case the population size was 4 096 and the simulation

was run for 4 000 generations. k = 0.01, µS = 0.01 and µα = 0.01.

Finally, we investigate the effects of varying the number of games, NG, on the evolved level

of assortment, α. This is illustrated in figure 3.5. We do this by repeatedly generating random

games from the uniform distributions: S ∈ [−1, 1] and T ∈ [0, 2]. Each game is selected
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independently and at random. We run the simulation for a predetermined number of generations

(10 000) and record the final level of α.

This figure supports the hypothesis that an increase in the number of simultaneous social dilem-

mas increases the selective pressure on assortment, thus mitigating the getting started problem.

If individuals engage in multiple interactions at once, then assortment can evolve such as to

bring about cooperation; even in severe cooperative dilemmas, such as the prisoner’s dilemma.

FIGURE 3.5: Evolved assortment vs. number of randomly-chosen games. Points represent the
results of simulation with standard errors. The dashed line is the outcome of the estimate given
by equation (3.11) with Z = 0.21, Q = 0.76 and L = 0.053. Each simulation was run with a
population size of 1 028 for 10 000 generations, with NG randomly chosen games. Each data

point is the mean of 300 runs. µs = 0.01, µα = 0.01 and cost = 0.05.

The underlying distributions for the level of evolved α are bimodal, see figure 3.6. That is, either

there is relatively little evolution of assortment, or the evolution of assortment reaches a high

level. As game number increases it become increasingly likely that assortment will reach this

higher level, see figure 3.5. This is for the simple reason that there is an increasing probability

that any one game will lie in the snowdrift quadrant of the TS-plane as game number increases.

For a single game this probability is 1/4 (given our assumptions about the distributions from

which we draw S and T ). If there are NG games then the probability that at least one of these

lie in the snowdrift region is:

NG(α) = 1− (3/4)NG (3.10)

This serves as a crude estimate for the probability of assortment increasing for a given number

of randomly chosen games. This approximate measure gives a reasonable estimate, but can be

improved upon with a slightly more sophisticated argument, which we sketch below.

As distribution for the final level of assortment is bimodal, then either assortment will remain

low, or will increase to a much higher level; intermediate outcomes are unlikely. When there is

no significant increase in assortment the value of α will still be slightly larger than zero. This is
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principally due to finite population effects such as drift. For similar reasons when α increases it

will fall slightly short of one. We categorise those outcomes in which assortment stays low and

those in which it increases. To do this we define a threshold value, which we set equal to 0.35

(our results are not sensitive to the exact choice of this parameter, see figure 3.6). Let the mean

value of α for those games in which assortment does increase be Q and the mean value of α for

those games in which assortment does not increase be L. To approximate these values we use

the data gathered in the one game version of the model, see figure 3.2. We find that L ≈ 0.05

and Q ≈ 0.8. Finally, we measure the fraction of those games that reach the high α state over

the whole of the TS-plane, the dark blue region of figure 3.2. We denote this fraction Z and

find it to be roughly 0.21 (close to the purely theoretical one quarter, however, cost means that

assortment does not evolve for all snowdrift games). The evolved assortment as a function of

the number of games is then roughly:

α (NG) = L+ (Q− L)
(

1− (1− Z)NG

)
(3.11)

This more refined estimate is plotted in figure 3.5 and provides a reasonable estimate of the

distribution. Figure 3.6 clarifies the meaning of L, Q and Z, by plotting these values on a

histogram of final α, for NG = 1.

FIGURE 3.6: Histogram illustrating the calculation of L, Q and Z. The histogram depicts
the evolved assortment for randomly chosen games, in which NG = 1. The distribution is
bimodal, with two clear peaks. We split the distribution into those data points that are less than
the threshold (in red), and those that are greater than the threshold (in pink). The threshold is
indicated with the middle dashed line. L, the mean of the lower mode, is indicated with the
thick dashed line on the left of the figure. Q, the mean of the upper mode, is indicated with the
dashed line on the right of the figure. Z is the total area of the right (pink) distribution divided

by the total area of the entire distribution.



Chapter 3 Multiple Games and the Evolution of Assortment 51

4 Conclusions and Discussion

In conclusion, we have shown that, given the assumptions of our model, assortment will not

evolve for severe prisoner’s dilemmas unless the population is polymorphic in the cooperative

trait; this is an issue that we have labeled the getting started problem. If individuals engage

in multiple interactions simultaneously, but in the absence of assortment, then the outcome is

equivalent to a series of isolated populations playing each game independently. An evolvable

assortment parameter provides an effective epistasis between games at different loci. In this

scenario games that are polymorphic for the cooperative trait drag those games that are not

polymorphic into a cooperative game. Thus, multiple games represent a potential solution to the

getting started problem. The final level of assortment that evolves is monotonic in the number

of randomly-chosen, two-player games being played; this can be roughly estimated by simple

probabilistic arguments concerning whether or not a game lies in the snowdrift quadrant of the

TS-plane.

It is well known in evolutionary biology that population structure is important when considering

the evolution of social traits (Eshel and Cavalli-Sforza, 1983). Specifically, positive assortment

can allow for the evolution of cooperative or altruistic behaviour. Formalisms such as inclu-

sive fitness (Hamilton, 1964a; Grafen, 1982; Maynard Smith, 1964) and multi-level selection

(Price, 1970; Okasha, 2009) allow one to make precise calculations of the expected change in

the frequency of a cooperative allele due to selection (see for example (Gardner et al., 2011)).

Furthermore, the natural world is full of examples of cooperative behaviour, such as the cooper-

ation between cellular slime moulds (Strassmann et al., 2011), eusocial insects (Hölldobler and

Wilson, 1990) or the cells of a multicellular organism (Michod and Roze, 2001; Buss, 1987;

Queller, 2000). In many cases the population structure of such organisms may have a genetic

component, and thus be subject to evolutionary change. Whilst it is plausible that many of these

features are adaptations, there lacks a unified theoretical understanding of the conditions under

which an increases positive assortment will evolve.

Recently a number of authors (Powers et al., 2011; Jackson, 2016) have begun to address this

issue. One point that has emerged from these studies, and is backed up by a formal mathemat-

ical argument here, is that selection will not increase assortment unless the underlying game

is polymorphic. Games such as the prisoner’s dilemma are not polymorphic at equilibrium,

and therefore selection on assortment cannot “get started”. Furthermore, these games represent

the biologically prevalent case of strong altruism (see for example: Doncaster et al. (2013)).

We have presented a potential resolution to this problem: if individuals interact in many so-

cial dilemmas simultaneously, then there may exist a feedback process whereby the weaker

dilemmas transform the stronger dilemmas into weaker ones and, eventually, all dilemmas are

resolved.

Biologically models of the evolution of assortment could represent, for example, an evolution-

ary path towards multicellularity (see also: Michod and Roze (2001); Maynard Smith and Sza-

thmary (1997); Ispolatov et al. (2012); Grosberg and Strathmann (2007); Jablonka and Lamb
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(2006)). The cells of a proto-organism will eventually need to cooperate in many different man-

ners, such as by producing different public goods with differing costs or by refraining from

different forms of selfish reproduction, each of which with a different benefit. Our model shows

how this can be thought of as a continuous process, rather than a binary one (see Godfrey-Smith

(2009)). The cells will begin by cooperating in a less severe dilemma, which will create positive

selection pressure on assortment, which will in turn create selection pressure to cooperate in

another, slightly more severe dilemma, and so on, until all dilemmas have been resolved, and

the population will consequently be highly assorted. The likelihood of this happening is greatly

increased as the number of dilemmas being played increases. It seems plausible that the case of

individuals playing one single social dilemma is an idealisation, and that in reality individuals,

having many genes, and many potential social interactions, will usually be engaged in a very

large number of social interactions at once, thus making the transition to social living possible.

Okasha (2009) notes that the history of theoretical evolutionary biology, that is the history of

our understanding and explanations of evolutionary biology, has been one of increasing endo-

genisation, see also Ryan et al. (2016). Elements of a theory that were previously taken for

granted have increasingly themselves come under the umbrella of adaptationist arguments. The

current theories of the evolution of cooperation mostly take population structure and the assort-

ment of interactions as given and subsequently give an account of how cooperation thrives in

such a niche. This paper, and the associated ideas of social niche construction, attempt to extend

this account by explaining how population structure can itself be an adaptation. A full account

of cooperation must not only explain why cooperation is stable in a certain environment, but

give an account of how cooperation itself feeds back upon the social niche of the population in

question. The model in this paper has given an adaptive account of how a positively assorted

population of cooperators can evolve from a well-mixed population of defectors, and thus gives

a fuller account of the evolution of cooperation.

A Appendix: Replicator Dynamics of Multigames

In this appendix we prove that the replicator dynamics of a population of individuals playing

N multiple games is formally equivalent to the case in which there are N isolated populations,

each of which plays one of the games. An individual is represented by a bit string of length

N , each bit representing the strategy in the respective game. There are thus 2N possible types

of individual. Let us denote the frequency of each of these individuals with the vector y, of

dimension: 2N . The frequency of each allele is denoted by the vectors x, each of these vectors

is of length 2: the number of strategies in the game. There are N such vectors. Let the kth such



Chapter 3 Multiple Games and the Evolution of Assortment 53

vector by denoted by x(k). The vector y can be expressed in terms of the x vectors as follows:

y =


x(1)

x(2)

...

x(N)

 (A.1)

There are N games being played simultaneously; the kth game given by the matrix M (k). Let

the matrix L represent the full payoff matrix. Its elements can be represented in terms of the M

matrices as follows:

L =


M (1) 0 . . . 0

0 M (2) . . . 0
...

...
. . .

...

0 0 . . . M (N)

 (A.2)

where here zero represents the two-by-two matrix of zeros.

The replicator equation (Taylor and Jonker, 1978; Nowak, 2006a) is:

ẏ = y
(
Ly − y ·

(
Ly
))

(A.3)

From equations (A.1) and (A.2) it follows that:

Ly =


M (1)x(1)

M (2)x(2)

...

M (N)x(N)

 (A.4)

and that:

y ·
(
Ly
)

=


x(1) ·

(
M (1)x(1)

)
x(2) ·

(
M (2)x(2)

)
...

x(N) ·
(
M (N)x(N)

)

 (A.5)

Hence the replicator equation is:
ẋ(1)

ẋ(2)

...

