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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING
ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Athanasios Aris Panagopoulos

Meeting the ever-growing global energy demand while reducing carbon emissions is one
of the most prominent challenges of our era. In this context, efficient control of an
operation, service or production process is a key tool to achieve this goal. While there
are many opportunities for efficient control within the energy sustainability agenda, this
work focuses on domestic space heating systems and intermittent energy resources. This
is because in many countries, such as the UK and the US, the domestic sector accounts
for more than 20% of the total energy consumption and over 40% of this share is related
to space heating. In addition, in recent years, an increasing number of intermittent
energy resources, such as photovoltaic systems and wind turbine generators are being
integrated into the grid. As such, efficient control of domestic space heating systems and
intermittent energy resources can lead to a major reduction in energy consumption and
the corresponding CO2 emission.

In more detail, domestic space heating automation systems (DHASs) aim to optimize the
control process of domestic space heating systems with minimum user-input. Moreover,
in the case of electricity-based heating, such systems can also incorporate economic
control to exploit the energy buffer that heating loads provide in order to shift the heating
consumption according to financial incentives, such as variable electricity import tariffs
and/or the availability of cheap electricity coming from house-integrated intermittent
energy resources. In the latter case, the financial benefits of economic control can be
further amplified in domestic coalitions where a number of houses share their energy
generation to minimize the collective energy imported from the grid.

Against this background, the first main strand of work in this thesis is to develop a new
DHAS, AdaHeat, that overcomes limitations of previous approaches regarding: (i) their
efficiency in dealing with the thermal dynamics of houses, (ii) their efficiency in dealing
with the inherent uncertainty of the occupancy schedule in domestic settings, (iii) their
usability and effectiveness in meeting the user preferences, (iv) their ability to work in
conjunction with a diverse range of heating systems, and (v) their ability to efficiently
consider economic control in the case of electricity-based heating, exploiting also, for the
first time, the aforementioned coalition potential. The backbone of AdaHeat is an ada-
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ptive model predictive control approach along with a new general heating schedule plan-
ning algorithm based on dynamic programming. In the case of economic control in the
presence of house-integrated intermittent energy resources, our planning approach relies
on stochastic predictions of the shared intermittent energy resource power output. To
this end, we also develop a new adaptive site-specific calibration technique to improve
such predictions based on Gaussian process modeling. We present a thorough evalua-
tion of the proposed system, and show its effectiveness in terms of Pareto efficiency and
usability criteria against state-of-the-art DHASs. We also show that collective economic
control, in the presence of house-integrated IERs, can improve heating cost-efficiency by
up to 60%, compared to independent economic control, and even more when compared
to no economic control.

The second strand of work is concerned with increasing the efficiency of intermittent
energy resources themselves, through efficient control. In particular, specifically for pho-
tovoltaic systems, solar tracking can be used to orient the system towards the greatest
possible levels of incoming solar irradiance. This can increase the power output of a
photovoltaic system by up to 100%. However, current solar tracking techniques suffer
from several drawbacks: (i) they usually do not consider the forecasted or prevailing
weather conditions; even when they do, they (ii) rely on complex closed-loop controllers
and sophisticated instruments; and (iii) typically, they do not take the energy consump-
tion of the trackers into account. As such, in this work, we propose PreST; a novel,
low-cost and generic solar tracking approach that overcomes the above limitations, uti-
lizing optimal control (proposed for the first time for solar tracking). In particular, our
approach is able to calculate appropriate trajectories for efficient and effective day-ahead
(predictive) solar tracking, based on available weather forecasts (that can come from
on-line providers for free). To this end, we propose a new approximating policy iteration
algorithm, suitable for large Markov decision processes, and a novel and generic solar
tracking consumption model. Our simulations show that our approach can increase the
power output of a photovoltaic system considerably, when compared to standard solar
tracking techniques, that can lead to significant monetary gains.

As outlined above, apart from their great share in contemporary economies, both do-
mestic space heating systems and intermittent energy resources provide considerable
opportunities for energy efficient improvements through efficient control. In this work
we exploit this potential and propose respective systems that improve their independent,
as well as their interaction, efficiency. This can considerably reduce the respective en-
ergy consumption and the corresponding CO2 emission towards fulfilling our goal for an
energy sustainable future.
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Chapter 1

Introduction

Meeting the ever-growing global energy demand while reducing carbon emissions and
our dependency on the practically finite1 (and unevenly distributed around the globe)
fossil fuel reserves, is one of the most prominent challenges of our era (Hoffert et al.
(2002); Ramchurn et al. (2012); Abas et al. (2015)). In this context, many governments
around the world have started to adopt policies to transition to a low carbon economy.
For instance, in the United Kingdom (UK), the climate change act of 2008 requires
at least an 80% cut in the UK’s carbon emissions by 2050, compared to 1990 levels.2

Even more broadly, the European Union (EU) has put in place legislation to reduce its
emissions to 20% below 1990 levels by 2020 (Böhringer et al. (2009)), while sharing a
similar objective of at least a further 60% reduction by 2050.3 On the international scene,
following the prominent initial steps of the Kyoto protocol (Oberthür and Ott (1999)),
the 2015 United Nations Climate Change Conference, held in Paris, France from 30
November to 12 December 2015, negotiated a legally binding agreement on low-carbon
economy policies, from all nations around the globe.4

In this context, energy conservation, energy efficiency and low-carbon energy generation
have been heralded as the key tools to achieve this goal (Hoffert et al. (2002); Jaffe
and Stavins (1994); Greening et al. (2000)). In particular, energy conservation refers
to the goal of reducing energy consumption through a direct reduction in the products
and/or services consumed (Dietz et al. (2009)). As such, energy conservation aims to

1Fossil fuels are formed by anaerobic decomposition of buried dead organisms (Mann et al. (2003)).
Taking millions of years to be formed, they are considered as a one-time gift to human kind (Deffeyes
(2008)).

2According to the “Climate Change Act 2008: Impact Assessment”, Department of En-
ergy and Climate Change, available on-line at http://webarchive.nationalarchives.gov.uk/
20090311095401/http://www.decc.gov.uk/Media/viewfile.ashx?FilePath=85_20090310164124_e_
@@_climatechangeactia.pdf&filetype=4 (retrieved on 2/2016).

3According to th “ROADMAP 2050: A practical guide to a prosperous low-carbon Europe (Policy Re-
port)”, European Climate Foundation, available on-line at http://www.roadmap2050.eu/attachments/
files/Volume1_fullreport_PressPack.pdf (retrieved on 2/2016).

4According to the “Adoption of the Paris agreement”, United Nations, available on-line at www.unfccc.
int/resource/docs/2015/cop21/eng/l09r01.pdf (retrieved on 2/2016).

1

 http://webarchive.nationalarchives.gov.uk/20090311095401/http://www.decc.gov.uk/Media/viewfile.ashx?FilePath=85_20090310164124_e_@@_climatechangeactia.pdf&filetype=4
 http://webarchive.nationalarchives.gov.uk/20090311095401/http://www.decc.gov.uk/Media/viewfile.ashx?FilePath=85_20090310164124_e_@@_climatechangeactia.pdf&filetype=4
 http://webarchive.nationalarchives.gov.uk/20090311095401/http://www.decc.gov.uk/Media/viewfile.ashx?FilePath=85_20090310164124_e_@@_climatechangeactia.pdf&filetype=4
http://www.roadmap2050.eu/attachments/files/Volume1_fullreport_PressPack.pdf
http://www.roadmap2050.eu/attachments/files/Volume1_fullreport_PressPack.pdf
www.unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf
www.unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf
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reduce the consumption of energy through altering the behavior of the consumers (e.g.,
avoiding non-vital journeys or avoiding non-critical appliance usage). Due to this reason,
energy conservation is out of the scope of this work. Such behavior changes are mainly
facilitated by appropriate education programs and/or financial incentives (e.g., Kok et al.
(2011); Zehner (2012)).5 In contrast, energy efficiency refers to the goal of reducing
the energy consumed while providing the same desired work (Patterson (1996)); i.e.,
reducing the wastage of energy in providing a service or producing a product. As such,
energy efficiency aims to reduce the consumed energy without fundamentally altering
the consumption behavior of the consumers. Due to this apparent advantage, energy
efficiency is the main focus of this work.6 Finally, low-carbon energy generation refers
to the goal of providing the required energy based on resources with substantially lower
carbon emissions, compared to conventional fossil-fuel-based generators. These resources
can be intermittent energy resources (IERs), such as wind turbine generators (WTGs)
and photovoltaic systems (PVSs), or non-intermittent, such as hydroelectric generators
and nuclear power stations (Hoffert et al. (2002); Abas et al. (2015)). Although low-
carbon energy generation is not the main focus of this work, several challenges for energy
efficiency improvements emerge with respect, or within, the low-carbon energy generation
agenda (considered in this work, as further discussed below).

Now, energy efficiency improvements are generally achieved by adopting more efficient
technologies or more efficient production or service processes (Diesendorf (2007)). How-
ever, most of the conventional approaches require considerable investments. These in-
clude energy efficient building design and reconstruction (e.g., Yao (2013); Aksoy and
Inalli (2006)) and/or development and large-scale adoption of: (i) advanced energy ef-
ficient appliances, such as energy efficient space heating systems, freezers, and ovens
(Waide et al. (1997)); (ii) advanced energy efficient transportation technology, such as
turbocharged engines (Hartman (2007)), electric motors,7 and alternative fuels (Lee et al.
(2014)); or (iii) advanced industrial manufacturing and resource extraction processes
(e.g., Einstein et al. (2001); Farla et al. (1997); Worrell et al. (2000)). In contrast, there
is an approach to energy efficiency improvements that has minimal additional cost and
minimal retrofitting. This is efficient control of an operation, service or production pro-
cess. In general, the aim of efficient control is to optimize the respective control process

5For instance, in California, US, such behavior changes are motivated via tiered energy taxation
where the taxes increase along with the energy consumption (Zehner (2012)).

6Despite its advantages, the realized gains from energy efficiency improvements are typically less
than those expected based on simple linear extrapolation approaches (Small and Van Dender (2005)). In
particular, increasing the energy efficiency of services and products often makes them cheaper, and hence
their consumption usually increases. For instance, energy efficiency improvements regarding personal
transportation, domestic space heating and domestic space cooling have been historically accompanied
by considerable respective cost reductions and significant respective usage increase (Greening et al.
(2000)). This historically observed phenomenon (typically accounting for ∼5% to ∼40% of the potential
gains) is well-known as the “rebound effect” and should be taken into account when planning energy
efficient policies (e.g., Greening et al. (2000); Small and Van Dender (2005); Gottron (2001)).

7Electric motors are inherently more efficient than internal combustion engines (Sperling and Gordon
(2009)). Moreover, the electricity used to supply them can come from low-carbon energy resources
(Ramchurn et al. (2012)).
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which can potentially lead to significant energy efficiency improvements (e.g., Oldewurtel
et al. (2012); Ebert et al. (2000); Esram et al. (2007)). Given this particularity, efficient
control is the particular focus of this work.

There are many opportunities and challenges for efficient control within the broad agenda
for an energy sustainable future. Importantly though, in many countries, such as the
UK and the US, the domestic sector accounts for more than 20% of the total energy
consumption and over 40% of this share is related to space heating.8 For this reason,
improving the energy efficiency of domestic space heating systems (both electricity and
non-electricity based) can lead to a major reduction in energy consumption and the cor-
responding CO2 emissions. As such, improving the energy efficiency of domestic space
heating systems is an indispensable, and one of the most prominent, tasks within the
domestic energy efficiency agenda. Moreover, space heating systems provide consider-
able opportunities for energy efficiency improvements through appropriate control (as
further discussed in Section 1.1). Hence, this work focuses on increasing the efficiency
of domestic space heating systems, both electricity and non-electricity based, through
efficient control.

In addition, within the low-carbon energy generation agenda, an increasing number of
IERs are being integrated into the grid (Ramchurn et al. (2012)). Specifically, the share
of renewable energy resources mix in the worldwide electricity generation has been on an
upward trend since 2004 (from 17.9% in 2003 to 20.8% in 2012), while the mean annual
growth rates for solar and wind power (during the period 2002-2012) have been estimated
at 50.6% and 26.1%, respectively (Armaroli and Balzani (2007)).9 This fact raises further
challenges and opportunities for efficient control of, the electricity-based, domestic space
heating systems, which are also considered in this work (further discussed in Section 1.1).
Moreover, increasing the energy efficiency of IERs themselves, can lead to additional and
considerable reductions in non-low-carbon energy consumption and the corresponding
CO2 emissions (in a similar direction to domestic space heating). Moreover, IERs also
provide considerable opportunities for energy efficiency improvements through efficient
control (as further discussed in Section 1.2). Due to these reasons, increasing the energy
efficiency of IERs through efficient control is also considered in this work.

The rest of this chapter is structured as follows: In Section 1.1 we introduce our work
on improving the energy efficiency of domestic space heating systems and in Section
1.2 we introduce our work on improving the efficiency of IERs. In each one of these
sections we provide: (i) a general discussion on the particular problem; (ii) the basic

8According to “Annual Energy Review (AER) 2011”,US Energy Information Administration, avail-
able on-line at www.eia.gov/totalenergy/data/annual/archive/038411.pdf (retrieved on 7/2014),
and “United Kingdom Housing Energy Fact File”, UK Depatment of Energy and Climate Change, avail-
able on-line at www.gov.uk/government/uploads/system/uploads/attachment_data/file/274766/uk_
housing_fact_file_2013.pdf (retrieved on 7/2014).

9According to “Worldwide electricity production from renewable energy sources, 2012 edition”, avail-
able on-line at www.energies-renouvelables.org/observ-er/html/inventaire/Eng/methode.asp (re-
trieved on 5/2015).

www.eia.gov/totalenergy/data/annual/archive/038411.pdf
www.gov.uk/government/uploads/system/uploads/attachment_data/file/274766/uk_housing_fact_file_2013.pdf
www.gov.uk/government/uploads/system/uploads/attachment_data/file/274766/uk_housing_fact_file_2013.pdf
www.energies-renouvelables.org/observ-er/html/inventaire/Eng/methode.asp
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requirements/goals of our approach; and (iii) the research challenges in this respect.
Then, in Section 1.3 we discuss the main contribution of our work. There, we also
provide a list of the respective academic publications that emerged based on this work.
Finally, in Section 1.4 we outline the rest of the thesis.

1.1 Efficient Control of Domestic Space Heating Systems

As discussed above, space heating is a significant share of domestic energy consumption
and, hence, improving the energy efficiency of domestic space heating systems (both
electricity and non-electricity based) can lead to a major reduction in energy consumption
and the corresponding CO2 emissions. In general, there are many ways of improving
space heating energy efficiency, ranging from better insulation of the space to advanced
heating technologies such as (air or ground) heat pumps and storage heating technology
(e.g., Pacheco et al. (2012); Chua et al. (2010)). However, most of the conventional
approaches require considerable additional investments and/or building reconstruction
(Pacheco et al. (2012); Širokỳ et al. (2011)). In contrast, one approach to increasing
space heating efficiency, that has minimal additional cost and minimal retrofitting, is to
optimize the heating control process (Širokỳ et al. (2011)).10

To this end, programmable thermostats have been proposed as a means to enable more
efficient heating control compared to traditional static thermostats as they enable the
occupants to schedule the heating control process according to their requirements. In
essence, programmable thermostats assign the task of optimizing the heating control
process to the user. However, a number of field studies have shown that their potential
gains are rarely realized in domestic settings, mainly due to user misconfigurations (e.g.,
Peffer et al. (2011); Haiad et al. (2004); Shipworth et al. (2010); Kempton (1986); Kar-
jalainen (2009); Meier et al. (2011)). For these reasons, their Energy Star specification
was suspended in 2009 (Lu et al. (2010)). In this context, energy systems research has
been increasingly focused on domestic heating automation systems (DHASs) which aim
to optimize the heating control process with minimum user-input, utilizing appropriate
occupancy prediction technology (e.g., Mozer et al. (1997); Scott et al. (2011); Lu et al.
(2010); Urieli and Stone (2013)). By limiting the human interaction, such systems aim to
overcome the limitations that arise in manual scheduling of programmable thermostats
in domestic settings. As such, in recent years, DHASs are also starting to emerge as
commercial products, such as the smart thermostats from Nest, Honeywell and British
Gas Connected Homes.11

10In this work, space heating control refers to supervisory control (typically applied manually via
thermostats) and not to the low-level control used to maintain the indoor temperature close to the
set-point one with minimum oscillations (Wang and Ma (2008)).

11www.nest.com; www.honeywell.com; and www.hivehome.com

www.nest.com
www.honeywell.com
www.hivehome.com
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Even though there are commercial products available, several engineering and theoretical
challenges arise in the context of DHAS (Alan et al. (2016a,b)). In this work, we propose
“AdaHeat”, a new DHAS, that aims to overcome some of the limitations and shortcom-
ings of previous approaches regarding: (i) their efficiency in dealing with the thermal
dynamics of houses, (ii) their efficiency in dealing with the inherent uncertainty of the
occupancy schedule in domestic settings, (iii) their usability and effectiveness in meeting
the user preferences, (iv) their ability to work in conjunction with a diverse range of
heating systems (that are typically employed in domestic settings), and (v) their abil-
ity to efficiently consider the economic aspects that arise in controlling electricity-based
space heating systems with respect to the electricity market. In the following sections, we
first provide a general discussion of research around heating automation systems (in the
context of both non-domestic and domestic settings) and the respective lessons learned
(Section 1.1.1). Then, in Sections 1.1.2 and 1.1.3 we present the challenges that are
specific to domestic settings and the additional challenges that emerge with respect to
the electricity market in the case of electricity-based space heating, respectively. There,
we also provide the requirements of an appropriate DHAS. Finally, in Section 1.1.4 we
discuss the shortcomings of current DHASs.

1.1.1 Heating Automation Systems

Energy research has long been preoccupied with developing heating automation systems
for non-domestic buildings (e.g., commercial, industrial, offices) (e.g., Farris and Melsa
(1978); Kintner-Meyer and Emery (1995); Kummert et al. (2001); Henze et al. (2004);
Liu and Henze (2006)). More recently, however, with the onset of ever-increasing house
instrumentation and cloud computing, experimental heating automation systems for do-
mestic settings are also starting to emerge (e.g., Mozer et al. (1997); Scott et al. (2011);
Lu et al. (2010); Urieli and Stone (2013)).

In essence, the goal of any heating automation system is to control the heating in or-
der to balance the heating energy consumption and the occupant’s thermal discomfort
according to their preferences (e.g., eliminate thermal discomfort with the minimum
heating energy consumption or minimize the thermal discomfort given a heating energy
consumption constraint), with minimum user-input. Nevertheless, in recent years, time-
varying electricity prices are being introduced in many countries around the globe, where
the rates are higher during peak periods and lower during off-peak periods (e.g., Strbac
(2008); Hirth (2013)). This is done to motivate the consumers to shift their consumption
to off-peak periods and, as such, enhance the reliable operation of the electrical grid
(Torriti et al. (2010)). For instance, in many European countries, such as the UK, Spain
and Greece (Torriti et al. (2010); Strbac (2008)), night-time tariffs are usually lower than
day-time tariffs, motivating the usage of storage heaters for efficient night-time electricity
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heating.12 More advanced time-varying pricing programs, where the prices vary consid-
erably during a day, are also being introduced in many European countries to maximally
motivate demand shifting to off-peak periods (for more details see Torriti et al. (2010)).
As such, in the case of electricity-based heating systems, usually DHASs also take into
account the electricity price in optimizing the heating control process (e.g., Rogers et al.
(2011); Halvgaard et al. (2012); Shann and Seuken (2014)); appropriately balancing
heating cost (rather than heating energy consumption) and thermal discomfort.

Given the above discussion, one can define two families of control approaches employed in
heating automation systems: (i) simple automated heating control, where the objective
is to efficiently balance heating consumption and thermal discomfort; and (ii) simple
economic control, where the objective is to efficiently balance heating cost and thermal
discomfort. The latter is employed when a variability in the energy cost exists, commonly
in the case of electricity-based space heating systems. In Section 1.1.3 we provide a more
detailed discussion on economic control with respect to DHASs.

1.1.2 Towards Domestic Heating Automation Systems

As discussed above, energy systems research has long been preoccupied with develop-
ing heating automation systems for non-domestic buildings, and, more recently, more
research has focused on domestic systems, DHASs, as well. Indeed, such systems are
now commercial products (as discussed in Section 1.1). Nevertheless, DHASs provide
additional challenges over their, more explored, non-domestic counterparts.

In particular, the thermal dynamics of domestic buildings are harder to model accurately
than their non-domestic counterparts as: (i) the occupant’s activity is more diverse and
highly affects the thermal dynamics of the house (e.g., opening a window, operating an
auxiliary heater, or cooking) (Li and Wen (2014); Fux et al. (2014)); (ii) the temperature
in adjacent buildings or rooms is rarely observed and/or predicted (Li and Wen (2014);
Huang et al. (2013)); and (iii) the local weather observations and forecasting reports
are usually less accurate than the domestic ones due to lack of appropriate instrumenta-
tion (Li and Wen (2014); Dong et al. (2011)).13 In this context, reliable thermal modeling
of the dynamic domestic thermal characteristics is an important requirement of DHASs.

In addition, the occupancy schedule—which is an essential input to any thermal com-
fort model (as any comfort is experienced only when the space is occupied)—is typically

12That said, storage heating technology suffers from several drawbacks that typically lead to signif-
icant insufficiencies and heating ineffectiveness. In particular, storage heating technology is inherently
inflexible making it hard for heating to follow the occupancy schedule and the occupants’ preferences.
As such, in many cases the space is heated even when it is not occupied or it is warmer (or cooler) than
preferred (Roebuck (2012a)).

13In particular, in many cases the latter are equipped with appropriate sensors and local forecasting
technology (e.g., Li and Wen (2014); Dong et al. (2011)) while the former rely on on-line general providers
for both the “observations” (current local weather conditions) and forecasting reports.
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unknown in domestic settings and needs to be predicted (Kleimingera et al. (2013))—in
contrast to commercial buildings where it is typically less variable. In this context, all
proposed predictive approaches inevitably retain an uncertainty over this schedule which
is modeled in the form of probabilistic estimates (Kleimingera et al. (2013)). In the pres-
ence of this uncertainty, sacrificing thermal comfort is typically inevitable to avoid ex-
treme heating energy consumption. For instance, eliminating expected discomfort given
very small (but still non-zero) probabilistic occupancy predictions during a particular
time period would require the house to be heated at the set-point temperature during
that period. However, this can significantly increase the heating energy consumption
with very small (or non-existent) improvements in the realized discomfort. Given this,
effectively balancing heating consumption and thermal discomfort with respect to the
occupant preferences becomes an essential task for DHASs. Clearly, there is a conflict
between these two, and, as such, balancing them is a non-trivial two-objective opti-
mization problem. In general, Pareto efficiency (or optimality) is crucial in non-trivial
multi-objective optimization (Marler and Arora (2004)), and refers to the solution con-
cept where none of the objective functions can be improved in value without degrading
some of the other objective values. That being said, there is a potentially infinite num-
ber of Pareto optimal solutions, defining the Pareto optimal set. Hence, ideally a DHAS
should be able to capture solutions in the Pareto optimal set.

Finally, domestic heating systems are much more diverse than those used in non-domestic
buildings. For example, commercial buildings usually have standard HVAC (heating,
ventilation and air conditioning) systems whose properties are relatively well understood,
while domestic heating systems are much more diverse in type (e.g., underfloor heating,
wall-mounted radiators, or fan heaters) which calls for a general DHAS (that is able to
handle a variety of them). Lastly, as for any system that is intended to be used in practice,
a DHAS should have a computational complexity and efficiency that allows it to be
applied in real settings with limited computational resources, minimum instrumentation
and operating time constrains (real time operation). For instance, if heating control
decisions need to be made every 5 minutes their computation cannot exceed this time
limit with the computing power typically available in domestic settings today (which may
be much less than that of a typical personal computer).14 Moreover, a DHAS should
require minimum additional instrumentation installation (e.g., occupant activity sensors,
temperature sensors) so that its employment is cost-effective for a typical household.

1.1.3 Integrating Advanced Economic Control

In the previous section we discussed the general requirements for DHASs. However,
additional requirements emerge in the particular case of electricity-based space heating
systems. In more detail, as outlined in Section 1.1.1, simple economic control emerges as

14Clusters and supercomputers are typically not available in domestic settings, and their employment
for a DHAS, even through cloud computing, may render this technology cost-ineffective.
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an additional requirement for DHASs (in the case of electricity-based heating systems)
to cope with potentially time-varying electricity prices. In general, in the case of time-
varying electricity prices the consumer houses would be more economically efficient if
they: (i) store cheap energy purchased at off-peak periods to follow their demand or (ii)
shift their electricity demand to off-peak periods. However, appropriate energy storage
technology,15 that could facilitate the former is not available or cost efficient to install
at the moment in domestic settings.16 Moreover, the latter is effective in domestic
settings only when adequate energy capacity is available for shifting loads, so that the
individual households do not have to drastically alter their schedules (Ramchurn et al.
(2012)). Nevertheless, thermostatically controlled loads, such as refrigerators and space
and water heaters, can provide such a buffer as excess energy can be retained as heat
(de Nijs et al. (2015)). As such, and given the anticipated increase in electrification of
heating (Hawkey (2015)), simple economic control is a basic requirement for DHASs to
exploit this shifting potential. For instance, in the context of simple economic control,
a house could be heated up a while before an estimated arrival of an occupant (rather
than exactly before his/her arrival) which could be cheaper given the particular price
variability of the day (for more information see Section 2.1.2). Nevertheless, an additional
and more advanced form of economic control also arises as a requirement for DHASs in
the emerging electricity market reality: advanced economic control.

In more detail, as discussed in the beginning of Chapter 1, within the low-carbon en-
ergy generation agenda, a large number of IERs are being integrated into the grid. In
this context, many houses are now being equipped with, potentially grid-connected, in-
termittent energy resources (IER), such as rooftop or stand-alone photovoltaic systems
or small wind turbine generators (Jacobson et al. (2015); Zahedi (2010)).17 Moreover,
in many regions, such as in several European countries and US states,18 such houses
can sell energy to the grid, but at a lower export tariff than the import tariff (i.e., the
price of buying energy from the grid). In general, this price difference motivates the
usage of the own produced energy before buying any additional energy from the grid
(which is important for the smooth integration of IERs into the grid (Ramchurn et al.
(2012))) and disables market manipulations.19 Due to these reasons, as well as due to
its economic justification (since the wholesale price is appropriately lower than the retail
one), this pricing schema is expected to become a standard practice around the world

15Existing energy storage technologies include, among others, battery, flywheels and super-capacitors
(Liserre et al. (2010)).

16In particular, emerging products such as Tesla’s Powerwall (www.teslamotors.com) and BYD Auto’s
energy storage systems (www.byd.com), have received intense criticism as they are too expensive for
domestic settings (Bulman (2015)).

17This is also supported by the ever falling cost of such installations (Sioshansi (2016)) and the
numerous governmental policies to promote respective investments employed around the world (Hawkey
(2015); Sioshansi (2016)).

18According to www.dsireusa.org and www.res-legal.eu/en (accessed on 01/2016)
19For instance, without appropriate control, if the export tariff is higher than the import tariff, grid

entities with storage capabilities can buy energy from the grid in order to sell it back for profit. Notably,
the situation is the same in a variable-tariff scenario in the case that the future export tariff is higher
than the current import one.

www.teslamotors.com
www.byd.com
www.dsireusa.org
www.res-legal.eu/en
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(Sioshansi (2016)).20 Given the above, and the fact that the power output of IERs is not
human controlled, since it typically depends on the prevailing weather conditions (Boyle
(2012)), these houses would be more economically efficient if they: (i) store their pro-
duced energy to follow their demand, or (ii) shift their electricity demand to follow their
energy production (in a similar manner to simple economic control). In either case, they
would minimize their energy import (according to the pricing motivation) and achieve
financial gains. Nevertheless, as discussed above, appropriate energy storage technology
that could facilitate the former is not available or cost efficient to install at the moment
in domestic settings.16 In this context, the next generation DHASs needs to also incor-
porate advanced economic control, in houses with electricity-based heating systems and
grid-connected IERs, to exploit this shifting potential.

In contrast to simple economic control, the aforementioned benefits of advanced economic
control can be further amplified in domestic coalitions, where a number of houses share
their energy generation and shift their heating consumption in order to further minimize
the energy imported from the grid. Having this happen, requires the market to allow
consumer groups to act as an individual, and can be facilitated by forming a micro-grid
of physically connected houses (Palizban et al. (2014)) or, in a more general manner, by
conducting appropriate contracts through dynamic on-line energy exchange providers,
utilizing the national grid and appropriate smart metering (Niese et al. (2012)). Now,
smart meters are already being installed in many countries (Krishnamurti et al. (2012))
and dynamic on-line energy exchange is being explored in many countries through ini-
tiatives, such as Piclo, Clickpower, and Powershop.21 As such, direct facilitation of such
coalition formation (i.e., without a micro-grid) is likely to be available in the near future
(Niese et al. (2012); Michalak et al. (2009)). In this context facilitating this coalition
potential with respect to advanced economic control is an additional requirement for
DHASs. This means, such systems should also incorporate an appropriate cost alloca-
tion mechanism to share the realized gains of the coalition among the members in a
practical manner.

Following the above discussion (Sections 1.1.2 and 1.1.3), the basic requirements of a
domestic heating automation system can be defined as follows:

1. Minimal user-input: Rely to the minimum extent on user-input, fulfilling the
aim of being a heating automation system.

2. Reliable thermal modeling: Thermal characteristics in houses are much more
dynamic than in non-domestic buildings and/or appropriate instrumentation much
less intense. Reliable thermal modeling in such settings is an important requirement
of DHASs.

20The alternative schemes used in practice, where the export tariff is equal (or even higher) than the
import tariff, are generally temporary and aim to promote respective investments (Sioshansi (2016)).

21www.openutility.com/piclo; www.clickpower.in; www.powershop.com.au

www.openutility.com/piclo
www.clickpower.in
www.powershop.com.au
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3. Dealing with occupancy uncertainty: The occupancy schedule is usually un-
known and dynamic in domestic settings and needs to be predicted. Dealing with
(potentially probabilistic) occupancy estimates is a basic requirement of any DHAS.

4. Pareto efficiency: Balancing heating cost and thermal discomfort involves a non-
trivial two-objective optimization task. That being said, efficiency in balancing cost
and discomfort is a basic requirement of DHAS. Ideally a DHAS should be able to
capture solutions in the Pareto optimal set.

5. Matching the user preferences: Matching the user preferences in balancing
heating cost and thermal discomfort. In this context, three subsequent require-
ments of an efficient DHAS can be defined:

(a) Flexibility: Be able to capture a sufficiently wide range of balancing points
between heating cost and thermal discomfort (ideally within the Pareto opti-
mal set as discussed above) that allows a variety of user preference schemes
to be captured.

(b) Usability: Be able to match to the user preferences in choosing one of these
balancing points for its operation, via a feasible and effective human-computer
interaction procedure (i.e., no population of hard to interpret mathematical
equations).

(c) Adaptability: Be able to adapt to potentially time-varying user preferences
in trading heating cost and thermal discomfort.

6. Generality: Being able to work in conjunction with a diverse range of heating
systems and respective technologies that are employed in domestic settings (e.g.,
fan heaters, underfloor heating systems, heating pumps).

7. Applicability: Low computational complexity and efficiency that allows the DHAS
to be applicable in real settings with limited computational resources, minimum
instrumentation, and operating time constrains.

8. Integrate simple economic control: Be able to exploit the shifting potential
that arises in houses with electricity-based heating systems with respect to time-
varying import tariffs.

9. Integrate advanced economic control: Be able to exploit the shifting poten-
tial that arises in houses with electricity-based heating systems and domestic IER
generation capacity with respect to the difference in the import and export tariffs.

(a) Coalition potential: Be able to exploit the coalition potential that arises
with respect to advanced economic control.

(b) Cost allocation: Allocating the collective gains of the coalition among the
coalition members in a practical and effective manner.
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1.1.4 Research Challenges

A number of DHAS have been proposed in the literature (e.g., Mozer et al. (1997);
Scott et al. (2011); Lu et al. (2010); Urieli and Stone (2013); Shann and Seuken (2014)).
However, they typically suffer from several drawbacks: (i) they usually rely on a sim-
ple experimental thermal model which is not reliable in practice and suitable only for
proof-of-concept systems; if not (ii) they do not deal with the highly dynamic nature of
house thermal characteristics; (iii) they do not provide a way of choosing the parameteri-
zable coefficients in balancing heating energy consumption and thermal discomfort—the
important challenge of matching the occupant’s preferences is usually disregarded in
DHASs; (iv) they usually rely on heuristic control approaches in dealing with occupancy
uncertainty (without providing any guarantees or intuition regarding the performance
loss from an approach that fully exploits the probabilistic estimates); if not (v) they rely
on computationally expensive approaches that limit their applicability only to experi-
mental settings; and (vi) they are usually heating-system-specific. In addition to the
above limitations, there is also a lack of comparison among DHASs, as those are usually
benchmarked against simple static timer programs such as “always-on” or “pre-scheduled”
heating.

In addition, to date, most of the proposed DHASs focus on efficiently balancing energy
consumption and thermal discomfort according to the occupant’s preferences, based on
occupancy predictions estimates. That is, simple (automated) heating control without
considering any additional economic aspects other than the amount of energy consumed
(e.g., Mozer et al. (1997); Gao and Keshav (2013a); Urieli and Stone (2013); Scott et al.
(2011); Lu et al. (2010)). Nevertheless, in recent years, economic control is starting to
emerge as an integrated part of DHASs (e.g., Shann and Seuken (2014); Rogers et al.
(2011); Halvgaard et al. (2012)), where the systems appropriately balance heating cost
and thermal discomfort, in the case of electricity-based heating. However, all these works
consider simple economic control, merely accounting for variable energy import tariffs
over the energy consumed, without considering grid-connected domestic IERs and en-
ergy export. In essence, all these systems aim to shift the demand to time-slots where
the import tariff is favorable. Moreover, none of these works exploit the potential that
coalitions provide in (advanced) economic control. In particular, the potential of do-
mestic coalitions in such a DHAS-integrated economic control has not been exploited
until now although: (i) coalition formation is a considerably active research area within
the energy sustainability agenda (e.g., Alam et al. (2013); Chalkiadakis et al. (2011);
Alam et al. (2015)), and (ii) several works have discussed the potential of thermostati-
cally controlled load aggregations (including domestic space heating loads) for providing
regulation services to the grid (e.g., Hao et al. (2013); Callaway (2009); de Nijs et al.
(2015)). In addition, work that deals with domestic space heating system aggregations
typically assumes the same preferences in balancing heating cost and thermal discomfort
among the houses (e.g., Dudley and Piette (2008); Torriti et al. (2010)). However, this is
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impractical in realistic settings since the households have diverse, and even time-varying,
preferences on this balancing (as discussed in Section 1.1.2). In Section 1.3.1 we discuss
our contributions regarding DHASs against this background.