ẋ(N)

 =


x(1)

x(2)

...

x(N)





M (1)x(1)

M (2)x(2)

...

M (N)x(N)

−


x(1) ·
(
M (1)x(1)

)
x(2) ·

(
M (2)x(2)

)
...

x(N) ·
(
M (N)x(N)

)


 (A.6)

This is simplyN decoupled replicator equations, each of which is the replicator equation for the

kth game, namely:

ẋ(k) = x(k)
(
M (k)x(k) − x(k) ·

(
M (k)x(k)

))
(A.7)
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It follows then that the replicator dynamics of individuals playing N simultaneous games is for-

mally equivalent to the replicator dynamics of N populations playing one of these games each.

Furthermore, nothing in this proof relies on the game being composed of only two strategies, or

even each game having the same number of strategies.



Chapter 4

Game Theoretic Treatments for the
Differentiation of Functional Roles in
the Transition to Multicellularity

Abstract

Multicellular organisms are characterised by role specialisation, brought about by the epigenetic

differentiation of their constituent parts. Conventional game theoretic studies of cooperation,

based on the prisoner’s dilemma and related games, do not account for this division of labour,

nor do they allow for the possibility of the plastic expression of phenotype. We extend the

definition of cooperative dilemmas to include those games in which fitness is maximised by a

mixture of different strategies, and present an extended dynamical model of selection that allows

for the possibility of conditional expression of phenotype. We use these models to investigate

systematically when selection will favour an adaptive diversification of roles. We find that, if

relatedness is high, selection will favour genotypes that are able to develop conditionally upon

the social environment in which they find themselves. We argue that such extensions to models

and concepts are necessary to understand the origins of multicellularity and development.

1 Introduction

The evolution of cooperation has been a central theme of research within evolutionary biology

(Axelrod and Hamilton, 1981; Fletcher and Doebeli, 2009; Lehmann and Keller, 2006). In

nearly all such formal studies cooperation is modelled by Dawesian dilemmas, most commonly

the Prisoner’s dilemma and closely related games (Doebeli and Hauert, 2005). A Dawesian

dilemma (Dawes, 1980; Macy and Flache, 2002) is one which satisfies two conditions:

55
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Dawes I There exists a single cooperative strategy whereby mean fitness is maximised if all

individuals perform this action.

Dawes II There exists an individual incentive not to perform this action.

Hence, evolution in a freely mixed population will not lead to a cooperative state that maximises

mean fitness.

The biological systems in which Dawesian dilemmas are usually applied have, in recent years,

greatly expanded from the study of eusocial insects and social vertebrates to a vast number

of different cases (Queller, 1997; Bourke, 2011). Of particular interest is the extension of the

notion of cooperation to the origin of multicellularity and hence development (Buss, 1987; May-

nard Smith and Szathmary, 1997; Michod and Herron, 2006; Grosberg and Strathmann, 2007).

The cells of a multicellular organism are often colloquially described as cooperating with one

another (Queller, 2000; Lehmann and Keller, 2006; Michod and Roze, 2001). However, the

cells cannot be thought of as being engaged in a Dawesian cooperative dilemma, as there is no

one phenotype that can be considered as the cooperator. Instead the multicellular organism is

characterised by having multiple complementary cell types (Bonner, 1993). This diversification

of roles is an important detail that conventional studies of the evolution of cooperation do not

adequately model. Whilst games such as the snowdrift game are polymorphic at equilibrium,

this does not represent a diversification of roles, as the two behaviours do not complement one

another, but instead defectors simply exploit cooperators. Proto-multicellular organisms, such

as slime moulds (Strassmann et al., 2000) and volvocine algae (Michod, 2007), often have two

distinct cell types; both of which are important for the function of the organism; thus no one type

should be thought of as the cooperator. To avoid semantic confusion we re-label cooperate as A

and defect as B. To reflect better the adaptive nature of role diversification we define a Division

Of Labour (DOL) game to be any game that has the property of mean individual fitness being

maximised by a polymorphic state. Following Weibull (1997), we call the state that maximises

fitness the Socially Efficient State (SES).

In cooperative dilemmas freely-mixed populations will not reach the SES. This, in general, will

also be the case for DOL games, and we thus retain the label of cooperative dilemmas in such

cases; whilst not adhering to Dawes I. Structuring of interactions, and specifically positive as-

sortment on cooperative phenotypes, is often claimed to be the central resolution to cooperative

dilemmas (Eshel and Cavalli-Sforza, 1983; Fletcher and Zwick, 2006; Godfrey-Smith, 2008).

However, in the limit, positive assortment of cooperators removes heterogeneity, and thus cannot

maximise fitness in a DOL game. Complete positive assortment can only ever lead to interaction

between individuals of the same type, whereas fitness in DOL games is maximised if all inter-

actions are between unlike types. This apparent paradox, between the need for heterogeneity

of roles to gain from specialisation/complementary functions and homogeneity to resolve the

cooperative dilemma can only be overcome if the individuals can express a phenotype condi-

tionally upon their social environment (including, potentially, a phenotype conditioned on the
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phenotype of their parent(s)). This is so that individuals can have a positive assortment on geno-

type, i.e. relatedness, whilst simultaneously creating a negative assortment on phenotype. These

are features of biological systems that conventional game theoretic models do not account for.

They are, however, crucial for understanding the origins of development and multicellularity; in

which the epigenetic determination of phenotype plays a key role (Lachmann and Sella, 2003;

Jablonka and Lamb, 2006).

Stark (2010) studies dilemmas of partial cooperation, which are mathematically equivalent to

DOL games, and concludes that partial levels of cooperation maximise fitness in certain types

of dilemma. However, as we shall show, this mixture of strategies is not optimal if one takes

into account the structuring of interactions, as fitness can be increased further if one allows for a

complete negative assortment on phenotype. Furthermore, Stark concludes that an intermediate

level of assortment will allow the population to reach the SES, which we show is not the case

(see section 3), as his argument does not account for how the SES is altered by assortment.

Other authors (Neill, 2003; Browning and Colman, 2004; Tanimoto and Sagara, 2007) have

analysed the turn-taking solution to DOL games. They conclude that if individuals alternate

sequentially between strategies then the dilemma can be resolved. En route to multicellularity

it may be the case that unicellular organisms employ life cycle stages that alternate between

roles, but true multicellular organisms have cells that remain specialised for the entirety of their

life, as the alternation of cell type is either costly or unfeasible (Michod, 2007). Therefore,

we study solutions in which individual cells are constrained to stick to a single phenotype after

development.

Archetti (2009) and Boza and Számadó (2010) look at a class of games that they label volunteer

dilemmas. In such games groups benefit from individuals performing costly actions. However,

the benefits of these actions are reaped if a certain threshold of individuals, less than the number

of individuals within a group, perform the cooperative action. As the action is costly, the mean

fitness of the group is maximised if only a certain fraction of the individuals cooperate. These

are indeed division of labour games by our definition. However, we conceptualise division of

labour games more broadly than this. In volunteer dilemmas one of the strategies is simply

the absence of action, however, it may be the case that mean fitness is maximised by two, or

more, active strategies, in which case it does not make sense to label one of these actions as

cooperate. Furthermore, neither of these studies considers the solution in which individuals

react conditionally to their social environment, which we show is an important solution to such

games.

Previous studies have taken the evolution of specialisation and the evolution of cooperation as

separate problems, the latter often modelled via cooperative dilemmas such as the prisoner’s

dilemma (Doebeli and Hauert, 2005; Fletcher and Doebeli, 2009; Traulsen and Nowak, 2006).

These two problems have therefore previously been studied largely in isolation. This paper

formulates the issue of specialisation via a simple extension of existing cooperative dilemmas.

We thereby relate the relatively understudied problem of specialisation, to a problem that has

been studied extensively: cooperation.
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A number of papers have looked at models in which individual components can potentially

specialise in a number of set tasks and further investigate the conditions under which special-

isation may occur. In particular both Gavrilets (2010) and Michod and Herron (2006) look at

a model in which individual cells can specialise in one of two tasks relating to fecundity and

viability, or alternatively remain as generalists. In these models the groups benefit from having

both tasks performed together, but there is an inefficiency cost for individual cells to perform

both. If the inefficiency is large enough then specialisation may evolve. Ispolatov et al. (2012)

analyse a model in which group structure is not presupposed, and is itself an endogenous pa-

rameter of evolution. This is embodied through a stickiness parameter. Again they conclude

that specialisation and group structure can evolve in a certain region of parameter space, where

here the important parameters are the cost of stickiness and the inefficiency cost for a single cell

to perform both actions together. Willensdorfer (2009) presents a similar study, but formulates

the model in terms of the fitness of a pre-existing group on which selection acts. The model

is phrased in terms of three key parameters: the cost of somatic function, the cost of size (i.e.

number of cells) and the benefit of group living. Whilst the authors derive some mathematical

results about when specialisation will evolve, and to what extent, they do not address the prob-

lem of cooperation per se, as selection at the colony level is presupposed. Rueffler et al. (2011)

present a model, in which pre-existing colonies begin in an entirely undifferentiated state and

then subsequently can evolve specialisation. As in other studies, whether or not this will happen

depends upon the detailed relationship between a number of parameters involving the costs and

benefits of specialisation. Barker et al. (2015) also construct an abstract model for the evolution

of specialisation, in which they study the evolutionary dynamics of groups of related individuals

that engage in one of two tasks. See (Hanschen et al., 2015) for a more detailed review.

Whereas in all previous studies (summarised above) groups are essentially undifferentiated bags

of cells performing one of two tasks, our model properly considers the internal structure of

interactions. We thereby consider an additional step towards the evolution of new levels of indi-

viduality. In addition to group formation and specialisation, we recognise that a more detailed

and controlled structuring of interaction is necessary for the evolution of multicellularity. Fur-

thermore, we claim that this can only come about through phenotypic plasticity and that mixed

strategies that have no context-sensitive expression are insufficient.

In the following section we give a full categorisation of two-player, symmetric DOL games and

in section 3 discuss two different notions of social efficiency and how these are affected by

population structure. In section 4 we briefly study some biological examples of DOL games

from a number of different fields. In section 5 we extend traditional models of evolutionary

game theory in order to allow for the possibility of conditional expression of phenotype.
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2 Categorisation of DOL games

We restrict our attention to symmetric, two-player cooperative dilemmas, as all our key points

can be understood from within this simple framework. All symmetric, two-player coopera-

tive dilemmas can be represented via a two-by-two payoff matrix, M , with four parameters:

R,S, T, P (Rapoport and Guyer, 1967) (see equation (2.1)). M can be simplified due to the fact

that payoff is relative. One can multiply all payoffs by a positive constant without qualitatively

changing the features of the game (although this alters the speed of selection). Likewise, one

may also add a constant to every payoff (Weibull, 1997). This permits one to write the payoff

matrix as:

M =

(
R S

T P

)
⇒

(
1 S

T 0

)
(2.1)

without loss of generality. Thus the space of all possible symmetric, two-player cooperative

dilemmas can be represented in the TS-plane (Santos and Pacheco, 2005), in which there are

four games with qualitatively different ESSs (see figure 4.1). The state of the population is

determined by x, the frequency of the strategy cooperate. The four games are:

Prisoner’s dilemma S <= 0 and T >= 1. Stable/unstable fixed point at x = 0/x = 1.

Snowdrift S > 0 and T > 1. Two unstable fixed points at x = 0 and x = 1 and a stable fixed

point at x = S/(S+T−1).

Stag-hunt S < 0 and T < 1. Two stable fixed points at x = 0 and x = 1 and an unstable fixed

point at x = S/(S+T−1).

Harmony S >= 0 and T <= 1. Stable/unstable fixed point at x = 1/x = 0.

The DOL games lie in the region where S + T > 2R. These games have previously been

excluded from the definition of cooperative dilemmas because they do not meet Dawes first

criterion; that fitness is maximised by all individuals cooperating (see for example Macy and

Flache (2002)). DOL games have the property that the SES is polymorphic. Furthermore, we

distinguish two varieties of SESs: firstly, the unstructured SES is the frequency of strategies

that maximises mean fitness given that the interactions between individuals are constrained to

be random with respect to phenotype (i.e. there is no phenotypic assortment) and secondly, the

structured SES, which is the state of the population (including both strategy frequency, and their

pattern of interactions) that maximises mean fitness. The unstructured SES is found from the

equation for mean fitness: π̄ = x2 + x(1− x)(S + T ), which has a maximum at:

xSES =
S + T

2(S + T − 1)
(2.2)

Note that this is not equal to the ESS, except when S = T . Section 3 discusses the structured

SES.
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FIGURE 4.1: The TS-plane: all games are categorised according to the nature of their equilibria
(the four named games) and on the nature of the state that maximises the mean payoff; either
pure cooperate, or a mixed state (appended with DOL). The Dawesian dilemmas are those

under the red line.

3 The Role of Assortment

Assortment measures the extent to which the interactions in a population are structured. Given

that in a DOL game fitness is maximised by an intermediate level of ‘cooperation’ it is tempting

to reach the conclusion that an intermediate level of assortment will lead to an intermediate level

of cooperation, and would thus maximise mean payoff (as claimed by Stark (2010)). This is not

the case, however, as we show here.

The state of the population is fully specified by: xA, the frequency of strategy A, and ϕ, the

frequency of interactions that are between unlike types (Pacheco et al., 2006; Van Segbroeck

et al., 2009). We define the population state to be the pair of variables (xA, ϕ). ϕ lies within the

interval [0, 2×min {xA, 1− xA}] (the triangular region of figure 4.2).

If the population is well-mixed then the probability that an A meets a B is equal to the probability

that a B meets a B and hence:

ϕ = ϕ(R) = 2xA(1− xA) (3.1)

whereR stands for random. Note, that equation (3.1) can alternatively be arrived at by assuming

that the probability of an A meeting an A is equal to the probability of a B meeting an A. The

essential point is that the probability of meeting a certain type is statistically independent of

one’s own type.

The SES given in equation (2.2) assumes that interactions are uncorrelated by phenotype. In

general the SES is a function of phenotypic assortment. Furthermore, if individuals are able

to control both phenotypic assortment and strategy frequency, then there exists an even higher

fitness state. Let the structured SES be the value of (xA, ϕ) that maximises mean payoff. In the
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FIGURE 4.2: Left: colour indicates mean payoff π̄(xA, ϕ). The dotted line represents ϕ(R),
the unstructured (A) and structured (B) SESs are also indicated. Right: colour is the absolute
value of the difference between the fitness of strategy A and the mean fitness (πa − π̄), thus
giving a measure of stability under selection. Dashed dotted line indicates πa − π̄ = 0. In this

example (S, T ) = (0.8, 2.9).

TS-plane the average payoff, π̄, is given by:

π̄ = xA +
1

2
(S + T − 1)ϕ (3.2)

And thus:

structered SES =

(1, 0) S + T < 2

(1/2, 1) S + T > 2
(3.3)

Thus, in DOL games individuals that engage exclusively in A-B interactions (ϕ = 1) maximise

fitness, as illustrated by figure 4.2.

The unstructured SES is the highest fitness state subject to the constraint that ϕ = ϕ(R), whereas

the structured SES is the highest fitness state when this constraint is relaxed. One of the central

claims of this paper is that this state can only be reached if either (A) individuals are able to

control the phenotype of the individual with whom they interact, or (B) they are able to control

their phenotype conditionally upon the phenotype of their partner. Neither SES is in general

stable, as figure 4.2 illustrates. Increasing assortment so that the equilibrium frequency equals

that of the unstructured SES will not ‘solve’ a DOL game because the population state will also

move below the dotted line in figure 4.2 and hence be at a lower fitness than either SES; this is

contrary to the claims of Stark (2010).

It is worth considering in more detail the question of whether or not division of labour games

can be usefully thought of as cooperative dilemmas. In conventional cooperative dilemmas there
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is a distinction between the state of the population that maximises mean fitness, and the state

that evolution actually reaches. As it stands this is merely an observation, as there is no reason

that evolution should act to maximise the mean fitness of the population, as selection acts upon

individuals, not populations. However, many models of the evolution of cooperation have shown

that there are certain circumstances in which selection on individuals will cause the population

to reach the state that maximises the mean fitness of the population (see for instance Nowak

(2006b); Godfrey-Smith (2008)). Conventional models of the evolution of cooperation are not

normally phrased in such a manner, preferring instead to talk about conditions that maximise

the frequency of cooperation. This quantity is only of interest because (in non-DOL dilemmas)

maximising cooperation maximises mean fitness. In DOL games, in contrast we need to be

more explicit about the fact that mean fitness is the quantity of interest because the frequencies

of each strategy are, by themselves, not sufficient to describe the fitness maximising state.

4 Examples of DOL Games

The defining characteristic of a division of labour game is that the population’s mean fitness is

maximised by having a polymorphic state, rather than having a pure state composed solely of

cooperators. As a brief aside before presenting our central model and to further justify the need

for such a formalism, we illustrate three examples of DOL games from three disparate areas of

biology. Other authors have looked at the evolution of the division of labour, most notably in the

context of bi-parental care of offspring (Harrison et al., 2009) and in foraging duties in eusocial

insects (Pollock et al., 2012), here I consider a number of other examples.

Firstly, slime moulds: slime moulds come in two phenotypic varieties, spores and stalks. The

current hypothesis being that the presence of stalks increases the fecundity of spore cells by

increasing their dispersal radius (Strassmann et al., 2011, 2000). We thus have two strategies:

spore (Sp) and stalk (St). Stalk cells receive no benefit from either other stalk cells or from spore

cells, they also have a base line fitness of 0. Spore cells receive a benefit b > 0 from a stalk cell

and have a base line fitness of 1 (for the purposes of this example). The resulting payoff matrix

is given by table 4.1. This is a division of labour game only if b > 1. Thus whilst stalk cells

may be thought of as altruists in the sense of Hamilton (Hamilton, 1964a; West et al., 2007),

they are certainly not cooperators in a prisoner’s dilemma, as a population composed entirely of

stalk cells would in fact minimise mean fitness, not maximise it.

Sp St

Sp 1 1 + b

St 0 0

TABLE 4.1: Payoff matrix for slime moulds playing either spore (Sp) or stalk (St).



Chapter 4 Game Theoretic Treatments for the Differentiation of Functional Roles in the
Transition to Multicellularity 63

Our second example is anisogamy. The hypothesis that we examine is that male sex cells are

adapted to eject mitochondria in order to minimise intra-organelle conflict (Hurst and Jiggins,

2005). Crucially we conduct the analysis from the view point of the nuclear DNA, as opposed to

the mitochondrial DNA. A zygote formed from two female sex cells is less fit than one formed

from a male and a female sex cell because of conflict between bi-parentally inherited organelles.

A zygote formed from two male sex cells is unviable. Let the fitness of the zygote formed from

a male and female cell be 1, and let the cost incurred by conflict be k. The payoff matrix for the

two strategies male (M) and female (F) is given by table 4.2. As k > 0 this is a DOL game. Some

conventional models of the evolution of anisogamy (Bell, 1978) portrayed the male as a form of

parasite on the altruism of the female (see also Roughgarden et al. (2006) for a criticism of this

line of thinking). However, by our view neither the male nor the female may be construed as the

cooperator or the defector. The species benefits from having a reduction in organelle conflict,

and for this to be achieved two different, yet complementary, roles must be performed.

F M

F 1− k 1

M 1 0

TABLE 4.2: Payoff matrix for the nuclear genes of male (M) and female (F) in which there is
a cost to organelle conflict.

Our final example comes from genetics and the phenomenon of over-dominance. It has been

shown (Traulsen and Reed, 2012) that the interaction of two alleles at a single locus in a diploid

organism has an exact correspondence to two-player evolutionary game theory if one considers

the allele (and not the typical biological individual) as the agent in the game. Each diploid

individual is one round of a ‘game’ between two alleles. Consider two alleles A and B. In

addition assume that the heterozygote has a higher fitness than either homozygote (i.e. over-

dominance or heterozygotic-superiority). The corresponding fitnesses are ωAA, ωAB and ωBB .

The fitness of an allele is the fitness of the zygote in which it resides multiplied by the probability

that it is transmitted. The transmission probability is one half under normal Mendelian genetics,

but may differ from one half if one considers the action of meiotic drive (Burt and Trivers,

2009). The resulting payoff matrix is given by table 4.3. The condition for overdominance is

identical to the condition of a division of labour game. Population mean fitness is maximised by

a polymorphic state of both alleles, this is a special case of a DOL game as here S = T , (i.e. the

off diagonal elements are equal). Because of this, evolution does tend towards a frequency of

alleles that maximises the mean fitness of the population. In our language this is the unstructured

SES. Note also that fitness could be further increased if all individuals were heterozygotic, this

would be the structured SES.
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A B

A 1
2ωAA

1
2ωAB

B 1
2ωAB

1
2ωBB

TABLE 4.3: The payoff matrix for a allele A against allele B in a diploid individual.