1.2 Efficient Control of Intermittent Energy Resources

As discussed in the beginning of Chapter 1, a big part of this work is dedicated to
efficient control of intermittent energy resources, IERs. In particular, in recent years, a
large number of IERs, such as photovoltaic systems, PVSs, and wind turbine generators,
WTGs, are being integrated into the grid. Given this, increasing the efficiency of IERs
can lead to a considerable reduction in non-low-carbon energy consumption and the
corresponding CO2 emissions (as discussed in the beginning of Chapter 1). In this
context, there are many ways of improving IER energy efficiency, such as adopting better
IER locations, advancing the IER power production technology, and adopting efficient
IER control.

In more detail, the power output of IERs depends highly on the prevailing weather
conditions. In particular, the power output of a PVS depends mostly on the irradiance
incident to the photovoltaic (PV) module and the operating temperature of the module
(Luque and Hegedus (2011)). In general, PVSs favor greater levels of incident solar
irradiance and generally cooler environments which lead to lower operating temperatures
(i.e., lower ambient temperature and appropriate wind speeds) (Luque and Hegedus
(2011)). On the other hand, the power output of a WTG depends mostly on the prevailing
wind speed and wind temperature, with the WTG generally favoring higher wind speeds
and lower wind temperatures (cooler air is denser, increasing power output) (Burton
et al. (2011)). As such, a straightforward way to increase IER efficiency is through
better localization of the IERs, i.e, choosing the location (and altitude) for the IER
installation where the weather pattern favors its operation.22 However, installing IERs
in locations that maximally favor their operation is not always possible and most of the
time IERs are installed in suboptimal locations due to a variety of reasons such as space
limitation, budget availability or energy transmission limitations (Kurokawa (2012)).

Another way to increase IER efficiency is through increasing the efficiency of the IER
power production technology itself. In the case of PVSs, this would mainly mean im-
proving the solar cell efficiency. At this time, shipped solar cells, commonly made from
silicon, typically convert sunlight into electricity with an efficiency of around 10% to 20%

(Green et al. (2015)).23 However, considerable improvements are theoretically possible
22For instance, concentrating the global PVS power production to locations that maximally favor

their operation, such as deserts or near-desert locations, have been proposed as a means to significantly
increase their efficiency (Kurokawa (2012)). That said, centralizing IER production raises significant
challenges for the grid operation and energy transmission in particular (Kurokawa (2012)).

23Solar cells with higher efficiency are also commercially available, however they come with significantly
higher cost and, as such, are far less commonly employed (Green et al. (2015)).
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when considering recent advantages in nanotechnology, biotechnology, and the materials
and physical sciences used, and solar cells of higher efficiency are anticipated to be avail-
able in reasonable cost in the following years (Lewis (2007)). Regarding WTG, Betz’s law
gives the theoretical upper limit of the power that can be extracted from the total kinetic
energy of the air flowing through a WTG at ∼59% (Betz (2014)). At this time, shipped
WTG have a peak operational efficiency of around 75% to 80% of the Betz limit due to
inefficiencies, such as the rotor blade friction and drag, gearbox losses, and generator and
converter losses (Burton et al. (2011)). As such, further improvements in the inherent
efficiency of WTG are also possible. However, using the state-of-the-art in IER energy
conversion technology is highly costly (both for PVS and WTG) and, furthermore, many
experimental technologies are not yet available as commercial products.

An alternative way to improve the efficiency of an IER with minimum additional invest-
ments is by efficient control. In general, IER control has two main goals: (i) to ensure
the safe operation of the IER, and (ii) to maximize its energy production. In more detail,
WTGs do not operate at maximum efficiency across a range of wind speeds, while high
wind speeds raise safety issues for their operation. In this context, WTG control aims
to ensure that the WTG is in a stall position when the wind speeds exceed the safety
limit and that the WTG operates as close as possible to the maximum efficiency over all
wind speeds (typically achieved through variable turbine speed control) (Burton et al.
(2011)). In a similar manner, PVSs have a non-linear output efficiency which is subject
to the prevailing environmental conditions and the total resistance applied to the pho-
tovoltaic (PV) module (Luque and Hegedus (2011)). As such, maximum power point
tracking is equipped to maximize its efficiency by applying the proper resistance for any
given environmental conditions (Luque and Hegedus (2011)). Beside these low-level con-
trol approaches, specifically for PVS, an additional higher-level control exists that can
greatly increase the efficiency of the PVS. In particular, solar tracking (ST) techniques
can be used to orient the system towards the greatest possible levels of incoming solar
irradiance (Mousazadeh et al. (2009)). In this context, part of the solar tracking control
objective is to also ensure that the PVS is in a safe position when the wind speed raises
safety issues for the construction. Importantly, depending on location and season, solar
tracking can increase the PVS power output by up to 100% (Mousazadeh et al. (2009)).
As such, the effectiveness of the ST technique used is crucial for the overall efficiency of
the PVS. Moreover, several drawbacks of current ST approaches enable us to increase
its effectiveness while its nature enables the investigation of techniques that have long
been the focus of AI research (as discussed in the following paragraphs). Hence, in this
work we focus on increasing the PVS efficiency through advance ST control.

In particular, in this work we propose novel ST techniques that aim to improve the
effectiveness and efficiency of ST with low additional cost. In the following sections, we
first provide a general discussion of ST (Section 1.2.1). Then, in Section 1.2.2, we provide
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the requirements of appropriate ST. Finally, in Section 1.2.3 we discuss the shortcomings
and limitations of current ST approaches.

1.2.1 Solar Tracking Systems

To increase the power output of a PVS, solar tracking, ST, techniques can be used to
orient the system towards the greatest possible levels of incoming solar irradiance. ST
can significantly improve the efficiency of a PVS (by up to 100% (Mousazadeh et al.
(2009))). As such, a wide range of ST approaches have been developed over time which
are generally distinguished based on their tracking architecture and the drive type.

In particular, according to the tracking architecture, two general ST categories can be
defined: (i) single-axis ST, and (ii) dual-axis ST. In the former the trackers used have one
degree of freedom allowing rotation over one axis (while the other axes is fixed), while in
the latter the trackers have two degrees of freedom enabling rotation over two axes (that
are typically normal to one another). Many single-axis and dual-axis ST architectures
exist. For instance, typical representatives of single-axis ST are: (i) the horizontal single
axis tracking (HSAT), where the axis of rotation is horizontal with respect to the ground;
(ii) the vertical single axis tracking (VSAT), where the axis of rotation is vertical with
respect to the ground; and (iii) the tilted single axis tracking (TSAT), where the axis of
rotation is tilted with respect to the ground. Regarding dual-axis ST some representatives
consider: (i) the tip-tilt dual axis tracking (TTDAT), where the panel array is mounted
on the top of a pole which allows rotation over two axis of rotation, that are typically
normal to each other; and (ii) the azimuth-altitude dual axis tracking (AADAT) which
have a similar operation to TTDAT except that it typically uses a large ring on the
ground (along with a series of rollers) to rotate the panel, instead of the pole mounting
used in TTDAT. As such, AADAT has the advantage of distributing more evenly the
panel weight and, hence, is able to consider larger arrays compared to TTDAT. For a
comprehensive review on ST architectures see Roebuck (2012b).

In addition to the tracking architecture used, current ST approaches can also be distin-
guished based on their drive type. In this context, three main categories can be defined
(Mousazadeh et al. (2009)): (i) active ST, (ii) passive ST, and (iii) manual ST. Active
ST relies on, typically electrical, motors to move the PVS and is the most common
ST implementation. For this reason, active ST is the main focus of our work. On the
other hand, passive ST generally relies on thermal expansion effects to move the PVS.
Although passive ST can demonstrate high efficiency (Mousazadeh et al. (2009)), it is
far less common than active ST, and, hence, it is not considered in this work. Lastly, in
some developing countries, tracking is being assigned to operators who adjust the PVS
orientation manually. Manual tracking provides robustness and employment positions
for the people in the proximity of the site (Mousazadeh et al. (2009)). Due to these
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reasons, although less common than passive ST, manual ST is also considered in this
work.

Now, active ST can be further classified according to the controller type. In particular,
in active tracking the motors are driven by a controller that can operate in a closed-loop
or in an open-loop fashion (i.e., with or without making use of any feedback, respectively)
with respect to the environmental conditions. In this aspect, typical open-loop trackers
are the chronological trackers, which follow the sun based on a chronological model of its
motion (Reda and Andreas (2004)). On the other hand, closed-loop controllers typically
utilize appropriate sensors (e.g., photodiode or thermopile pyranometers (Sengupta et al.
(2012))) to dynamically orient the system towards the higher level of incident solar
irradiance.24 For a comprehensive review on the ST drive types and the respective
approaches see Mousazadeh et al. (2009).

1.2.2 Towards Optimal Solar Tracking Systems

Given the great efficiency improvements that can be achieved, the effectiveness of the ST
system used is crucial for the overall efficiency of a PVS. In this context, an active ST
system should be able to consider the weather conditions in order to orient the system
towards the greatest level of solar irradiance to maximize its output. Ideally, this should
be achieved with low cost, and without the need for sophisticated instrumentation and
complex closed-loop controllers (that require installation by an expert). This is needed
so that the ST system is available to the general public, considering also small producers
with limited budget availability (e.g, house integrated PVSs or small PV plants). In the
same context, the ST system should be able to operate in real settings and meet the
operating time constrains with limited computational resources so that the cost of the
necessary hardware is not limiting its availability. Now, since tracking itself comes with
a cost, a ST system should be able to also consider the consumption cost due to tracking
itself (apart from the weather conditions) in order to avoid redundant movement and the
subsequent unnecessary tracking cost increase. In a similar manner, a ST system should
ideally also consider the maintenance cost that generally also increases along with the
active tracking operation time. Last, but not least, given the great variety of existing
ST architectures, a ST technique should be generic enough to be able to consider a wide
range of ST architectures typically employed in practice (e.g., HSAT; TSAT; TTDAT;
or AADAT systems).

Following the above discussion the basic requirements of an effective solar tracking, ST,
system can be defined as follows:

24That said, some interesting techniques exist which use the PV modules themselves as sensors (Das-
gupta et al. (2010)).
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1. Generality: Being able to work in conjunction with the diverse range of ST
architectures that are typically employed in practice.

2. Applicability: Low cost, low complexity and effectiveness that allows the ST
system to be widely applicable in real settings with limited budget availability,
limited resources, and operating time constrains.

3. Performance optimality: Optimal or near-optimal performance that leads to
highly efficient ST performance. In this context, three subsequent requirements
can be defined:

(a) Considering the prevailing weather conditions: The power output of a
PVS highly depends on the incident solar irradiance, and, as such, considering
the prevailing weather conditions is a basic requirement for efficient ST.

(b) Considering the consumption cost: Tracking itself is costly, and, as such,
avoiding redundant movement can lead to efficiency improvements.

(c) Considering the maintenance cost: The maintenance cost increases with
tracking. In this context, avoiding unnecessary movement can lead to addi-
tional efficiency improvements.

1.2.3 Research Challenges

A number of ST systems have been proposed in the literature (Mousazadeh et al. (2009)).
However, all these approaches typically suffer from several drawbacks with respect to the
requirements of an effective ST system as defined above (Section 1.2.2). In particular,
open-loop active ST, although simple, does not take into account the forecasted or pre-
vailing weather conditions (e.g., the degree of cloud coverage or humidity levels). On
the other hand, closed-loop active ST, although accounting for the prevailing weather
conditions, usually depends on expensive and sophisticated instruments (Mousazadeh
et al. (2009)) that limits its availability to the general public. On top of that, existing
closed-loop active ST approaches typically do not take into account the energy consump-
tion caused by the tracking itself, nor do they consider the system’s maintenance cost;
they simply greedily turn the system towards the perceived highest irradiance values. In
Section 6.4 we discuss our contribution regarding ST against this background.

1.3 Research Contributions

In this work we focus on efficient control of: i) domestic space heating systems and ii)
IERs. Our respective research contributions are detailed in the following paragraphs.



Chapter 1 Introduction 17

1.3.1 AdaHeat: A General Adaptive Domestic Heating Automation
System

Regarding efficient control of domestic space heating systems, to address the shortcom-
ings discussed in Section 1.1.4, we propose a new general DHAS, AdaHeat, that balances
heating cost and thermal discomfort in an infinite horizon optimization manner, learns
an adaptive thermal model of the system under control on-line and does planning to fully
exploit the occupancy probabilities. To this end, our system employs a model predictive
control (MPC) (see Section 2.5) approach utilizing adaptive gray-box thermal modeling
(i.e., adaptive modeling that relies on simplified physical equations—see Section 2.2) and
a new general algorithm for planning that fully exploits the probabilistic occupancy esti-
mates via dynamic programming. As such, AdaHeat: (i) is able to effectively account for
the highly dynamic thermal characteristics of houses, (ii) is able to work in conjunction
with both linear and non-linear optimization objectives and system models, (iii) and is
general enough to consider a wide range of heating systems. Due to these reasons, Ada-
Heat can be considered as a general framework where specific models can be inserted to
give particular characteristics. Moreover, AdaHeat adapts to the user preferences in bal-
ancing cost and discomfort as it relies on a single parametrization factor that is learned
on-line. We evaluate our approach with data coming from a real house that employs
underfloor heating (which constitutes a challenging testbed on the generality of our ap-
proach both in terms of thermal modeling and control) where we show the benefits of
incorporating adaptive gray-box thermal modeling in DHASs as well as the effectiveness
of our approach in balancing heating cost and thermal discomfort. In this context, we
also run a comparison over existing heating DHASs and AdaHeat where we show that
the latter leads to a more stable performance, in terms of Pareto efficiency, in various
operational settings.

In addition, AdaHeat incorporates both simple economic control and advanced economic
control, considering, for the first time, issues associated with domestic grid-connected
IERs and export tariffs (in the case of electricity-based heating). To exploit the coalition
potential that arises in advanced economic control, our respective approach is applicable
to both coalitions and single houses (as an extreme case of a single-house coalition).
In particular, regarding advanced economic control, we propose the formation of house
coalitions that utilize IER stochastic predictions to coordinate their heating system op-
eration, ahead of time, so as to minimize their energy import (or, more formally, to buy
and sell energy to the grid when the tariffs are favorable), as an aggregate. In this con-
text, we propose an effective heuristic heating schedule planning approach for advanced
economic control in domestic coalitions. Our respective solution: (i) has a complexity
that scales in a linear and parallelizable manner with the size of the coalition, and (ii)
handles different preferences, in balancing heating cost and thermal discomfort among
the individual households. Our planning approach relies on stochastic predictions of the
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shared IER power output. To achieve this we develop a new adaptive site-specific cali-
bration technique to improve such predictions based on Gaussian process (GP) modeling.
Moreover, AdaHeat also incorporates a practical cost allocation mechanism to share the
realized gains of the coalition that respects individual rationality and allocation effi-
ciency. Finally, we demonstrate the effectiveness of AdaHeat with respect to advanced
economic control through real data evaluation, in a contemporary market reality with
flat import and export tariffs. Specifically, we show that collective advanced economic
control (within the coalition) can improve heating cost-efficiency by up to 60%, compared
to independent advanced economic control, and even more when compared to AdaHeat’s
independent simple economic/heating control.

In more detail, we extend the state-of-the-art as follows:

• We show how adaptive gray-box thermal modeling (see Section 2.2) can be in-
corporated in DHASs to capture the highly dynamic nature of domestic thermal
characteristics. This is the first DHAS that incorporates adaptive gray-box thermal
modeling.

• We propose a new general algorithm for planning in the context of MPC (see
Section 2.5), that optimally accounts for the occupancy probabilities and efficiently
searches over the heating schedule space, utilizing dynamic programming.

• We evaluate our approach with data coming from a real house that employs un-
derfloor heating (which constitutes a challenging testbed on the generality of our
approach both in terms of thermal modeling and control) where we show the ben-
efits of incorporating adaptive gray-box thermal modeling in DHASs as well as the
effectiveness of our approach in balancing heating cost and thermal discomfort.

• We run a comparison over existing DHAS approaches and an improved approach
that fully exploits the occupancy probabilities (i.e. AdaHeat) where we show that
the latter leads to a more stable performance, in terms of Pareto efficiency, in
various operational settings. In this context we also provide significant insights
into the agents’ usability in various settings.

• We are the first to show how advanced economic control that considers IER gen-
eration capacity of the house and export tariffs (along with import tariffs), can
be incorporated in DHASs. We also show, for the first time, how to exploit the
potential of coalitions in this context.

• We propose a new heuristic planning approach for collective advanced economic
control, that has a complexity that scales in a linear and parallelizable manner
with the coalition size. Moreover, our approach can handle the diverse household
preferences in balancing heating cost and thermal discomfort.
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• We propose a practical approach for advanced economic control and demonstrate
its effectiveness through evaluating with real data, in a contemporary market real-
ity. We show that collective advanced economic control can significantly improve
heating cost-efficiency compared to independent advanced economic control, and
even more when compared to independent simple economic/heating control.

1.3.2 PreST: A Dynamic Programming Predictive Solar Tracking Ap-
proach

Regarding efficient control of IERs, to address the shortcomings discussed in Section 1.2.2,
we develop novel low-cost active (and manual) ST techniques that can be used in both
an open-loop or a closed-loop manner. We do not make use of expensive equipment or
sensors, but the backbone of our approach is the estimation of the optimal trajectories a
day before, based on weather forecasts coming from online providers for free—hence, we
name our ST approach PreST (as an abbreviation for predictive solar tracking). To this
end, we employ a recently developed web tool, RENES (Panagopoulos et al. 2012), that
predicts the power output of a PVS given available weather forecasts.25 These predic-
tions form the reward dynamics of a new policy iteration (PI) technique we devise. The
technique, Solar Tracking Policy Iteration (STPI), alternatively optimizes over action
sub-spaces. Although optimizing over sub-problems in an alternating fashion is a gen-
erally common concept elsewhere (Bezdek and Hathaway (2002)), this is the first time
that such an optimization technique is proposed for Markov decision processes (MDPs).

Importantly, the method makes use of a novel tracking system consumption model we
have developed (and which can be extended to account for maintenance and other costs).
The method is appropriate for dual-axis tracking, and is shown to be much more efficient
than the, also sensor-less, chronological ST. We also provide four additional control meth-
ods: a PI method specialized for single-axis tracking, two near-optimal myopic methods
(one specialized for single-axis and one for dual-axis), and a method that enables us to de-
fine the next-day-optimal positioning for any fixed-orientation (yet re-adjustable) PVS
operating within the geographical region of a given weather station, enabling efficient
manual tracking. In particular, the efficiency of the latter is higher than positioning the
system according to yearly-optimal fixed-orientation estimates, and the method can be
easily extended to define the weekly-optimal PVS orientation. Moreover, our methods are
shown to improve the power output of a PVS even when compared to closed-loop sensor-
based ST. In particular, our results show that our approach outperforms all benchmark
methods (i.e., chronological, sensor-based and/or fixed-orientation). Though we evaluate
our approach with respect to the popular azimuth-altitude dual axis trackers, AADAT,
and vertical single axis trackers, VSAT, we note that it can be used in conjunction with
many other ST systems (e.g., TSAT, HSAT, or TTDAT). It is worth noting here that our

25www.intelligence.tuc.gr/renes

www.intelligence.tuc.gr/renes
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next-day policy comes complete with an expected PVS power output estimation. This
is crucial for the smooth integration of PVSs into the electrical grid—since it is essential
that short-term predicted PVS production estimates are available, notwithstanding their
intermittent nature (Ramchurn et al. (2012)). Last, but not least, all our methods come
with guarantees of near-optimality.

Although dynamic programming can naturally find the optimal solution to the ST prob-
lem, this work is the first to propose such an approach. This is probably due to the fact
that an appropriate reward model had not been devised until now (due to the lack of free
and ready-to-use power output estimates, and an appropriate consumption model). We
resolve this issue, and thus contribute to the state-of-the-art, as follows: first, we employ
the recent method of (Panagopoulos et al. 2012) to get PVS power output estimates;26

and, second, we devise here, for the first time, a generic, parameterizable tracker power
consumption model.

In more detail, in this work we extend the state of the art in the following ways:

• We are the first to formalize ST as a dynamic programming problem, and propose
novel low-cost and generic ST techniques that come both with optimality or near-
optimal performance guarantees, and complete with an expected PVS power output
estimation.

• We propose, for the first time, a generic tracking system consumption model to
model the ST dynamics.

• We propose a new policy iteration approximation algorithm for large state-action
spaces that considers the first alternative optimization dynamic programming al-
gorithm for MDPs.

• We run an evaluation based on real data to show that our approach outperforms
all commonly employed ST benchmark techniques (i.e., chronological, sensor-based
and/or fixed-orientation), which can lead to significant monetary gains.

1.3.3 Academic Publications

This work has lead to the following academic publications:

1. Muddasser Alam, Athanasios Aris Panagopoulos, Alex Rogers, Nicholas R.
Jennings, and James Scott, (2014) “Applying Extended Kalman Filters to Adaptive
Thermal Modelling in Homes”, poster abstract at ACM BuildSys 2014, Mem-
phis, US, 05 - 06 Nov 2014. 2pp.

26We note here, that one could alternatively use the work of Chakraborty et al. (2012), which, however,
unlike RENES, does not come with a ready-to-use web tool, and requires the availability of historical
PVS-specific production output data.
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2. Athanasios Aris Panagopoulos, Georgios Chalkiadakis, and Nicholas R. Jen-
nings, (2015) “Towards Optimal Solar Tracking: A Dynamic Programming Ap-
proach”, in Proc. of the 29th AAAI Conference on Artificial Intelligence (AAAI-
2015), Austin, TX, USA, 25 - 30 January 2015, pp. 695-701.

3. Athanasios Aris Panagopoulos, Moody Alam, Alex Rogers, and Nicholas R
Jennings, (2015) “AdaHeat: A general adaptive intelligent agent for domestic heat-
ing control”, in Proc. of the 14th Int. Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS-2015), Istanbul, Turkey, 04 - 08 May 2015, pp.
1295-1303.

4. Athanasios Aris Panagopoulos, Sasan Maleki, Alex Rogers, Matteo Venanzi,
and Nicholas R. Jennings, (2016) “Advanced Economic Control of Electricity-based
Space Heating Systems in Domestic Coalitions with Shared Intermittent Energy Re-
sources”, ACM Transactions on Intelligent Systems and Technology (ACMTIST).

1.4 Thesis Outline

The rest of this thesis is structured as follows:

• Chapter 2: In this chapter, we provide background material and an overview of
related work regarding domestic heating automation systems, DHASs and inter-
mittent energy resources IERs. We consider the latter with respect to our work on
DHAS-integrated advanced economic control and efficient IER control, i.e. solar
tracking).

• Chapter 3: In this chapter, we describe our general adaptive DHAS, AdaHeat.
AdaHeat accounts for simple heating control and simple economic control, as well
as advanced economic control, exploiting also the coalition potential that arises in
the latter. In this context, here we also detail our proposed scheme for collective
advanced economic control in the context of AdaHeat.

• Chapter 4: In this chapter, we provide a thorough evaluation of AdaHeat and a
comprehensive comparison of existing state-of-the art heating automation systems.
We do so by independently evaluating AdaHeat with respect to simple heating and
simple economic control, and with respect to advanced economic control.

• Chapter 5: In this chapter, we detail our dynamic-programming-based predictive
ST approach, PreST. To do so, here we also outline the necessary astronomical
background with respect to ST and provide a detailed discussion on popular ST
architectures that are also the main focus of our work.

• Chapter 6: In this chapter, we provide a detailed real-data-based evaluation of
PreST against commonly employed ST techniques.
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• Chapter 7: In this chapter, we provide a conclusion discussion considering also
the limitations of this thesis and future work directions. Here, we also provide a
detailed evaluation of our work against the above-stated requirements.



Chapter 2

Related Work

In this chapter we provide relevant background material and an overview of related
work regarding domestic heating automation systems (DHASs) and intermittent energy
resources (IERs) (the latter with respect to our work on DHAS-integrated advanced eco-
nomic control and efficient IER control, i.e. solar tracking). In particular, in Section
2.1 we discuss domestic heating systems with respect to their main characteristics that
introduce challenges for efficient modeling and heating control in the context of heating
automation systems. In Section 2.2 we provide a general discussion of thermal model-
ing approaches with a particular focus on gray-box thermal modeling and its adaptive
version. Then, in Section 2.4 we overview the literature of approaches for predicting the
occupancy schedule. Further on, in Section 2.5 we discuss the control approaches utilized
in the context of DHASs, while in Section 2.6 we provide a detailed discussion of model
predictive control. Then, in Section 2.7 we review the related work on domestic heating
automation systems, as well as on non-domestic heating automation systems that deal
with occupancy uncertainty and hence could also be applicable in domestic settings. In
Section 2.8 we review the literature of DHASs with respect to (simple and advanced)
economic control.

Subsequently, in Section 2.9 we provide a review on stochastic prediction of IER power
output which is an essential part of our DHAS-integrated advanced economic control
approach (as discussed in Section 1.3.1). Then, in Section 2.10 we provide a general dis-
cussion on Gaussian process modeling (GP) which is the basis of our respective stochastic
prediction approach. In Section 2.13 we provide a general discussion over Markov de-
cision processes (MDPs) and dynamic programming which consider the backbone key
concepts of our proposed solar tracking (ST) approach, as discussed in Section 6.4. Fi-
nally, Section 2.14 summarizes.

23
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2.1 Domestic Heating Systems

As discussed in Section 1.1.2, the heating systems employed in domestic settings are
diverse in type and the technologies used (e.g, underfloor heating, heating pumps, electric
fan heaters and wall-mounted radiators). However, two particular characteristics of a
heating system are of great significance in the context of DHAS as they highly influence
the methods used for control and/or system modeling. These characteristics are: (i) the
magnitude of the thermal lags and (ii) the variability of the heating cost over time. In
the following sections we discuss each of these characteristics.

2.1.1 Magnitude of Thermal Lags

In general, the aim of a space heating system is to heat up the air in a space to a par-
ticular temperature (i.e., the set-point temperature) and retain it there for an arbitrary
timespan. Depending on the thermal mechanism of the heating system employed, there
is a thermal lag that is observed in terms of heat being transfered to the air after heating
is switched off. In short, this effect is subject to the intermediate nodes of the underlying
heat transfer mechanism of the system and the heat flow rates between these nodes.1 As
such, this effect is negligible for some heating systems such as air fan heaters or electric
radiant heaters, however considerable for other heating systems such as central heating
systems based on underfloor heating technology or wall-mounted radiators. Now, this
effect can be taken into account via appropriate thermal modeling. However, the thermal
lag magnitude also influences the efficiency of different heating control strategies.
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Figure 2.1: Heating strategy example I (without thermal lags, without cost variability)

1Here, the usage of the term “node” is associated with the resistor-capacitor circuit representation,
usually employed when studying heat transfer mechanisms (see Deng et al. (2010) for more details).



Chapter 2 Related Work 25

To illustrate this, let us consider the setting where a particular indoor air temperature
T target needs to be achieved at a specific time instance in the future, tfuture. In addi-
tion, we want to achieve this with the minimum heating cost. Intuitively, the optimal
strategy for a heating system with negligible thermal lags would simply be to have heat-
ing switched on for the minimum time required right before tfuture, so that T target is
met exactly at tfuture, as seen in Figure 2.1.2 In particular, given that: (i) the heated
space is not a closed system (i.e., is not perfectly isolated), (ii) obeys the general laws of
thermodynamics (and hence, given other things being equal, the heat transfer rate will
be greater for greater temperature differences), and (iii) the surrounding environment is
generally cooler, then switching on heating earlier in time would just introduce additional
unnecessary heating cost. On the other hand, switching on heating any later would not
allow us to meet the target temperature T target at tfuture. However, if considerable ther-
mal lags are introduced the above defined solution concept is not optimal anymore. In
such a setting, the heating window needs to be shifted earlier in time to account for the
delay in the thermal response (with respect to the air temperature), deriving a heating
schedule as illustrated in Figure 2.2. Now, the optimal heating schedule (i.e., the one
that minimizes the heating cost) in such a setting depends on the peculiarities of the
system under control such as the specific thermal lags of the heating system, the building
thermal characteristics and the building thermal state.

T target

T
e
m

p
e
ra

tu
re

 

Indoor air temperature T target tfuture

tfuture

Time 

OFF

ON

H
e
a
ti

n
g

Figure 2.2: Heating strategy example II (with thermal lags, without cost variability)

2.1.2 Variability of Heating Cost

Another characteristic of a space heating system with great significance in the context of
DHASs is the variability of the heating cost over time. In general, heating cost variability

2Here, we make the additional assumption that the cost of heating remains constant over time, as we
further discuss in Sections 2.1.2.
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mainly affects electricity-based heating systems (but not exclusively), and can be either
inherent or inherited (to the heating system). In the former case, heating cost variability
emerges due to a variability of the overall heating efficiency of the heating system itself.
In more detail, the overall heating efficiency stands for the ratio of the useful thermal
energy provided over the energy consumed by the heating system. As such, a variability
of the heating system efficiency would lead to a variability of the heating cost over
time. Now, most conventional heating systems have a relatively fixed efficiency over
time. However, electricity-based heating systems that employ technologies that transfer
heat from one place to another, i.e., heat pumps, have a heating efficiency that varies
over time. In more detail, a heat pump’s “efficiency”3 varies with the difference in the
temperature between the heat source and the heat sink (Haines and Myers (2009)).4

This fact calls for careful heating system consumption and thermal modeling, and also
influences the efficiency of different heating control strategies in the context of heating
automation systems (as illustrated in the following paragraphs).

Now, heating cost variability can also be inherited to a heating system due to a time-
varying energy cost. In the case of electricity-based heating systems this could be due to:
(i) a variability in the electricity import tariffs (which leads to the DHAS requirement of
simple economic control, as discussed in Section 1.1.3),5 and/or (ii) the (time-varying)
availability of cheap electricity coming from heating-system-integrated grid-connected
intermittent energy resources, IERs (which leads to the DHAS requirement of advanced
economic control, as discussed in Section 1.1.3)6. The above, call for careful heating sys-
tem consumption modeling, and also influence the efficiency of different heating control
strategies in the context of heating automation systems (as illustrated below).

To illustrate how heating cost variability affects the efficiency of different heating con-
trol strategies, let us consider the example introduced in Section 2.1.1 above, where a
particular indoor air temperature T target needs to be met at a specific time instance in
the future, tfuture, with the minimum heating cost. In such a case, we argued that, for
a heating system with negligible thermal lags, heating-up the space for the minimum
time required right before tfuture could be held as the optimal solution. In this solu-
tion concept we made the additional subtle assumption that the heating system does
not experience any heating cost variability over time. However, this trivial strategy is
not generally optimal for heating systems with variable heating cost. In such a setting,

3In order to avoid any misconception, the term “efficiency” is usually avoided in the context of
heating pumps, as it has a very specific thermodynamic meaning. In particular, the term coefficient of
performance is used instead, to describe the ratio of useful heat movement per work input.

4This is also supported by the fact that systems that utilize heat pump technology usually employ
additional supplementary heat sources (integrated into the heat pump system or as separate systems)
in order to retain a reliable performance of the overall heating system (Haines and Myers (2009)).

5As discussed in Sections 1.1.1 and 1.1.3, time-varying electricity import tariffs are being introduced
in many countries, as part of demand-side management programs (Ramchurn et al. (2011)), to motivate
the consumers to shift their consumption to off-peak periods and enhance the reliable operation of the
electrical grid.

6As discussed in Section 1.1.3, many houses are now being equipped with potentially grid-connected
IERs within the low-carbon energy generation agenda.
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Figure 2.3: Heating strategy example III (without thermal lags, with cost variability)

heating cost varies over time and, as such, the optimal heating schedule will depend on
this particular variation. For instance, if the heating cost is considerably higher during
the heating window of our initial simple heating strategy, it might be more economi-
cally efficient to shift this window earlier in time (and even expand it) and just let the
temperature drop to T target at tfuture, as illustrated in Figure 2.3. That said, the opti-
mal strategy in such settings will depend on the peculiarities of the problem, including
the specific variation of the heating system efficiency. Nevertheless, the above example
illustrates that the initial simple policy is not always optimal in this case.

2.2 Thermal Modeling of a House

As discussed in Section 1.1.2, reliable thermal modeling is an essential part of a heating
automation system and arises as a particularly prominent challenge in the highly dy-
namic domestic settings (considering a basic requirement of DHASs, see Section 1.1.3).
Now, several thermal modeling approaches have been proposed over time and, in gen-
eral, can be classified in the following categories (Prívara et al. (2013)): (i) white-box
(physics-based), (ii) black-box (data-driven), and (iii) gray-box (combination of physics-
based and data-driven) modeling approaches. The later two (i.e. black-box and gray-box
approaches) can be further classified to fixed or adaptive, based on whether the modeled
thermal dynamics are assumed to be fixed or time-varying. For an extended review on
thermal modeling approaches see Li and Wen (2014) and Prívara et al. (2013).

In more detail, white-box approaches use detailed physics-based equations to model the
building thermal dynamics. The parameters of these equations, such as thermal con-
ductance values, heat capacity and thickness of materials, come from detailed surveys
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(e.g., design plans, manufacturer catalogs) or on-site measurements. A variety of mature
white-box software tools are available, such as EnergyPlus7, ESP-r8, TRNSYS9, and
GridLAB-D10. However, the explicit knowledge required for white-box modeling is not
always available, especially in old constructions and domestic buildings, and on-site mea-
surements are typically time consuming and expensive. As such, these approaches are
not suitable for our work here because of our requirement for generality and applicability
(see Section 1.1.2).

In contrast, black-box approaches use statistical or machine learning techniques (e.g.,
simple polynomial curve fits, neural networks, and support vector machines) to model the
thermal dynamics of a building without the need for any prior knowledge (see for example,
Huang et al. (2013) and Ruano et al. (2006)). Based on whether the thermal dynamics are
assumed to be fixed or time-varying, the black-box approaches can be further classified as
fixed or adaptive respectively, employing different regression and/or training techniques
to capture (or not) this variability (e.g., moving training windows, or sequential neural
network training approaches). However, in general, black-box approaches are hard to
interpret in physical terms and/or to generalize to other systems (Morel et al. (2001)).
Moreover, they typically require a large amount of training data in order to demonstrate
an adequate and reliable performance (Morel et al. (2001); Li and Wen (2014)). Due to
these reasons, such approaches are not followed in our work.

On the other hand gray-box modeling approaches, which could be considered hybrid
approaches that combine physical modeling with statistical or machine learning tech-
niques, aim to overcome the aforementioned drawbacks (e.g, Rogers et al. (2013); Ellis
et al. (2013)). Gray-box approaches use simplified physical models to capture the thermal
dynamics of a building. These models are based on derived equivalent thermal param-
eters (ETPs), instead of parameters from surveys or on-site measurements. The ETPs
are assumed to be fixed or time-varying and are estimated via appropriate statistical, or
machine learning, parameter identification methods (e.g., Kalman filters or least squares
methods). Depending on whether the ETPs are assumed constant or time-varying, the
gray-box approaches can be further classified to fixed or adaptive respectively. In gen-
eral, using simplified physical models based on ETPs, reduces the requirement of vast
amount of training data, and the need for explicit knowledge or on-site measurements.
As such, in our work we employ an adaptive gray-box thermal modeling approach. In the
following sections we provide a more detailed discussion on gray-box thermal modeling.

7http://apps1.eere.energy.gov/buildings/energyplus/energyplus_about.cfm
8www.esru.strath.ac.uk/Programs/ESP-r.htm
9http://sel.me.wisc.edu/trnsys

10www.gridlabd.org

http://apps1.eere.energy.gov/buildings/energyplus/energyplus_about.cfm
www.esru.strath.ac.uk/Programs/ESP-r.htm
http://sel.me.wisc.edu/trnsys
www.gridlabd.org
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2.3 Gray-Box Thermal Modeling

In general, gray-box thermal modeling consists of two relatively independent tasks: (i)
defining the simplified physical model (model selection), and (ii) estimating the ETPs
used in the model (ETPs learning).

The task of model selection is to derive a model that strikes a balance between accuracy
and complexity according to the requirements of the application (Prívara et al. (2012)).
In particular, an extremely complex model would potentially be very accurate. However,
a high complexity may not enable the model to generalize to other systems, and esti-
mating the ETPs could be computationally expensive. On the other hand, a very simple
model may not be able to capture essential characteristics of the thermal dynamics and
may demonstrate low predictive performance. For instance, underfloor heating systems
typically have considerable thermal lags over their operation. As such, a simple thermal
model that considers the heat transfer to be direct between the heat source and the
indoor air would not capture the thermal lags of the heating system. In contrast, a more
complex model that considers the transfer of heat from the heat source to the indoor
air via an intermediate node (i.e., the floor), would be able to capture the thermal lags
typically observed in such systems. Typically, balancing complexity and accuracy is ac-
complished by an iterative procedure which starts with the simplest feasible model (and
estimate the corresponding ETPs), and then iteratively refines it into a more complex
one in order to identify the most suitable model (e.g., Prívara et al. (2012); Bacher and
Madsen (2011); Andersen et al. (2000); Kristensen et al. (2004)).

Now, given a gray-box model, the involved ETPs are typically estimated via statistical,
or machine learning, parameter identification methods. The particular parameter identi-
fication method used is subject to the complexity of the model (e.g., linear or non-linear)
and whether the ETPs are assumed to be fixed or time-varying. Based on the latter
assumption, gray-box modeling can be classified as either fixed or adaptive, respectively.

• Fixed gray-box thermal modeling: In fixed gray-box modeling, the ETPs are
estimated either once or at infrequent intervals and are assumed to be constant
over an arbitrary horizon. Recent representatives of this approach include the
heating automation system SPOT+ where linear regression to historical data is
applied in order to learn a fixed thermal model of a room in an office building (Gao
and Keshav (2013b,a)). Another example considers the MyJoulo project where
specially designed USB loggers are used in order to collect temperature readings
from homes (Rogers et al. (2013)). Subsequently, non-linear regression is applied
for thermal modeling in order to provide personalized advice on energy savings.
Another example of fixed gray-box thermal modeling is MatchStick which uses a
non-linear least square method to learn the thermal model of individual rooms
(Ellis et al. (2013)). In addition, simpler thermal models have been used where the
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ETPs are estimated based on historical averages (e.g., Scott et al. (2011); Lu et al.
(2010)). All these studies assume a fixed model over an arbitrary horizon which is
ineffective for domestic environments which can be highly dynamic, both in terms
of external affect (e.g., weather or adjacent buildings effects) and occupant activity
(cooking, opening a window, or operating an auxiliary heating device), as discussed
in Section 1.1.2. Thinking in the limit, an extremely complex fixed thermal model
can potentially consider all the highly dynamic thermal effects of a house. However,
monitoring and considering all these effects is not feasible in realistic settings and
so such approaches will not be used in this research.

• Adaptive gray-box thermal modeling: In contrast to fixed gray-box ther-
mal modeling, in adaptive gray-box modeling, the ETPs are learned on-line and
are assumed to be time-varying. In general, adaptive thermal modeling has been
shown to be resilient and effective in highly dynamic settings. This is because the
partial observation of the underlying thermal dynamics can be interpreted as non-
stationarity of the assumed thermal dynamics (i.e., the derived gray-box model).
In this context, several methods have been utilized for on-line estimation of time-
varying ETPs such as Kalman filters, recursive least squares methods, and genetic
algorithms (e.g., Fux et al. (2014); Radecki and Hencey (2012, 2013); Coley and
Penman (1992); O’Neill et al. (2010); Li and Wen (2014)). For example, Fux et al.
(2014) applied extended Kalman filters (EKFs) to a test building in Swiss Alpine
Club, Switzerland, for adaptive thermal modeling. Their EKF models the indoor
temperature, leakage rates and solar radiation and adapts to the seasonal change
in heat flow introduced by the occupants. Similarly, Radecki and Hencey (2012,
2013), and O’Neill et al. (2010) use EKFs for adaptive modeling to demonstrate
adequate predictions of thermal characteristics of buildings. Furthermore, Coley
and Penman (1992) describe a recursive least square algorithm to identify, in real
time, parameters that characterize the thermal response of a building. In gen-
eral, the particular parameter estimation technique is subject to the complexity of
the thermal model employed which, in turn, depends on the heating system to be
controlled. Due to the above discussed reasons, in this work we employ adaptive
gray-box thermal modeling.

2.4 Predicting the Occupancy Schedule

In addition to an appropriate thermal model, an additional component that is key in
modeling the dynamics in the context of heating automation systems is the occupancy
schedule. This is the case since any thermal comfort, or discomfort, is experienced only
when the space is occupied. However, as discussed in Section 1.1.2, this schedule is
usually unknown in domestic settings and needs to be predicted. To this end, several
approaches to predict occupancy have been proposed over time (e.g., Krumm and Brush
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(2011); Scott et al. (2011); Lu et al. (2010); Gupta et al. (2009); Krumm and Horvitz
(2006); Scellato et al. (2011); Ye et al. (2009)).

Following the classification of Kleimingera et al. (2013), occupancy prediction approaches
can be classified as either schedule-based or context-aware. The former predict occupancy
based only on the history of the occupancy schedule (e.g., Krumm and Brush (2011);
Scott et al. (2011); Lu et al. (2010)). As such, these approaches require limited infrastruc-
tures (i.e., occupancy sensors) and limited computation power. Nevertheless, these have
demonstrated high prediction accuracy (Kleimingera et al. (2013)). In contrast, context-
aware approaches predict the occupancy schedule based on observations of the current
context of the occupants (potentially combined with the occupancy schedule history)
(e.g., Gupta et al. (2009); Krumm and Horvitz (2006); Scellato et al. (2011); Ye et al.
(2009)). Such approaches have the potential to demonstrate higher predictive accuracy
over the schedule-based ones as additional information is being considered. However,
they typically require additional instrumentation and computational power. For a re-
view on state-of-the-art occupancy prediction approaches, along with a comprehensive
evaluation, see Kleimingera et al. (2013).

In this work, we employ the schedule-based occupancy prediction approach proposed by
Scott et al. (2011). This has illustrated median predictive accuracies of ∼ 80% high
performance in comparison to other schedule-based occupancy prediction approaches
(Scott et al. (2011); Kleimingera et al. (2013)). We have chosen this approach due to the
general low instrumentation needs of schedule-based approaches, and its particular effi-
ciency. However, irrespective of the particular choice, all proposed approaches to predict
the occupancy schedule inevitably retain an uncertainty over the predicted occupancy
schedule which, appropriately, is modeled in the form of probabilistic occupancy esti-
mates. As such, dealing with this uncertainty arises as a prominent challenge in heating
automation systems (e.g., Mozer et al. (1997); Urieli and Stone (2013); Lu et al. (2010);
Gao and Keshav (2013a); Erickson and Cerpa (2010); Dong et al. (2011)).

2.5 Control Approaches of Heating Automation Systems

As discussed in Section 1.1.1, the goal of any heating automation system is to control
the heating in order to balance heating energy consumption (or heating cost) and the
occupant’s thermal discomfort according to their preferences, with minimum user-input.
In this context, several control approaches have been investigated (for a respective review
see Wang and Ma (2008) and Dounis and Caraiscos (2009)). However, in general, these
approaches can be classified as either model-based or model-free, based on their reliance
on a model that describes the dynamics of the system under control.11

11We note that, as far as the classification provided in Wang and Ma (2008) is concerned, here hybrid
and performance map-based supervisory control approaches fall in model-based approaches as they also
rely on a model of the system.
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In more detail, model-free approaches aim to optimize the heating control process with-
out a descriptive model of the system dynamics. Such control approaches range from
complex expert systems and reinforcement learning approaches to simple reactive control
techniques (e.g., Dalamagkidis et al. (2007); Liu and Henze (2006); Braun and Diderrich
(1990); Doukas et al. (2007)). However, they typically suffer from several drawbacks,
such as reliance on explicit and extensive knowledge, high computational complexity,
slow convergence rate and/or instability, that typically render them unsuitable for prac-
tical purposes (Wang and Ma (2008)). Thus, such approaches will not be followed in
this work.

In contrast, model-based control approaches aim to optimize the heating control process
based on a model of the system dynamics which enables them to plan a heating schedule
ahead of time and predict the outcome of the heating actions. Based on this model,
such control approaches calculate a control law either on-line or off-line. In the former
case, an appropriate policy is calculated in advance which generally defines the optimal
(or near-optimal) action for any possible system condition (i.e. system state). Then the
appropriate action is chosen in a straightforward way based on this mapping (and an
identification of the current system state) to control the system. However, an off-line
computation of an effective control law is difficult or impossible when the state space is
extremely large (as is generally the case in heating automation systems), and hence, such
approaches generally fail to account for essential details and/or have high computational
complexity that renders them impractical in realistic settings. For instance, the work in
Shann and Seuken (2014), that is based on an off-line calculation of a control law, fails to
consider real-time updates of the occupancy schedule and weather condition estimates,
which is crucial for the control efficiency of any heating automation system, and especially
of domestic ones (as discussed in Section 1.1.1).

On the other hand, one particular family of model-based control approaches that has
proven very efficient in heating automation systems, and is also employed in this work,
is that of model predictive control (MPC) (e.g., Oldewurtel et al. (2010b); Širokỳ et al.
(2011); Mozer et al. (1997); Gao and Keshav (2013a); Urieli and Stone (2013); Moroşan
et al. (2010); Freire et al. (2008); Oldewurtel et al. (2010a)). Along with its demonstrated
effectiveness, the significant success of MPC in this context is due to its particular ability
to handle control problems where an off-line computation of a control law is difficult or
impossible. In the following section (Section 2.6) we provide a detailed discussion of
model predictive control.

2.6 Model Predictive Control

Several control approaches have been investigated in the context of heating automation
systems (as discussed in Section 2.5). However, one particular family of approaches that
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has been proven very efficient and has been widely used in heating automation systems
is that of model predictive control, MPC, (e.g., Oldewurtel et al. (2010b); Širokỳ et al.
(2011); Mozer et al. (1997); Gao and Keshav (2013a); Urieli and Stone (2013); Moroşan
et al. (2010); Freire et al. (2008); Oldewurtel et al. (2010a)). In addition to heating
automation systems, MPC is widely used in many other industrial applications including
also low-level heating control12 (e.g., Qin and Badgwell (2003); Camacho and Bordons
(1995); Prívara et al. (2011)). The considerable industrial success of MPC is due to
its ability to handle control problems where an off-line computation of a control law
is difficult or impossible, along with its ability to handle hard control constraints in a
straightforward manner (Mayne et al. (2000); Qin and Badgwell (2003)). In particular,
these constraints can set conditions either on output variables, i.e., system variables
that are influenced by the control actions executed, or input variables, i.e., the control
actions itself. Furthermore, they are “hard” in the sense that are required to be satisfied.
For these reasons, in this work we employ an MPC approach for our domestic heating
automation system.

In more detail, MPC refers to a wide family of on-line control algorithms that, more or
less, share the following criteria (Camacho and Alba (2013)): (i) they make explicit use
of a model that describes the dynamics of the system under control in order to predict
its future state; (ii) based on this model, they calculate a sequence of actions over a
finite horizon according to the optimization objective—here we refer to this process as
planing; and, finally, (iii) they apply the first control action of the calculated sequence,
and repeat the procedure, shifting the planning horizon into the future—a property
known as receding horizon.13 As such, MPC approaches require a descriptive model
of the system, or models of the system components, and an appropriate optimization
method for planning; i.e., a method to derive the optimal heating schedule based on the
system modeling.

Now, depending on the complexity of the system model used (linear or non-linear),
the complexity of the optimization objective (e.g., linear or non-linear objective func-
tion; quadratic objective function; subject to linear or non-linear constraints; subject to
quadratic constraints), and the complexity of the available control actions (continuous
or discrete values, subject to constraints), different optimization problems arise in plan-
ning (e.g., quadratic programming problems, linear programming problems and mixed
integer programming problems). As such, considering also the computational resources
available, different optimization methods are employed, such as interior-point methods,

12Here, low-level heating control refers to the control method employed for maintaining the inside air
temperature close to a particular value (i.e., the set-point temperature) with the minimum of oscillations.
To this end, the control approaches typically utilized range from simple ON/OFF control to different
variations of proportional-integral-derivative (PID) control, and MPC, depending on whether a static or
programmable thermostat is employed (most commonly, systems with static thermostats employ simple
ON/OFF control) (Wang and Ma (2008)).

13Due to this last property model predictive control is also well known as receding horizon control.
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simplex algorithms and dynamic programming (e.g, Wang and Boyd (2010); Patrinos
et al. (2011); Lee (2011); Camacho and Alba (2013)).

However, despite its considerable success, MPC is essentially a suboptimal controller.
The receding horizon technique allows us to tackle difficult control problems, but, gen-
erally, this comes with a cost that is mainly reflected in the theoretical properties of: (i)
planning feasibility, (ii) control stability, and (iii) performance. In particular, minimiz-
ing an objective function which is subject to hard constraints on the output variables
over a finite receding prediction horizon, might drive the system outside the feasible
region where the constraints can be satisfied. This fact can lead to a non-feasible opti-
mization problem. This can happen due to a disturbance effect or due to the receding
horizon optimization procedure inadvertently driving the system outside the feasible re-
gion (Scokaert and Rawlings (1999)). However, by definition, feasibility issues in meeting
soft constraints (constraints which are preferred but not required to be satisfied) cannot
emerge. Moreover, feasibility issues in meeting hard (or soft) input constraints cannot
emerge either. In particular, at any time instance the population of these variables is
independent of the previous actions executed, entirely left to the controller and, hence,
can be strictly enforced to meet the conditions. As such, feasibility is generally an issue
only when the objective function is subject to hard constraints on the output variables
(Scokaert and Rawlings (1999)). Nevertheless, this is not the case in our approach (as
further discussed in Chapter 3). In addition to these feasibility issues, the recursive
horizon optimization technique might lead to unstable control performance, especially
in non-stable systems with fast dynamics. However, stability is not an issue in typically
stable systems with generally slow-dynamics such as buildings (Širokỳ et al. (2011)).
Lastly, the sequence of actions that is actually executed in the context of MPC, might
differ significantly from the sequence of actions that is calculated in planning at each
instance. As such, planning optimization might have only a tentative connection with
the optimization of the underlying real process. In this aspect, MPC is not an optimal
control approach and its performance might deteriorate compared to an an optimal one
(which however might have a computational complexity that renders it impractical in
realistic settings, as discussed in Section 2.5).

In general, the theoretical properties of the above concepts are subject to the particular
MPC design (e.g, length of the predictive horizon, or rate of control action execution)
along with the complexity of: (i) the system model, (ii) the optimization objective,
(iii) the control actions and (iv) the underlying system dynamics. Addressing these
theoretical questions, in all cases, is an active area of research in the context of MPC
(Morari and Lee (1999); Mayne et al. (2000); Camacho and Alba (2013); Mayne and
Rawlings (2001); Scokaert and Rawlings (1999)). In this context, many MPC variations
have been proposed to address the above issues in different complexity settings.

In particular, typically MPC refers to the commonly employed certainty equivalenceMPC
version (Bertsekas (2005)). As implied by its name, this MPC version plans using the
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expected values of all predicted variables of the system dynamics as certain; ignoring
any possible uncertainty (appropriately modeled in the form of deviation). In general,
this loss of information is countered by the on-line nature of MPC, as the actual values
of the predicted variables are used at every iteration as the initial state in the MPC
planning. However, this fact posses challenges for the theoretical guaranties of MPC
regarding planning feasibility and control stability, and also affects its performance. To
this end, robust MPC and stochastic MPC approaches have been proposed that handle
the model uncertainties in a more concrete manner (compared to certainty equivalence
MPC) (e.g, Bemporad and Morari (1999); Kothare et al. (1996); Lee and Kouvaritakis
(2000); Oldewurtel et al. (2010b); Couchman et al. (2007)). These approaches can pro-
vide robustness and stability guaranties under certain conditions. However, typically
these guaranties come with a trade-off in performance and/or the proposed MPC ap-
proaches are computationally expensive (Morari and Lee (1999); Camacho and Alba
(2013)). Another variation of MPC that handles model uncertainties in a concrete man-
ner and has the potential to improve the controller performance is adaptive MPC (e.g.,
Fukushima et al. (2007); Lee and Ricker (1994)). In general, adaptive MPC differs from
the above defined typical MPC procedure in that the system model is updated at each
iteration in order to account for any variability in the system characteristics. In general,
adaptive MPC is an attractive way to further handle model uncertainties. As such, in
this work we employ an adaptive MPC approach. Moreover, once again, the absence of
hard output constrains in our optimization objective and the generally slow and stable
dynamics of buildings, ensure that we will not face any feasibility or stability issues,
which are typically further introduced particularly by the adaptation mechanism in the
context of adaptive MPC (Fukushima et al. (2007)).

2.7 Heating Automation Systems that deal with Occupancy
Uncertainty

Many heating automation systems have been proposed over time for both domestic and
non-domestic settings (e.g., Farris and Melsa (1978); Kintner-Meyer and Emery (1995);
Kummert et al. (2001); Henze et al. (2004); Liu and Henze (2006); Mozer et al. (1997);
Scott et al. (2011); Lu et al. (2010); Urieli and Stone (2013)). However, dealing with
occupancy uncertainty is a necessary requirement for a heating automation system to be
applicable in domestic settings (as discussed in Section 1.1.2). As such, in this review
(see Table 2.1) we focus only on systems that deal with this uncertainty and hence could
potentially be employed in domestic settings.

In more detail, there has been an increasing amount of work on heating automation
systems that deal with occupancy uncertainty. In particular, a number of domestic
heating automation systems (DHASs) have been proposed (e.g., Mozer et al. (1997);
Urieli and Stone (2013); Lu et al. (2010)), along with some advanced non-domestic
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Table 2.1: Heating automation systems overview

Automation System

Limitation
Threshold Separate Fixed Simple
Occupancy Preheating & Thermal Heating
Probabilities Heating Stopping Model Control

Neurothermostat × × X X
Smart Thermostat × X X X
PreHeat X X X X
SPOT+ X × X X

(mainly for offices) heating automation systems (e.g, Gao and Keshav (2013a); Erickson
and Cerpa (2010); Erickson et al. (2013)). We will now discuss the main relevant systems.

2.7.1 Neurothermostat

In their pioneering work on probabilistic occupancy in heating automation systems,
Mozer et al. (1997) propose the DHAS Neurothermostat. Neurothermostat employs
a general heating control method that fully exploits the occupancy probabilities and
balances cost and discomfort via a single objective in an infinite horizon optimization
manner. In more detail, the expected discomfort is expressed in monetary cost, through
a simple static empirical formula, and is added to the cost of heating. In this context,
Neurothermostat aims to minimize this unifying cost over an infinite horizon.

To this end, the following MPC approach is utilized: At every iteration an exhaustive
search over all possible heating schedules is performed, looking for a schedule that min-
imizes the unifying cost over a finite planning horizon. Then, the first action of the
derived schedule is executed and the process is repeated shifting the horizon into the
future. However, the major drawback of this work is that it employs exhaustive search
(for planning a heating schedule) which is extremely costly, limiting its applicability
to simple proof-of-concept settings. In this context, Neurothermostat relies on a sim-
ple, fixed and, thus, impractical thermal model. Moreover, Neurothermostat employs a
static empirical formula to express discomfort in monetary cost which is problematic as
this equivalence varies among users and through time (Scott et al. (2011)). Finally, as
outlined in Section 2.1.2, balancing heating consumption and thermal discomfort in the
absence of energy cost variability is essentially equivalent to balancing heating cost and
thermal discomfort. As such, although heating cost is used in Neurothermostat, none of
the essential aspects of simple or advanced economic control are considered (i.e, variable
electricity import tariffs and/or heating-system-integrated IERs, see Section 2.1.2). In
this aspect, Neurothermostat considers simple (automated) heating control (as defined
in Section 1.1.1).
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2.7.2 Smart Thermostat

In contrast to the infinite horizon approach above, Lu et al. (2010) presented the DHAS
Smart Thermostat. Smart Thermostat divides heating control into two relatively in-
dependent problems: (i) when to switch off heating; heating stopping and (ii) when to
switch it on; preheating. The former is tackled in a reactive manner using sensors and
a hidden Markov model (Dugad and Desai (1996)) to infer sleep and departure events.
Hence, when the space is not occupied the heating system is switched off and the inside
temperature is allowed to sink down to a “deep” setback temperature. The latter is
tackled utilizing a heating-system-specific heuristic approach. In particular, heating is
switched on at a particular time instance which is chosen so as to minimize the long-term
expected energy waste for a variable efficiency three-stage heating system (a two-stage
heat pump and a third stage electric heater) given predictions of the occupant arrival
events. To this end, a simple thermal model is used based on equivalent thermal parame-
ters, ETPs, estimated as historical averages. Now, in order to reduce the time required to
recover to the set-point temperature if an occupant returns before the space is adequately
heated, the space is also heated to a “shallow” setback temperature before the first pos-
sible arrival. However, the reactive approach utilized for heating stopping is not Pareto
optimal for heating systems that exhibit considerable thermal lags. In particular, early
stopping, i.e., switching off heating some time before a departure, can reduce the heating
energy consumption in such settings without any comfort loss (Ellis et al. (2012)). In
addition, the preheating approach utilized is extremely system specific and only searches
over a sub-region of the heating schedule space. In particular, it only searches for a spe-
cific time instance to switch on heating. In this context, more complex heating policies,
which could possibly be more efficient, are not considered. Most importantly though,
tackling preheat and heating stopping independently is not effective in heating systems
that exhibit considerable thermal lags, such as underfloor heating systems (even if early
stopping is considered). In such systems, the preheating strategy can significantly affect
the optimal heating stopping strategy and vice-versa. Finally, Smart Thermostat does
not consider any economical aspects (other than the energy consumed) and, as such,
considers also simple (automated) heating control.

2.7.3 PreHeat

In contrast to the above works, more recently, a particular heuristic approach is rising
in popularity which deals with the probabilistic occupancy estimates in a threshold-
ing manner (e.g. Scott et al. (2011); Gao and Keshav (2013b,a)). In particular, the
probabilistic occupancy estimates are assumed binary depending on their relation to a
predefined threshold; any estimate above the threshold is assumed 1, otherwise it is as-
sumed 0. Most well known representatives of this approach consider the work of Scott
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et al. (2011) and Gao and Keshav (2013a) (which also consider the benchmark of our
evaluation procedure)14.

In more detail, Scott et al. (2011) propose the DHAS PreHeat, which plans based on
a deterministic occupancy schedule, derived through the aforementioned thresholding
approach. PreHeat system works in two ways:

1. When the space is considered occupied it uses predefined set point temperatures.

2. When the space is considered non-occupied, it uses a lookahead window to check if
an occupancy event is imminent (according to the derived deterministic occupancy
schedule) in order to: (i) heat up the space for the minimum time required right
before an occupancy event, and (ii) ensure that the set-point temperature is met
at the time instance of the occupancy event.

To this end (and, in particular, in order to decide when to start heating to meet the
aforementioned objectives), PreHeat uses a simple fixed thermal model based on a single
ETP. Specificaly, it uses the heat-rate, which is the warming rate of the house when
heating is on. This rate is estimated during an initial deployment phase as a simple
historical average value and is considered to be fixed thereafter. However, in the context
of the derived deterministic occupancy schedules, PreHeat tackles preheating and heat-
ing stopping independently and employs reactive heating stopping. As such, it faces the
respective, aforementioned limitations. Moreover, although the preheating approach em-
ployed aims to eliminate discomfort with the minimum heating cost, this is only achieved
for heating systems that do not exhibit any thermal lags or heating cost variability over
time. In all other cases, this trivial preheating strategy is not optimal (as illustrated
in Section 2.1). On top of the above, the actual trade-off between heating cost and
discomfort is determined by the threshold choice which defines the deterministic occu-
pancy schedule in the first place. As such, cost and discomfort are balanced based on a
heuristic approach and no warranties or intuition is given regarding the performance loss
from optimal heating schedule planning that, ideally, would fully exploit the probabilistic
occupancy estimates. Finally, PreHeat does not consider any economical aspects (other
than the energy consumed) and, as such, considers simple (automated) heating control.

2.7.4 SPOT+

Another example of work with the thresholding technique is SPOT+ (Gao and Keshav
(2013a)), a non-domestic heating automation system for office buildings. SPOT+ tack-
les heating control in an infinite horizon optimization manner but plans based on a

14We note here that both Neurothermostat and Smart Thermostat, described above, are not suitable
to serve as benchmarks for our evaluation procedure as the computational complexity of the former is
restrictive for our case study system and the latter is extremely system specific.
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deterministic occupancy schedule. This schedule is derived through the aforementioned
thresholding approach. To this end, SPOT+ uses a parameterizable unifying formula to
balance heating consumption and discomfort, in a single objective optimization manner
and, appropriately, uses MPC and a graph theoretical approach (shortest path finding)
for planning (in order to find the heating schedule that minimizes the unifying cost over
the predicting horizon). In this context, SPOT+ uses a fixed thermal model for plan-
ning, estimated through least squares regression. Specifically, SPOT+ uses the following
simple thermal model for planning:

T INt+1 = T INt +
eP hvact − k(T INt − TOUTt )

C
(2.1)

where P hvact is the power of the heating system at time t, and TOUT is the outside
temperature (T IN stands for the indoor temperature). Moreover, e, k, and C stand for
the efficiency, the conduction factor, and the building heat capacity, respectively, and
consider the ETPs which are estimated through least squares regression during an initial
training phase, and assumed fixed thereafter.

The formula used in SPOT+ for planning, weights heating consumption and thermal
discomfort according to a user specified weighting parameter. In more detail, the formula
is:

J(·) =

|H|∑
τ=1

Cost(·τ ) +Oτλ
′Disc(·τ ) (2.2)

where λ′ ∈ [0,∞) stands for the user-provided weighting parameter, |H| stands for the
number of intervals, τ , within the planning horizon, and Oτ ∈ {0, 1} indicates whether
the space is occupied during interval τ based on the derived deterministic occupancy
schedule. Cost(·τ ) and Disc(·τ ) are functions that return the heating energy consump-
tion and the thermal discomfort, respectively, according to the consumption model and
discomfort metric used. In particular, SPOT+ simply uses P hvact to model heating con-
sumption and estimates discomfort according to a non-linear discomfort metric based on
the 7-point ASHRAE scale.15 By doing so, the proposed discomfort metric is a varia-
tion of the predicted mean vote model (Fanger et al. (1970)), extended with an affine
transformation method to account for spaces occupied by a single person, and a dead-
band/neutral zone (for more details on this thermal comfort metric see Gao and Keshav
(2013a)).

In this context, SPOT+ balances discomfort and heating consumption on two levels: (i)
based on the threshold choice to derive with the deterministic occupancy schedule and,
(ii) based on the (semi-bounded, i.e. ∈ [0,∞)) weighting parameter used in the unifying
formula. However, this balancing scheme obscures how each one of the balancing tech-
niques affect the trade-off between consumption and discomfort making parameter choice

15The 7-point ASHRAE scale is {cold (-3) , cool (-2), slightly cool (-1), neutral (0), slightly warm
(+1), warm (+2), and hot (+3)}
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tricky. Moreover, this scheme also considers a heuristic approach and no warranties or
intuition is given regarding the performance loss from optimal heating schedule plan-
ning. Lastly, although shortest path finding is mentioned for planning, the algorithmic
choice is not reported nor is an appropriate algorithm provided. Finally, it should be
noted that SPOT+ does not consider any economical aspects (other than the energy
consumed) and, as such, also considers simple (automated) heating control.

2.8 Heating Automation Systems that Incorporate Economic
Control

In the above section (Section 2.7) we reviewed the literature of heating automation sys-
tems that deal with occupancy uncertainty (and, hence, could potentially be employed
in domestic settings). However, none of the systems considered in our review deal with
(simple or advanced) economic control. Indeed, the domestic heating automation sys-
tems, DHASs, that consider economic control are currently highly experimental and none
of them deal with occupancy uncertainty. In addition, as discussed in Section 1.1.4,
all DHASs that consider economic control account only for simple economic control,
while none of them considers advanced economic control (i.e., taking into account also
domestic/heating-system-integrated IERs). Nevertheless, in the following paragraphs we
provide a review on the state-of-the-art of DHASs with respect to economic control in
terms of concreteness.

In more detail, in recent years, economic control is starting to emerge as an integrated
part of DHASs (e.g., Rogers et al. (2011); Halvgaard et al. (2012); Shann and Seuken
(2014)). In particular, the work of Rogers et al. (2011) proposes an adaptive heating
algorithm that considers time-varying electricity import tariffs in balancing heating cost
and thermal discomfort. In this context, it first predicts the external temperature using
Gaussian process (GP) regression (for more details on GP regression see Section 2.10).
Then, it computes a heating schedule using mixed-integer programming and a simple
fixed thermal model. However, this work is highly experimental, and assumes that: (i)
the weather predictions are absolutely accurate, (ii) the occupancy schedule is perfectly
known in advance, and (iii) the simple fixed thermal model utilized perfectly describes
the thermal dynamics of the house. However, all the above are somewhat unrealistic
assumptions in practical settings. Nevertheless, this work illustrates the potential of
DHAS-integrated simple economic control and considers the motivational work for many
DHAS in this respect (including ours).

Following a similar line of research, the work of Halvgaard et al. (2012) proposes an
MPC-based approach for DHAS-integrated simple economic control to account for time-
varying electricity import tariffs. In this work the electricity prices are incorporated in
the MPC planning optimization objective as cost coefficients. To this end, this work
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utilizes a white-box thermal modeling approach. Nevertheless, this work assumes a
perfect white-box thermal model of the thermal dynamics without taking into account
the occupants’ activity. However, the occupants’ activity can affect the thermal dynamics
in domestic settings (as discussed in Section 1.1.2) and, hence, a thermal model that does
not consider these aspects cannot be assumed to be completely accurate. Moreover, in
general, white-box thermal modeling requires extensive building information that is not
always available in domestic settings and/or it is expensive to obtain (as discussed in
Section 2.2). Last but not least, this work also assumes that the weather predictions
utilized are absolutely correct and that the occupancy schedule is perfectly known in
advance (which is not the case in realistic settings, as noted above).

Finally, the work of Shann and Seuken (2014) proposes a DHAS that accounts for time-
varying electricity import tariffs, aiming to overcome some of the limitations of the
aforementioned approaches. In more detail, in this work, the outside temperature and
the electricity import tariffs are predicted using GP regression. Then this particular
stochastic modeling is utilized in calculating an off-line control law to optimize the heat-
ing process. As such, this work aims to account for the weather prediction uncertainty,
and, also, incorporates an approach to predict the electricity import tariffs (account-
ing also for the respective uncertainty).16 However, (as already noted in Section 2.5),
this work fails to account for real-time updates of the occupancy schedule and/or the
weather forecasting reports, which is crucial for the control efficiency of DHASs (as
discussed in Section 1.1.1). In addition, in order to further reduce the respective opti-
mization complexity, this work utilizes a simple fixed thermal model assuming that it
perfectly describes the thermal dynamics of the house. However, as noted above, this is
an unrealistic assumption in practical settings.