As a general point, we do not claim that the above examples have not been sufficiently stud-

ied in their own right. Instead, we are making the claim that the phenomenon of division of

labour games is common across a broad spectrum of biological examples. Our contribution is

to recognise that these seemingly disparate examples all share deep commonalities. Table 4.4

considers whether or not a number of examples can be considered as (A) DOL games and (B)

cooperative dilemmas. We include an additional example here, not discussed in above, of public

good production in a biofilm. We argue that this is not a DOL game and is in fact a standard

cooperative dilemma, as there is only one task to be performed, and mean fitness is a monotonic

function of the amount of this public good being produced.

Phenomenon Division of Labour Game? Cooperative Dilemma?

Public good production No Yes

in biofilms (Crespi, 2001)

Diploid Genetics Yes, in the case Only when one

of overdominance considers meiotic drive

Anisogamy Yes No for nuclear DNA,

yes for mitochodrial DNA

Slime moulds Yes, if b > 1 Yes

TABLE 4.4: Division of labour games in nature. Columns indicate whether the situation can
be thought of as (A) a division of labour game and (B) a cooperative dilemma.

5 Models and Results

We present here an extension of simple one-gene one-phene game theoretic models in order

to show that a conditional expression of phenotype is necessary for a population to reach the

structured SES. In our model the phenotype of an individual is expressed conditionally upon the

phenotype of the parent and may thus be construed as a manner of parental effect (Mousseau and

Fox, 1998; Marshall and Uller, 2007). Individuals are characterised by two genes that determine

their strategy. The first gene, the social strategy, x ∈ [0, 1], is the probability of playing strategy

A. The second gene, the replication strategy, β ∈ [−1,+1], determines the probability that an

offspring is of the same (β > 0) or opposite (β < 0) phenotype to its parent. This can be
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interpreted as either the influence the parent has on the offspring, or the reaction of the offspring

to the parent’s phenotype.

When a parent-offspring pair interact the parent’s phenotype is determined by its social strategy.

The phenotype of the offspring is determined by the replication strategy of the parent. If β > 0

it copies the phenotype of the parent with probability β, and if β < 0 it adopts the opposite

phenotype to its parent with probability |β|, otherwise it reverts to its own social strategy. When

two random members of the population meet both adopt a strategy determined solely by their

social strategy.

We allow for an arbitrary level of genetic assortment, or relatedness, r ∈ [0, 1]. This can be

modelled as follows: with probability r an offspring remains with its parent and the two interact,

and with probability 1−r the offspring interacts with a random member of the population. Note

that r is a measure of assortment in exactly the same manner as ϕ (see section 3). However,

we use a distinct symbol here as r is a measure of genetic assortment, whereas ϕ measures

phenotypic assortment. In conventional models of game theory these two parameters are exactly

equivalent; the distinction only becomes apparent in the presence of a separation of phenotype

and genotype.

Although Hamilton phrased his formulation of relatedness on the notion of co-ancestry (Hamil-

ton, 1964a) it was soon realised that the most general formulation of relatedness is in terms of a

regression coefficient on genetic value (Orlove, 1975; Grafen, 1985) (see Gardner et al. (2011)

for a recent review). r is defined by: r = Cov(g′,g)/Var(g), where g is the value of the gene at the

focal locus and g′ the value of the gene of the partner. Note that it is possible for the same value

of relatedness to be embodied in a number of different ways. It may be that individuals meet

only clonal individuals a certain fraction of the time, or that they meet individuals who are only

somewhat similar to themselves all of the time, or anything else in-between. The claim of inclu-

sive fitness theory is that the action of selection is the same in either case. We therefore model r

in the simplest possible way; namely, that individuals meet clonal individuals with probability r

(and random individuals with probability 1− r).

Frequently an individual’s phenotype is determined not solely by the genotype or the abiotic

environment of the individual, but through manipulation of the phenotype by the parent; this is

referred to as a parental (or maternal) effect (of phenotype) (Mousseau and Fox, 1998; Marshall

and Uller, 2007). Parental effects are common across many taxa, as can be seen in eusocial

insects (Hölldobler and Wilson, 1990), in plants (Bernardo, 1996), and even in bacteria such as

rhizobium (Bever and Simms, 2000). In addition, asymmetric cell division (Roegiers and Jan,

2004) can be thought of as parental control of phenotype at the cellular level. What is required

for the solution to a DOL game that is also a cooperative dilemma is some manner of context

sensitive determination of phenotype. However, this is not sufficient, as there remains a po-

tential conflict between strategies. Therefore, in addition to context sensitive development of

phenotype, genetic assortment, or relatedness, is necessary for the resolution of a DOL cooper-

ative dilemma. We therefore complement the model presented in this paper with an alternative
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formulation of our model to further illustrate the generality of our claims, see appendix B. In the

alternative model we construe the value β to be a reaction to the phenotype of another individual

who is not necessarily the parent of the focal individual. In this model one individual, chosen

at random, reacts to the phenotype of the other individual. The results of this model are quali-

tatively the same as the one presented here, and all the key points we make here apply equally

well to this alternative model.

We proceed by calculating the expected fitness of each individual as a function of its genotype

and of the state of the population. When an individual with social strategy p meets an individual

with social strategy q it receives a payoff given by:

F [p, q] = pq + p(1− q)S + (1− p)qT (5.1)

which is the expected payoff to mixed strategy p on meeting q. On meeting a random individual

the expected payoff to an individual with genotype [x, β] is given by πrand = F [x,E[x]], where

E[x] is the average value of x. On being paired with a clonal individual the payoff is defined as:

πself[x, β] =

(1− β)F [x, x] + βx β ≥ 0

(1 + β)F [x, x]− β
(
S+T
2

)
β < 0

(5.2)

The fitness of the individual is given by:

π = (1− r)πrand + rπself (5.3)

We calculate ESSs for all points on the TS-plane (see appendix A). We find that they are always

unique and that all ESSs lie at the extreme values for x and β. We also model selection via

numerical integration of the replicator equation (Taylor and Jonker, 1978). We do this by se-

lecting an initial population, but fixing r in each case. In the limiting case of an infinitely large

population the initial state is fully specified by stating the density of individuals that exist in the

population with a given genotype (x, β), subject to the constraint that total density equals one.

In order to integrate this numerically we break up the space of possible genotypes into a discrete

grid of 100 by 100 possibly genotypes. We investigate the dynamics by starting from both a

uniform initial condition and from a random one. Here random means simply selecting a value

for density at each point independently from the uniform distribution [0, 1], and normalising so

that this distibution sums to one. In the latter case we repeat the numerical experiment mul-

tiple times for different random initial conditions. We find that in every case the evolutionary

dynamics lead to the population settling in the unique ESS.

We also analyse two special cases of the full model for means of comparison: the pure strategy

model, in which β = 0 for all individuals and x is either one or zero, and the mixed strategy

model in which β = 0 for all individuals, but xmay vary continuously. These two cases are used

as bench marks to illustrate when more sophisticated strategies will be at a selective advantage.
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The state of the population is characterised by the frequency of phenotype A, xA and by the

extent to which interactions are phenotypically correlated: cov (p, p′) (covariance of phenotype

for all interacting pairs). Figure 4.3 shows the equilibrium values of these two variables for one

generic non-DOL and one DOL prisoner’s dilemma, illustrating that, as relatedness increases,

selection favours those strategies that increase the amount of negative phenotypic assortment,

and move xa towards one half. This illustrates that such a manner of conditional expression of

phenotype is sufficient for a population to move towards the structured SES. We also show the

fitness attained by the full model, as compared with the mixed and pure strategy models. These

models reach the structured SES, the unstructured SES and all-A state respectively, illustrating

the fitness advantage to conditional expression of phenotype in DOL games for sufficiently high

relatedness.
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FIGURE 4.3: Equilibrium states for one non-DOL game (top: (S, T ) = (−0.3, 1.8)) and one
DOL game (bottom: (S, T ) = (−0.2, 3.8)) as a function of relatedness. Top figures: xA
and cov (p, p′) plotted against r. Bottom figures: solid lines represent the actual achieved
fitness of the three models (π̄) for increasing r. The three dashed lines represent the theoretical
fitness that the population would obtain at (from top to bottom) (A) the structured SES, (B)
the unstructured SES and (C) a population composed entirely of strategy A (note that in the
non-DOL game these three states coincide, and thus only one line is shown). The points are
the result of numerical integration of the replicator equation, and the lines the exact ESS of the

model (see appendix A).
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Figure 4.4 categorises the nature of all ESSs on the TS-plane for varying levels of r (see ap-

pendix A for a derivation). When r = 0 the ESSs are the same as in the conventional pure

strategy models of evolutionary game theory (see Nowak (2006a); Santos and Pacheco (2005)).

For 0 < r < 1 we find seven qualitatively different types of ESSs. These ESSs may be under-

stood as strategies that maximise individual fitness, as given by equation (5.3). The first part of

equation (5.3), πrand, is maximised by the social strategy corresponding to the ESS in the pure

strategy case. The second part is maximised by [0,−1] and [1,−1] if S + T > 2, or by [1,+1]

otherwise. The resulting ESS is a compromise between maximising both terms, the relative im-

portance of each changes with r. For small r the optimal strategy is to choose a social strategy to

maximise πrand, and then to choose a replication strategy to maximise πself, given the constraint

of what has been chosen for the social strategy. This latter choice depends upon which of three

qualitatively different regions the game lies in:

1. S + T < 2P : the unlike pairing is the worst possible outcome, and thus it pays to meet A

with A and B with B.

2. 2P < S + T < 2R all strategies do best when paired with an A, favouring the strategies

[1,+1] and [0,−1].

3. S + T > 2 unlike pairings are the best possible outcome, so it pays to meet A with B and

B with A.
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FIGURE 4.4: ESSs in the TS-plane. Solid black lines denote qualitatively different regions of
ESSs. Colour represents the fitness of the full model minus the fitness of the mixed strategy
model. Blue/red regions indicate where the mixed/full model have higher fitness. From left to

right: r = 0.3, 0.7, and 1.