2.9 Predicting the Power Output of Intermittent Energy
Resources

As discussed in Section 1.3.1, against the background detailed in Section 2.8, in this
work we propose a DHAS that incorporates both simple and advanced economic control.
Now, an essential part of our DHAS-integrated advanced economic control approach is
a stochastic, short term (up to 12 hours ahead), prediction of the shared IER power
output (as discussed in Section 1.3.1). As discussed in Section 1.2, the power output
of IERs depends on the prevailing weather conditions. In particular, the power output
of a PVS depends mostly on the irradiance incident to the photovoltaic module and
the operating temperature of the module (Luque and Hegedus (2011)), while the power
output of a WTG depends mostly on the prevailing wind speed and wind temperature
(Burton et al. (2011)). In addition, advanced IER models exist to transform these

16Predicting the electricity import tariffs is crucial in settings with real-time pricing which is unknown
in advance, for more details see Torriti et al. (2010).
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weather variables into IER power output with high accuracy (Panagopoulos et al. (2012)).
As such, predicting the power output of IERs is tightly linked with the task of predicting
the main environmental variables that affect their operation.

Broadly speaking, existing approaches for IER power output prediction fall into three
main categories (Soman et al. (2010); Paulescu et al. (2012)): (i) approaches based on
physical numerical weather prediction (NWP) models; (ii) statistical (or machine learn-
ing) approaches; and (iii) hybrid approaches that essentially combine the two former
ones. In more detail, NWP-based approaches (e.g., Soman et al. (2010); Chen et al.
(2014)) consider the analysis of numerous weather parameters via complex models of the
dynamics governing the motion of the fluids in the atmosphere to derive the weather
variable predictions. These predictions are then transformed into power output pre-
dictions using models of the actual generator. In general, such approaches are limited
by the complexity of their advanced meteorological analyses, as well as the absence of
historical observations for their site-specific calibration (Chen et al. (2014)). Neverthe-
less, many on-line providers serve detailed weather forecasting reports based on such
NWP models, free of charge, that can be used to facilitate NWP-based approaches in a
straightforward manner.17 In contrast, statistical approaches, use only historical read-
ings of the IER power output, without including any physical model, to predict future
IER power output. In this context, several statistical methods have been proposed, pro-
viding either stochastic or non-stochastic predictions, including autoregressive models
(Brown et al. (1984)), autoregressive–moving average models (Kamal and Jafri (1997)),
artificial neural networks (Li and Shi (2010)), support vector machines (Mohandes et al.
(2004)), and Bayesian methods such as Kalman filters and Gaussian processes (Jiang
et al. (2010); Chen et al. (2014)). Such approaches provide accurate very short term
predictions (up to 4 hours), by learning correlated signals from the historical observa-
tions, but their mid-to-long term accuracy is generally limited compared to NWP-based
approaches (Soman et al. (2010); Paulescu et al. (2012)). Last, hybrid approaches com-
bine the aforementioned statistical and NWP-based approaches, aiming to overcome the
respective limitations (Soman et al. (2010)). As such, they are also employed in this
work.

2.10 Gaussian Process Regression

Gaussian process (GP) regression is a well-known state-of-the-art approach for handling
non-linear regression problems that has been widely and effectively used for hybrid IER
power output prediction (e.g., Chen et al. (2014); Zamo et al. (2014)). GP regression also
provides stochastic predictions in a principled manner and, hence, it is also employed in

17That said, the accuracy of such reports generally deteriorates compared to commercial ones, while
they are also limited in the environmental variables that they consider (for instance, solar radiation,
which is essential for photovoltaic system power output prediction, is usually absent in free-of-charge
reports), making the need for site-specific calibration more apparent.
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this work. Formally, a GP can be defined as a stochastic process considering a distribu-
tion over functions f : X → Y ∈ R such that any finite subset X ′ ⊂ X is multivariate
Gaussian distributed. Specifically, a GP is completely defined by a mean function, m(.)

and a positive semi-definite covariance function (or kernel), K(., .). If the observed val-
ues, y = y1 . . . yn, and a corresponding set on inputs x = x1 . . . xn, are thought of as a
noisy version of the true underlying function f , i.e., y = f(x) + ε, where ε is assumed to
be zero mean Gaussian noise, N (0, σ2), then a GP prior distribution on f can be defined
as f ∼ N

(
m(x|θ),K(x,x|θ) + σ2I

)
, where θ is the set of hyper-parameters that charac-

terize the shape of the mean and covariance functions. Given the Gaussian likelihood of
the GP, at any set of test points x∗, the predictive posterior distribution at these points
can be evaluated in closed form as a multivariate Gaussian distribution:

p(y∗|x∗,x,y, θ) = N (y∗;m(x∗|y,x, θ),Σ(x∗|y,x, θ)) (2.3)

m(x∗|y,x, θ) = m(x∗) +K(x∗,x)K−1y (y −m(x)) (2.4)

Σ(x∗|y,x, θ) = K(x∗,x∗)−K(x∗,x)TK−1y K(x∗,x) (2.5)

Ky , K(x,x) + σ2I (2.6)

The hyper-parameters, θ, are typically learned by maximizing the log marginal likelihood:

θ∗ = arg max
θ

(
ln p(y|x, θ) = −1

2
ln |K(x,x)| − 1

2
yTK(x,x)−1yT − n

2
ln(2π)

)

where n is the number of input points. The maximizer of this function can be searched
using a standard gradient-based optimization method such as conjugate gradient or New-
ton methods—for more details see Rasmussen and Williams (2005).

2.11 Coalition Formation and Energy Systems

As discussed in Section 1.3.1, in this work we propose a DHAS that is able to exploit the
coalition potential that arises in advanced economic control. Although, this is the first
work to exploit this potential in DHAS-integrated advanced economic control, coalition
formation is a considerably active research area within the energy sustainability agenda
(e.g., Alam et al. (2015); Chalkiadakis et al. (2011); Pudjianto et al. (2007); Ramchurn
et al. (2013)). In particular, the formation of grid entities’ coalitions has long been pro-
posed as a means to provide regulation services to the grid (Goswami and Kreith (2015)).
More recently, it has also gained ground as a means for achieving the cost-efficient and
reliable integration of the many distributed energy resources that are starting to emerge
in the grid (Ramchurn et al. (2012)). In this context, dynamic coalition formation has
been heralded as a key aspect of the next generation electrical grid (Ramchurn et al.
(2012)).
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In more detail, and regarding the energy consuming entities of the grid, respective coali-
tion formation has been proposed to encourage less dynamic and more predictable energy
consumption profiles (Ramchurn et al. (2013)) and/or to offer regulation services to the
grid via appropriate demand response (Goswami and Kreith (2015); Kota et al. (2012)).
Regarding the energy producers of the grid, the formation of virtual power plants has
been proposed as a means to facilitate the reliable integration of IERs into the grid. In
particular, virtual power plants correspond to the notion of a large number of heteroge-
neous distributed energy resources, usually IERs, joining forces in order to offer electricity
to the grid as an aggregate—while providing the guarantees of a single “conventional”
power plant (Ramchurn et al. (2012); Pudjianto et al. (2007)). As such, virtual power
plants consider coalitions that create the necessary synergies among distributed energy
resources, so that the effective and efficient delivery of energy is assured, while still being
able to utilize (the inherently intermittent and thus untrustworthy) IERs (Ramchurn
et al. (2012)). Notably, the term virtual power plants may also refer to coalitions of pro-
sumers, i.e, grid entities that both consume and produce energy (Ramchurn et al. (2012)),
or heterogeneous coalitions (i.e., consisting of consumers, producers and/or prosumers)
that come together to maximize their economic benefit (Giuntoli and Poli (2013)).

Now, with respect to thermostatically controlled loads (including domestic space heating
loads), several works have discussed the potential of respective aggregations for provid-
ing regulation services to the grid (e.g., Hao et al. (2013); Callaway (2009); de Nijs
et al. (2015)). Nevertheless, non of these works has accounted for this potential in the
context of DHAS-integrated (advanced) economic control. In addition, as discussed in
Section 1.1.4, works that deal with domestic space heating system aggregations typically
assume the same preferences in balancing heating cost and thermal discomfort among
the households (e.g., Dudley and Piette (2008); Torriti et al. (2010)) which is impractical
in realistic settings (as discussed in Section 1.1.2). In general though, several challenges
arise in the formation and management of the aforementioned coalitions with respect
to the members being required to come to an agreement in a wide range of economic
and/or technical aspects, such as on the allocation of the collective gains, on the plan for
further investments, and/or on specific contracts and collective agreements with external
costumers or utility companies (Saad et al. (2012)).

2.12 Cooperative Game Theory

As discussed in Section 2.11, several challenges arise in the formation and management
of coalitions in the energy systems. To this end, cooperative game theory provides
the theoretical framework to tackle some of these challenges. In more detail, game
theory generally comprises two main branches (Osborne and Rubinstein (1994)): (i) non-
cooperative game theory and (ii) cooperative game theory. Now, the former covers the
strategic choices resulting from interaction among competing independent players, while
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the latter focuses on competitive scenarios where players can form cooperative groups
(i.e., coalitions) in order to enhance their position in a game (Augier and Teece (2014)).
Such a game is called a cooperative game and considers the theoretical framework of
applications considering coalition formation. In this context, here we provide a discussion
on cooperative games covering the main concepts that emerge in this work.

Formally, a cooperative game is described by a finite set of players N (that considers
the grand coalition) and a characteristic function v : 2N → R, where v(∅) = 0, which
describes the collective payoff (or cost) of a possible coalition. In this context, a player
chooses to join a coalition based on an estimate of the way the payoff of the coalition is
divided among the members. As such, a key challenge in cooperative games is to allocate
the payoff according to a particular notion of fairness. In this context, solving a cooper-
ative game considers finding a vector x ∈ RN, which represents the payoff allocation to
each player, that satisfies one or more predefined properties. Now, such a vector is called
a solution concept and some significant predefined properties are (Gibbons (1992)):

1. Efficiency: The solution concept exactly splits the collective payoff:∑
i∈N

xi = v(N) (2.7)

2. Individual rationality: No player is worse off when joining the coalition:

xi ≥ v({i}), ∀i ∈ N (2.8)

3. Coalitional rationality: No subset of the coalition is worse off when joining the
coalition: ∑

i∈C
xi ≥ v(C) ∀C ⊆ N (2.9)

4. Computational ease: The solution concept can be calculated efficiently (e.g., in
linear or polynomial time with respect to |N |).

Importantly, a solution concept that is efficient and individually rational is called an
imputation (Osborne and Rubinstein (1994)). Most solution concepts consider a subset
of the imputation set and based on their properties can be classified in various categories
such as the core (Shapley and Shubik (1966)), the stable set (Von Neumann and Mor-
genstern (2007)), the kernel (Davis and Maschler (1965)), and the nucleolus (Schmeidler
(1969)). For instance, the core considers the set of payoff allocations that satisfy effi-
ciency and both individual and coalitional rationality. In this context, the core is the
most important solution concept for cooperative games and is analogous to a Nash equi-
librium for non-cooperative games (Osborne and Rubinstein (1994)). Nevertheless, the
core of a cooperative game might be empty (Osborne and Rubinstein (1994)). Further-
more, the stable set considers the set of imputations that satisfy the following properties:
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(i) internal stability, i.e., no payoff vector in the set is dominated by another vector in
the set; and (ii) external stability, i.e., all payoff vectors outside the stable set are domi-
nated by at least one vector in the stable set. Importantly, a payoff vector x dominates
a payoff vector y if ∃ S 6= ∅ where xi > yi,∀ i ∈ S and

∑
i∈S xi ≤ v(S). However,

a stable set may or may not exist (Osborne and Rubinstein (1994)). The particular
solution concept utilized in practice depends on the requirements of an application (Gib-
bons (1992)). Nevertheless, despite the theoretical attractiveness of sets that fulfill such
advanced properties their utilization in applied game theory is usually limited due to
their computational complexity (that potentially leads to intractability) and/or lack of
universal existence (Osborne and Rubinstein (1994)). Given the above, as discussed in
Section 1.3.1, in this work we propose a practical cost allocation mechanism to share
the realized gains of a coalition within AdaHeat+ that respects efficiency and individual
rationality (and, hence, considers an imputation), as well as allocation efficiency. For
more details on cooperative game theory see Osborne and Rubinstein (1994).

2.13 Markov Decision Processes

As discussed in Section 1.2, a big part of this work is dedicated to increasing the efficiency
of IERs themselves and in particular in developing novel solar tracking, ST, techniques.
In this context, formalizing ST as a dynamic programming problem in the context of
a Markov decision process (MDP) is a key contribution of our work (as discussed in
Section 1.2). In general, MDPs, named after the Russian mathematician Andrey Markov,
provide a mathematical formulation for decision making under uncertainty. In its basic
form, a MDP is a discrete time stochastic control process. In particular, at each time
step, the process is in a state s, and the decision maker chooses an action a that is
available in this state. At the next time step, the process responds by transitioning into
a new state s′ (according to the action followed and the transition probabilities), and
giving the decision maker a corresponding reward.

More formally, a Markov decision process is a 4-tuple < S,A, P (·|·, ·), R·(·, ·) >, where:

• S is the set of states.

• A(s) is the set of actions available at each state.

• P (s′|s, a) is the probability that taking action a in state s will lead to state s′.

• Ra(s, s′) is the expected immediate reward by doing action a and transitioning to
state s′ from state s.

The core problem of a MDP is to find the policy that indicates to the decision maker
which action to choose at every state. This policy is a function π linking each state to
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an action π(s). Within this context, the objective is to find a policy π that maximizes
a cumulative function of the random rewards.18 This function typically considers the
expected discounted sum of random rewards over the planning horizon, H (i.e., the
number of actions that the decision maker can execute):

J =
H∑
t=0

γtRπ(st)(st, st+1) (2.10)

where γ ∈ [0, 1] is the discount factor, that intuitively defines the importance of rewards
shorter in time over those coming latter in time. In particular, a MDP can be of finite
or infinite planning horizon. Meaning that in the former case H is limited, while in
the latter case H = ∞. In this context, the discount factor is crucial for solving (i.e.,
calculating the optimal policy) infinite horizon problems (and is typically set close to
1), while by setting γ = 0, only the immediate reward is considered (as Equation 2.10
trivially becomes J = Rπ(s0)(s0, s1)). In the case of finite horizon MDPs, the discount
factor can be set exactly to 1 without any feasibility issues emerging in calculating the
optimal policy (Sutton and Barto (1998)).

Now, MDPs can be solved by a wide range of techniques and algorithms typically em-
ploying dynamic or linear programming (Sutton and Barto (1998)). That said, dynamic
programming algorithms scale better to large problems (such as the one considered in
this work, as we further discuss in Chapter 5) (Sutton and Barto (1998); Puterman
(2014)). As such, in the following paragraphs we focus on the general family of dynamic
programming approaches.

In more detail, generally, dynamic programming refers to the concept of solving a complex
problem by breaking it down into a collection of simpler sub-problems (Cormen et al.
(2001)). In this context, almost all dynamic programming algorithms for solving MDPs
are based on estimating value functions which are used to organize and structure the
search for good policies (Sutton and Barto (1998); Puterman (2014)). In their basic form,
state value functions estimate how good it is for the process to be in a particular state
in terms of future rewards that can be expected (Sutton and Barto (1998)). Since the
expected rewards depend on the actions executed, value functions are defined with respect
to particular policies; V π(s). Notably, a fundamental property of value functions, that
essentially facilitates dynamic programming approaches, is that they can be expressed
recursively. In particular, given any policy π, the value of any s ∈ S can be expressed
recursively according to the value of its successor states as:

V π(s) =
∑
s′

P (s′|s, π(s))
(
Rπ(s)(s, s

′) + γV π(s′)
)

(2.11)

18Because of the Markov property (i.e., the probability distribution of future states depends only on
the present state and the action executed), the optimal policy can be written as a function of s alone.
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Now, the optimal policy is the one that has an expected return greater or equal to that
of any other policy for all s ∈ S. Although there may be more than one optimal policy,
they share the same optimal value function, V ∗(s), which can be defined by the Bellman
optimality equation (Sutton and Barto (1998)):

V ∗(s) = max
a∈A(s)

{∑
s′

P (s′|s, a)
(
Ra(s, s

′) + γV ∗(s′)
)}

(2.12)

As such, the optimal policy of a MDP, π∗ is that corresponding to the Bellman optimality
equation above.

In this context, almost all dynamic programming algorithms calculate the optimal value
function, and the corresponding optimal policy, by typically executing two essentially
independent steps of calculations: (i) policy evaluation, and (ii) policy improvement.

In more detail, in policy evaluation the state-value function of an arbitrary policy π

is calculated according to Equation 2.11. In essence, Equation 2.11 is a system of |S|
simultaneous linear equations in |S| unknowns (the V π(s), s ∈ S) (Sutton and Barto
(1998)). As such, policy evaluation may be formulated and solved as a set of linear
equations, or solved iteratively as illustrated in Algorithm 1 (Sutton and Barto (1998)),
below.

Algorithm 1 Policy Evaluation
1: procedure Policy Evaluation(π)
2: Initialize V (s) = 0, for all s ∈ S
3: do
4: for every s ∈ S do
5: v ← V (s)

6: V (s)←
∑
s′

P (s′|s, π(s))
(
Rπ(s)(s, s

′) + γV (s′)
)

7: ∆← max{∆, v − V (s)}
8: while ∆ ≥ θ (a very small number)
9: return V ' V π

The input of the above algorithm is the policy to be evaluated, while the output con-
siders the estimated corresponding value function. Formally, iterative policy evaluation
converges only in the limit. As such, in practice it is halted shortly before and, typically,
when the quantity maxs∈S{Vk+1(s)−Vk(s)} becomes sufficiently small (as per the above
algorithm), where k indicates iteration (Sutton and Barto (1998)).

In policy improvement an initial policy π is improved according to its value function,
V π, to derive an improved policy, π′ (unless the initial policy is already optimal). More
formally, the improved policy, π′, is calculated as:

π′(s) = arg max
a∈A(s)

{∑
s′

P (s′|s, a)
(
Ra(s, s

′) + γV π(s′)
)}

(2.13)
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Now, executing the above two steps in an alternating fashion ensures convergence to the
optimal value function and the optimal policy (Sutton and Barto (1998)). Importantly,
policy iteration (Howard (1960)) is a dynamic programming algorithm that builds di-
rectly on this principle, where the above steps are repeated in an alternating fashion
until convergence (i.e., until the policy is stable) as illustrated in Algorithm 2.

Algorithm 2 Policy Iteration
1: procedure Policy Iteration(π)
2: Initialize V (s) ∈ R and π(s) ∈ A(s), for all s ∈ S
3: do
4: V ← Policy Evaluation(π)
5: policy-stable ← True
6: for every s ∈ S do
7: b← π(s)

8: π(s)← arg max
a∈A(s)

{∑
s′

P (s′|s, a)
(
Ra(s, s

′) + γV (s′)
)}

9: if b 6= π(s) then
10: policy-stable ← False
11: while policy-stable = False

As such, policy iteration iteratively improves over an initial policy. In particular, each
policy evaluation is carried out over the value function of the previous policy which
typically leads to a progressive increase in the speed of convergence (as stated in Sutton
and Barto (1998) this is “presumably because the value function changes little from one
policy to the next”). Given the above, it becomes clear that the convergence speed of
policy iteration highly depends on the initial policy used and how close this is to the
optimal.

Finally it should be noted that the policy evaluation step can be truncated in several
ways without losing the optimality convergence guarantees. As such, in other dynamic
programming approaches the above general steps (i.e., policy evaluation and policy im-
provement) are being repeated, either independently or combined together, in various or-
ders, to estimate the optimal policy. For instance, in modified policy iteration (Puterman
and Shin (1978); Van Nunen (1976)), policy evaluation is repeated several times within
each iteration, while in value iteration (Bellman (1957)) policy evaluation is stopped
after just one sweep. That said, each dynamic programming algorithm comes with its
own limitations and advantages and the choice of the appropriate algorithm highly de-
pends on the characteristics of the MDP to be solved (Sutton and Barto (1998)). Now,
due to its particular ability to improve on an initial policy in a straightforward way (as
discussed above) in this work we focus on policy iteration. In particular, as discussed in
Section 6.4, in this work we propose a new modified policy iteration schema suitable for
very large action-state space MDPs (like the one considered in our work).
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2.14 Summary

In this chapter we provided relevant background material and an overview of related
work regarding DHASs and IERs. In more detail, in Section 2.1 we discussed domestic
heating systems with respect to their main characteristics that introduce challenges for
efficient modeling and control in the context of heating automation systems. In this
context, we showed how variability of the (overall) heating system efficiency, energy cost
variability, and thermal lags, can independently affect the efficiency of intuitive and sim-
ple heating strategies that are utilized in heating control. By doing so we illustrated
the particular challenges that arise in meeting our generality and Pareto efficiency re-
quirements (as discussed in Section 1.1.2). In addition, we discussed the challenges that
these characteristics introduce for the reliable thermal and/or consumption modeling of
heating systems (as per the reliable modeling requirements in Section 1.1.2).

Subsequently, in Section 2.2 we reviewed the literature of thermal modeling and we pro-
vided a general discussion over the pros and cons of different approaches. By doing so, we
pointed out the limitations and shortcomings of white-box approaches that render them
unsuitable for incorporation in our domestic heating automation system (i.e., reliance
on detailed, and commonly unavailable, construction information; and/or need for time
consuming and expensive on-site measurements). In addition, we also discussed the re-
spective shortcomings and limitations of black-box approaches (i.e., need for vast amount
of training data, hard to ensure reliability), and justified our decision to incorporate an
adaptive gray-box approach in our domestic heating automation system. To this end, we
reviewed the literature of both fixed and adaptive gray-box thermal modeling to show
how the latter has been shown to be resilient and effective in highly dynamic settings,
such as houses. This makes them a suitable choice for our DHAS with respect to our
reliable thermal modeling, applicability, generality and minimal user-input requirements
(as discussed in Section 1.1.2).

Further on, in Section 2.4, we reviewed the literature of occupancy prediction approaches
with respect to their efficiency, computational power needs and infrastructure require-
ments. In so doing, we showed how to choose one of these approaches for incorporation
into our DHAS in order to rely to the minimum extent on user-input and deal with
occupancy uncertainty (as per the respective requirements discussed in Section 1.1.2).
Subsequently, in Section 2.6 we provided a detailed discussion over the wide family of the
commonly employed MPC control approaches, with respect to their theoretical proper-
ties. Specifically, we showed how we choose a particular MPC approach for our DHAS,
based on its theoretical properties and the particular characteristics of our application
domain, with respect to the Pareto efficiency and applicability requirements of our system
(Section 1.1.2). Then, in Section 2.7 we reviewed the literature of heating automation
systems that deal with occupancy uncertainty (and hence could potentially be employed
in domestic settings), positioning our work against the state-of-the-art and choosing our
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benchmark for our evaluation procedure that best meet our work requirements. There,
we also discussed the shortcomings of current approaches with respect to the basic re-
quirements of a domestic heating automation system as detailed in Section 1.1.2. Finally,
in Section 2.8 we reviewed the literature of DHASs with respect to the requirements of
economic control (Section 1.1.3). There, we illustrated that the DHASs that deal with
economic control are highly experimental and possess considerable limitations with re-
spect to real setting scenarios. In addition, we showed that none of the DHASs that
consider economic control deal with advanced economic control. As such, in Sections 2.7
and 2.8 we detailed the limitations of current approaches (summarized in Section 1.1.4)
that consider the motivational aspect for the development of AdaHeat.

Subsequently, in Section 2.9 we detailed the literature on predicting the power output of
IERs and we provided a general discussion over the pros and cons of different approaches.
By doing so, we pointed out the limitations and shortcomings of NWP-based approaches
that make them unsuitable for incorporation in our advanced economic control schema
(i.e., high complexity and absence of site-specific calibration). In addition, we discussed
the respective shortcomings and limitations of statistical approaches (i.e limited mid-to-
long term accuracy) and justified our decision to incorporate a hybrid approach in our
schema. In Section 2.10 we provided a general discussion on Gaussian process regression,
that consider the bases of our hybrid IER power output stochastic prediction approach.
Then, in Section 2.12 we discussed the main concepts of cooperative game theory that
emerge in our work on collective advanced economic control.

Furthermore, in Section 2.13 we provided a general discussion on Markov decision pro-
cesses, MDPs, and dynamic programming with respect to our work on IER efficient
control. There we also outlined the value of dynamic programming to large MDPs (like
the one considered in our work, as further justified in Chapter 5). In particular, formal-
izing solar tracking, ST, as a dynamic programming problem in the context of a MDP
is a key contribution of our work (as discussed in Section 6.4). This choice is justified
by our performance optimality requirement, along with the generality and applicability
requirements (as discussed in Section 1.2.2). In more detail, current ST approaches al-
though they generally meet the generality requirement (as detailed in Section 1.2.2), in
the best case only partially meet the performance optimality requirement (and usually
with a trade-off in their applicability). This fact motivates the development of PreST
to meet all the respective ST requirements, as stated in Section 1.2.2 (i.e., optimality,
applicability and generality), utilizing optimal control.



Chapter 3

AdaHeat: A General Adaptive
Domestic Heating Automation
System

In this chapter we describe our domestic heating automation system, AdaHeat. As dis-
cussed in Section 1.3.1, AdaHeat is able to account for: (i) simple heating control, (ii)
simple economic control, as well as (iii) advanced economic control. In this context,
AdaHeat is also able to exploit the coalition potential that arises in advanced economic
control. To this end, here we also detail our proposed scheme for collective advanced
economic control in the context of AdaHeat. In more detail, in Section 3.1 we discribe
our domestic heating automation system with respect to simple heating control, simple
economic control and advanced economic control in single houses. Subsequently, in Sec-
tion 3.2 we detail our scheme for collective advanced economic control. Finally, Section
3.3 summarizes this chapter.

3.1 A General Adaptive Domestic Heating Automation Sys-
tem

Here we detail our domestic heating automation system with respect to single-house
space heating control. In general, AdaHeat consists of the following components: (i) the
thermal comfort model, (ii) the thermal model of the building, (iii) the heating cost model,
and (iv) the controller, that utilizes the aforementioned components, as seen in Figure
3.1. We now proceed to describe each component in detail.

52
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Thermal comfort
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Figure 3.1: AdaHeat flow diagram

3.1.1 Thermal Comfort Model

In essence, thermal comfort is a complex response to several potentially interacting and
less tangible physical, physiological, psychological, and other factors (e.g., differences in
mood, activity, biology, clothing, air temperature, humidity, and air speed) (Djongyang
et al. (2010)).1 As such, based on different assumptions, a variety of metrics have been
proposed to measure thermal discomfort (for a review on thermal discomfort metrics see
Djongyang et al. (2010)). In this work, for reasons of simplicity, we assume discomfort
to depend only on the inside air temperature, T IN ; and any discomfort experienced,
at each instance that the house is occupied, is the absolute deviation of T IN from the
user-provided, set-point temperature, TSP (as seen in Figure 3.2). As such, thermal
discomfort during interval τ of length δ is calculated as:

Disc (·τ ) =


∫ t0+δ

t0

|TSP − T IN (t)| dt, occupied

0, otherwise
(3.1)

where t0 is the starting time of the interval. Now, assuming constant T IN within the
particular interval, Equation 3.1 becomes:

Disc (·τ ) = |TSP − T INt0 |δ 1occupied (3.2)

More advanced thermal comfort modeling (e.g, Auffenberg et al. (2015); Langevin et al.
(2013)) can be directly incorporated in our approach by simply adjusting the above
equation accordingly.2

1Optimal thermal comfort has been defined as “the condition of the mind in which satisfaction is
expressed with the thermal environment” (according to the ANSI/ASHRAE Standard 55, “Thermal
Environment Conditions for Human Occupancy”, 2013).

2In contrast to heating automation systems that rely on complexity-specific (e.g., linear, quadratic and
convex) programming approaches for planning (e.g., Halvgaard et al. (2012); Oldewurtel et al. (2010c)),
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Now, as outlined above, any thermal discomfort within the house is experienced only
when the house is occupied. As such, the occupancy schedule is essential for modeling
and predicting thermal discomfort. However, the occupancy schedule is usually unknown
in domestic settings and needs to be predicted. To this end, several approaches to predict
the occupancy schedule have been proposed over time (see Section 2.4). In this work,
we employ the schedule-based occupancy prediction approach proposed by Scott et al.
(2011) due to the general low instrumentation needs of schedule-based approaches and its
particular efficiency. That said, any other occupancy prediction approach can be used to
provide the future occupancy estimates in our model. Now, this algorithm predicts the
occupancy schedule on-line (in real time) and returns a vector that corresponds to the
probability of occupancy in a 15-minute interval over the predicting horizon.3 As such,
assuming a constant T IN during interval τ of length δ, the expected thermal discomfort
is calculated as:

E [Disc(·τ )] = Ot0 |TSP − T INt0 | δ (3.3)

where Ot0 is the occupancy probability during the particular interval and t0 is the starting
time of the interval.

Time 

TSP

Te
m

pe
ra

tu
re

 

TIN TSP Thermal discomfort

Figure 3.2: We measure thermal discomfort as the absolute deviation of T IN from
TSP (over time) and, as such, thermal discomfort corresponds to the shaded area in-

between T IN and TSP as illustrated above.

the dynamic programming planning approach of AdaHeat+ (further discussed in Section 3.1.4) does not
generally raise constraints on the form of the components’ modeling.

3For the needs of this work we interpolated any estimates where necessary.
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3.1.2 Thermal Model

As discussed in Section 2.2, the thermal dynamics of domestic buildings are much harder
to model accurately than their non-domestic counterparts, as they rely on additional fac-
tors which are hard to predict. Nevertheless, adaptive thermal modeling has been shown
to be resilient and effective in such high dynamic settings where the partial observation
can be interpreted as non-stationarity of the assumed thermal process. Moreover, gray-
box modeling requires relatively small amounts of training data in order to demonstrate
adequate performance and does not require explicit knowledge or on-site measurements
of the thermal characteristics of a building (see Section 2.2). As such, in our system we
employ adaptive gray-box thermal modeling where the equivalent thermal parameters
(ETPs), are estimated on-line and are assumed to be time-varying.

Now, in general, a thermal model predicts the thermal response of a building based
on: (i) the current thermal state vector of the building, x; (ii) the vector of heating
control actions to be executed, a; and (iii) the vector of information variables regarding
exogenous processes that affect the thermal process (e.g, incident solar radiation, outside
or adjacent buildings’ temperature), i.4 As such, in discrete-time form, a thermal model
can generally be defined as:

xt+1 = TM(xt,at, it) (3.4)

In more detail:

• Thermal state vector, x: The current thermal state of a building considers vari-
ables that influence the thermal response of the building but are also influenced
by the heating control actions followed. For instance, depending on the thermal
model used, the thermal state vector might only consider the indoor air tempera-
ture, T IN , or also consider temperature values of intermediate nodes of the thermal
process, such as the floor temperature, TFL, or the building envelope temperature,
TEN . That said, the thermal state of a building can potentially be defined as only
the current thermal condition values or as the current values along with historical
values.

• Heating control action vector, a: In general, the possible heating control
actions depend on the heating system employed. However, typical domestic heating
systems usually allow for the end-user to define a set-point temperature (commonly
a fixed integer value or a value of limited decimal accuracy; e.g., with intervals of
0.5 or 0.1) and to entirely switch on/off the heating system through the thermostat.
In this context, a low-level control is utilized to retain the indoor air temperature,
T IN , close to the user-defined set-point temperature, TSP . This low-level control

4In this thesis we use the typical notation of denoting vectors and matrices with bold lower-case and
bold upper-case letters respectively. Moreover, when not stated otherwise, a vector is assumed to be a
column vector.
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is typically a simple ON/OFF control that switches off heating if T IN > TSP and
turns it on otherwise. In this context, setting TSP higher (or lower) than T IN

within a low-level control cycle is equivalent to switching on (or off respectively)
heating directly. As such, the available actions for a DHAS depend only on the
different modes of operation of the heating system employed. For instance, for a
typical system with only one operating mode, the heating actions can be denoted
by a single binary scalar a populated with either 0 or 1 to indicate heating on and
off respectively. In contrast, if the heating system employed has multiple operating
modes (such as an electric radiative space heater which can operate with either 2
or 4 elements, i.e. resistances) the heating control action vector (or, potentially,
the possible populations of a single scalar) should be extended accordingly.

• Vector of exogenous processes variables, i: The external stochastic processes
variables can range from simple observations (or estimations) to historical averages
and/or predicted values. The exact variables utilized depend on the thermal model
used and the availability of these quantities.

As such, any thermal model, TM(x,a, i), is essentially a function over the inputs (x, a,
and i) that aims to predict the thermal response of a building with high accuracy. In
gray-box modeling the parameters of this function consider the ETPs that need to be
estimated and can be assumed to be either time-varying or fixed. This choice depends
on the dynamics of the underlying process and the model’s structural predictive abilities
(i.e the form of the equation and the information that it accounts for).

Example 3.1. For instance, a linear (with respect to x, a, and i), discrete-time thermal
model can be generally defined as:

xt+1 = Caxt + Cbat + Ccit (3.5)

Now, considering the thermal state vector x =

(
T IN

TFL

)
, which could be held suitable for

underfloor heating systems, and only one heating control binary variable, a, (of switching
on/off heating) the above set of linear equations will be:

T INt+1 = (Ca)1,1 T
IN
t + (Ca)1,2 T

FL
t + (cb)1 a+ (Cc)1 i (3.6)

TFLt+1 = (Ca)2,1 T
IN
t + (Ca)2,2 T

FL
t + (cb)2 a+ (Cc)2 i (3.7)

where, all matrices and vectors denoted with C and c respectively correspond to time
varying or fixed ETPs that need to be estimated. Nevertheless, some of the ETPs can be
set manually if information is available (and/or to maintain a physical meaning). For
instance, the coefficient (cb)1 can be manually set to zero as the control actions do not
directly affect T IN for underfloor heating systems.
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In this context, the vectors x, a, and i are designed to provide sufficient information
for a thermal model to be able to predict the building thermal response. Taking this
concept to its furthest limit, incorporating all the necessary information in order for
the next system state to depend only on the information provided by the vectors x, a
and i, would theoretically allow us to define a thermal model with potentially absolute
accuracy. Moreover, given that all the necessary information is being accounted for by
our thermal model, an inadequate modeling of the relationship between these variables
would lead to prediction inaccuracies that are fixed in time (i.e., the deviation of the
predicted thermal state from the real one would be the same for every time a possible
combination of x, a and i populations is encountered). However, in real settings, it
is often the case that not all the necessary information is accounted for by a thermal
model (see Section 1.1.2) In such cases, the deviation of a predicted state and the real
one might change for a possible combination of the variables in x, a and i over time,
as the evolution of the system depends on additional effects that are not considered
(non-modeled dynamics). In such cases, the variation observed could be stationary or
non-stationary. For instance, if the non accounted for information at each time instance
is just an i.i.d. random variable, then the observed deviation will follow a stationary
distribution. On the other hand, if the non-accounted for information considers occupant
activity (as is the case in domestic settings), such as opening a window or cooking, the
deviation observed might demonstrate non-stationarity.