As r increases no qualitatively new ESSs emerge, instead the regions in which they are stable

smoothly deform. Take for example the region [1,+1] and [0,−1]. For small r this region lies

mostly in the non-DOL snowdrift game. Selection favours a ratio of A and B given by the fixed

point of the pure strategy game. Upon meeting a relative the As do better from meeting another

A, so the replication strategy is to make one’s offspring like oneself (i.e. β = +1). Bs also

do better upon meeting As and thus make their offspring unlike themselves (β = −1). As r

increases this region encroaches on the prisoner’s dilemma. The additional gains that an [1,+1]

makes on meeting a relative begin to outweigh the losses it makes upon being paired with a

random individual (as AA scores more highly than AB in this region). As r approaches one the

ESSs begin to merge with the strategies that create the structured SES ([1,+1] for S + T < 2R

and one of [1,−1] or [0,−1] for S + T > 2R). When r = 1 the strategies [1,−1] and [0,−1]

have exactly equal fitness in the DOL region and are thus neutrally stable.

The colour of figure 4.4 summarises the key results of this paper by plotting the fitness of the

full model, minus the fitness of the mixed strategy model for three incremental values of r.

The reason for comparing the full model to the mixed model is that the mixed model obtains

the next highest fitness to the full model and we specifically wish to illustrate the additional

fitness increment that is obtained from the addition of context sensitive strategies, over mixed
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strategies. In the absence of relatedness the two models are equivalent. At intermediate levels

of r, in some regions of game space, the mixed strategy model actually achieves a higher fitness

than the full model. At higher levels of r the full model reaches a state with significantly higher

fitness. Furthermore, this effect becomes more pronounced the further into the DOL region the

game lies. Mixed strategies allow for the maintenance of heterogeneity despite being genetically

homogeneous, which allows them to reach the unstructured SES. They are not able, however, to

control phenotypic assortment and are thus unable to reach the structured SES. This is achieved

through individuals creating full negative assortment on phenotype. The key feature of the full

model is the separation of genotype from phenotype. This allows for a complete decoupling

of phenotypic assortment from genotypic assortment, thus allowing individuals to fully explore

the population state (as described by figure 4.2). This is a feature of collective living organisms

such as cellular slime moulds, the individual cells of which are able to develop into one of two

phenotypes, and to do so in a manner that is sensitive to their social environment (Strassmann

et al., 2011; Nanjundiah and Sathe, 2013). These key features mean that the colonies begin

to exhibit adaptation in their own right by having high levels of specialisation and functional

integration and are thus candidates for individuality (Queller, 1997; Clarke, 2011; Herron et al.,

2013), rather than being merely groups of cooperators.

6 Discussion

In recent years there has been a call to move evolutionary theory beyond the modern synthesis,

possibly via some form of extended synthesis (Pigliucci, 2007; Pigliucci and Müller, 2010;

Laland et al., 2015). One particular phenomenon that may not be adequately taken into account

is phenotypic plasticity (West-Eberhard, 2003) and how this affects, and is affected by, genetic

evolution. Evolutionary game theory, despite a large amount of success in explaining interesting

biological phenomena (see for example Bulmer (1994)), is very much rooted in the one-gene

one-phene paradigm of genetics. In order to understand phenotypic plasticity we must begin to

extend these models.

This paper has presented a simplest case scenario that extends the conventional models of evo-

lutionary game theory in order to incorporate the possibility of context sensitive expression of

phenotype. This was done by allowing for a general genetic encoding of a context sensitive strat-

egy via a two locus genome. Rather than considering the abiotic environment of the individual

as the key driving force for phenotypic plasticity, we look instead at how social interaction (and

in particular the social interactions between parent and offspring) can be its main driver (Uller,

2008; Badyaev and Uller, 2009; Marshall and Uller, 2007). This is crucial if one wants to gain

an understanding of the early stages of the evolution of multicellularity and other analogous

fraternal transitions in evolution (Maynard Smith, 1964; Queller, 2000). In particular, a crucial

feature of such transitions is the presence of epigenetic expression of phenotype (Jablonka and

Lamb, 2006). We have also shown that the evolution of conditional epigenetic strategy can also

come about through a different route by investigating an alternative formulation of the model,
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whereby individuals react to the strategy of other individuals in the population, see appendix

B. In the first instance the epigenetic determination of strategy comes about through parental

manipulation of the child’s phenotype, and in the second instance it comes about through the

conditional expression of phenotype as a reaction to the phenotype of the individual with whom

it interacts. However, particularly when the individuals are clonally related, this distinction is

only a matter of perception. If two individuals share identical genes then one individual telling

the other what to do and one individual reacting to another individual are indistinguishable

cases. The second model differs only in the fact that individuals can also react to the phenotype

of individuals who they are not related to.

One of the key features for selection to favour conditional expression of phenotype is that there

exists some benefit to the simultaneously performing of two different tasks. This is a feature that

the conventional Dawesian cooperative dilemmas do not possess. We have shown, however, that

by extending the notion of cooperative dilemmas to include the DOL games (those games where

polymorphic states are socially efficient), one can find scenarios where conditional expression

of phenotype will be at a selective advantage, i.e. when relatedness is high. A key advantage of

our model is that it can be used to analytically explore all possible two-player interactions. We

find that conditional strategies become increasingly favoured the further into the DOL region

the game lies. The reason for the success of the conditional strategies is that there exists, in

these games, a fundamental problem; as these games are cooperative dilemmas they require

positive assortment for their resolution (Eshel and Cavalli-Sforza, 1983). However, as they

benefit from heterogeneous interactions they are “solved” by negative assortment. This tension

is only resolved with phenotypic plasticity, which allows for a simultaneous positive assortment

on genotype and a negative assortment on phenotype.

A Appendix: Determining ESSs on the TS-plane

In this appendix we illustrate how to calculate the properties and location of the qualitatively

different regions of ESSs on the TS-plane. We do this firstly for the special case of mixed

strategies and then for the full model involving strategies that are able to act conditionally upon

the phenotype of their parents.

A.1 Mixed Strategies

A mixed strategy individual is characterised by a single number, x ∈ [0, 1], which represents

the probability of playing strategy A in any given encounter. The expected payoff an individual

with strategy p receives on meeting an individual with strategy q is given by:

F (p, q) = pq + p(1− q)S + (1− p)qT (A.1)
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The population is genetically assorted, and thus individuals play a clonally related individual

with probability r and a random one with probability 1 − r. Thus, the expected payoff to an

individual with strategy x is given by:

π(x) = rF (x, x) + (1− r)F (x,E[x]) (A.2)

where E[x] is the mean value of x.

For a strategy x to be at equilibrium it must maximise equation (A.2), with the additional con-

dition that E[x] = x. That is:
dπ

dx
|E[x]=x = 0 (A.3)

This occurs at the point:

x∗ =
S + rT

(1 + r)(S + T − 1)
(A.4)

Note: that this is equal to the unstructured ESS when r = 1. Furthermore, the equilibrium is

stable only if d
2π
dx2

< 0, which occurs for S + T > 1.

From x∗ = 1 it follows that: S = −rT and x∗ = 0: S = 1+r−T
r . These are the lines at which

the mixed strategy equilibrium leave the valid region for x and thus delimit the regions in which

the ESS is a mixed strategy and the regions in which it is a pure strategy (see figure 4.5).
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FIGURE 4.5: The mean value of phenotype A for the mixed strategy case with r = 0.3, 0.7

and 1.0. Also shown the lines: S = −rT and S = 1+r−T
r .
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A.2 Conditional Strategies

Individual strategy is characterised by a two locus genome, the social strategy, x, and the repli-

cation strategy, β. With probability 1−r an individual is paired with another random individual,

in which case the expected payoff is given by:

πrand(x) = F (x,E[x]) (A.5)

as is the case for the mixed strategy model. With probability r an individual is paired with a

clonal relative, in which case individual one determines the phenotype of individual two (which

role the individual takes is decided at random). If β < 0 then individual two opposes the

phenotype (i.e. does the opposite) of individual one with probability −β, otherwise individual

two chooses a phenotype based on its own social strategy. Thus, if no opposition occurs the

expected payoff is given by F (x, x). If, however, opposition occurs then each player gets either

S or T with probability one half. The expected payoff is then given by:

πself(x, β < 0) = (1 + β)F (x, x)− β
(
S + T

2

)
(A.6)

If β > 0 then the second individual copies the phenotype of the first with probability β, and

gets R = 1 with probability x or P = 0 with probability 1 − x. Otherwise, payoff is again

determined by F (x, x). Thus:

πself(x, β > 0) = (1− β)F (x, x) + βxR+ β(1− x)P (A.7)

= (1− β)F (x, x) + βx (A.8)

and thus:

πself[x, β] =

(1− β)F (x, x) + βx β ≥ 0

(1 + β)F (x, x)− β
(
S+T
2

)
β < 0

(A.9)

The overall payoff is given by:

π(x, β) = (1− r)πrand(x) + rπself(x, β) (A.10)

Mixed strategy equilibria must satisfy the condition that they are at a maximum of fitness. How-

ever, we find that the fitness function has no maxima within x ∈ [0, 1] and β ∈ [−1,+1]. This

is found from verifying that the equation:(
∂π
∂β |E[x]=x

∂π
∂x |E[x]=x

)
= 0 (A.11)

has no solutions.

Combinations of pure strategies may form ESSs. These are found simply by requiring that

fitness of all strategies at equilibrium must be equal. For example, for [1,+1] and [1,−1] to form
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an ESS it is necessary that π(1, 1) = π(1,−1). There are no solutions for all four strategies

having equal fitness, nor are there any solutions for the four possible combinations of three

strategies. However, the following pairwise equalities have solutions:

π(1, 1) = π(0,−1)

at:

x =
r(3S + T − 2)− 2S

2(1− r)(1− S − T )
(A.12)

and:

π(1,−1) = π(0,−1) (A.13)

at:
S

S + T − 1
(A.14)

and:

π(1, 1) = π(0, 1) (A.15)

at:
r (S − 1)− S

(1− r)(1− S − T )
(A.16)

no other mixtures of pure strategies have solutions.

These equilibria may be either stable or unstable. Stability occurs only if:

∂

∂E[x]
(π(1, β)− π(0, β)) < 0 (A.17)

Each of the three found ESSs are unstable if S + T > 1.

The ESSs comprised of single pure strategies are found simply by checking which of the pure

strategies has maximum fitness. Figure 4.6 shows how the TS-plane is split into different qual-

itative regions of ESSs. The regions in which certain ESSs exist is found by asserting that a

mixed ESS lies within the interval of validity: x ∈ [0, 1]. Line A is found from setting equation

(A.12) equal to one, and line C is found from setting equation (A.14) equal to one. Lines D,

E and F are found by setting equations (A.14), (A.12) and (A.16) equal to zero. Line B is the

point where the mixed ESS composed of [1,−1] and [0,−1] is equal in fitness to the mixed ESS

composed of [1, 1] and [0,−1], and finally, line G is when the pure state of [0,+1] is equal in

fitness to the pure state of [0,−1]. Table 4.5 summarises all of this information.
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FIGURE 4.6: Schematic for different ESS in the TS-plane. Left: r = 0.3 and right: r = 0.7.

Label Equation

A T = 1

B S = 2− T
C S = 2−2T+rT

r

D S = 0

E S = r(2−T )
3r−2

F S = r
r−1

G S = −T
Region ESS Frequency of 1st strategy or tipping point

1 Pure [A,−1] NA

2 [A,−1] and [B,−1] coexist S
S+T−1

3 Pure [A,+1] NA

4 [A,+1] and [B,−1] coexist r(3S+T−2)−2S
2(1−r)(1−S−T )

5 [A,+1] and [B,+1] are bistable r(S−1)−S
(1−r)(1−S−T )

6 [A,+1] and [B,−1] are bistable r(3S+T−2)−2S
2(1−r)(1−S−T )

7 Pure [B,−1] NA

TABLE 4.5: Equations of lines separating ESS regions and equilibria values for different ESSs
(see figure 4.6).



76
Chapter 4 Game Theoretic Treatments for the Differentiation of Functional Roles in the

Transition to Multicellularity

B Appendix: Alternative Formulation of the Model Using “Reac-
tive” Strategies

B.1 Introduction

In the main paper we presented a model in which the parent controlled the phenotype of the

offspring based on a genetic “replication” strategy. The conclusions that we drew were that, in

DOL games, the maximum fitness state could only be reached if (A) there exists genetic assort-

ment (i.e. relatedness) and (B) individuals are able to determine the phenotype of the individual

with whom they interact. With this appendix we show that the conclusions of the main paper

are more general than the particular modelling choices that we made. Specifically, a qualita-

tively similar outcome pertains if individuals react to the phenotype of their opponent based on

a genetic copying strategy. As before we envisage individuals paired with genetically similar

individuals, but in this case they are not necessarily parent-offspring pairs. The phenotype of

one of the individuals, chosen at random, reacts to the phenotype of the other individual. This

is in contrast to the previous model where the phenotype of an individual was determined by

another individual (in this case the parent). We go on to show that such a model is sufficient for

the population to reach the maximally fit state.

The difference between the models is not a profound one, as we shall show. If two individuals

are clonally related then there is no difference between being told what to do by a relative, and

reacting conditionally to a relative, as in each case the responsible genes are in common between

the two individuals. The real difference in this model is that here individuals are able to react to

the phenotype of other individuals with whom they are not related.

B.2 The Reactive Strategy Model

As before, an individual’s genotype has two loci. Genotype Gi is thus specified via Gi =

[xi, βi]. Individuals develop into one of the two possible phenotypes (A or B) in a manner

dependent upon their genotype. Individuals are paired and engage in fitness altering interactions

according to the standard RSTP payoff matrix. Upon being paired one of the two individuals

is arbitrarily, and at random, chosen to be player one, and the other player two. Player one

develops into one of the two possible phenotypes stochastically. With probability xi it becomes

an A and with probability 1−xi it becomes a B. Player two then develops into one of the possible

phenotypes. If β is positive it copies the phenotype of player one with probability β, and with

probability of 1 − β it develops stochastically according to its value of x in the same manner

as before. If β is negative, then with probability −β it develops into the opposite phenotype

of player one, and with probability 1 + β it develops stochastically according to its value of x.

β thus plays the role of “desired phenotypic assortment” of the individual in question. It plays

a role analogous to β in the previous model, but here it is interpreted as a “reaction” strategy

rather than a replication strategy.
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We model this situation via the replicator equation, rather than following an agent based ap-

proach. The replicator equation is (Taylor and Jonker, 1978):

ẋi = xi(πi − π̄) (B.1)

where xi represents the fractional density of a strategy type i, ẋi the rate of change of the

density and πi the payoff to strategy type i. π̄ represents the mean fitness of all strategies,

so that strategies increase in frequency in proportion to their current densities and the relative

fitness with respect to the average. The state of the population is specified by the density of

individuals playing strategy [xi, βi], for all xi ∈ [0, 1] and βi ∈ [−1, 1]. Evolution is modelled

simply by integration of the replicator equation through time. We record the mean fitness (π̄)

as well as the mean values for each locus (x̄ and β̄). The replicator equation is constructed by

calculating the expected payoff for an individual playing strategy (x1, β1) meeting an individual

playing strategy (x2, β2) (given by F [(x1, β1) , (x2, β2)]). From this we can construct payoffs

and integrate the replicator equation until equilibrium is reached. As each player has equal

chance of being player one we break the fitness function into the payoff received upon being

player one (F (1)) and that received upon being player two (F (2)) and note that:

F [(x1, β1) , (x2, β2)] =
1

2
F (1)[(x1, β1) , (x2, β2)] +

1

2
F (2)[(x1, β1) , (x2, β2)] (B.2)

The two fitness functions are given by:

F (1)[(x1, β1) , (x2, β2)] = (1− |β2|) (x1 (x2R+ (1− x2)S) + (1− x1) (x2T + (1− x2)P ))

+

β2 (x1R+ (1− x1)P ) β2 > 0

−β2 (x1S + (1− x1)T ) β2 ≤ 0
(B.3)

and:

F (2)[(x1, β1) , (x2, β2)] = (1− |β1|)(x2(x1R+ (1− x1)T ) + (1− x2)(x1S + (1− x1)P ))

+

β1(x2R+ (1− x2)P ) β1 > 0

−β1(x2T + (1− x2)S) β1 ≤ 0
(B.4)

As before, two special cases of the model are also considered by restricting the permissible set of

genotypes. Firstly, the mixed strategy model in which individuals are restricted to have β = 0.

Thus, individuals cannot affect phenotypic assortment. One can consider this as the mixed

strategy model, as a genotype specifies a probability of playing a certain strategy, although all

individuals only ever express one phenotype for the duration of their lifetime. Secondly, we

consider a pure strategy model, in which individuals may only play with one of the two pure

strategies: G ∈ {[1, 0], [0, 0]}.
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We also assume there is a level of relatedness parametrised via r. We assume the presence of

some form of assorted interactions, but do not specify the detailed mechanism underlying them,

see the main text. We simply state that the fitness an individual receives is r times the fitness it

receives on playing itself, plus 1− r times the fitness received on playing a random individual,

that is individual I receives payoff:

F (r) = rF [I, I] + (1− r)F [I, Ī] (B.5)

where Ī is the average individual.

As before we create an initial population of individuals by randomly populating the space of

genetic individuals, and normalising so that this distribution sums to one. Again we break up

the space of potential genotypes into a discrete 100 × 100 grid in order to perform numerical

integration. We also investigate the model starting from uniform, rather than random, initial

conditions, and find the results to be the same in each case. We integrate via the replicator

equations until equilibrium is reached and record the average value of x and β as well as the

final mean fitness (π̄). We investigate how x and β depend on the game and the value of r. We

also compare final fitness with the two special cases of the model.

B.3 Results

Figure 4.7 shows a figure analogous to figure 4.3. The fitness obtained at equilibrium for the

three versions of the model are plotted against increasing relatedness. In the non-DOL game the

three versions of the model exhibit identical behaviour. In every model, for low r, all individuals

play always defect, and evolve to have a β value equal to 0 (in other words they don’t react to the

phenotype of their opponent). This is unsurprising as the game is a prisoner’s dilemma. Note

that the fact that individuals may react to the phenotype of their opponents makes no difference

to this game as it is always rational to defect against ones opponent regardless of their strategy.

As r increases all three models exhibit an abrupt transition from the all-B state to the all-A state.

In the case of the reactive strategies they do this simply by always playing A, in which case

any positive value of β will amount to the same behaviour, and thus β evolves through random

drift to approximately 1/2. Notice that close to the transition β is markedly higher than one half.

This is because there is selective pressure on β whilst x is evolving towards one. Close to the

transition the evolution of x is much slower, creating an initial selective pressure on β. Note that

in this non-DOL prisoner’s dilemma the addition of more complicated reactive strategies has

absolutely no effect, as the “rational” behaviour is to always perform a certain action regardless

of the action of ones opponent.

The second example game is a DOL prisoner’s dilemma. It thus has a structured SES whereby all

pairs of individuals are of unlike types (A-B). Note that the mere presence of reactive strategies

is not sufficient for the structured SES to be reached as, although individuals are theoretically

capable of creating this structure, it is not in their interests to do so. Only when relatedness
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increases will the reactive agents reach the structured SES. Note also that the fixed point of

the evolutionary dynamics for the mixed strategy agents transforms smoothly towards the un-

structured SES as r increases. Likewise, the fixed point for the pure strategy agents transforms

smoothly towards the all-A state for increasing r. The key features of this graph are directly

comparable to that of the figure 4.3. Firstly, the three models are identical in the non-DOL

games. Secondly, for the DOL game, but in the absence of relatedness, the three models give

identical results. Thirdly, for DOL games the conditional strategy version of the model is the

only one that is able to reach the structured SES. We can conclude that this manner of comple-

mentary strategies can only come about if (A) the game is a DOL game, and there is thus some

overall benefit to complementary tasks, (B) the individuals have the ability to develop condi-

tionally upon the phenotype of the individual with whom they interact with and (C) there is the

motivation to collaborate, i.e. that there is a high level of relatedness. Note that, ordinarily, if

β = −1 it always pays to play B when player one, as other individuals will always play A.

This is not true however if r = 1, in which case individuals should consider the welfare of their

opponent as equally important to their own. Hence for r = 1, xA is equal to one half (see top

right panel of figure 4.7).
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(a) Non-DOL game S, T = (−0.5, 1.5).
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(b) DOL game S, T = (−0.2, 4.0).