Now, as noted in Section 2.2, assuming time-varying ETPs, in the context of gray-box
thermal modeling, has been shown to be effective in the highly dynamic domestic set-
tings. In this context, depending on the complexity of the thermal model (linear or
non-linear), different real-time parameter identification methods can be employed such
as recursive least square with forgetting factor, Kalman filters or extended Kalman filters
(as discussed in Section 2.2). That said, the state vector can be partially observable as
well. For instance, readings of the floor temperature in the thermal model provided in the
above example might not be available or might be very inaccurate. As such, estimating
state variables along with the parameters might be needed. Even in the case that a lin-
ear thermal model is used, the simultaneous estimation of parameters and state variables
introduces a non-linear problem in general (Haykin (2001)). Now, model selection is an
essential part of gray-box thermal modeling. Although several methodologies are pro-
posed for thermal model selection (e.g., Prívara et al. (2012); Bacher and Madsen (2011);
Andersen et al. (2000); Kristensen et al. (2004)), identifying the most suitable model de-
pends highly on the thermal process being modeled and the application requirements.
As such, it is typically undertaken by the designer. Nevertheless, our system is able to
handle both linear and non-linear thermal models due to our general control approach
based on dynamic programming (as further discussed in Section 3.1.4). As such, it does
not raise respective restrictions in identifying the most suitable thermal model. Specific
thermal modeling instantiations are provided for our case study systems in Chapter 4.
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3.1.3 Heating Cost Model

The heating systems employed in domestic settings are diverse in technology and type.
However, all of them consume an amount of energy over their operation. Strictly speak-
ing, this amount of energy is the energy provided to the space over the efficiency of the
system. Now, the input power of a heating system, at any time instance t, is:

Cons (·t) =
Pwr (xt,at)

CEff
(3.8)

where Pwr(x,a) stands for the output power of the space heating system according to
the heating control action vector and the building thermal state; and CEff stands for
the heating system efficiency.5 Considering import and export tariffs as well as domestic
intermittent energy generation capacity (as per the simple and advanced economic control
requirements, see Section 1.1), the energy consumption cost of a heating system during
interval τ of length δ (where all variables remain unchanged) is:

Cost(·τ ) =
(

max (0,Cons(·t0)−Rt0)PBuyt0

+ min (0,Cons(·t0)−Rt0)PSellt0

)
δ (3.9)

where PBuyt0
, PSellt0 and Rt0 respectively stand for the import tariff, the export tariff and

the power output of the intermittent energy resources (IERs) at the starting time of the
interval, t0. Note that in the special case where no domestic IER generation capacity is
available, Equation 3.9 becomes:

Cost(·τ ) = Cons(·t0) PBuyt0
δ (3.10)

Now, in contrast to other approaches where fixed equivalence formulas or multiple user-
provided parameters are used to balance heating cost and discomfort (e.g., Mozer et al.
(1997); Gao and Keshav (2013b)), in our approach this balancing is adaptive to the
user preferences (enhancing the usability of our approach as discussed in Sections 1.1.3
and 2.7). In particular, this adaptation is carried out in real-time, based on a single
Boolean feedback from the user which progressively adjusts a single weighting parameter,
as we further discuss in Section 3.1.4. For this reason, in the cases of simple heating
control and simple economic control, we are not generally interested in the particular
consumption of the heating system over a fixed time of operation. In those cases, the
particular heating system efficiency, as well as the energy provided to the space for a
particular heating action, can be set to arbitrary values without any loss in performance

5CEff can be a simple scalar or a function of the temperature difference between the heat source and
the destination to also account for the coefficient of performance variability when heat pump technology
is considered (see Section 2.1.2).
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(as long as any needed ratios are retained).6 Nevertheless, in the special case of advanced
economic control the particular energy consumption of the heating system is needed and,
hence, so are the particular Pwr(·) and CEff values (or adequate estimates).

In addition, in the special case of advanced economic control, adequate estimates of the
future IER power output are also needed in order for any heating cost model to have a
practical value. To account for the respective uncertainty, a stochastic approach can be
considered as discussed in Section 2.9. In particular, the power output of an IER can
be modeled and predicted as a stochastic process R valued within the range [0, rmax],
where rmax is the maximum power output that can be achieved, at any time, by the
particular IER. In this context, a variety of stochastic modeling approaches, including
Kalman filters (Louka et al. (2008)) and Gaussian processes (GPs) (Jiang et al. (2010)),
can be used to model the IER power output in order to provide probabilistic estimates
of the future power output, henceforth denoted R′ (Zamo et al. (2014)) (as discussed in
Section 2.9). In this context, the expected heating cost (Equation 3.11) is subject to the
particular IER power output modeling:

E [Cost(·τ )] = E
[
max

(
0,Cons(·t0)−R′t0

)
PBuyt0

+ min
(
0,Cons(·t0)−R′t0

)
PSellt0

]
δ

(3.11)
In Chapter 4 we provide an instantiation of IER stochastic prediction based on adaptive
GP modeling for our case study of wind turbine generators. There we also provide a
closed form of Equation 3.11 in accordance with our GP-based IER modeling. Now,
we note here, that although our work is motivated on import and export tariffs that
are known in advance, our approach can also work in conjunction with tariffs that are
not generally known in advance (Jenner et al. (2013)), as long as an appropriate tariff
prediction approach is considered in the context of our heating cost modeling.7

3.1.4 Controller

The aim of our DHAS is to be effective for a variety of heating systems, such as heating
systems with considerable thermal lags and heating systems with variable heating cost.
As such, we regard heating control in an infinite horizon optimization manner. To
this end, we employ model predictive control (MPC) which also allows us to directly
and effectively incorporate on-line adaptation of the thermal model to account for the
dynamic domestic thermal characteristics. Now, as discussed in Section 2.6, the thermal
process of buildings is typically slow and stable, thus enabling us to design an MPC
controller generally based on performance criteria alone. As such, in this work we employ

6For instance, for a simple fixed-efficiency electric radiative space heater which can operate with
either 2 or 4 elements (i.e. resistances) of the same nominal power, the corresponding energy provision
values for each heating action, a (i.e., number of resistances in operation, i.e. 0,1,2), should correspond
to the ratio 0:1:2.

7In this context, PBuyt0
and PSellt0 in Equation 3.11 will consider, potentially stochastic, estimates of

PBuyt0
and PSellt0 derived in accordance to the tariff prediction approach utilized.
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an adaptive MPC approach (see Section 2.6) that works as follows. Every δ amount
of time, the controller plans a heating schedule over a fixed horizon into the future
(utilizing the above models and relevant predictions) and executes the first action of the
planned schedule. Then, new estimates of O, R , i, (potentially, PBuy and PSell ) and
the thermal model parameters are acquired and the procedure is repeated shifting the
planning horizon into the future. We now proceed to describe our planning approach,
detailing our planning objective formalization and our optimization approach.

3.1.4.1 Planning (Objective formalization)

As discussed in Section 1.1.1, the objective of a heating automation system is to balance
the discomfort experienced by the occupants and the cost of heating according to a
predefined condition. As there is a conflict between discomfort and cost, defining the
optimal heating schedule is a two-objective optimization problem. In order to tackle the
respective complexity, in this work we combine the objective functions to form a single
scalarized function. For the single scalarized function we use the common weighted
sum (Marler and Arora (2004)) which is a sufficient but not necessary formalization for
Pareto optimality (Zionts (1989); Zadeh (1963)). Hence, we ensure that all the derived
heating schedules fall in the Pareto optimal set. However, it is not guaranteed that our
method is able to capture all the optimal schedules, as long as the Pareto optimal hyper-
surface is not convex (Marler and Arora (2010)). That being said, other scalarization
methods exist that are both necessary and sufficient conditions for Pareto optimality
even for the case of non-convex problems (for a comprehensive review of these methods
see Marler and Arora (2004)). However, we use the weighted sum due to its simplicity
and good observed performance (as further illustrated in Chapter 4). Moreover, using
the weighted sum allows our system to adapt to the user’s preferences through a simple
linear feedback procedure as it depends on only one weighting factor that can be learned
on-line to reflect the user preferences. For instance, if the user feels that the system is
consuming a lot of energy and he/she is willing to experience some thermal discomfort,
he/she can simply progressively reduce the weighting factor by a constant value until
his/her preferences are met.

In more detail, in our approach we plan for the MPC horizon, of length ∆, by breaking
it down into a set of non overlapping intervals of length δ. As such, ensuring that
∆ is an integer multiple of δ, the planning horizon corresponds to a set of intervals,
noted H, where |H| = ∆/δ. During each interval, identified by a unique id number, τ ,
all environmental conditions are assumed constant. Now, our planning objective is to
assign at each interval a heating control action vector, aτ , in order to minimize a unifying
scalarized function of heating cost and expected thermal discomfort. More formally, the
objective of our planning is to find the sequence of action vectors, aτ , that minimizes
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Figure 3.3: For each interval, τ , all environmental conditions are assumed constant.
The edges of the DAG correspond to the possible action vectors, a1, . . . ,a|A| ∈ A, with
their weights, noted Cost and Disc, accounting for the corresponding expected heating
cost and expected thermal discomfort during the particular interval, respectively. Each

node is identified by a thermal state vector, x, and the interval id number, τ .

the expected unifying cost, J̄ , over the planning horizon, as defined below:

minimize
a1,...,a|H|

J̄(a1, . . . ,a|H|) =

|H|∑
τ=1

λ E [Disc(·τ )] + (1− λ) E [Cost(·τ )]

subject to a1, . . . ,a|H| ∈ A

Here, E [Disc(·τ )] and E [Cost(·τ )] return the expected discomfort and expected heating
cost during each interval, τ , respectively, λ stands for the weighting factor between cost
and discomfort that is learned on-line, andA is the set of all feasible heating control action
vectors (used here to intuitively denote all possible constraints on heating actions).8 In
general, λ values should be in the range (0, 1), without considering the limits 0 and 1,
in order to ensure strict Pareto optimality (Marler and Arora (2004))—as for these limit
values, minimizing only one of the objectives is considered (i.e., either only heating cost
or thermal discomfort). That being said, as there exists only one unique heating strategy
for minimizing cost, i.e., of not doing any heating, the derived heating schedule is Pareto
optimal even with λ = 0. However, searching for this already known trivial strategy is
inefficient. As such, for the extreme case of eliminating heating cost with the minimum
discomfort, heating should be off. On the other hand, for eliminating discomfort with
the minimum heating cost a λ value very close to 1 can be used. Note that normalized
values for cost and discomfort can be used. We now proceed to describe our planning
algorithm.

8Note that the absence of any output variable constraints in our optimization objective ensures that
we will not face any feasibility issues in planning (as discussed in Section 2.6).
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3.1.4.2 Planning (Optimization)

The slow nature of the thermal process of buildings enables us to tackle the optimiza-
tion problem defined in Section 3.1.4.1 in a general, dynamic programming manner, as
the real-time computation constraints are not typically strict (i.e., the amount of time
between two consecutive heating control actions, δ, is typically set to several minutes,
allowing the heating control actions to take effect—hence, providing us with a sufficient
amount of time for planning). Moreover, the utilization of dynamic programming enables
us to generally choose the objective function and the system model based on performance
criteria alone. As such, we reduce planning to finding the shortest path in a directed
acyclic graph (DAG) and we provide a dynamic programming planning algorithm that
exploits the property of topological ordering of a DAG through depth first search (DFS)
in order to find the shortest path in linear time (Cormen et al. (2001)). It is worth
noting here that, although in this work we do not deal with constraint optimization
approaches, these appropriately correspond to the respective constraint shortest path
finding problems.9

In more detail, each node, n, of the graph G corresponds to a distinct tuple that contains
all the necessary information to predict the next state, n′, based on the heating control
action vector to be followed, a, through the appropriate transition model, n′ = T (n,a).
Let us note here that the vector of exogenous processes, i, at each instance can be
inferred by the time step id, τ , alone. Hence, the n tuple will be 〈xn, τn〉. As such, the
transition model n′ = T (n,a) considers the thermal model and a simple incrementer to
appropriately provide x′n and τ ′n respectively. Now, the edges of the graph correspond to
the transitions in time due to the heating action. In this context, each of the edges, noted
by e, has two weights corresponding to the cost of heating and the expected discomfort
during the respective interval. As such, each edge corresponds to a tuple that contains
the initial node, the successor node and the aforementioned weights. Given the above, the
corresponding graph will be directed and acyclic as illustrated in Figure 3.3. In general,
dynamic programming needs a discretization of the node variables to work effectively
(Cormen et al. (2001)). Now, given the limited predicting ability of any thermal model
used in practice, a discretization of the thermal state vector comes naturally and would
not introduce any additional uncertainty,10 while the time step id, τ , is appropriately
already discrete.

In Algorithm 3 we provide a dynamic programming planning algorithm based on the
DFS recursion. In particular, we extend the DFS recursion with constant time expres-
sions, thus the time complexity is retained at O(|VG| + |EG|) where VG and EG stand
for the set of edges and vertices of the graph respectively. Specifically, the algorithm
follows the DFS recursion to create the DAG and populates the dictionaries MinJ̄{n}

9The Constraint Shortest Path Problem (CSPP) is well known to be NP-complete making long-term
planning inefficient (Garey and Johnson (1979))

10In contrast to the claim in Mozer et al. (1997).
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Algorithm 3 General Heating Planning Algorithm
1: procedure HeatingPlanning(G, n)
2: for every a ∈ A do
3: Cost← E [Cost(·τn)]
4: Disc← E [Disc(·τn)]


. Obtain succesor
node and edge
weights5: n′ ← T (n,a)

6: e←< n 7→ n′,Cost,Disc >
7: add e to EG
8: if n′ /∈ VG then
9: add n′ to VG

10: if τn′ < |H| then
11: G← HeatingPlanning(G, n’)
12: else
13: MinJ̄{n′} ← 0

14: Tmp← MinJ̄{n′}+ λ Disc + (1− λ) Cost
15: if MinJ̄{n} = NaN or MinJ̄{n} > Tmp then


. Populate dictionaries
with minimum additional
expected cost and
best action16: MinJ̄{n} ← Tmp

17: BestAction{n} ← a

18: return G

and BestAction{n} with the minimum additional expected unifying cost, J̄ , and the best
action vector for each node respectively. As such, after the algorithm terminates, the
dictionary BestAction{n} holds the optimal heating action vector for each node. The
arguments at the initial call of the recursion consider an empty graph and the root node.
The recursion then creates the DAG in a pre-order (Cormen et al. (2001)) manner, lines
2-13, and when a final node is reached the additional minimum J̄ is populated with 0,
line 13. As the recursion folds back (i.e. the recursive calls return) the minimum addi-
tional expected unifying cost of each node is populated along with the best action vector
for this node, lines 14-17.

3.2 Collective Advanced Economic Control

As discussed in Section 1.1.3, in contrast to simple heating and simple economic control,
the benefits of advanced economic control can be further amplified in domestic coalitions.
In such settings, a number of houses share their energy generation and shift their heating
consumption in order to further minimize the energy imported from the grid. As such, in
this work we also propose a practical scheme for collective advanced economic control. In
particular, we propose the formation of coalitions of houses that coordinate their heating
system operation, ahead of time, so as to efficiently use shared grid-connected IERs.
Notably, these houses are not required to be geographically adjacent (as discussed in
Section 1.1.3). To this end, we propose a heuristic heating schedule planning approach
in the context of our MPC approach to account for collective advanced economic control.
Our heuristic approach ensures the practical applicability of AdaHeat in contrast to
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optimal planning, as further discussed in the following paragraphs. Finally, AdaHeat also
incorporates a cost allocation mechanism to share the coalition gains in such settings,
that respects individual rationality. We now proceed to detail the proposed scheme.

3.2.1 Optimal Planning

To account for collective advanced economic control, we adjust the planning objective,
in the context of our MPC approach. To do so, we first model the expected collective
thermal discomfort and expected collective heating cost of the coalition. The former, ap-
propriately considers a simple extension of Equation 3.3 to account for the total comfort
of the coalition. More formally, assuming all variables remain constant during interval τ
of length δ, the expected thermal discomfort of the coalition C, is the sum:

E [DiscC(·τ )] =

|C |∑
i=1

E [Disci(·τ )] , where E [Disci(·τ )] = Oi,t0
∣∣TSPi − T INi,t0

∣∣ (3.12)

where Oi,t0 and T INi,t0 are the occupancy probability and inside temperature at time t0
(the starting time of interval τ) for each house i ∈ C, respectively (assumed constant
during interval τ as noted above).11 In addition, the aggregate input power of the heating
systems of C, at any time instance t, considers a simple extension of Equation 5.7, in a
similar manner:

ConsC(·t) =

|C |∑
i=1

Consi(·t), where Consi(·t) =
Pwri (xi,t,ai,t)

CEffi

(3.13)

Nevertheless, given the fact that the members of the coalition share their IER power
output, the collective heating cost is not a simple sum of the heating cost of each member.
In particular, during interval τ of length δ and assuming all variables remain constant
to their value at time t0 (the starting time of interval τ), the expected heating cost of
coalition C will be:

E [CostC(·τ )] = E
[

max
(
0,ConsC(·t0)−R′C,t0

)
PBuyt0

+ min
(
0,ConsC(·t0)−R′C,t0

)
PBuyt0

]
δ (3.14)

where R′C,t0 stands for the stochastic estimate of the cumulative future IER power out-
put at time t0. In particular, letting I stand for the set of the shared IERs owned by
the coalition C, the cumulative power output of the shared IERs can be modeled and
predicted as a stochastic process RC . In essence, RC considers the sum of |I| stochas-
tic processes Ri where i ∈ {1, 2, . . . , |I|}. Each one of these sub-processes considers the
power output of each one of the shared IERs. Now, letting t stand for time, RC will be

11Note that TSPi and Oi are also defined according to house i, as different houses generally have
different set-point preferences and occupancy schedules.
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a collection of random variables RC,t with the cumulative distribution function (CDF)
FC(r; t) = P(RC,t ≤ r), which has support on a subset of RN+ . The corresponding prob-
ability density function is denoted by fC(r; t). Furthermore, the corresponding quantile
function is F−1C : [0, 1] ← [0, rmax

C ] , where rmax
C is the maximum power output that can

be achieved in total, and at any time, by the shared IERs. We note here that a variety
of stochastic modeling approaches can be used to model the power output of each one
of the shared IERs (as discussed in Section 3.1.3) or directly the cumulative IER power
output in order to provide probabilistic estimates of the cumulative future power output
R′C . As discussed in Section 3.1.3, in Chapter 4 we provide an instantiation of IER
stochastic prediction based on adaptive GP modeling for our case study of wind turbine
generators. There we also provide a closed form of Equation 3.14 in accordance with our
GP-based IER modeling.

Now, given the above modeling, we are able to define our optimization objective that
corresponds to the optimal plan for collective advanced economic control in the context
of our MPC approach. In particular, the planning optimization objective is to find the
action matrix, A, that is the sequence of heating control actions for each house, that
minimizes the expected unifying cost, J̄C , over the planning horizon, H:

minimize
A

J̄C(·) =

|H |∑
τ=1

E [CostC(·τ )] +

|C |∑
i=1

λi E [Disci(·τ )]


subject to Ai,τ ∈ Ai ∀(i ∈ C, τ ∈ H)

where Ai stands for the set of feasible heating control actions for each house i ∈ C and λi
is a scaling parameter that defines the balancing between thermal discomfort and cost for
each one of the coalition members. Having a different scaling parameter for each house
enables us to capture diverse household preferences in balancing cost and discomfort
which is vital in real settings.

Solving the above objective corresponds to a shortest path finding problem, in the emerg-
ing directed acyclic graph, G. In this context, the shortest path can be found by exploiting
the topological ordering property of G (Cormen et al. (2001)), in linear O(|VG| + |EG|)
time, with respect to the number of edges, |EG|, and vertices, |VG|, as discussed in Sec-
tion 3.1.4. However, even with this low complexity (with respect to the size of the graph),
the size of the problem leads to poor scaling performance, as the size of the graph scales
exponentially with the size of the coalition. Note that the branching factor of the graph,
corresponds to the size of the set of all possible heating action combinations of all houses
in the coalition, i.e.,

∏|C |
i=1 |Ai |. As such, our experiments show that only two-house

coalitions are feasible to solve in real time. Moreover, the collective control of all heating
systems via a common objective raises further usability issues with respect to real set-
tings. In particular, although different scaling parameters exist for each household, the
scalar adjustment of one household affects the cost-discomfort balancing in all the others
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(through the common objective). This fact leads to a complex and non-linear outcome
of the λ population that stops their adjustment through an adaptive boolean feedback
procedure (as achieved in the case of single house control, see Section 3.1.4). This, in
turn, undermines the applicability of optimal planning in realistic settings.

3.2.2 Heuristic Planning

Given the shortcomings of optimal planning discussed in Section 3.2.1, we propose a
heuristic planning approach for collective advanced economic control that enhances the
practical applicability of AdaHeat. In particular, we divide equally all available IER
energy among the members and plan their heating schedule, given respective IER pre-
dictions, independently. More formally, the planning objective for each house i ∈ C
is:

minimize
Ai

J̄i(·) =

|H |∑
τ=1

E [Cost∗i (·τ )] + λi E [Disci(·τ )]

subject to Ai,τ ∈ Ai ∀τ ∈ H

where E
[
Cost∗i,τ (·)

]
is Equation 3.11 adjusted to consider an even share of the total IER

energy availability. In particular, during interval τ of length δ and assuming all variables
remain constant to their value at time t0 (the starting time of interval τ), the expected
heating cost is:

E [Cost∗i (·τ )] = E

[
max

(
0,Consi(·t0)−

R′C,t0
C

)
PBuyt0

+ min

(
0,Consi(·t0)−

R′C,t0
C

)
PBuyt0

]
δ (3.15)

The above optimization can be solved, independently for each house, as a shortest path
finding problem. As such, the complexity of our approach scales in a linear and paral-
lelizable manner with the size of the coalition, that is O(|C|), enabling it to be executed
in separate units in every house/member. Note that although an even share of the total
IER energy availability is allocated to each house, some houses might end-up consuming
less energy than originally allocated to them, while others might require more. Nev-
ertheless, in the context of our collective advanced economic control scheme, planning
generally dictates the executed heating actions and not the energy exchange among the
members. As such, any excess of energy is shared among the members before buying from
the grid. We note here that a more sophisticated allocation of the IER energy among
the members, in accordance to their next-day expected needs, could be of value when
the respective differences are large. Nevertheless, our evaluation results, considering a
wide range of typical houses in the UK (with distinct occupancy patterns and thermal
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characteristics), illustrate that our approach has high efficiency (and even a near-optimal
one) in such a genuine domestic scenario (further discussed in Section 4.1.1).12

Apart from its efficiency (further demonstrated in Chapter 4) this approach enables us
to populate the λ parameter of each house through a simple boolean feedback procedure.
In particular, the expected cost (based on the planned heating schedule) is a worst case
scenario with respect to the realized cost—since some houses might consume less energy
than originally allocated to them, enabling others to fulfill their needs with lower cost
than expected. This worst-case cost is not affected by the λ parameter population of
other houses, and considers an upper bound limit that an occupant is willing to pay
for the discomfort experienced. As such, our heuristic approach enables the households
to balance thermal discomfort and worst-case heating cost, independently and in an
adaptive manner for each house, further illustrated in Chapter 4.

3.2.3 Gain Allocating Mechanism

Our work incorporates a cost allocation mechanism to share the realized coalition gains
that respects individual rationality (see Section 2.12), motivating, as such, the households
to join a coalition. Appropriately, the outside option that we compare to is independent
advanced economic control, where each household optimizes its heating control process
(considering both export tariffs and its own IER generation capacity) independently.13

Now, in order to identify the gains of collective advanced economic control compared to
independent advanced economic control (and subsequently allocate them), we follow the
successive two-step procedure: Initially we perform appropriate simulations to identify
the λ population for each house where independent advanced economic control leads to
the same discomfort for the house as collective advanced economic control. Subsequently,
the difference between the corresponding estimated heating cost of independent advanced
economic control (for all members, in total) and the cost of collective advanced economic
control is calculated. This difference appropriately corresponds to the gains of forming a
coalition. Now, in order to guide our initial λ population search, and provide a compu-
tationally practical mechanism, we exploit the fact that in the context of our weighted
sum formulation for independent advanced economic control, λ is in a monotonous rela-
tionship with discomfort (as also further discussed in Chapter 4). Hence, the specific λ

12In this context, considering coalitions where industrial or commercial entities are also able to partic-
ipate (and, hence, the energy requirement differences are expected to be significant among the members)
is a possible future work direction with respect to broader advanced economic control schemes considering
a variety of thermostatically controlled loads (e.g, refrigerators, water heaters and air conditions).

13Independent advanced economic control considers AdaHeat+ for single-house coalitions and, hence,
it is proposed for the first time in this work.
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value is identified by progressively increasing (or decreasing) its value (in a hill climbing
manner) until the desired discomfort (or a fair approximation) is reached.14

Given this initial identification of the gains of collective advanced economic control com-
pared to independent advanced economic control, we proceed with the respective alloca-
tion. Now, any allocation of the these gains where each member receives a positive share
respects individual rationality (Osborne and Rubinstein (1994)). In this context, we al-
locate the gains of the coalition, at the end of each day, proportionally to the normalized
ratio of produced over consumed energy of each member i ∈ C, over the day (as realized
following collective advanced economic control). More formally, we use the ratio:(∫ t=D

t=0 Ri,t dt+ θ0

)
/
(∫ t=D

t=0 Consi,t(·) dt+ θ1

)
∑|C |

i=1

[(∫ t=D
t=0 Ri,t dt+ θ0

)
/
(∫ t=D

t=0 Consi,t(·) dt+ θ1

)] (3.16)

where D is the length of the day, and θ0 and θ1 are arbitrarily set small constants to
ensure that even the members with nonexistent IER generation still receive a share of
the collective gains (motivating them, as such, to join a coalition),15 and avoid division
by zero issues, respectively. This ratio considers an intuitive ranking index of each
member that aims to represent its contribution to the collective gains. Notably, using
this normalized ranking ensures that all the collective gains are allocated. As such, we
provide a computationally practical allocation mechanism that provides imputations,
satisfying individual rationality and allocation efficiency (see Section 2.12).

3.3 Summary

In this chapter we described our MPC-based DHAS, AdaHeat. In particular, we pro-
posed an MPC approach that enables our DHAS to work in conjunction with a diverse
range of heating systems typically employed in domestic settings, such as: (i) heating
systems with considerable thermal lags, (ii) heating systems with variable overall effi-
ciency, and/or (iii) heating systems that exhibit a variability of the heating cost over time
(both direct, i.e., variable energy prices, or indirect, i.e., due to the utilization of house-
integrated intermittent energy resources), as per the respective generality and economic
control requirements (see Section 1.1.3). To this end, we provided a new algorithm for

14In practice, these simulations can be carried out independently in separate units in each house/mem-
ber, at the day’s end. In the special case where the houses fall in the same region (which is expected
if a micro-grid facilitates our approach) and have the same IER capacity, there is no need for such
simulations. In that case, our heuristic collective advanced economic control reduces to independent
advanced economic control, with the only difference being that the members share their energy before
buying from the grid. As such, the cost of independent advanced economic control can be projected
based on the realized consumption and IER production of each member.

15This choice is supported by the fact that the participation of such a member in a coalition that has
spare generation (i.e., exports to the grid) leads to additional gains for the coalition. The risk of an
opposite setting (i.e. there is no spare generation) can be managed through appropriately populating
the θ0 and θ1 parameters and/or by choosing whether to accept such a member in the first place.
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heating planning in the context of our MPC approach that fully exploits the probabilistic
occupancy estimates (in fulfilling also the respective occupancy uncertainty requirement,
see Section 1.1.3). Our algorithm is based on dynamic programming, enabling our system
to work in conjunction with both linear and non-linear system models and arbitrarily
complex optimization objectives (in contrast to other optimization methods typically
used in the context of MPC for planning, such as quadratic and linear programming),
enhancing the respective generality requirement (see Section 1.1.3). Moreover, regarding
the particular optimization objective used in planning, the reliance on a single param-
eter for balancing heating cost and thermal discomfort enables our system to match to
the user preferences through an effective adaptive procedure (as per the requirements:
(i) minimal user-input, (ii) matching the user preferences and (iii) Pareto efficiency, see
Section 1.1.3). In the context of our thermal comfort modeling approach, we utilized
a cost-effective occupancy prediction algorithm developed by Scott et al. (2011) that
limits the cost of our approach (as per the applicability requirement, see Section 1.1.3).
Finally, our gray-box adaptive thermal modeling approach makes our system resilient
and effective for employment in the highly dynamic thermal settings of houses, without
facing the shortcomings of black-box and white-box approaches (as detailed in Section
2.2). As such, fulfilling the reliable thermal modeling requirement while respecting the
applicability and generality requirements (see Section 1.1.3).

Furthermore, to account for the coalition potential in the case of advanced economic con-
trol, we detailed a scheme for collective advanced economic control (as per the respective
coalition potential requirement, see Section 1.1.3). In this context, we formulated the
optimization objective for optimal heating planning in the context of collective economic
control and detailed its limitations in terms of deployment in real settings. Subsequently,
we detailed our heuristic planning approach for collective advanced economic control
that aims to overcome these limitations (as per the applicability requirement, see Sec-
tion 1.1.3). Finally, we detailed our allocation mechanism to share the realized gains
of the coalition that respects individual rationality and allocation efficiency (as per the
respective cost allocation requirement, see Section 1.1.3). To conclude, in essence Ada-
Heat is a core framework where different system models can be incorporated to capture
specific characteristics. In Chapter 4, along with our evaluation results, we provide a
specific instantiation of our DHAS for our case study systems.



Chapter 4

Evaluating AdaHeat

In this chapter we provide a thorough evaluation of our domestic heating automation
system (DHAS) approach, AdaHeat. In particular, in Section 4.1 we evaluate AdaHeat
with respect to simple heating and simple economic control, while in Section 4.2 we
evaluate AdaHeat with respect to advanced economic control. In both sections we: (i)
describe the case study of the evaluation and how we collected the necessary data; (ii)
describe the specific instantiation of AdaHeat with respect to the case study (iii) discuss
our evaluation set-up and the instantiation of the benchmark systems; and (iv) report
the evaluation results. Section 4.3 summarizes this chapter.

4.1 Simple Heating Control and Simple Economic Control

In this section we evaluate AdaHeat with respect to simple heating and simple economic
control (see Section 1.1). We now proceed to describe the case study of our evaluation
and how we collected the necessery data.

4.1.1 Case Study and Data Collection

For the case study of our evaluation of simple heating and simple economic control, we
consider the living room of a family house in Cambridge, UK, (as seen in Figure 4.1)
utilizing data coming from the original PreHeat deployment (Scott et al. (2011)). In
particular, the house has both radiators (4 of 10 independently heatable rooms) and
underfloor heating (8 of 10 rooms) and is equipped with custom hardware using .NET
Gadgeteer to control the heating system and record data. In more detail, heating is con-
trolled on a per-room basis through a room unit that controls wireless radiator valves,
and a control unit that controls the underfloor heating valves, as shown in Figure 4.2(a)

70
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Figure 4.1: Case study location (powered by Google maps).

(a) Room unit (b) Control unit

Figure 4.2: Case study custom hardware (Scott et al. (2011)).

and Figure 4.2(b), respectively. In addition, the room unit has (i) an indoor air temper-
ature sensor (Sensiron SHT15)1 and (ii) a passive infra-red motion sensor for detecting
occupancy (Panasonic PIR-AMN34111J),2 while the control unit has no sensors but a
relay for controlling the underfloor heating valves. Both units have 802.15.4 radio mod-
ules to establish a wireless mesh communication with a central server, where the data
(further utilized in this work) are recorded. See Scott et al. (2011) for more details on
this set-up and the original employment.

We choose the living room for our study as: (i) it is largely in use when the house is
occupied and (ii) its thermal dynamics are particularly challenging due to its physical
properties and household activity. In particular, it has two doors and three windows, as

1www.farnell.com/datasheets/1563786.pdf
2www.panasonic-electric-works.com/eu/ds_61804_en_pir_motion_sensor.pdf

www.farnell.com/datasheets/1563786.pdf
www.panasonic-electric-works.com/eu/ds_61804_en_pir_motion_sensor.pdf
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Figure 4.3: Layout of our case study living room.

seen in Figure 4.3, and it is equipped with an underfloor heating system (no radiators)
and an auxiliary fan heater (that is occasionally used). Underfloor heating involves
multiple heat transfer processes whereby heat is transferred from the source (i.e., the
boiler) to an intermediate thermal mass (i.e., underfloor system), which then slowly
leaks to its surroundings (e.g., air, ground, and house envelope). This process introduces
considerable thermal lags, thus making this room interesting from a heating control
perspective. In addition, the per-room-based heating in the adjacent rooms and the
weather conditions can affect the indoor and outdoor thermal leakage. Furthermore,
the occupants’ activities have a substantial effect on the thermal dynamics of the room,
specific examples of such events in our case include opening a window or operating the
auxiliary fan heater. Taken together, these factors make this room a challenging testbed
on the generality and efficiency of our approach both in terms of thermal modeling and
control.

For the purpose of our research, we collected inside air temperature readings, T IN , and
occupancy events from November, 2011 to March, 2012 (150 days in total) via the .NET
Gadgeteer hardware as discussed above. For the outside temperature, TOUT , we use of
publicly available data from the Cambridge computer laboratory (30 minute intervals).3

Finally, to estimate solar radiation, GT , we use the dataset from the EU joint research
commission4, which consists of estimated solar irradiance data on a typical day for a
given month (note that this means that all days in any given month have the same solar
irradiance). This data consists of average solar irradiance for 15 minute intervals and we
assume this to be constant within this interval.

3We use linear interpolation where needed.
4www.cl.cam.ac.uk/research/dtg/weather and http://re.jrc.ec.europa.eu/pvgis/apps4/

pvest.php

www.cl.cam.ac.uk/research/dtg/weather
http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php
http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php
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4.1.2 Instantiating AdaHeat

In this section we describe in detail the instantiation of our DHAS, AdaHeat, for control-
ling our case study underfloor heating system. In particular, in the following paragraphs
we provide the instantiation of each of the principle components of our system, as de-
tailed in Section 3.1 (i.e., the thermal comfort model, the thermal model, the heating
cost model, and the controller).

• Thermal Comfort Model: As discussed in Section 3.1.1, any thermal discom-
fort experienced, at each instance that the house is occupied, considers the abso-
lute deviation of T IN from the user-provided, set-point temperature TSP . In our
case study the preferred set-point temperature is set to 22◦C and, hence, TSP in
Equation 3.3 is set to 22◦C. Moreover, for the occupancy schedule we utilized the
occupancy data collected via the .NET Gadgeteer, as discussed in Section 4.1.1

• Thermal Model: Thermal modeling is highly dependent on the thermal process
that is being modeled (as discussed in Section 3.1.2). Here, we identify the most
suitable thermal model for our case study underfloor heating system by starting
with the simplest feasible model and iteratively refining it into a more complex
one. By doing so, we derive a thermal model where the transfer of heat from
the heat source to the indoor air is assumed to be via an intermediate thermal
mass (underfloor system), and the transfer of heat to the outside is via the house
envelope. Thus, our thermal model captures the thermal lags of this system (in
contrast to the simple thermal models originally employed by both PreHeat and
SPOT+, see Section 2.7). Moreover, our thermal model also accounts for the
effects of solar radiation on the indoor air temperature and the house envelope
temperature. In more detail, the derived thermal model is:

TFLt+1 = TFLt + rha+ φa(T
IN
t − TFLt ) (4.1)

T INt+1 = T INt + rsaGT + φa(T
FL − T INt ) + φb(T

EN
t − T INt ) (4.2)

TENt+1 = TENt + rseGT + φb(T
IN
t − TENt ) + φc(T

OUT − TENt ) (4.3)

where t stands for time, and TFL, T IN and TEN stand for the floor-mass tempera-
ture, the inside air temperature and the house envelope temperature, respectively,

and consider the thermal state of the system, i.e., x =

T
FL

T IN

TEN

. Furthermore, GT

and TOUT represent the global solar irradiance and the outside temperature, respec-

tively, and consider the vector of exogenous processes variables, i.e., i =

(
TOUT

GT

)
.

In addition, φa, φb, and φc represent the leakage rates (between the floor mass and
the indoor air, the indoor air and the house envelope, and the house envelope and
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the outside environment, respectively),5 and rh, rsa and rse represent additional co-
efficients that aim to capture the effect of the heating system output to the inside
air temperature, the effect of solar radiation on the inside air temperature, and
the effect of solar radiation on the envelope temperature, respectively. Now, the
leakage rates, φa, φb, and φc, along with the coefficients rh, rsa and rse, consider the
equivalent thermal parameters that are assumed to be time-varying and need to be
estimated. Finally, a ∈ {1, 0} (on/off) is the heating control action and trivially
considers a.

Now, TFL and TEN consider non-observable thermal state variables that need to
be estimated along with the equivalent thermal parameters. Note here, that, in
essence, the above defined thermal model is affine with respect to the thermal state
vector, x (or linear with respect to an appropriately extended thermal state vec-
tor). However, the simultaneous estimation of both parameters and state variables
yields a non-linear problem in general (as discussed in Section 3.1.2). To this end,
as is common practice, we use an extended Kalman filter (EKF) for the joint esti-
mation of state and parameter variables (Grewal and Andrews (2011))—for details
on joint state and parameter estimation with an extended Kalman filter see Fux
et al. (2014). We evaluated our procedure over the 150 days dataset (collected as
described in Section 4.1.1) to achieve the 95th percentile of the absolute prediction
error to be 0.95◦C and 1.37◦C for 2 and 4 hours predictions, respectively.

• Heating Cost Model: Regarding the heating cost model, the particular heating
system efficiency, as well as the energy provided to the space for a particular heating
action, can generally be set to arbitrary values in the case of simple heating and
simple economic control, as long as any needed ratios are retained. This is due to
our adaptive approach in meeting the user preferences, as discussed in Section 3.1.3.
As such, the instantiation of our heating cost model considers Equation 3.10 where
we have set Ceff = 1 and Pwr(a) = a (i.e., Pwr(0) = 0 and Pwr(1) = 1).6

• Controller: Regarding the controller, the planning horizon and the planning in-
terval length of AdaHeat were set to 1 hour ahead and 5 minutes, respectively (i.e.,
δ = 5 min and |H| = 12). In particular, those MPC design characteristics have
been found to be effective for efficient heating control, after experimenting with
various design characteristics.

4.1.3 Experimental Setup

In this work, we evaluate AdaHeat with and without adaptive thermal modeling. We
do so, to identify the benefits of such modeling in our DHAS. Moreover, we compare

5With respect to a RC-network representation (Deng et al. (2010)), a leakage rate considers a cumu-
lative representation of thermal capacitance, Cth, and thermal resistance, Rth (i.e., φ = 1

CthRth
).

6These particular parameters are the same for all systems evaluated in this work and, as such, their
value does not alter the conclusions of this evaluation.
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against the well-known SPOT+ and PreHeat which, essentially, employ MPC along with
heuristic planning (see Section 2.7). As such, our evaluation can provide significant
insights about the trade-off between heuristic and optimal planning, in the context of
MPC. Now, although these DHASs employ simple fixed thermal modeling, we also eval-
uate them with a more advanced fixed model (that captures the thermal lags of the case
study system) and with our adaptive model. In addition, we use the same occupancy
prediction algorithm (i.e., Scott et al. (2011)); cost and discomfort metrics (i.e., Equa-
tion 3.10 and 3.3 respectively); and planning horizon and interval length (i.e., δ = 5 min
and |H| = 12) for all systems. We do so for two reasons: (i) to identify the benefits of
adaptive modeling in various DHASs; and (ii) to compare various DHASs without being
affected by any model and design differences. Moreover, we evaluate all DHASs with
and without considering variable energy cost in order to characterize them in different
settings. That said, our case study of an underfloor heating system with variable energy
cost is a worst case scenario system and its efficient control can confirm (or disprove)
the intended generality of AdaHeat. For completeness, we also evaluate the performance
of three simple heating strategies: (i) always-on, which retains T IN at TSP throughout
the whole day, (ii) always-off, in which heating is always off, and (iii) reactive, in which
heating responds to occupancy (this is equivalent to a strategy where heating is manually
switched on and off, when the occupants leave and return to the house, respectively). In
more detail, the aims of this evaluation are:

• To identify the benefits of incorporating adaptive gray-box thermal modeling in
different DHAS approaches.

• To identify the trade-off between heuristic planning and a planning approach that
fully exploits the probabilistic occupancy estimates in the context of MPC (without
being affected by any modeling and design differences of the DHASs considered).

• To provide a comprehensive comparison of different DHASs in different operational
settings (also without being affected by any modeling and design differences).

In more detail, we evaluate all DHASs for a typical winter day (of February 2011), ensur-
ing (via an iterative procedure) that the initial and final thermal state, x, at the begin-
ning and at the end of the day respectively, are the same in all our experiments, as seen
in Figure 4.4. As such, our evaluation results consider long-term average performance
evaluation, assuming that the same day repeats over time (i.e., same occupancy sched-
ule, environmental conditions and predictions). We followed this procedure to provide
long-term performance estimates for various DHAS parameter settings within feasible
computational time. In particular, by doing so, we were able to evaluate all DHASs for a
wide range of parameters and identify their performance in meeting the user preferences.
In more detail, we evaluate SPOT+ for all combinations of a weighting factor within
(0,1) with a step of 0.01, and a threshold value within (0,1) with step 0.1. In addition,
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(b) AdaHeat heating control, λ = 0.96

Figure 4.4: AdaHeat heating control instances.

we evaluate PreHeat and AdaHeat for the same threshold and weighting factor range,
respectively. We note here that the SPOT+ objective has been normalized to work with
a weighting parameter in the range (0,1) without any performance loss to reinforce our
comparison. In more detail, the objective of SPOT+, as discussed in Section 2.7, is given
by Equation 2.2, reported here again (for concreteness):

J(·) =

|H|∑
τ=1

Cost(·τ ) +Oτλ
′Disc(·τ )
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where λ′ ∈ [0,∞). That being said, by setting λ′ = λ
1−λ , λ

′ remains in [0,∞) as long
as λ ∈ [0, 1). Moreover, in general, minimizing J(·) is equivalent to minimizing cJ(·) for
any c > 0. As such, and given that 0 ≤ λ < 1 ⇒ 1 ≥ (1 − λ) > 0, the objective of
SPOT+ can be transformed, without any performance loss, to:

J(·) =

|H|∑
τ=1

(1− λ) Cost(·τ ) +OτλDisc(·τ ) (4.4)

where λ ∈ [0, 1). As such, we have derived an equivalent objective function based on a
double-bounded parameter.7

Now, we chose a week-day in winter due to the heating needs of the particular season
and to avoid any week-end day peculiar features.8 To this end, we used the collected
data for the ground truth of the occupancy schedule (and derived respective occupancy
predictions for this day based on historical data according to Scott et al. (2011)—see
Section 2.4) and the weather conditions (see Section 4.1.1).9 Furthermore, in order to
simulate our thermal model inaccuracies, we simulated the underlying thermal process
by sampling x, at each instance, from the respective EKF derived distributions. As such,
the thermal model is not completely accurate with respect to our simulation, making our
experiments more realistic.

T
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Figure 4.5: Least squares fitting of SPOT+ thermal model.

7Note that normalized cost and discomfort values can be used.
8For instance if the house is unoccupied during a week-end day, due to a trip, there will be zero

potential savings.
9We linear interpolate whenever needed.
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As outlined above, we evaluate SPOT+ and PreHeat also with their original fixed thermal
models. Thus, as proposed in the respective publications, we estimated SPOT+ model
via least squares regression and PreHeat’s heat-rate as a historical average. In particular,
we estimated both models based on the two first months of the 150-days dataset—
thereafter, the estimated equivalent thermal parameters are fixed. In more detail, the
SPOT+ thermal model (Equation 2.1) is equivalent to:

T INt+1 = T INt +
e

C
P hvact − k

C
(T INt − TOUTt )⇒

(T INt+1 − T INt ) = +
e

C
P hvact +

k

C
(TOUTt − T INt ) (4.5)

where e/C and k/C are the linear regression coefficients. Note that in our case study
CEff = 1 and Pwr(a) = a (see Section 4.1.2) and hence, P hvac = a. As such, the
dependent variable is (T INt+1 − T INt ) and the independent ones are a and (T ot − T INt ).
Now, the derived ETPs are e/C ' 0.043 and k/C ' 0.00043 for SPOT+ and a heat-
rate of ∼ 0.441◦C/hr for PreHeat. For concreteness, Figure 4.5 illustrates the predicted
thermal response according to the thermal model of SPOT+ against the corresponding
training dataset. Note, that the data points have a considerable variability over the
(T INt+1 − T INt ) axis which is mainly due to the thermal lags of the system. The simple
SPOT+ thermal model is not able to consider the thermal lags of the case study heating
system which is illustrated by its inability to capture this variability. Now, in order to
evaluate the DHASs with a more advanced fixed model, we use the equivalent thermal
parameters of our adaptive model as derived exactly 30 days before the evaluation day
(as such, the last model “calibration” is done, approximately, one month ago).10 Finally,
we note that in our evaluation, discomfort and cost are estimated with a numerical
evaluation of an one-min interval.

4.1.4 Evaluation Results

In the context of this work, we benchmark AdaHeat against both PreHeat and SPOT+
using their original thermal modeling approaches. As we further detail in the rest of
this section, PreHeat is not very sensitive to the accuracy of the thermal model used
(due to the simple heating control strategy utilized), in contrast to both AdaHeat and
SPOT+. That being said, the original simple thermal model of SPOT+ is not able to
capture the thermal lags of the case study underfloor heating system. As such, when a
planning horizon of one hour ahead is used, SPOT+ is not able to execute any heating
schedule other than the Always-off heating strategy. Hence, only for this experiment we
consider SPOT+ with an extended planning horizon of two hours ahead (in contrast to
AdaHeat and PreHeat where one-hour planning horizon is used). Figure 4.6 illustrates
the corresponding evaluation results.

10Although this simple technique is used to “approximate” a fixed thermal model, estimation techniques
for fixed parameters can potentially demonstrate higher accuracy (Keesman (2011)).
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Figure 4.6: Initial evaluation results (Always-off wields ∼ 154◦Ch discomfort).

From this we can see that AdaHeat has a better performance, in terms of Pareto effi-
ciency, compared to both SPOT+ (with two hours ahead planning horizon) and PreHeat
systems (while SPOT+ and PreHeat have a comparable efficiency). In particular, the
balancing points captured by AdaHeat fall closer to the origin compared to SPOT+ and
PreHeat. Moreover, AdaHeat demonstrates a better distribution of the obtained solu-
tions compared to both SPOT+ and PreHeat as it is able to capture a wider and more
evenly distributed solution set. However, this experiment is not very informative on
whether this is due to the different thermal models employed by these systems, or due to
the different control and/or planning approaches utilized. It is worth noting though, that
none of the systems’ solutions are dominated by the simple heating strategies Always-on,
Always-off and Reactive and, hence, all systems can improve heating system efficiency
compared to these simple strategies.

Given these initial observations, we proceed with a more comprehensive evaluation of the
above systems. In particular, we first evaluate all systems with our thermal modeling
approach, both fixed and adaptive (as discussed in Section 4.1.3), without considering
energy cost variability (see Figure 4.7). As expected, adaptive thermal modeling sig-
nificantly improves the efficiency of DHASs. In particular, as seen in Figure 4.8, both
AdaHeat and SPOT+ are highly dependent on the accuracy of the thermal model em-
ployed and their performance improves significantly when adaptive thermal modeling is
used. This is especially the case when low thermal discomfort values are intended. In
particular, it can be seen in Figures 4.8(b) and 4.8(c) that the solutions captured with
adaptive modeling fall closer to the origin compared to the fixed modeling ones. That
said, in essence, SPOT+ is a non-domestic system developed for office buildings and
relies on a simple fixed thermal model estimated through linear least squares fitting.
However, the thermal characteristics of houses are much more dynamic than those in
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Figure 4.7: Comprehensive evaluation results (without energy cost variability).
“Always-off” wields ∼ 154◦Ch discomfort (and, appropriately, 0 cost).

non-domestic buildings and are highly affected by several less tangible factors, such as
the occupants’ activity and the temperature in adjacent rooms (or buildings, see Sec-
tion 2.2). Hence, the efficiency of SPOT+ (and AdaHeat) significantly improves when
adaptive thermal modeling is considered. On the other hand, as seen in Figure 4.8(a),
PreHeat is less sensitive to the accuracy of the thermal model employed due to its simple
heating control strategy. However, this simple strategy deteriorates in terms of flexibility
and efficiency (as discussed below). In general though, none of the systems’ solutions are
dominated by the simple heating strategies: Always-on, Always-off and Reactive, and,
hence, all systems can potentially improve heating system efficiency compared to these
strategies, even when fixed thermal modeling is incorporated into SPOT+ or AdaHeat.



Chapter 4 Evaluating AdaHeat 81

160 170 180 190 200 210 220 230 240 250

Heating time (minutes)

0

5

10

15

20

25

30

35

D
is

co
m

fo
rt

(◦
C
h

)

PreHeat (without adaptive thermal modeling)
PreHeat (with adaptive thermal modeling)
Always-on
Reactive

(a) PreHeat

160 170 180 190 200 210 220 230 240 250

Heating time (minutes)

0

5

10

15

20

25

30

35

D
is

co
m

fo
rt

(◦
C
h

)

SPOT+ (without adaptive thermal modeling)
SPOT+ (with adaptive thermal modeling)
Always-on
Reactive

(b) SPOT+

160 170 180 190 200 210 220 230 240 250

Heating time (minutes)

0

5

10

15

20

25

30

35

D
is

co
m

fo
rt

(◦
C
h

)

AdaHeat (without adaptive thermal modeling)
AdaHeat (with adaptive thermal modeling)
Always-on
Reactive

(c) AdaHeat

Figure 4.8: System by system comprehensive evaluation results (without energy cost
variability). “Always-off” wields ∼ 154◦Ch disc. (and 0 cost).
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As far as the evaluated heating automation systems are considered with adaptive thermal
modeling (Figure 4.7(a)), the evaluation results suggest that SPOT+ and AdaHeat have
comparable Pareto efficiency. In general though, PreHeat demonstrates a slightly worse
efficiency than SPOT+ and AdaHeat. This is due to its simple heating control strategy
which is not generally able to capture heating systems with considerable thermal lags,
such as the underfloor heating system considered in our case study, in a maximally
efficient manner (see Sections 2.1 and 2.7). Moreover, SPOT+ demonstrates a less stable
performance, in terms of Pareto efficiency compared to AdaHeat. This is, the solutions
captured by SPOT+ are sometimes dominated by AdaHeat and vice-versa. On further
investigation, SPOT+ is observed to occasionally plan a suboptimal heating schedule as
seen in Figure 4.9.11 However, the suboptimal planning of SPOT+ occasionally leads to
higher or lower Pareto efficiency, as the MPC is not an optimal control approach (see
Section 2.6).
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Figure 4.9: Planning instance. Note that SPOT+ solutions are dominated by Ada-
Heat solution.

Now, matching the, potentially time-varying, occupant preferences in balancing discom-
fort and cost is crucial in the context of DHASs (as discussed in Sections 2.7). To
this end, SPOT+ relies on two user-provided parameters, i.e., the weighting factor and
the threshold over the probabilistic occupancy estimates (see Section 2.7). However, in
general, mathematical relationships between heating cost and quantifications of thermal
discomfort are hard to comprehend for the users. As such, the usability of SPOT+ in do-
mestic settings is questionable due to the complicated relationship between the threshold
and the weighting parameter (see Figure 4.10). In more detail, many SPOT+ solutions
(for different weighting and threshold parameters) are dominated by other solutions that

11This fact suggests that the non-closed form formalization of SPOT+’s planning objective (see Gao
and Keshav (2013a)) is not a sufficient condition for Pareto optimality over cost and expected discomfort.
However, we cannot conclude, whether it is a necessary condition just from these observations.
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Figure 4.10: SPOT+ (with adaptive thermal modeling), balancing heating cost and
thermal discomfort.

SPOT+ captures with different parameter choices. However, the exact performance of
SPOT+ cannot be known in advance and we are not able to find any algorithm to ap-
propriately populate the weight and the threshold parameter that can demonstrate a
monotonic relationship with either the discomfort or the cost. For instance, one such
algorithm could be to increase weight and threshold iteratively, starting from a particular
weight for each threshold choice. This fact makes the parameter choice tricky as the user
cannot know what to expect from different parameter value combinations.

On the other hand, both AdaHeat and PreHeat rely on only a single parameter for
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balancing heating cost and thermal discomfort. Moreover, the adjustable parameter of
both AdaHeat and PreHeat demonstrates a monotonic correlation to thermal discomfort
(and to heating cost for AdaHeat), when adaptive thermal modeling is considered, as seen
in Figures 4.11 and 4.12. This fact enables the adjustment of these variables through
a simple, real-time, adaptive procedure, based on a single Boolean feedback from the
user, as discussed in Section 3.1.4. As discussed above though, when adaptive thermal
modeling is considered (Figure 4.7), PreHeat illustrates a slightly lower Pareto efficiency
than SPOT+ and AdaHeat. Moreover, in general, PreHeat is not able to capture a
wide range of balancing points between cost and discomfort that allows a variety of
user preference schemes to be captured—in contrast to AdaHeat. In particular, PreHeat
operates on only a small region in balancing cost and discomfort which is not sufficient
for appropriate heating control in domestic settings. As such, the occupants need to also
adjust the origin of the discomfort metric (i.e., the set-point temperature), along with
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Figure 4.11: AdaHeat, balancing heating cost and thermal discomfort.
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the threshold parameter, in order to meet their preferences. Thus AdaHeat is the only
system that works sufficiently based on a single weighting parameter that can be learned
on-line.
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Figure 4.12: PreHeat, balancing heating cost and thermal discomfort.

Lastly, the simple heating control strategy of PreHeat (i.e., heating for the minimum time
required right before an occupancy event) does not allow this system to efficiently work
in conjunction with heating systems that exhibit a variability of heating energy cost over
time, time-varying overall efficiency or considerable thermal lags (as illustrated above).
To further illustrate this we have conducted an additional experiment where arbitrarily
variable energy prices have been assumed through the day. In particular, the energy
prices have been designed to change every 5 minutes with their value being sampled
from a uniform distribution within the range [1,10]. As can be seen in Figure 4.13,
PreHeat’s performance deteriorates significantly in this settings (both in terms of Pareto
efficiency, and distribution and range of balancing points that it captures). Specifically,
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certain PreHeat solutions are dominated even by the Always-on strategy. Moreover,
SPOT+ demonstrates significant variability over its performance for different parameter
choices in this setting, as it captures many self-dominated solutions. In contrast, AdaHeat
is generally stable in terms of Pareto efficiency, and generally smooth in terms of the
distribution and range of solutions captured (Figure 4.13).
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Figure 4.13: Evaluation results with energy cost variability

4.2 Advanced Economic Control

Here, we provide a thorough evaluation of AdaHeat with respect to advanced economic
control. We now proceed to describe the evaluation case study and how we collected the
necessary data.

4.2.1 Case Study and Data Collection

For our evaluation case study of advanced economic control, we modeled 30 houses in
Mablethorpe, Lincolnshire, UK, (as seen in Figure 4.14) equipped (for simplicity) with
the same wind turbine generator nominal capacity WTGnom of 6kW and heating system
nominal power HSnom of 4kW. We choose the UK for our evaluation, since its weather
climate leads to a generally heavy usage of space heating systems (while the specific UK
location is chosen randomly). Due to the absence of concrete data for our particular
region of interest, we modeled these houses by combining real data coming from different
datasets (considering the UK), i.e., our case study considers fictional houses based on real
data. In particular, we utilized a month of occupancy data (3/2012) from the dataset
of the original PreHeat deployment (Scott et al. (2011)) considering a family house in
Cambridge, UK. Furthermore, we utilized the dataset of the original MyJoulo (Rogers
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Figure 4.14: Case study location (powered by Google maps).

et al. (2013)) deployment which considers one-week indoor and outdoor temperature
readings of hundreds of houses across the UK, randomly choosing 30 for our research.
Finally, we acquired 50 days (starting from 15/2/2011) worth of archival weather readings
and forecasting reports from on-line providers,12 for the location of our interest (i.e.,
Mablethorpe, UK).

4.2.2 Instantiating our Approach

Here, we detail the instantiation of AdaHeat for our case study. In particular, in the
following paragraphs we provide the instantiation of each of the principle components
of our system, as detailed in Section 3.1 (i.e., the thermal comfort model, the thermal
model, the heating cost model, and the controller).

• Thermal Comfort Model: Regarding thermal comfort modeling, we set the
set-point temperature, TSPi , of each house i ∈ C to the actual one as captured
in the MyJoulo dataset for all 30 houses (see Section 4.2.1). Moreover, for the
occupancy schedule we utilized the one-month’s worth of data of the PreHeat
original deployment (see Section 4.2.1). In particular, we used each different day’s
realized occupancy and corresponding predictions to model the “ground truth”
occupancy schedule and the occupancy predictions for each one of the 30 case
study houses, respectively.

• Thermal Model: Since our case study heating systems do not experience consid-
erable thermal lags, we employ a simple standard thermal modeling formulation,

12www.uk.weather.com and www.wunderground.com

www.uk.weather.com
www.wunderground.com
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where heat leaks from the house at a rate that is proportional to the temperature
difference between the house, T INi,t , and the outside environment, TOUTi,t (Rogers
et al. (2013); Bacher and Madsen (2011)). More formally, the thermal model em-
ployed for each house, i in coalition C, is:

T INi,t+1 = T INi,t +
(
ai,tr

in
i − routi

(
T INi,t − TOUTi,t

)
+ ci

)
δ (4.6)

where t is time, rini stands for the heat provided by the heater; routi for the leakage
rate; ai,t ∈ {1, 0} for the heating control action (and trivially considers a); and ci is
a heat bias to capture additional non-modeled heat transfer sources (e.g., incident
solar radiation, occupant activity or adjacent buildings’ temperature). In essence
rini , routi and ci consider time-varying parameters that need to be estimated. As
discussed in Section 3.1.2, to this end, we utilize moving training window least-
squares estimation (Soderstrom and Stoica (1989)). We trained our model using
a moving training window least squares fitting on the 30 houses of the MyJoulo
dataset (see Section 4.2.1). Our thermal modeling approach (Equation 4.6), can
be easily transformed in (least squares form) as

(
T INi,t+1 − T INi,t

)
/ δ = ai,tr

in
i + routi

(
TOUTi − T INi,τ

)
+ ci (4.7)

where (T INi,t+1−T INi,t )
δ is the dependent variable/quantity, ai,t and

(
TOUTi − T INi,τ

)
the

independent ones, and rini , routi and ci the time-varying coefficients to be estimated.
For concreteness, we performed a simple evaluation of our approach, using the data
for all 30 houses in our dataset. In particular, we used the last day for our evalu-
ation with a moving training window of 6 days for all houses, and calculated the
RMSE with respect to the predictive horizon. The results are reported in Fig-
ure 4.15(a). It can be seen that this simple approach provides adequate predictive
accuracy for our MPC approach which is in alignment to the literature (Coley and
Penman (1992)). Now, in order to capture the thermal modeling inaccuracies in
our simulation experiments, we used the standard deviation of our fitted thermal
models, as derived in the evaluation dataset for each house, to model a zero-mean
Gaussian distribution. A sample from this distribution was added to the ther-
mal model predictions, at each instance, to simulate the “ground truth” thermal
response.

• Heating Cost Model: As discussed in Section 3.1.3, in the special case of ad-
vanced economic control, adequate estimates of the future intermittent energy re-
source (IER) power output are needed in the context of the respective heating cost
modeling. Now, the shared IERs of our case study are wind turbine generators.
To this end, we used the weather data considering the location of our interest
(Section 4.2.1) and the RENES13 simulation platform (Panagopoulos et al. (2012);

13www.intelligence.tuc.gr/renes

www.intelligence.tuc.gr/renes
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Figure 4.15: Instantiation evaluation results.

Panagopoulos (2013)) to create synthetic power output data. In more detail, we
used the archival weather readings and the forecasting reports to derive power out-
put “readings” and predictions, respectively. In essence, RENES uses a well-known
sigmoid function to transform wind speed into power output (see Panagopoulos
et al. (2012)). The sigmoid parameters that we use are the ones suggested by
RENES, and are consistent with a typical commercial system. It should be noted
here that since all houses are assumed to lie in the same region (and have the same
WTGnom), we use the same ground truth and derived predictions based on physical
numerical weather prediction (NWP) (see Section 2.9), assuming the same sigmoid
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Figure 4.16: Instance of our GP-based hybrid wind turbine generator power output
prediction approach.

parameters (for simplicity) for all IERs.

Now, as discussed in Section 2.9, hybrid approaches can improve the (short term)
accuracy of NWP-based approaches due to their site-specific calibration, and GP
regression is effective in this context, providing also stochastic estimates. As such,
in this work we combine the derived NWP-based power output predictions with
historical observations, based on adaptive GP regression. We utilize an adaptive
approach to maximally account for up-to-date NWP-based predictions and histori-
cal observations. In particular, we fix the mean of the GP to follow the NWP-based
predictions and learn the fluctuations of the NWP-based predictions compared to
the ground truth, based on the historical observations, in real time. More for-
mally, given a set of observations (x1, y1), . . . , (xn, yn) and NWP-based prediction
points (x1, g1), . . . ,(xn, gn), . . . (xm, gm) (where m is usually greater than n), we
take the difference between the two outputs, i.e., zi = yi − gi, to obtain a new
time series (z1, x1), . . . (zn, xn). This new series, defined over the same period as
the historical observations i < n, essentially considers the fluctuation of the NWP-
based predictions compared to the observations. Now, we further extrapolate these
points using gradient descent in the context of a GP with a squared exponential
kernel, i.e., KSE(x,x′) = σ2f exp

(
(x− x′)/2l2

)
, which is suitable for modeling

our smoothly changing NWP-based time series. Finally, in order to derive power
output predictions, we add to the GP projected series the NWP-based prediction.
This procedure is repeated in time, as new observations and new NWP-based pre-
dictions are acquired, shifting the training window (which considers a day’s worth
of data) and predictive horizon into the future. As such, we derive probabilistic
estimates of the cumulative future power output, R′C , at each instance, which fol-
low a Gaussian distribution; R′C∼N(µ, σ). However, the power output of a wind
turbine generator is bounded within [0, rmax

C ]. As such, we derive the corresponding
truncated Gaussian distribution by bounding R′C within this range.

Following the above, we are able to increase the accuracy of the NWP-based predic-
tions through a simple and effective adaptive site-specific calibration technique. In
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particular, our approach significantly improves the prediction accuracy for a short-
term horizon, while for longer horizons it progressively reduces to the NWP-based
approach, as can be seen in Figure 4.15(b), where an instance is illustrated for 7
hours ahead predictive horizon. In order to evaluate our approach in a concrete
manner we calculated the RMSE of our predictions with respect to the predictive
horizon for the 50 days in our dataset (employing our approach every half an hour)
modeling one of our case study wind turbine generators. In this context, we also
calculated a standardized mean square error (sMSE) which considers the MSE over
the GP predicted variance. This metric captures the accuracy of our GP variance
modeling. In particular, values closer to 1.0 indicate that the modeled variance is
consistent with the realized one, while values significantly over or under 1.0 mean
that our approach’s estimates are under or over confident, respectively. As can
be seen in Figure 4.15(b), the results indicate that our hybrid GP approach sig-
nificantly increases the accuracy of the NWP-based approach (especially for short
term horizons) while the modeled variance closely follows the realized one—in Sec-
tion 4.2.4 we also evaluate the significance of our hybrid approach within AdaHeat.
It is worth noting that the performance of our simple hybrid GP-based approach
is in alignment to the literature (Chen et al. (2014)) and also outperforms far
more complex GP-based approaches (in terms of RMSE throughout the predictive
horizon examined) evaluated in the proximity of our region of interest (and, in
particular, in Ireland) (Yan et al. (2016, 2014)).

Now, since we consider advanced economic control, we used Equation 3.11 for our
heating cost modeling. In this context, we assume that the case study electricity-
based space heating systems do not consider heating pump technology. As such,
we set CEffi = 1 and Pwri

(
ui, T

IN
i,t

)
= uiHSnom (i.e., Pwri

(
0, T INi,t

)
= 0, and

Pwri

(
1, T INi,t

)
=HSnom), for each house i ∈ C.14 Furthermore, following the PBuy

and PSell rates in the UK market in 2015, we set PBuy = 11.25 p/kWh and
PSell = 4.5 p/kWh (where p is British penny) which correspond to a PBuy/PSell

ratio of 2.5. That said, given R′C∼N(µ, σ), RC ∈ [0, rmax
C ], and the straightforward

conditions that rmax
C > 0, and Const(·) ≥ 0, Equation 3.11 can be transformed in

closed form (Appendix A).

• Control and Planning: Regarding control and planning, the slow nature of
building thermal dynamics (Širokỳ et al. (2011)) dictates a relatively long plan-
ning horizon and enable us to use a long planning interval. As such, we use a
planning horizon of 3.5 hours with a 10-min interval. In particular, those MPC de-
sign characteristics have been found to be effective for efficient advanced economic
control, after experimenting with various design characteristics.