FIGURE 4.7: The final fitness obtained for each of the three models for one non-DOL prisoner’s
dilemma and one DOL prisoner’s dilemma for increasing values of r. Also shown: the value
of x and β for the full model only. Dashed lines represent the theoretical maximum obtainable
fitness in each case. Each point is the mean of 12 runs of the model. Note that in the non-DOL

game the three models are indistinguishable, and hence only one set of points is visible.

Figure 4.8 shows the fixed point in terms of both x and β for the space of all possible two-player

symmetric games represented by the TS-plane. Note that the diagonal dotted line divides the

space into non-DOL (below) and DOL (above) games. The structured SES above the line is to

have β = −1 and x = 1/2. Below the line it is simply to have a population composed entirely

of strategy A. For low r it is clear that the outcome of evolution is not to reach this optimal state

over the entire space. However, the situation is more subtle than in the previous version of the

model. Even in the absence of relatedness in the snowdrift game it is rational for an individual

to oppose the strategy of the opponent, i.e. to meet A with B and B with A. Under normal

assumptions of evolutionary game theory this is achieved in a probabilistic manner, however,

if individuals can react to the strategy of their opponent deterministic strategies perform better.

Thus, in some regions of the game space individual freely-mixed selection will reach the SES.
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However, this is not a surprise since individuals will evolve to this state even in those games

where it does not maximise mean fitness. Note also that in this model, unlike the conventional

snowdrift game, a mixture of strategies does not evolve. Given that individuals will always

oppose you it pays to always play B if S < T or to always play A if S > T . Figure 4.9

summarises the key points by showing a schematic overview of whether genetic assortment or

phenotypic plasticity (or both) are necessary to “solve” the dilemma for every qualitative type

of game.
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FIGURE 4.8: Intensity of colour indicates the averaged equilibrium value of the two genes x
and β over the space of possible games represented by S and T . The TS-plane is broken into
41 × 41 discrete games, and each point is the mean of 12 repeats of the simulation. The four

panels correspond to 4 increasing values of r.

For r = 1 the system will always evolve to the structured SES, this is identical to the main

version of the model. For intermediate values of r the situation transitions between the outcome

in the well-mixed game, and the outcome in the case where r = 1. There is thus a gradual

transition between selection being driven towards maximising the mean fitness of the population,

and selection maximising the one off fitness of the individual. Note that we are not claiming

that selection actually selects groups of individuals to maximise their mean fitness, merely that

when relatedness is high the action of selection on individuals is indistinguishable from such a

scenario.
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Transition to Multicellularity

S=0 

T=
1 

G+P 

G+P 

P 
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G = Genetic 
Assortment 
P = Phenotypic 
plasticity 

FIGURE 4.9: Schematic showing which of genetic assortment (G) and phenotypic plasticity
(P) are necessary for the resolution of each type of game. See figure 4.1 for comparison.

Overall, this second model demonstrates that in DOL games higher mean fitness states can

be achieved provided that (i) strategies allow for some degree of phenotypic plasticity, and

(ii) there exists a degree of genetic assortment. It should be noted that in detail the model

described here exhibits different behaviour from both the pure strategy model and the version of

the model described in the main paper. However, the central point of our paper is well supported

by this alternative version of the model, showing that our claims are more general than the

specific assumptions we must make in order to construct a model. What is necessary for the

evolution of function specialisation is some manner by which individuals can react to, or be

manipulated by, the social environment in which they find themselves. This was achieved in

the main paper by assuming that parents could determine the phenotype of their offspring based

on their own phenotype. In this appendix this was achieved by assuming that individuals could

react conditionally to the phenotype of the individuals with whom they interact. Whilst some

details of the two model were different, particularly in the well-mixed case, the final outcome

for high relatedness were the same. For this diversification of roles to evolve there must be both

the mechanism, i.e. some form of conditional expression of phenotype, and the “motivation”,

i.e. high levels of relatedness.



Chapter 5

Discussion

1 Overview

Cooperation, the act of forgoing reproductive potential in order to increase the reproductive

potential of others, is a widespread feature in the biological world; the presence of which is puz-

zling. A naive reading of Darwinism suggests that selection should prune out any tendency of an

individual not to maximise its own number of offspring. One explanation for this ‘paradox‘ of

cooperation concerns positive assortment (Eshel and Cavalli-Sforza, 1983; Michod and Sander-

son, 1985; Godfrey-Smith, 2008). Positive assortment, a form of population structure, means

that individuals meet other individuals who are correlated, either genetically or phenotypically,

with themselves to a degree that is statistically greater than would have been expected from ran-

dom encounters alone. In the presence of positive assortment cooperation may be evolutionarily

stable.

In the vast majority of models of the evolution of cooperation population structure is taken for

granted. Increasingly, however, there are a growing number of studies that ask what would hap-

pen if positive assortment were itself subject to evolution (Powers, 2010; Powers et al., 2011;

Ryan and Watson, 2015; Santos et al., 2006a). A number of authors have looked at the evolution

of assortment from the perspective of limited dispersal (Johnson and Gaines, 1990; Le Galliard

et al., 2005; Hochberg et al., 2008), or through the evolution of kin recognition (Tang-Martinez,

2001; Waldman et al., 1988; Giron and Strand, 2004; Rousset and Roze, 2007; Schausberger

and Croft, 2001). However, there lacks an overall theory of how and why assortment can evolve

in a general manner, which is independent of the actual mechanism that brings assortment about.

These studies come from the realisation that many aspects of the biological world that lead to

positive assortment are: (A) subject to genetic variation and (B) show many of the hallmarks

of adaptations; see chapter 3. Thus, it is of vital importance to theoretical evolutionary biology

to understand how cooperation and population structure will co-evolve. This concurrent evo-

lution of cooperation and population structure has previously been referred to as social niche

construction (SNC).

83
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Previous models of SNC provide a powerful framework for understanding the coevolution of

cooperation and population structure. However, further work is required for a more complete

understanding of SNC, in particular:

1. Models of SNC lack some key real world features that may affect their results: specifically

the presence of crossover.

2. Powers et al. (2011) include a cost to assortment by introducing an intrinsic cost to indi-

viduals in smaller groups. However, the implications of this cost are not systematically

investigated. Models of social evolution would benefit from a more general and systematic

parametrisation of cost.

3. Whilst models of SNC show that the evolution of positive assortment may be stable, it

often cannot get started. That is, there is no gradualist adaptive walk from a popula-

tion of freely-mixed individuals to a population composed of positively-assorted altruistic

individuals. Thus, we cannot give a conventional Darwinian account of the concurrent

evolution of assortment and altruism.

4. Models of SNC do not present formal mathematical results, and it would therefore be

beneficial to systematically describe all possible scenarios (within some reasonably con-

strained set) for how cooperation and assortment will evolve in each others presence.

5. These models have not been applied to many specific biological systems; only in doing so

will we fully test these ideas and realise their shortcomings.

6. Positive assortment on strategy leads to a decrease in the diversity of types and of hetero-

geneous interactions. Typical models of the evolution of cooperation assume that coop-

eration consists of a single action, but in reality cooperation in nature often comes about

through the interaction of differing complementary types.

This thesis has addressed these issues in an attempt to work towards a more formal theory for

the evolution of assortment, and of social niche construction in general.

2 Key Findings

Firstly, in chapter 3 I outlined a formal justification for an issue with our current understanding

of social niche construction. Namely, that there is no gradualist adaptive walk from a well-

mixed population of defectors to an assorted population of cooperators. I presented a solution

to this issue by investigating a game theoretic model in which individuals interact in multiple

strategic interactions in parallel. If individuals interact in many social dilemmas simultaneously,

then there may exist a feedback process whereby the weaker dilemmas transform the stronger

dilemmas into weaker ones and eventually all dilemmas are resolved.
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I have applied the idea of the evolution of assortment to a biological scenario: the evolution

of assortative mating in the presence of meiotic drive. This involved extending the known iso-

morphism between evolutionary game theory and the population genetics of diploid organisms

(Traulsen and Reed, 2012). The application of the ideas of SNC here lead to the hypothesis that

assortative mating, which is prevalent in nature, may be an adaptation that overcomes meiotic

drive. This is an hypothesis that could be tested experimentally, and serves as a test case for

the ideas of SNC. The paper also involved extending the models of the evolution of assortment

to include both cost and crossover. The main conclusions here were that assortment can never

reach fixation if it comes at a cost to the individual. Furthermore, crossover does not negate the

effect of the evolution of assortment, even though the evolution of assortment depends critically

upon the build-up of linkage disequilibrium between the cooperative allele and the positive as-

sortment allele. Note that this model does not contradict the findings of chapter 3, as there I

considered the primitive state to be freely-mixed defectors, whereas this paper was concerned

with the maintenance of cooperation through assortment. In addition, I also presented an ana-

lytical solution for the case of zero crossover and a more general numeric solution for non-zero

crossover. In these cases I was able to describe the equilibria over the space of all two-player,

two-strategy, symmetric games. This lends a more systematic approach to the models of the

evolution of assortment.

The final contribution of this thesis involves a formalisation of the idea of cooperative division

of labour. Many instances of cooperation in nature do not conform to the conventional Dawesian

idea of a cooperative dilemma because such dilemmas assume that there is a single cooperative

strategy for which the population would be best off if everyone performed this action. This is

simply not the case in many real biological situations, such as cellular slime moulds (Strassmann

et al., 2000, 2011), siphonophorae (Dunn and Wagner, 2006) and volvocine algae (Michod and

Herron, 2006). In such situations the benefits of cooperation come about through heterogeneous

interactions between complementary strategies. This is of particularly importance when one

considers positive assortment. Positive assortment, by its very nature, reduces the frequency of

heterogeneous interactions. However, positive assortment is necessary to overcome the inherent

cooperative dilemma; this is apparently a catch-22 situation. However, it may be resolved if one

realises that phenotypic plasticity allows for simultaneous positive assortment on genotype and

negative assortment on phenotype, thereby resolving the apparent paradox. This realisation is

the key point of the third and final paper. The results presented in this chapter are in agreement

with papers addressing the so called volunteers dilemma (Archetti, 2009; Boza and Számadó,

2010), however, these studies look at games where groups benefit if only a certain fraction

of individuals cooperate. We instead construe division of labour games to be games in which

individuals perform any number of arbitrary actions, and show that groups can only maximise

mean fitness if individuals are able to react conditionally to their social environment. The link

to the evolution of assortment is less immediately apparent however, but the resolution of the

division of labour problem is important to a full understanding of when and why assortment may

evolve and the details of the outcomes when it does so. Understanding cooperative division of
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labour is of particular importance when one considers the evolution of multicellularity and other

fraternal transitions in individuality (Queller, 1997, 2000).