14We note that setting CEffi = 1 ensures that we do not favor our approach via modeling inefficient
heating systems.
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4.2.3 Experimental Setup

In our evaluation procedure, we compare our heuristic collective advanced economic con-
trol approach, in a contemporary market reality with flat import and export tariffs,
against two benchmark approaches: (i) independent advanced economic control, where
the houses optimize space heating independently with respect to their own IER genera-
tion, and (ii) simple economic/heating control where the houses optimize space heating
(independently) disregarding their IER generation. As such, we evaluate the benefits
of collective advanced economic control, compared to independent advanced economic
control, as well as the benefits of independent advanced economic control compared to
(independent) simple economic/heating control. Note here that in the case of flat import
tariffs, simple economic control, that merely considers import tariffs (see Section 1.1),
reduces to simple heating control, as there is no variation in the energy cost over time.
Now, we evaluate all approaches for a typical winter day of February 2011 (randomly cho-
sen from our weather dataset), ensuring (via an iterative procedure) that the initial and
final thermal state, at the beginning and at the end of the day respectively, are the same
for each house in all our experiments (as in Section 4.1.3). As such, our results consider
long-term average performance evaluation, assuming that the same day repeats over time
(i.e., same occupancy schedule, environmental conditions and predictions). By doing so,
we are able to provide long term average evaluation results considering a wide range of
coalition sizes (1-30 houses) and a a wide range of cost-discomfort balancing preferences
for each house (sampling 100-10, 000 different combinations, depending on the coalition
size). In order to identify the potential improvement margin of our heuristic approach, we
also evaluated collective advanced economic control considering optimal planning, for the
case of a two-house coalition (where the respective optimization is feasible, as discussed
in Section 3.2.1). In addition, in order to identify the benefits of incorporating our hybrid
wind turbine generator predictive approach in AdaHeat, we also evaluated AdaHeat, for
the case of a single house coalition, using the initial NWP-based predictions.15

4.2.4 Evaluation Results

Here, we report our evaluation results. In all figures reported in this section we use the
following abbreviations:

• AEC: Advanced economic control

• SEC: Simple economic control

• SHC: Simple heating control
15Note here, that for single house coalitions, optimal and heuristic collective advanced economic con-

trol, as well as independent advanced economic control, become the same. Hence, we evaluate the
benefits of our hybrid approach without being affected by any heuristic planning losses.
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Figure 4.17: Initial evaluation results (two-house coalition)

Figure 4.17(a) illustrates our evaluation results for a two-house coalition (where optimal
planning can feasibly be used, as discussed in Section 3.2.1), considering the collective dis-
comfort and cost of the coalition per day (negative “cost” indicates profit). We note here,
that since this is a two-objective optimization, points closer to the origin indicate higher
Pareto efficiency. Within this context, Figure 4.17(a) illustrates that our heuristic collec-
tive advanced economic control approach has considerably higher Pareto efficiency when
compared to independent advanced economic control and even higher when compared
to simple economic/heating control (denoted in all figures as SEC/SHC). Furthermore,
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independent advanced economic control demonstrates a consistently better Pareto effi-
ciency compared to simple economic/heating control (even though not by a wide margin).
These results are not surprising since further information is considered as we proceed to
a more advanced system. In addition, our heuristic collective advanced economic control
approach demonstrates a Pareto efficiency that is very close to the optimal one, which
illustrates that there is not a big margin of potential improvement (at least in the case
of a two-house coalition). That said, in order to compare the evaluated approaches in a
more concrete manner we estimate the heating cost-efficiency of each approach. To do
so, we evaluate two simple static timer heating policies; namely always-on and always-
off, illustrated in Figure 4.17(a) (for concreteness). In essence, always-off is the heating
policy where there is no heating at all, while always-on is the policy where the indoor
temperature of each house is maintained as close as possible to the respective set-point
temperature throughout the day (as discussed in Section 4.1.3). Intuitively, always-off
considers a possible worst-case scenario in terms of discomfort, Discmax, while it considers
the best-case scenario in terms of heating cost, Costmin. In contrast, always-on considers
a possible worst-case scenario in terms of cost, Costmax, and the best-case scenario in
terms of discomfort, Discmin. Now, we utilize these best-case and worst-case cost and dis-
comfort values to estimate a utopia and a dystopia point of our approaches, respectively.
These points, along with the points captured by the always-on and always-off policies
create a 4-point imaginary window that frames all solution points of our approaches (as
seen in Figure 4.17(a)). Given this window, we normalize the points captured by the
evaluated approaches within the emerging ranges. Finally, using the supplementary frac-
tion of the normalized discomfort (that essentially considers comfort) we calculate the
mean comfort to cost ratio for each one of our approaches, which considers the heating
cost-efficiency. More formally, given the set of all the solution points of an evaluated
approach A:= {P1,P2, ...,P|A|}, where the coordinates of any given point Px is a tuple
(CostPx ,DiscPx) considering the respective cost and discomfort values, the heating cost-
efficiency of the approach is calculated as 1

|A |
∑|A |

i=1
1−(DiscPi −Discmin)/(Discmax−Discmin))

(CostPi −Costmin)/(Costmax−Costmin)
.

Figure 4.17(b) illustrates the heating cost-efficiency of each approach. It can be seen that
the results are consistent with the observations in Figure 4.17(a) which renders heating
cost-efficiency a valid comparison metric. The bars correspond to standard mean error
capturing the diverse cost-discomfort preferences of the houses and indicate a statistically
significant improvement in the heating cost-efficiency when moving from simple economic
control to independent advanced economic control and, further on, to heuristic collective
advanced economic control. Importantly for the efficiency of AdaHeat+, further t-test
evaluation shows no statistically significant difference in the heating cost-efficiency be-
tween optimal and heuristic collective advanced economic control at the 0.05 significance
level (with a p-value of ∼0.17).

Now, the above results indicate a significant improvement in the heating cost-efficiency
of collective advanced economic control compared to independent advanced economic
control (and even more when compared to simple economic/heating control) which can
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Figure 4.18: Two-house coalition monetary gains.

lead to considerable monetary gains for the coalition members. Figure 4.18 illustrates
the monetary gains of using collective advanced economic control, for each one of the
houses in the coalition (after the cost allocation), compared to: (i) independent advanced
economic control and (ii) simple economic/heating control. As can be seen, house A and
B gain over £0.20 and ∼£0.30 (respectively) on average, each day, by using collective ad-
vanced economic control compared to independent advanced economic control (and even
more when compared to simple economic/heating control). These gains correspond to
£5−£10 per month, which is a considerable saving, if one considers that they come only
from efficient heating control. The bars correspond to standard mean error capturing the
diverse share of gains allocated to each house, as well as the diverse cost-discomfort pref-
erences of the houses. We note here that these preferences vary from maximum interest
in heating cost (with minimum interest in discomfort) to maximum interest in discom-
fort (with minimum interest in cost). As such, the realized absolute gains of advanced
economic control fluctuate considerably along with the heating cost (since, for instance,
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Figure 4.19: Two-house coalition energy exchange.
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Figure 4.20: Hybrid predictions contribution.

there cannot be any gains if heating is switched off). These gains come along with
providing respective regulation services to the grid (i.e., minimize the energy import as
per the pricing motivation). Figure 4.19 illustrates the mean energy import and export
(from and to the grid) for the two-house coalition—the shaded region considers (unbiased
estimation) of standard deviation capturing the diverse cost-discomfort balancing prefer-
ences. As seen, the energy consumption flattens significantly (towards 0) even for a small
coalition of only 2 houses, compared to independent advanced economic control. Now, as
discussed in Section 4.2.2 here we also identify the benefits of incorporating our hybrid
wind turbine generator predictive approach to AdaHeat. We do so, by evaluating our
approach, for a single house coalition, both with NWP-based and our hybrid approach
(Figure 4.20). Not surprisingly, we see that our approach increases the cost-efficiency
of AdaHeat (although with statistical significance only in the 0.1 significance level, i.e.,
p-value of ∼0.1) as more accurate predictions are being considered.

As discussed in Section 3.2.2, AdaHeat also enables the coalition members to balance
worst-case heating cost and thermal discomfort through a simple boolean feedback pro-
cedure. To demonstrate this, Figure. 4.21 illustrates worst-case cost and thermal dis-
comfort against the balancing parameter λ for the two houses in our two-house coalition
case study. As can be seen, both worst-case heating cost and thermal discomfort are in a
monotonous relationship with λ (irrespectively of the λ population of the other house).
This, in turn, suggests that a household can progressively adjust the single balancing
parameter λ through a simple feedback procedure until the respective preferences are
met. Nevertheless, as discussed in Sections 3.2.1 and 3.2.2, the realized heating cost
depends also on the λ population of the other coalition members. To demonstrate this
dependence, Figure 4.22 illustrates the realized cost and discomfort balancing of each
house given a fixed λ = 90 and for various populations of the λ parameter of the other
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house.16 As can be seen, the realized cost depends on the λ population of the other
house. Nevertheless, it is always lower (or equal) to the worst-case cost enabling the
user to take an informed decision. Further evaluation of the user behavior with respect
to this balancing requires a real world trial (that considers a future work direction, as
further discussed in Chapter 7).

Regarding scalability, we evaluate how our approach scales with the size of the coalition.
Figure 4.23 illustrates how the heating cost-efficiency scales with the size of the coalition
up to 30 houses—the bars consider standard mean error corresponding to statistically
significant differences, in the 0.05 significance level, among all methods evaluated for all

16For the effective range of λ for each house consult Fig. 4.21.
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Figure 4.23: Heating cost-efficiency vs coalition size.
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Figure 4.24: Collective compared to independent AEC.

coalition sizes considered (apart between heuristic collective and independent advanced
economic control for the single-house coalition case where both methods are essentially
the same, as discussed in Section 4.2.3). As can be seen the cost-efficiency of simple
economic/heating control and independent advanced economic control remain relatively
constant with the size of the coalition, as there is no energy exchange within the coalition.
In contrast, the collective advanced economic control cost-efficiency increases rapidly with
the size of the coalition until ∼9 houses and then remains generally constant. However, a
careful investigation of the relative improvement of collective advanced economic control
over independent advanced economic control in Figure 4.24 illustrates that the efficiency
improvement flattens at around 27 houses. As can be seen in Figure 4.25, this is the size
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Figure 4.25: 27-house coalition energy exchange.

where the coalition is able, for the first time, to meet its heating consumption from its
own IER capacity with negligible energy import (the shaded region considers standard
deviation as per Figure 4.19). Figure 4.24 also illustrates the mean monetary gains
of the houses, compared to independent advanced economic control (the bars consider
standard mean error). We note here that the gains of every coalition member are positive
in all cases (by definition) in accordance to our cost allocation mechanism that respects
individual rationality (Section 3.2.3). As can be seen, the mean house gains flatten
relatively fast with the size of the coalition while they peak at a coalition of 3 houses. The
above observations are not surprising. In particular, the benefits of collective advanced
economic control are already great for relatively small coalitions where the energy import
is minimized considerably. Hence, as we move forward larger coalitions it is progressively
only the energy import of a new member that is further minimized and, hence, it is
progressively only the corresponding gains that are further allocated among an ever-
growing number of coalition members. Now, the above illustrate that a coalition of 27
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Figure 4.26: Cost with fixed mean discomfort at ∼12◦Ch.
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houses is already optimal in terms of flattening the demand, while the mean monetary
gains of the members are higher for smaller coalitions. Although these exact results are
specific to the peculiarities of our evaluation case study, they provide an indication of
the required size of such a coalition in a typical scenario (Section 4.2.1). Finally, in
order to further identify the financial gains of AdaHeat, we evaluate a specific instance
of our approach given fixed discomfort-cost preferences. Figure 4.26 illustrates how the
mean cost of the houses scales with the size of the coalition given a fixed discomfort
preference of ∼12◦Ch for all houses. According to the houses’ occupancy schedule this
discomfort could corresponds to a 1-2◦C deviation (of the indoor temperature from the
set-point) per occupied hour which is a reasonable real-setting preference. It can be seen
that collective advanced economic control leads to considerable savings (as a fraction
of the daily heating cost) in this realistic scenario—the bars correspond to standard
mean error capturing the diverse share of gains allocated to each house according to
the allocation index. Interestingly, there is no statistically significant difference (at a
0.05 significance level) between the mean house cost in independent advanced economic
control and the cost in simple economic/heating control in this discomfort scenario, for
all coalition sizes examined. Nevertheless, as we move towards bigger coalitions, the
mean house cost of heuristic collective advanced economic control is progressively more-
and-more statistically significantly lower than the one of any of the other two methods in
this discomfort scenario. As a final note, our evaluation results suggest that, due to their
shifting potential (as discussed in detail in Section 1.1.3), heating loads can effectively
support collective advanced economic control even if similar occupancy schedules and/or
household preferences are considered, the IER power output does not generally follow
the energy requirements of the households, even when the IER power output does not
generally follow the energy requirements of the households, and when a wide range
of typical UK houses (that translate to a wide range of thermal characteristics) are
considered.

4.3 Summary

In this chapter we provided a thorough evaluation of our domestic heating automation
system (DHAS) approach, AdaHeat. In particular, we independently evaluated AdaHeat
with respect to simple heating and simple economic control, as well as advanced economic
control. In both cases: (i) we discussed how we choose the case study of our empirical
evaluation and how we collected the necessary data, (ii) we described the specific in-
stantiation of our DHAS for the respective case study system(s), (iii) we discussed our
evaluation set-up and the instantiation of the benchmark systems, and (iv) we reported
the respective evaluation results.

In more detail, regarding simple heating and simple economic control we provided a thor-
ough respective evaluation, along with a comprehensive comparison of state-of-the-art
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heating automation systems. To this end we choose the living room of a family house
in Cambridge, UK for our case study. We showed that this case study is a challeng-
ing testbed on the generality and efficiency of our approach (both in terms of thermal
modeling and control) due to its specific thermal characteristics. In this context, our
evaluation results suggest that AdaHeat deals with the thermal dynamics of houses in
a more effective manner compared to the benchmark systems, due to its reliance on
adaptive thermal modeling. In more detail, our evaluation results suggest that adaptive
thermal modeling can significantly improve the efficiency of domestic heating automa-
tion systems, especially when advanced heating automation systems are considered (i.e.,
SPOT+, AdaHeat). Furthermore, our results suggest that AdaHeat also deals with the
inherent uncertainty of the occupancy schedule in domestic settings in a more effective
manner compared to the benchmark systems. In particular, it is suggested that the op-
timal exploitation of the occupancy probabilistic estimates (in the context of AdaHeat
heating planning) leads to a more stable performance, in terms of Pareto efficiency, com-
pared to the benchmark planning approaches. In addition, it is suggested that AdaHeat
improves the usability and effectiveness of state-of-the-art DHAS approaches in meet-
ing the user preferences. In particular, the evaluation results suggest that reliance on
a simple parameter in balancing heating cost and thermal discomfort (as is the case in
AdaHeat) is sufficient for efficient DHAS performance, and ensures the usability of the
systems in domestic settings. In this context, we showed that AdaHeat is the only sys-
tem that works sufficiently based on a single weighting parameter which can be learned
on-line. Lastly, the evaluation results also suggest that AdaHeat is able to work in con-
junction with a diverse range of heating systems in various operational settings. This is
shown due to its ability to effectively and efficiently consider both simple heating control
and simple economic control in our challenging case study system.

Now, regarding advanced economic control we provided a thorough evaluation consider-
ing 30 houses in Mablethorpe, Lincolnshire, UK for our case study. We showed that this
case study enables us to evaluate both collective and independent advanced economic
control. In this context, our evaluation results suggest that Adaheat is able to efficiently
consider the economic aspects that arise in controlling electricity-based space heating
systems with respect to the electricity market, and also exploit the respective coalition
potential. In more detail, we showed that collective advanced economic control can sig-
nificantly improve heating cost-efficiency compared to independent advanced economic
control, and even more when compared to independent simple economic/heating control.
In addition, we showed that this coalition potential can be exploited without any loss in
the usability and generality of our approach.

To sum up, our evaluation results suggest that our requirements as stated in Section 1.1.2
have been met. In particular, AdaHeat is general enough to consider a wide range of
space heating systems typically employed in domestic settings and effectively accounts
for the dynamic domestic thermal characteristics as well as for the occupancy uncertainty
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that arises in domestic settings. In addition, AdaHeat relies to the minimum extent on
user-input and is able to meet the, potentially time-varying, user preferences through a
simple boolean feedback procedure. In this context, AdaHeat demonstrates an adequate
performance in terms of Pareto efficiency and distribution of captured solutions compared
to state-of-the-art benchmark systems, enabling also a wide range of user preferences to
be met. AdaHeat is able to efficiently and effectively consider simple heating control,
simple economic control, as well as advanced economic control, exploiting also the coali-
tion potential that arises in the later. To this end, AdaHeat also comes complete with
a practical gain allocation mechanism to share the realized collective gains among the
coalition members in the case of collective advanced economic control. Finally, AdaHeat
has low computational complexity and efficiency that allows it to be applicable in real
settings with limited computational resources, minimum instrumentation, and operating
time constrains.



Chapter 5

PreST: A Dynamic Programming
Predictive Solar Tracking Approach

In this chapter we detail our dynamic-programming-based predictive solar tracking (ST)
approach, PreST. As discussed in Section 6.4, PreST considers a low-cost (i.e., does not
make use of expensive equipment or sensors) and generic (i.e., applicable to a wide range
of commonly employed ST architectures) optimal control ST approach that aims to meet
the requirement of performance optimality (Section 1.2.2) respecting at the same time
the applicability requirement (as detailed in Section 1.2.2). The backbone of PreST is
the estimation of the optimal trajectories a day before, based on weather forecasts that
can come from online providers for free. To this end, in Section 5.1 we, first, outline
the necessary astronomical background with respect to ST, revealing the key concepts
in maximizing incident solar radiation. Then, in Section 5.2 we provide a detailed dis-
cussion on the popular azimuth-altitude dual axis tracking (AADAT) and vertical single
axis tracking (VSAT) systems, that are the main focus of our ST work. Subsequently, in
Section 5.3 we provide our formalization of ST as a dynamic programming problem. In
particular, in Section 5.3.1 we define the corresponding Markov decision process (MDP),
in Section 5.3.2 a general ST consumption model to appropriately model the process dy-
namics, and, in Section 5.3.3, we provide a discussion on optimally solving the respective
MDP and the challenges that arise. Then, in Section 5.4 we describe our approach for
estimating the next day ST policy. In particular, in Section 5.4.1 we describe our policy
iteration approximation technique, solar tracking policy iteration (STPI), that we de-
vised to compute a beneficial ST policy, in Section 5.4.2 we describe our myopic method
used to enhance the effectiveness of STPI and in Section 5.4.3 we describe our approach
in calculating the next-day-optimal fixed photovoltaic system (PVS) orientation, suitable
for fixed (yet readjustable) PVSs. Finally, Section 5.5 summarizes this chapter.

103
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5.1 Astronomical Aspects of Solar Tracking

As discussed in Section 1.2, ST can be used to increase the power output of a photovoltaic
system (PVS), by orienting the system towards the greatest possible levels of incoming
solar irradiance. Now, the total irradiance GT falling on an arbitrarily oriented surface,
consists of the beam GB, sky-diffuse GD and ground-reflected GR components (Luque
and Hegedus (2011)) as seen in Equation 5.1 below (and illustrated in Figure 5.1):

GT = GB +GD +GR (5.1)

Usually, the cosine effect is used to model the variations of the GB component, as seen
in Equation 5.2 below:

GB = G max
B cos θs (5.2)

where θs is the angle between the normal to the surface and the direction to the sun
(as seen in Figure 5.2) and G max

B is the incident beam irradiance when the surface is
oriented normally to the incoming radiation (i.e., θs = 0◦). G max

B is the maximum beam
irradiance that the PV module can orient to, and depends on weather conditions and
solar position.

The GD component varies according to Equation 5.3 which assumes that every point of
the celestial sphere emits light with equal radiance (Liu and Jordan (1961)):

GD = G max
D (1 + cosβ)/2 (5.3)

where β is the inclination angle of the surface and G max
D is the incident diffuse irradiance

for β = 0◦. G max
D is the maximum diffuse irradiance that the PV module can orient to,

and depends on weather conditions and solar position.

Finally, the GR component is modeled by Equation 5.4 which assumes that the ground is
horizontal, of infinite extent, and reflects uniformly in all directions (Luque and Hegedus
(2011)):

GR = G max
R (1− cosβ) (5.4)

where G max
R is the maximum reflected irradiance that the PV module can orient to (for

β = 90◦), and depends on weather conditions and solar position.

5.2 Solar Tracking Architectures

As discussed in Section 1.2.1, many ST architectures are commonly employed in practice.
However, for the reasons outlined in Section 1.2.1, we focus on both azimuth-altitude
dual axis tracking (AADAT) and vertical single axis tracking (VSAT) systems. The
AADAT has two degrees of freedom, rotating over a slope (elevation) and an azimuth
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Figure 5.1: Solar irradiance components.

axis. An abstract AADAT is illustrated in Figure 5.2. The VSAT rotates only over the
azimuthal axis, while its slope angle is kept fixed.

Typically, the movement allowed in tracking systems is constrained within a certain range
in both the azimuthal and elevation axis. We henceforth denote the allowed azimuthal
and elevation angular range by rAz and rSl respectively.

The possible slope and azimuth orientations of a dual axis system consist of a discrete
number of possible positions within the allowed range at each rotation axis, depending on
the tracker step size. Now, a misalignment of ±1◦ causes only a minor drop of ∼0.015%

in the incident beam irradiance GB (cf. Equation 5.2). Thus, small misalignments are
not a concern for typical commercial systems.

The controller step-size (i.e., the system’s minimum angular displacement) θ gives rise
to two sets of distinct possible orientation positions for the PVS (one such set per axis of
movement). We denote these by K, the set of azimuth orientation positions, and by Λ,
the set of possible positions on the elevation axis. In particular, we have |K| = brAz/θc+1

and |Λ| = brSl/θc + 1. The time required for a minimum displacement θ to occur is
denoted by δ; its value is assumed constant in our model, in order to maintain a fixed
mean angular velocity for every minimum displacement.

Now, the controller requires some time to interact with the PVS, and it takes the system
some time to execute the controller commands. For simplicity, the controller in our
model is synchronous, meaning that any two consecutive controller-system interactions
are separated by a fixed-length time interval ∆. A natural choice is to pick a ∆ length
that is sufficient to move the PV panel at any orientation starting from an arbitrary
position (i.e., ∆ ≥ δ ·max(|K| − 1, |Λ| − 1)), and small enough so as the environmental
conditions do not change abruptly during this interval.

Hence, the operation time of a PVS is naturally divided into a number of equal time
intervals of length ∆ each. Letting ∆Day stand for the day-length (i.e., the time between
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Figure 5.2: Abstract AADAT (in VSAT β is fixed)

sunrise and sunset), the required controller-system interactions are contained in a set I,
with |I| = d∆Day/∆e. Note that each interaction corresponds to a specific time-step or
interaction id τ ; and that these interactions are sufficient to orient the PV panel to any
orientation right after the sunrise, and to move it back to the initial position after the
sunset.1

5.3 A Dynamic Programming Approach

The aim of our work is to calculate optimal ST trajectories for the day ahead, based on
available weather forecasts—which can actually come from online providers for free.2 To
this end, we formulate ST as a Markov decision process (MDP). Due to the size of the
corresponding MDP we employ dynamic programming for solving it (see Section 2.13)
and, in particular, an intuitive policy iteration technique (and variants). The proposed
optimal control approach within the context of PreST aims to meet the requirement of
performance optimality (as stated in Section 1.2.2) with low cost, low complexity and
effectiveness that allows our system to be widely applicable in real settings (as per the
applicability requirement, detailed in Section 1.2.2). Moreover, our general and param-
eterizable ST formulation, along with the generic consumption model proposed, aims to
enable our ST approach to work in conjunction with the diverse range of ST architectures
typically employed in practice (meeting the respective generality requirement, Section
1.2.2).

1In particular, the first interaction will be right before (or exactly at) sunrise, and the last one right
before (or exactly at) sunset.

2We note here, that all our methods are able to also consider on-line updates of the weather forecast
reports, if available.
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5.3.1 Defining the MDP

The problem is naturally modeled as a fully observable, finite-horizon, discrete-time
Markov decision process (MDP) corresponding to an 〈S,A, P,R〉 tuple as follows:

First, S is a finite set of states, where each state s ∈ S corresponds to a tuple 〈κs, λs,ws〉
with κs ∈ [1, |K|] denoting the azimuth orientation position, λs ∈ [1, |Λ|] denoting the
slope orientation position, and ws standing for the vector of stochastic weather condition
variables which are required to calculate the MDP reward dynamics (i.e., prevailing
wind speed and direction, relative humidity, temperature, and sky conditions). As such,
|S| ≥ |K×Λ|. The value of each state depends on the τ ∈ [1, |I|] time-stamp at which the
state is visited—that is, |I| represents the horizon for our problem. Note that the time-
stamp τ at which s is visited is sufficient to extract all necessary information regarding
the non-stochastic environmental conditions (i.e., the solar position angles) relevant to s
and τ . Therefore, these do not have to be explicitly included in the state representation.

Then, A is a finite set of actions, with each action a ∈ A positioning the PVS to
some specific orientation. Thus, a corresponds to tuple 〈κa, λa〉, with κa ∈ [1, |K|] and
λa ∈ [1, |Λ|]. Hence, we have |A| = |K × Λ|.

The transition model P defines the P (s, a, s′) probability that taking action a = 〈κa, λa〉
in state s will lead to s′. Thus, given a particular action a at a state s, for the successive
state s′ we will have: κs′ = κa, λs′ = λa; while the transition probabilities will depend
entirely on the P (w′s|ws) ones. Note that in the case thatw′s is independent ofws we will
not have a probabilistic transition model, but rather a probabilistic reward model. Hence,
in that case, ws can be omitted from the state representation and expected reward values
can be extracted directly from the controller interaction id, τ , at which s is visited. The
same holds if only non-probabilistic weather forecasts are available.

Finally, R is a reward model determining the Ra(s, s′) reward received for a transition
from state s to s′ after taking action a. This reward is the energy produced during the
time between two consecutive controller interactions, minus the energy consumed due to
the movement of the tracker throughout this interval. Thus:

Ra(s, s
′) = Prod(s, s′)− Cons(s, s′) (5.5)

where Prod(s, s′) and Cons(s, s′) are functions estimating the energy produced and
consumed as a result of the PVS system moving from s to s′ (after some action a taken
at s).

Calculating Prod(s, s′) is straightforward, assuming that the PVS power output is steady
throughout a time interval ∆ between two consecutive controller interactions:

Prod(s, s′) =
(Pwr(s) + Pwr(s′))

2
∆ (5.6)
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where Pwr(s) stands for the PVS power output at state s. In our work, the Pwr(s)
estimates are provided by RENES, given the PVS orientation (i.e., κs,λs), the particular
time of day (derived based on τ and used to estimate the solar position angles), the (fixed
for a given system)) PV characteristics, as well as the stochastic weather conditions in
ws.

5.3.2 Consumption model

A distinct contribution of our work is the construction of a generic and parameterizable
solar tracker consumption model. This is the first time that such a model is proposed
which is necessary for modeling the ST dynamics in the context of an optimal control
approach. We derive an appropriate model by using a white-box modeling approach
based on well-known physical principles and our own mathematical derivations. In more
detail, with an arbitrary displacement corresponding to an aggregation of minimum an-
gular displacements on each one of the rotation axes, we calculate the consumption of an
arbitrary displacement as the (efficiency-weighted) sum of the consumptions correspond-
ing to these minimum angular displacements. Now, in order to maintain a fixed mean
angular velocity for every minimum angular displacement θ, every such θ is assumed to
follow a simple trapezoid motion profile with three motion phases (of equal time dura-
tion): (1) an angular acceleration phase, (2) a constant angular velocity phase, and (3)
an angular deceleration phase. As such, the consumption for θ is calculated as the sum of
the consumption for all three motion types in sequence. Then, the system consumption
Cons(s, s′) is:

Cons(s, s′) =
1

ceff

(|κs−κs′ |∑
1

Consazθ +

|λs−λs′ |∑
1

Consslθ

)
(5.7)

where ceff stands for the efficiency factor of the tracking system. This corresponds to
the mean efficiency of the motors, multiplied by the mean efficiency of the gears, and is
further reduced to best fit all other secondary losses of the system during a displacement.
Consazθ and Consslθ represent the consumption of every minimum angular displacement
θ over the azimuth and slope (elevation) axis respectively. Their values are calculated
by the following equations:

Consazθ =

3∑
µ=1

(αµIA(θ,µ)
− TwA(θ,µ)

)θµ (5.8)

Consslθ =

3∑
µ=1

(αµIS − TwS(θ,µ)
)θµ (5.9)

where θµ and αµ stand for the angular displacement and acceleration for each one of the
motion phases, and can be computed as θ1 = θ3 = θ2/2 = θ/4, and α1 = −α3 = 9θ/2δ2
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and α2 = 0. Now, IA(θ,µ)
, IS , TwA(θ,µ)

and TwS(θ,µ)
stand for the moment of inertia and

wind torque, for the azimuth and slope axis respectively.

For the slope rotation, the moment of inertia is independent of the azimuthal orientation,
and, assuming the panel is a cuboid, can be given by IS = m

12(l2 + d2) (Myers (1962)),
where m stands for the mass of the panel, and l and d for the length and thickness
of the panel as seen in Figure 5.2. Note, however, that the azimuthal motion occurs
simultaneously with the slope one. Hence, TwS , TwA and IA are not constant during the
motion. Nevertheless, due to the very small displacement corresponding to each motion
phase, these quantities are assumed constant and equal to their value at the beginning
of each motion phase.

For the azimuthal rotation, the moment of inertia depends on the slope orientation.
Assuming that the panel is a cuboid, the moment of inertia for the azimuthal rotation
given a particular slope angle β can be computed as follows (a proof can be found in
Appendix B):3

IA =
m

12

(
l2 cos2(β) + d2 sin2(β) + w2

)
(5.10)

where w stands for the width of the panel.

We also modeled the PVS aerodynamics, estimating the torque on the rotation axes due
to the incident wind as TwX = 1

2ρwl
2V 2cX , where X ∈ {A,S}, ρ denotes the air density,

V the prevailing wind speed, and cA and cS denote the non-dimensionalized slope and
azimuth moment coefficients, respectively. These coefficients depend on the orientation
of the system. The air density was estimated based on the local pressure, the relative
humidity, and the temperature, based on standard meteorological equations (Picard et al.
(2008)). The moment coefficients are calculated based on wind direction and system
orientation, as in Roos (2012) which provides correlations on the well known Peterka
dataset (Peterka et al. (1986)).

5.3.3 Optimal Solar Tracking

With the above MDP at hand, the optimal ST policy can be derived by solving the
corresponding Bellman optimality equation (Equation 2.12, Sutton and Barto (1998)).
However, due to the size of the state and action spaces (typically |I| · |S| · |A| > 4Bn,
without even considering ws),4 the optimal tracking policy for the day-ahead cannot be
computed exactly in realistic settings applications (Sutton and Barto (1998); Puterman
(2014)). Rather, it can only be approximated. To this end, we have devised several
approximation methods, which we now proceed to describe.

3Also presented in Panagopoulos and Chalkiadakis (2015).
4In more detail, for a day with 12 daylight hours (i.e., ∆Day = 12 hours); a typical system (like

the one considered in our evaluation) with rAz = 270◦, rSl = 63◦ and θ = 1.8◦ (at each axis); and a
control interval of 5 min (i.e., ∆ = 5 min), there will be: |I| = d∆Day/∆e = 144, |A| = |K| · |Λ| =
brAz/θc+1 · brSl/θc+1 = 5, 436, |S| ≥ |K| · |Λ| ⇒ |S| ≥ 5, 436, and, hence, |I| · |S| · |A| ≥ 4, 255, 213, 824.
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5.4 Approximation Methods

In this work we propose three methods to approximate the optimal ST policy: (i) Solar
Tracking Policy Iteration (STPI), (ii) Myopic and (iii) next-day-optimal fixed PVS orien-
tation. The STPI method considers a policy iteration schema that aims to approximate
the optimal policy by improving on the ST policy as derived by the Myopic method. In
particular, the Myopic method aims to approximate the optimal policy by maximizing
power generation alone (disregarding of the tracking consumption cost). In this context,
STPI improves this policy by taking into account the tracking consumption cost. Finally,
the next-day-optimal fixed PVS orientation defines the next day optimal fixed-orientation
(and has minimum computational requirements). We now describe the approximation
techniques we developed in order to compute effective ST policies.

5.4.1 Solar Tracking Policy Iteration method (STPI)

We devised a policy iteration (PI) approximation technique to compute a beneficial ST
policy. The technique interweaves two distinct PI procedures, which are used in an
alternating fashion. The first PI procedure, SlopePI, considers an arbitrary input policy
for the above MDP, e.g., a myopic one. It then attempts to improve that policy, in
the usual PI fashion, nevertheless assuming a fixed azimuthal policy, πκ. Given this
fixed πκ policy, it computes the respective optimal slope-positioning policy, πλ. The
output policy is then fed in a second PI algorithm, which estimates an optimal (given
πλ) azimuth-positioning policy, πκ. The process repeats until convergence, or until some
computational or time limit is reached. By combining the derived policies computed for
each axis, we can derive a ST policy. The same PI algorithm can be readily employed
for single axis tracking, with the action selection process for the static axis—the slope
one, in the case of vertical single axis tracking (VSAT)—considering only a set of fixed
possible orientations for the whole motion (so as to estimate the best possible fixed slope
angle for VSAT tracking during the next day). The overall PI technique is shown in
Algorithm 4, while Algorithm 5 describes the PI process to derive a slope policy (the PI
for deriving an azimuthal policy is entirely similar). Note that STPI effectively alternates
between solving MDPs with state-action spaces which are orders of magnitude smaller
than that required by the original problem formulation. Moreover, STPI is expected to
converge to a fixed point. In particular, each iteration of STPI improves on the input
policy (as per the typical policy iteration monotonicity analyses, see Puterman (2014)),
and, hence STPI experiences monotonicity. In addition, by definition there is an upper
value bound considering the policies (i.e. the value of the optimal policy) (as per the
MDP formalization, see Puterman (2014)). As such, in the case of finite state-action
spaces, STPI is expected to converge to a fixed point in a finite number of steps in
accordance to the monotone convergence theorem (see Puterman (2014)). We note here
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again that this is the first time that an approach that alternatively optimizes over MDP
action sub-spaces is proposed for optimal policy approximation.

Algorithm 4 “Alternating” Policy Iteration for ST
1: procedure STPI(π)
2: Initialize πλ and πκ based on π
3: while πλ and πκ are not stable do
4: πλ ← SlopePI(πλ, πκ)
5: πκ ← AzimuthPI(πκ, πλ)
6: Derive π′ by combining πκ and πλ
7: return π′

Algorithm 5 Slope Policy Iteration
1: procedure SlopePI(πλ, πκ)
2: while πλ is not stable do
3: for all τ ∈ I in descending order do
4: for all s ∈ S that can emerge based on πκ at τ do
5: a← 〈κa = πκ(s, τ), λa = πλ(s, τ)〉
6: Vτ (s)←∑

s′
P (s, a, s′) (Ra(s, s

′) + Vτ+1(s
′))

7: for all τ ∈ I (in any order) do
8: for all s ∈ S that can emerge based on πκ at τ do
9: πλ(s, τ)← argmax

λ

∑
s′
P (s, a, s′)(Ra(s, s′)+

10: Vτ+1(s
′)), where a = 〈κa = πκ(s, τ), λa = λ〉

11: return πλ

That said, the choice of the initial policy used is crucial for the efficiency of any policy
iteration algorithm (as discussed in Section 2.13). The initial policy we use is a myopic
one, which maximizes power output alone (disregarding any associated repositioning
costs). Now, the tracking consumption of a PVS is a very small fraction of its production
(typically less than 1% (Mousazadeh et al. (2009))). As such, the myopic policy is
essentially a near-optimal one, achieving over 99% of the optimal performance. Moreover,
any gains achieved by a method that lowers consumption is typically accompanied by
costs due to lower production. Hence, the near-optimality guarantees of the myopic
policy are even stronger; and they are inherited by STPI, as any derived improved policy
cannot be worse than the initial one. We now describe how to derive the myopic policy.