A further understanding of the evolution of assortment, and of social niche construction in gen-

eral, is vitally important to the field of evolutionary biology; and in particular to our under-

standing of the major transitions in evolution (Maynard Smith and Szathmary, 1997; Bourke,

2011; Queller, 2000; Godfrey-Smith, 2009) and the notion of the biological individual (Godfrey-

Smith, 2009; Okasha, 2009; Clarke, 2011). A major transition is said to have occurred whenever

a collection of particles that were previously able to reproduce independently become suffi-

ciently integrated that they are no longer able to reproduce, except as part of a larger whole. In

addition, when the constituent parts are related to one another, the transition is said to be frater-

nal. Although it has not always been made explicit, much of this work has been motivated by

gaining a further understanding of the major transitions in evolution; in particular the fraternal

ones. Much of the work in the field has been in categorising and understanding those features

of the biological world that make cooperation within an organism possible; such as the unicel-

lular bottleneck or the fairness of meiosis. However, merely stating that a biological trait is

conducive to cooperation does not, in itself, explain the presence of the trait. A full explanation

of the transitions from within the field of Darwinism must explain the adaptive walk from free

living individuals to fully fledged individuals at the higher level. In further expanding the ex-

planation of the evolution of cooperation I have shed light on the evolution of communal living

by, for instance, offering an explanation of how such a process may get started. Furthermore,

the final paper illustrates the path to functional specialisation, and does so under the same theo-

retical framework as the models of the evolution of cooperation. This is an important and often

neglected step in the explanation of the evolution of individuality, as often models are only con-

cerned with explaining why cooperation is stable, rather than where the benefits of cooperation

actually come from.

A full account of the evolution of fraternal transitions from free-living individual particles to

fully integrated specialised collectives would require an evolutionary account of how individual

particles form highly assorted collectives, with differentiated, specialised parts. My analyses

have illustrated how assortment can evolve from a freely-mixed primitive state (chapter 3). Fur-

thermore, I have illustrated how the constituent parts of assorted collectives can specialise into

differing roles through phenotypic plasticity (chapter 4).

3 Further work

The ideas in this thesis have set down important foundational work in developing a better un-

derstanding of the evolution of assortment and social niche construction. However, much work

remains to be done in order to gain a more complete understanding of the field. Specifically, for

the understanding of the evolution of assortment it would be beneficial to develop our knowledge
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of the effects of the separation of time scales between the evolution of cooperation and assort-

ment. In chapter 3, the concurrent evolution of cooperation and assortment occurred in such a

way that the social strategy was always close to equilibrium. Assortment evolves only gradually

through the introduction of small mutations. The ratio of the time scales of the evolution of the

two parameters is, implicitly, dictated by the mutation rates and the initial conditions; however,

this could be formalised and investigated more systematically. It may be that assortment evolves

only slowly when compared to the evolution of social strategy. These two elements, cooperation

and assortment, may have completely different genetic bases, and may therefore evolve at dif-

ferent speeds. A fuller understanding of this is important for our general understanding of SNC.

In particular, this separation of time scales is of importance to the “getting started problem”.

As chapter 3 has shown, the evolution of assortment in the prisoner’s dilemma has difficulty

getting started. This is because a selective pressure only exists if there is a polymorphism in the

cooperative trait. A polymorphism could be maintained if significant selection could occur at

the assortment modifying allele whilst the social strategy is out of equilibrium. However, if the

social strategy is effectively always at equilibrium, and the pace of selection is dictated by the

assortment gene, then the getting started problem is exacerbated.

Furthermore, my discussion of the getting started problem in the evolution of assortment rests

strongly on notions of equilibria. One of my claims is that assortment will not evolve in a

prisoner’s dilemma because there is no cooperation at equilibrium. The analytical demonstration

of this claim assumes an infinite population at equilibrium. However, many features of real

populations can cause a deviation from equilibrium; most notably mutation and migration. Some

interesting work has been done in applying the concepts of statistical physics to population

biology, and in particular the replicator equation (McKane and Newman, 2004, 2005). A fruitful

line of further inquiry might be to apply these techniques to the evolution of assortment.

It is the nature of theoretical modelling that the researcher must make a number of arbitrary mod-

elling decisions when building a model of the phenomenon of interest; this work is no exception.

Whenever such a decision is made, then one must either make sure that this decision does not

affect the results in any meaningful way, or otherwise begin to enumerate the consequences of

all possible modelling choices. Whenever a parameter choice or modelling decisions was made

I investigated many alternatives before making an eventual decision. However, one can never

enumerate all possible choices. This is particularly true of the assortment mechanisms that were

employed when studying the evolution of assortment. There are many ways in which we could

conceivably pair individuals assortatively. Whilst many mechanisms were investigated, there

are many other ways in which this could have been done. The SNC research program can be en-

riched by describing and categorising the different manners in which the evolution of assortment

may come about.

In order to connect my work on the evolution of assortment to more biological bodies of work it

would be beneficial to frame these models in a more biologically plausible manner. This would

make the work more accessible to population geneticists. In particular the model of the evolution

of assortment could be framed in terms of island models of limited dispersal (seeWright (1943);
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Slatkin and Takahata (1985); Barton and Slatkin (1986); Hartl and Clark (1998)). Island models

are mathematical models from population genetics in which a population is divided into smaller

sub-populations, or islands; between which some limited migration can occur. Thus, migration

rate acts in effect to parameterise the level of assortment that the population is subject to. The

evolution of assortment could be realised through the evolution of the migration rate.

All such work must make a trade-off between being general and pertaining to any real case. Fur-

ther progress could be made by investigating more specific biological examples of SNC. These

would inspire further generality of the models and often suggest further routes of investigation

that the modeller would not have otherwise thought of. Progress in this area should be made via

a dialogue between the general and the specific. Ultimately, of course, the success or otherwise

of this research program must be judged on experimental results.

The last paper, concerning the evolution of functional specialisation, stands somewhat apart

from the first two papers. In the model here, assortment was an imposed parameter rather than

being itself subject to evolution. This was intentional, as the main point of the paper concerned

the evolution of phenotypic plasticity as a response to a division of labour game. However, now

that we understand the evolution of phenotypic plasticity and assortment at a deeper level, in

isolation from each other, it may be beneficial to combine these two models. This could result in

a more general framework for understanding the onset of multicellularity and the nature of the

fraternal major transitions (Queller, 1997, 2000). Again there are potential questions about the

separation of time scales between the evolution of phenotypic plasticity, assortment and social

strategy. Godfrey-Smith (2009) defines biological individuality as a three dimensional concept.

Collections of organisms become individuals when they have a high degree of functional in-

tegrity, go through a unicellular bottleneck (which facilitates genetic homogeneity) and have a

reproductive division of labour. It may be beneficial to further explore, both mathematically and

philosophically, how these ideas relate to a more general version of the model presented in paper

three. Godfrey-Smith’s notion of the individual has some correspondence with the parameters

of my model. These include: phenotypic plasticity, which leads to specialisation and hence

functional integration; the evolution of relatedness, which may come about through a unitary

bottleneck, which itself leads to high relatedness; and the reproductive division of labour, which

is itself a type of role diversification, albeit a special one. The model that I present in chapter

4, suitably extended, may shed some light on this process. We may be able to answer ques-

tions about whether the evolution of individuality is constrained to happen in a certain order and

what the effects of the interplay of the different elements are. For instance, are there theoretical

reasons that a proto-individual would have to evolve functional specialisation before, after or

concurrently with high levels of relatedness, or are these parameters free to evolve in any order?

In all cases the research program should be to (A) extend the generality of the ideas of the evo-

lution of assortment, (B) apply the ideas of social niche construction to more specific biological

contexts and (C) to make further efforts to link these ideas to experimental work. The latter

may be difficult, as many of these processes are inherently slow, hard to measure, happened a

long time ago and do not leave clear fossil evidence. However, laboratory bacterial populations
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may be a good place to start, particularly bacterial biofilms (Powers et al., 2012; Shapiro, 1998;

Crespi, 2001; Steenackers et al., 2016).

A number of side projects also present themselves. In particular, I think extending the parallel

between genetic conflict and game theory would be a fruitful line of further research; the com-

plete power of this isomorphism is not fully appreciated. Fully taking into account all the possi-

bilities of genetic systems and mapping them to existing ideas in evolutionary game theory may

be a PhD’s worth of work in itself. For instance the phenomenon of imprinting could be under-

stood through the formalism of asymmetric, or bi-matrix, games. Imprinting (Feil and Berger,

2007; Martienssen and Colot, 2001; Reik and Walter, 2001) is the phenomenon whereby gene

expression is dependent upon the parent of origin of the gene. Asymmetric games represent

those situations in which the competing strategies play differing, non-genetically determined

roles. Thus, there may be a further isomorphism between these two fields. Polyploidy (Sattler

et al., 2016), in which individuals have more than two copies of each gene, could be understood

through the theory of multi-player games (van Veelen, 2011; Gokhale and Traulsen, 2010). The

study of genes at different loci could be modelled through the multi-species replicator equation

(Weibull, 1997). Genes at different loci can be thought of as individuals in differing species,

as they can never out-compete each other (Gardner et al., 2007), epistasis is however a form

of social interaction and linkage disequilibrium is a form of population structure. Coalitions

of genes, such as those between the nuclear and mitochondrial DNA could be understood with

cooperative game theory (see any comprehensive text on game theory, such as Binmore (1992)),

an idea that has itself not been fully incorporated into the standard arsenal of evolutionary game

theory.

This thesis has taken a step towards a more general understanding of cooperation and social

niche construction; and hence the nature of biological individuality. Further theoretical and

empirical work should be done in these areas. If we begin to think in this manner, then some

of the arbitrary features of the biological world should begin to form a more coherent pattern.

Furthermore, the ideas of social niche construction begin to shed light on evolutionary theory

itself.
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