5.4.2 Myopic method

We define the myopic policy in this domain as a method that maximizes power generation
alone. As such, we can modify the MDP reward function to account for the PVS power
output alone: Ra(s, s′) = Prod(s, s′). Given the fact that all possible PVS orientations
are accessible from any state, it is clear that the optimal policy in this modified MDP is
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equivalent to the one that chooses the action that gives the maximum expected reward
for the next time interval.

Now, the power output of a PVS increases proportionally to the incident irradiance. In
order to maximize the incident GT we need to maximize the sum GB +GD +GR as seen
in Equation 5.1. Moreover, as seen in Equations. 5.3 and 5.4, GD and GR components
vary from their maximum based only on the slope angle of the PV module. On the other
hand, Equation 5.2 illustrates that the GB component varies from its maximum based on
the incident angle, which for any given sun position depends on the slope and azimuth
angle of the PV module. In particular, GB reaches its maximum as the incident angle
reaches zero (i.e., when the azimuth and slope angle of the PV module are the same as
the azimuth and slope angle of the sun). As such, fixing the azimuth angle to follow the
sun azimuth, ensures that we are always able to track the maximum GT (for any weather
conditions). The only thing that we need to do is to optimize the PVS slope angle at
every time step, so that we balance the GT components and get the maximum expected
GT . For (vertical) single axis tracking, the problem is further simplified into following
the sun over the azimuth (and just defining the best next-day fixed slope orientation).

5.4.3 Next-Day-Optimal Fixed-Orientation

In the context of this work, we also propose and calculate the next-day-optimal fixed PVS
orientation, by simply evaluating the whole space of possible orientations, given the next-
day weather prediction. The derived orientation is suitable for any fixed-orientation (yet
re-adjustable) PVS operating within the geographical region of a given weather station.
Moreover, next-day-optimal fixed positioning can also be used by trackers in the case of
scheduled power cuts. We note that this method can also be extended for weekly-optimal
or some hours-optimal positioning, as needed.

5.5 Summary

In this chapter we described our dynamic-programming-based predictive solar tracking
(ST) approach, PreST. In particular, we first provided a general discussion over key
astronomical concepts with respect to solar tracking, ST, revealing the key concepts in
maximizing incident solar radiation. In particular, maximizing incident solar radiation
is a key element within the performance optimality requirement of effective and efficient
ST (as discussed in Section 1.2.2) which is lacking in current open-loop ST approaches
(as discussed in Section 1.2.3). Furthermore, we provided a general discussion of ST
architectures with a focus on the common implementations of vertical single axis track-
ing (VSAT) and azimuth-altitude dual axis tracking (AADAT) (that consider also our
evaluation systems—as discussed in Section 6.4).
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Subsequently, we provided an MDP formulation of ST, which allows it to be tackled
as a dynamic programming problem, along with a general ST consumption model to
appropriately consider the dynamics of ST. Our general and parameterizable ST for-
mulation, along with the generic consumption model proposed, aims to enable our ST
approach to work in conjunction with the diverse range of ST architectures typically
employed in practice (meeting the generality requirement as discussed in Section 1.2.2).
Subsequently, we provided a discussion on optimally solving the corresponding MDP
pointing out the challenges that arise due to the great dimension of the problem. To
this end, we provided our approximation solutions. Importantly, we described our policy
iteration approximation algorithm; STPI, which is suitable for large MDPs, like the one
considered in this work. We also provided a myopic method that is used to enchance
the effectiveness of STPI, and a next-day-optimal method that is suitable for any fixed-
orientation (yet re-adjustable) PVS operating within the geographical region of a given
weather station, enabling efficient manual tracking. All our methods come with opti-
mality or near-optimality guarantees, and our next-day policy comes complete with an
expected PVS power output estimation, which is crucial for the smooth integration of
PVSs into the electrical grid (as discussed in Section 6.4).

The proposed optimal control approach aims to meet the requirement of performance
optimality (Section 1.2.2) respecting at the same time the applicability requirement (as
detailed in Section 1.2.2). In the following chapter, we provide an evaluation of our ST
approach, showing that it outperforms all commonly employed ST benchmark techniques
(i.e., chronological, sensor-based and/or fixed-orientation), which can lead to significant
monetary gains.



Chapter 6

Evaluating PreST

In this work we provide a detailed evaluation of our solar tracking (ST) approach, PreST
based on real data. In the following sections we first describe our evaluation setup,
considering also the ST techniques used as benchmark (Section 6.2). Then, in Section
6.1 we describe the case study of our evaluation and how we collected the necessary data.
Then, in Section 6.3 we report the evaluation results. Finally, Section 6.4 summarizes
this chapter.

6.1 Case Study and Data Collection

For the case study of our evaluation we consider a photovoltaic system (PVS) located at
Chania, Crete, Greece (as seen in Figure 4.14). We choose Crete for our evaluation due to
the great degree of PVS penetration on this sunny Greek island.1 Moreover, this choice
ensures that RENES provides accurate PVS power output predictions (see Panagopoulos
et al. (2012)). Now, our case study PVS is a typical 72m2 system (i.e., w = 6.0m,
l = 12.0m, d = 0.20m), weighting ∼2500kg, with 270◦ of azimuthal motion range, and
63◦ of elevation motion range. The system has a step-size of θ = 1.8◦ at each axis, which
can lead to a maximum misalignment of arccos(cos2(θ))/2 ' 1.27◦, corresponding to a
GB drop of ∼0.025%. In this context, the time δ required for a minimum displacement θ
to occur, was set to 1s, and the interval between two consecutive controller interactions
was set to ∆ = 5min. Finally, as the efficiency of the motors and gears depends on the
speed and load at all times (Burt et al. (2008)), we used a mean efficiency of 30% for
both2. We note that this choice leads to a tracking consumption that is close to the
reported practical value for such systems (Mousazadeh et al. (2009)).

1∼60MW of installed PV power, corresponding to ∼7% of Crete’s energy production and ∼70% of
the total Greek islands’ installed PV power (Public Power Corporation of Greece).

2Based on data provided at www.acosolar.com; and users.ece.utexas.edu/~valvano/Datasheets.
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Figure 6.1: Case study location (powered by Google maps).

For the purposes of our research, archival weather data was accumulated from weather
underground3 considering distinct limit-case days within the 2008 − 2012 period, for
our location of interest. In particular, the acquired meteorological variables are: rel-
ative humidity, temperature, wind speed, wind direction, and qualitative cloud coverage
observations (appropriately transformed to quantitative values, as in Panagopoulos et
al. (2012)). As there is a 30-minute gap between consecutive archival weather data, we
use linear interpolation to meet the model’s time interval requirements. Furthermore, as
we are interested in the prevailing conditions within a ∆ = 5min interval, all variables
are assumed constant and equal to their mean value within that interval.

6.2 Experimental Setup

In order to evaluate PreST we consider a photovoltaic system (PVS) located at Chania,
Crete (as discussed in Section 6.1) and estimate its output energy gain from employing
each one of our methods. We note here that considering locations with lower sunshine
and greater wind speeds for our evaluation, would only favor our methods. This is
supported by the fact that PVSs in such locations would exhibit a higher consumption
over production ratio and, hence, a greater output energy gain from using ST methods
that also consider the tracking consumption (further illustrated by our evaluation with
“fictional” weather data in Section 6.3).

Now, our evaluations are performed for 8 different daily weather patterns; 4 of them
corresponding to actual, real days, and 4 of them fictional. Specifically, we utilized

3www.wunderground.com

www.wunderground.com
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archival weather data for the 20/03/2011 equinox, the 22/09/2012 equinox, the solstice
of 21/06/2012, and the solstice of 21/12/2008 (collected as detailed in Section 6.1).
These days are noted from now on as day 1, 2, 3 and 4 respectively. The general weather
patterns of the days considered is as follows:

• Day 1: The general weather pattern for Day 1 consists of several transitions in
the cloud coverage levels (moving from mostly sunny to scattered clouds, then to
mostly cloudy, and back to mostly sunny).

• Day 2: The general weather pattern for Day 2 consists of a simple transition in
the cloud coverage levels, from mostly cloudy to clear sky.

• Day 3: There was a clear sky throughout Day 3.

• Day 4: There was full cloud coverage throughout Day 4.

As such, though only four, these days exhibit weather patterns that are quite distinct
from each other. Moreover, these days also consider distinct cases in terms of the day
length. Hence, they enable us to evaluate PreST under a wide range of meteorological
conditions at our location of interest. Nevertheless, throughout these four days, the
prevailing wind speed was quite low. Given the fact that power consumption grows with
high prevailing wind speed, we decided to evaluate PreST with fictional wind data. We
thus created four additional, “fictional” days, with exactly the same weather conditions
as their real counterparts—apart from the wind, whose speed was set to 60 km/h. That
value corresponds to a typical maximum wind speed that a PVS can withstand without
a need to orient itself to a safe position (Peterka and Derickson (1992)).

In this context, we compared our methods against three additional baseline methods we
implemented for this purpose:

• Chronological vertical single axis tracking (VSAT).

• Chronological azimuth-altitude dual axis tracking (AADAT).

• A yearly optimal fixed-orientation system.

In more detail, the chronological AADAT calculates the sun positions as prescribed in the
work of Reda and Andreas (2004), and then orients the PVS so as to point towards the
sun, irrespective of weather conditions. For the chronological VSAT, we used the same
procedure to calculate the PVS azimuthal positions; while the slope angle was fixed to
its yearly optimal value for VSAT tracking, given the location’s latitude, as prescribed
in (Li et al. 2011). Finally, we used the equations provided in Chang (2009) to calculate
the yearly optimal slope position for fixed-orientation south-facing panels at our location
of interest.
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Finally, we note here that, in the absence of probabilistic weather forecasting reports
(and respective online providers), we used deterministic archival weather data for both
the weather predictions and ground-truth. As such, in our experiments, the accuracy
of the weather forecasts does not affect the efficiency of our methods. Moreover, in
the absence of weather prediction uncertainty, the evaluation results of the proposed
low-cost Myopic method are equivalent to a tracking system where an expensive sensor
arrangement along with a closed-loop controller is used to orient the solar panel towards
the maximum incident solar irradiance. As such, by comparing STPI against Myopic we
effectively also compare our sensor-less, low-cost STPI against sensor-based ST.

6.3 Evaluation Results

The evaluation results of our experiments are collectively reported in Table 6.1, while
the net gains alone are also plotted in Figure 6.2 to enhance comparison. All energy
values are in kWh, and correspond to PVS net energy gain. Tracking consumption is
also reported inside parenthesis (when applicable).

In all experiments, our methods clearly outperform the baseline ones. It is also worth
noting that, in general, as the system’s degrees of freedom are increased, so do the positive
system efficiency effects from using our methods (i.e., compared to fixed-orientation
systems, the net energy gain increases when using Myopic or STPI with one rotation
axis; and it increases even more when using these methods with two axes of rotation).
By contrast, the benefits from using chronological ST often decrease when moving from
fixed-orientation to one and, further on, to two rotation axes, as the additional system
abilities are not fully exploited.

Regarding the methods’ individual performance, not surprisingly, next-day optimal fixed-
orientation significantly outperforms the yearly optimal one, as the former is specialized
for the particular day. In addition, Myopic gives a significant advantage over chronologi-
cal tracking, in both VSAT and AADAT, as it also considers the weather conditions. At
the same time, STPI does consistently better than Myopic, even though not by a wide
margin. This low improvement margin is not surprising: in an appropriately designed,
sizable PVS, like the one considered for our case study, the tracking consumption is
much lower than the energy produced (less than 1% (Mousazadeh et al. (2009))).
Thus, the net energy gains achieved by methods that take consumption into account,
are not expected to differ dramatically from those achieved by methods that maximize
power generation notwithstanding consumption needs. This fact is confirmed from our
evaluation results: an improvement from using STPI instead of Myopic is present in all
days and tracking systems, but is more substantial for high prevailing wind speeds, and
especially for dual-axis tracking. However, over time (i.e., within a long operating time
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window and/or for clusters composed of many PVSs put together), even small improve-
ments like the ones observed are significant. Even for an average-sized PV park of 2MW
nominal power, one would be able to, annually, gain over e1500 more by using STPI,
compared to Myopic (and over e10000 compared to chronological AADAT).4

Now, our evaluation results suggest that our case study PVS experiences a higher im-
provement from using STPI compared to Myopic in cloudy and windy days. This is
not surprising since in such settings our PVS exhibits a higher consumption over pro-
duction ratio (compared to sunny days with generally low prevailing wind speeds) and,
hence, a higher potential improvement from using STPI which attempts to approximate
the optimal policy. That said, smaller PVSs, or not very efficiently designed ones, would
generally exhibit a higher consumption over production ratio, compared to our case study
system for all weather conditions. Hence, such systems would generally exhibit a higher
improvement from using STPI compared to Myopic. To illustrate the above, here we
contact an additional experiment where an identical PVS is considered with, however,
only half of the original generation capacity. The respective evaluation results are collec-
tively reported in Table 6.2, while the net gains alone are also plotted in Figure 6.3 for
concreteness. As can be seen, the relative net energy gain improvement of using STPI
compared to Myopic is higher compared to the original case study PVS for all days con-
sidered (i.e., both real and fictional) and for both tracking architectures (i.e., both single
axis and dual axis tracking). Of course, the net gain is expected to further improve if the
actual optimal policy is computed. However, Myopic is already near-optimal, as argued
above, and, when compared to Myopic, STPI is shown to already be achieving higher
net energy gains and substantially lower consumption (of up to ∼90% reduction even in
our original case study PVS).

As a final note, STPI is expected to yield increased benefits when one considers a more
detailed consumption model. In particular, the tracking cost is not limited to the motor
consumption; there is also the maintenance cost, which should, ideally, also be taken
into account. Moreover, real-world buy and sell energy prices will most probably have
different values. These requirements can be readily incorporated in our model, by simply
modifying Equation 5.5. Specifically, for a grid-connected PVS, Equation 5.5 can be
replaced by:

Ra(s, s
′) = Prod(s, s′)PSell − Cons(s, s′)PBuy − topcm (6.1)

Here, cm denotes maintenance cost given operating time top, and PSell and PBuy denote
the sell and buy energy prices. The maintenance cost can be estimated considering
the original price of the tracking system along with its life expectancy in maximum
operating time, as well as any additional maintenance cost per operating time such as
the lubrication cost. Nevertheless, such detailed modeling is out of the scope of this work
and a respective evaluation would require a real world trial (discussed in Chapter 7).

4These estimations are obtained by appropriately extrapolating the mean gains reported in Table 6.1
in accordance to the typical mean electricity export tariffs in Crete in 2014 (https://www.dei.gr/en).

https://www.dei.gr/en
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Dataset Fixed-Orientation Single Axis ST (VSAT) Dual Axis ST (AADAT)
Day Year-Opt Next-Day-Opt Chronological Myopic STPI Chronological Myopic STPI

R
ea
l

1 31.520 (-) 32.448 (-) 32.533 (.027) 32.791 (.019) 32.794 (.015) 32.021 (.061) 33.033 (.078) 33.070 (.037)
2 49.736 (-) 50.275 (-) 52.036 (.029) 52.042 (.028) 52.046 (.023) 51.624 (.063) 52.326 (.087) 52.360 (.049)
3 67.301 (-) 68.921 (-) 71.037 (.039) 72.977 (.057) 72.985 (.048) 73.434 (.091) 74.003 (.106) 74.027 (.080)
4 11.736 (-) 11.748 (-) 11.623 (.019) 11.738 (.031) 11.754 (.010) 11.465 (.037) 11.788 (.059) 11.822 (.021)

F
ic
ti
on

al 1 31.520 (-) 32.448 (-) 32.530 (.030) 32.784 (.026) 32.790 (.019) 31.899 (.183) 32.730 (.381) 32.972 (.121)
2 49.736 (-) 50.275 (-) 52.034 (.031) 52.040 (.030) 52.045 (.023) 51.515 (.172) 52.034 (.379) 52.247 (.156)
3 67.301 (-) 68.921 (-) 71.018 (.059) 72.961 (.074) 72.977 (.055) 73.264 (.261) 73.706 (.404) 73.862 (.237)
4 11.736 (-) 11.748 (-) 11.615 (.026) 11.729 (.041) 11.751 (.010) 11.411 (.090) 11.567 (.280) 11.747 (.032)

Table 6.1: Evaluation results (all values are in kWh, and correspond to PVS net energy gain; tracking consumption in parenthesis).
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Figure 6.2: Evaluation results (bar chart).



C
hapter

6
E

valuating
P

reST
121

Dataset Fixed-Orientation Single Axis ST (VSAT) Dual Axis ST (AADAT)
Day Year-Opt Next-Day-Opt Chronological Myopic STPI Chronological Myopic STPI

R
ea
l

1 15.760 (-) 16.224 (-) 16.253 (.027) 16.386 (.019) 16.390 (.013) 15.980 (.061) 16.478 (.078) 16.517 (.034)
2 24.868 (-) 25.137 (-) 26.003 (.029) 26.007 (.028) 26.012 (.021) 25.781 (.063) 26.120 (.087) 26.156 (.048)
3 33.650 (-) 34.460 (-) 35.499 (.039) 36.460 (.057) 36.469 (.045) 36.672 (.091) 36.948 (.106) 36.974 (.078)
4 5.868 (-) 5.874 (-) 5.802 (.019) 5.854 (.031) 5.874 (.003) 5.714 (.037) 5.865 (.059) 5.901 (.017)

F
ic
ti
on

al 1 15.760 (-) 16.224 (-) 16.250 (.030) 16.379 (.026) 16.386 (.016) 15.858 (.183) 16.175 (.381) 16.427 (.101)
2 24.868 (-) 25.137 (-) 26.002 (.031) 26.005 (.030) 26.012 (.022) 25.672 (.172) 25.827 (.379) 26.059 (.105)
3 33.650 (-) 34.460 (-) 35.480 (.059) 36.443 (.074) 36.460 (.056) 36.501 (.261) 36.651 (.404) 36.821 (.215)
4 5.868 (-) 5.874 (-) 5.794 (.026) 5.844 (.041) 5.872 (.007) 5.660 (.090) 5.644 (.280) 5.865 (.009)

Table 6.2: Evaluation results, half generation capacity (all values are in kWh, and correspond to PVS net energy gain; tracking consumption in
parenthesis).
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Figure 6.3: Evaluation results, half generation capacity (bar chart).
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6.4 Summary

In this chapter we provided a real-data-based evaluation of our ST approach, PreST,
and demonstrated its efficiency against commonly employed conventional ST techniques
(i.e., chronological, sensor-based, and/or fixed-orientation) in various limit-case weather
patterns. In particular, we first described our evaluation set-up justifying the choice
of our case study location and the various weather patterns. Further on, we describe
in detail the case study of our evaluation and how we collected the necessary data.
Finally we reported our evaluation results and showed that chronological ST does not
fully exploit the additional system abilities, while our methods clearly outperform the
baseline ones. In particular, we showed that: (i) the next-day optimal fixed-orientation
method significantly outperforms the yearly optimal one; (ii) the Myopic method gives
a significant advantage over chronological ST; and (iii) STPI does consistently better
than the Myopic/Sensor-based method—even though, not by a wide margin. Finally, we
justified why the small improvements of STPI compared to Myopic are not surprising, and
showed that despite their seemingly insignificance they can lead to considerable monetary
gains for an average-sized PV park, while smaller PVSs (or not very efficiently designed
ones), compared to the case-study system, would exhibit higher expected improvement
from using STPI compared to Myopic. As such, we showed how our novel predictive solar
tracking approach; PreST, can meet the optimality requirements of efficient and effective
solar tracking (as stated in Section 1.2.2) without relying on expensive equipments or data
(and, hence, meeting the respective applicability requirement, Section 1.2.2). Moreover,
PreST performed adequately in conjunction with the popular azimuth-altitude dual axis
trackers, AADAT, and vertical single axis trackers, VSAT, and, due to its parameterizable
and generic nature, can be used in conjunction with many other ST systems typically
employed in practice (as discussed in Section ), meeting the generality requirement 1.2.2.
Hence, all requirements stated in 1.2.2 have been met.
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Conclusions and Future Work

In this thesis we preoccupied ourselves with efficient control of domestic space heating
systems and intermittent energy resources (IERs). We proposed specialized systems that
increase the operational efficiency of domestic space heating systems and intermittent
energy resources with minimum cost. Regarding the former, we proposed a new general
domestic heating automation system (DHAS), AdaHeat, while, regarding the latter, we
proposed a novel, low-cost and generic, dynamic programming predictive solar tracking
approach, PreST.

In more detail, AdaHeat effectively accounts for: (i) simple heating control, (ii) simple
economic control, as well as, (iii) advanced economic control that exploits the potential
for operating as a coalition. As such, AdaHeat is able to also effectively and efficiently
consider electricity-based heating systems even in the presence of import and/or export
tariff variability, as well as in the presence of domestic IERs. We note that this is the first
DHAS to incorporate advanced economic control and, the first to exploit the respective
coalition potential. AdaHeat employs model predictive control (MPC), utilizing adaptive
gray-box thermal modeling and a new general heating planning algorithm that fully ex-
ploits the probabilistic occupancy estimates employing dynamic programming. As such,
AdaHeat is able to effectively account for the highly dynamic thermal characteristics of
houses and is also general enough to consider a diverse range of heating systems typically
employed in domestic settings. In this context, and due to its component-based struc-
ture, AdaHeat considers as a general framework where specific models can be inserted
to give particular characteristics. Importantly, AdaHeat adapts to the user preferences
in balancing cost and discomfort as it relies on only one parametrization factor that
can be learned on-line. In the context of collective advanced economic control, AdaHeat
also incorporates: (i) a practical allocation mechanism to share the collective gains of
the coalition and (ii) a heuristic planning approach that has a complexity that scales
in a linear and parallelizable manner with the coalition size, enhancing, as such, its
applicability.

124
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Table 7.1: AdaHeat: Requirements evaluation

Requirement Met Comments
1. Minimal user-
input

X As required, our system relies to the minimum extent on user-input
and, in particular, on a simple boolean feedback.

2. Reliable thermal
modeling

X AdaHeat adaptive thermal modeling effectively handled the dynamic
thermal characteristics of our case study systems. Moreover, adaptive
thermal modeling has been reported to be resilient and effective in
domestic settings in several studies (see Section 2.2)

3. Dealing with occu-
pancy uncertainty

X AdaHeat efficiently handles the probabilistic occupancy estimates com-
ing from the appropriate predictive systems.

4. Pareto efficiency X Our system demonstrated an adequate performance in terms of Pareto
efficiency and distribution of solutions compared to state-of-the-art
benchmark systems.

5. Matching the user
preferences

X Our system is able to match the user preferences in balancing ther-
mal discomfort and heating cost (for more details see the subsequent
requirements below).

5(a) Flexibility X AdaHeat has been shown to capture a sufficiently wide, and evenly
distributed, range of balancing points between heating cost and thermal
discomfort that allows a variety of user preferences to be captured.

5(b) Usability X AdaHeat matches the user preferences in balancing heating cost and
thermal discomfort via an adaptive procedure that requires a simple
boolean feedback by the user.

5(c) Adaptability X The on-line procedure of AdaHeat in matching the user preferences,
in trading heating cost and thermal discomfort, enables our system to
directly adapt to potentially time-varying user preferences.

6. Generality X Due to the general approach followed, our system is able to work in con-
junction with a diverse range of heating systems and respective tech-
nologies that are typically employed in domestic settings.

7. Applicability X The efficient application of AdaHeat in the various case-study systems
considered in our evaluation illustrates its applicability.

8. Integrate simple
economic control

X AdaHeat is able to consider variable energy import tariffs in the case
of electricity-based heating.

9. Integrate ad-
vanced economic
control

X Our system effectively integrates advanced economic control in the case
of electricity-based heating and domestic IERs (for more details see the
subsequent requirements below).

9(a) Coalition po-
tential

X Our system is able to exploit the coalition potential that emerges in
advanced economic control due to an effective and efficient respective
heuristic planning approach.

9(a) Cost allocation X Our system comes complete with a practical cost allocation to share
the collective gains of collective advanced economic control among the
coalition members that respects individual rationality and allocation
efficiency.

In this thesis, we evaluated AdaHeat with respect to simple heating and simple economic
control with data coming from a real house that employs underfloor heating. We showed
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that this particular case-study constitutes a challenging testbed for our approach both
in terms of thermal modeling and control. Our evaluation results illustrated the benefits
of incorporating adaptive gray-box thermal modeling in DHASs and the effectiveness of
our approach in balancing heating cost and thermal discomfort. In the context of our
evaluation procedure, we also provided a comprehensive comparison of existing state-
of-the-art DHAS approaches against AdaHeat. By doing so, we showed that the latter
leads to a more stable performance, in terms of Pareto efficiency, in various operation
settings. In addition, we provided significant insights into the evaluated DHASs’ us-
ability in various operating settings, revealing the high usability of AdaHeat. Regarding
advanced economic control, we demonstrated the effectiveness of our respective approach
through evaluating with real data, in a contemporary market reality. In this context,
we showed that collective advanced economic control can significantly improve heating
cost-efficiency compared to independent advanced economic control, and even more when
compared to independent simple economic/heating control. The above suggest that all
the respective requirements as stated in Section 1.1.2 have been met. Table 7.1 provides
a detailed evaluation of this work against the stated requirements.

As discussed above, in this work we also preoccupied ourselves with IER efficient con-
trol. In particular, we formulated solar tracking, ST, as a dynamic programming problem
and introduce PreST, a dynamic programming approach for predictive ST. The exact
solution to the dynamic programming formulation would provide the optimal ST tra-
jectories. However, for reasons of computability, we approximate the optimal solution
by a policy iteration method that we propose, that is suitable for large Markov deci-
sion processes (MDPs), along with specialized variants, utilizing freely available weather
forecasts. Importantly, our methods make use of a generic and parameterizable tracker
power consumption model that we developed. All our methods come with optimality or
near-optimality guarantees, and our next-day policy comes complete with an expected
PVS power output estimation, which is crucial for the smooth integration of PVSs into
the electrical grid (as discussed in Section 6.4).

We demonstrated the efficiency of PreST against a number of commonly employed con-
ventional ST techniques (i.e., chronological, sensor-based, and/or fixed-orientation). In
particular, we showed that: (i) our next-day optimal fixed-orientation method signifi-
cantly outperforms the yearly optimal one (enabling efficient manual ST); (ii) our My-
opic method gives a significant advantage over the commonly employed chronological ST;
and (iii) our proposed policy iteration method (i.e, STPI—Chapter 5) does consistently
better, even though not by a wide margin, compared to, the also proposed by us, Myopic
method. Finally, we showed that despite the small margin such small improvements are
significant in real settings. Regarding our respective research requirements, all require-
ments as stated in Section 1.2.2 have been met. Table 7.2 provides a detailed evaluation
of this work against the stated requirements.
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Table 7.2: ST: Requirements evaluation

Requirement Met Comments
1. Generality X Due to the general approach followed and the parameterizable ST con-

sumption model proposed, our approach is able to work in conjunction
with a diverse range of ST architectures that are typically employed in
practice (e.g., HSAT; TSAT; TTDAT; or AADAT systems)

2. Applicability X Our ST approach utilizes available weather forecasts that can actually
come from online providers for free, and does not rely on expensive
equipment, sensors or data. Moreover, our ST approach has appropri-
ate computational requirements and efficiency (as discussed in Chapter
5) that allows it to be widely applicable in real settings with limited
budget availability, limited resources, and operating time constrains.

3. Performance opti-
mality

X All our ST methods come complete with optimal or near-optimal per-
formance guaranties that lead to highly efficient ST performance.

3(a) Considering the
prevailing weather
conditions

X Our ST approach considers the weather conditions, utilizing available
weather forecasts, to optimize the tracking trajectory.

3(b) Considering the
consumption cost

X Our ST approach accounts for the tracking cost via an appropriate and
generic ST consumption model that we devise.

3(c) Considering the
maintenance cost

X Our ST consumption model is general enough to consider a modeling of
the maintenance cost of the tracking system itself, in a straightforward
manner (as discussed in Section 6.3)

Regarding the impact of this work, in this thesis we provided two distinct practical sys-
tems, namely AdaHeat and PreST, to increase the operational efficiency of domestic
space heating systems and IERs, respectively. The results of this thesis could be used
directly for the development of respective products with significant societal and com-
mercial value. In particular, as discussed in Section 1.3.1, AdaHeat overcomes many of
the limitations and shortcomings of previous DHAS approaches. Importantly, AdaHeat
is also the first DHAS to integrate advanced economic control in order to maximally
account for the emerging electricity market reality (as discussed in Section 1.3.1). As
such, AdaHeat can serve as the guideline for the development of the next generation re-
spective products. In this context, the results presented in this thesis provide significant
lessons to this end. Furthermore, PreST is a novel ST approach that overcomes several
limitations of previous approaches with minimum cost (as discussed in Section 6.4). In
this context, PreST can serve as the basis for the development of web-based tools for
efficient predictive ST—giving rise to a new form of cheep and efficient ST. In particular,
the cost reduction of a smart house in the UK utilizing both PreST and AdaHeat that is
employed with: (i) a 4kW space heating system, (ii) a 6kW wind turbine generator and
(iii) a typical 72m2 azimuth-altitude dual axis tracking (AADAT) photovoltaic system
can be estimated to over 25£ per month when participating in a collective advanced



128 Chapter 7 Conclusions and Future Work

economic control schema and utilizes STPI (instead of employing simple economic/heat-
ing control and utilizing chronological AADAT tracking, respectively).1 Last but not
least, when taken together the contributions presented in this thesis (outlined in Sec-
tion 1.3) consider a significant advance in the state-of-the-art with great value for the
scientific community. Although of great importance, this value is not limited to the scope
of efficient control within the broad energy sustainability agenda. In particular, apart
from extending our understanding on the applicability of numerous artificial intelligence
(AI) and AI-related techniques in the domain of our interest and providing specialized
solutions and approaches, in this work we also proposed efficient control and modeling
approaches with far more broader value for the scientific community. Importantly, we
propose a new policy iteration approximation algorithm that considers the first alterna-
tive optimization dynamic programming algorithm for MDPs and is suitable for tackling
MDPs with large state-action spaces. Nevertheless, despite these advances, many open
problems remain with respect to efficient control towards an energy sustainable future.
Given this, we identify three promising directions for future research to extend the scope
of our work:

• First and foremost, a real world trial of both AdaHeat and PreST could be held
as the most concrete way to evaluate our systems in real settings and to effectively
consider any potentially missing detail. In particular, even though in our respective
evaluation procedures we consider real data and account for numerous aspects of
a real settings scenario, only a real-world trial could ensure that no essential detail
is omitted. In addition, a real world trial would enable to explore the behavior of
the users and collect valuable feedback from them. Furthermore, with respect to
AdaHeat, a real world trial would enable to also explore the concept of optimal
decision making regarding profitable coalition formation, and the respective market
behavior, in real settings (with respect to collective advanced economic control).
Moreover, depending on the region of interest, such trials can also consider variable
export and import tariffs that are not perfectly known in advance and respective
stochastic price predictions, which is a straightforward extension of AdaHeat (as
discussed in Section 3.1.3).

• Furthermore, in recent years, a growing number of electric vehicles are emerging
in the streets (Sperling (2013)). In this context, the owners of such vehicles could
use the energy capacity of their vehicles in the context of domestic space heating
advanced economic control. In particular, the respective energy capacity can serve
as an energy buffer for profitable energy shifting within the AdaHeat framework.
Although experimental work that consider the energy capacity of electric vehicles
in the context of simple economic control is starting to emerge (Nguyen and Le

1Notably, to estimate the gains of PreST in the UK only the results considering the fully cloudy day
in Crete have been utilized (i.e, the real day 4 in Table 6.1), utilizing the 2015 UK market electricity
rates (see Section 4.2.2).
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(2014)), the case of advanced economic control has not been explored yet. The
most prominent challenge towards such an extension is to ensure the usability of
the electric vehicle (i.e., to be adequately charged when the user needs it) while
exploiting its energy capacity for profitable energy shifting. Such an extension
could further enhance the efficiency of AdaHeat with respect to economic control
in the case of electricity-based heating considering an emerging societal scenario.

• Given the ever growing electrification of transportation (Sperling (2013)) more and
more attempts towards developing energy self-sustainable vehicles are emerging.
To this end, vehicle-integrated IERs aim to provide the necessary energy to the
vehicle whilst in motion. Such IERs are being integrated in numerous vehicle types
ranging from cars, trains and boats, to even airplanes and helicopters (Corkish et al.
(2013)). In this context, predictive IER control can enhance the efficiency and
effectiveness of such IERs. In more detail, in such settings the possible route that
a vehicle is following needs to also be taken into account in terms of maximizing the
IER power output and minimizing the traveling energy consumption. For instance,
if multiple paths can be followed to reach an intended destination the most favorable
in terms of IER generation and traveling consumption can be chosen to minimize
the net traveling cost. In addition, in the case of vehicle-integrated solar tracking
systems, the dynamic position of the vehicle needs to also be taken into account
in optimizing the tracking trajectory followed within the PreST framework. The
most prominent challenge towards such an extension is to ensure the arrival of
the vehicle to its destination within a feasible time and with minimum cost. This
challenge is further exacerbated by potentially unpredicted rapid weather changes
that need to, dynamically, be taken into account.

By meeting the above discussed challenges and extensions, the results related to efficient
control of domestic space heating systems and IERs in this thesis can be further increased,
towards meeting the aim for an energy sustainable future.



Appendix A

Closed Form Calculation of
Expected Heating Cost

Estimating the expected heating cost in the case of advanced economic control is essen-
tial for developing respective systems. The particular closed form calculation is subject
to the stochastic modeling of the (shared) intermittent energy resource power output
followed. In this context, in Equation A.1 we provide a closed form of Equation 3.11,
given our Gaussian-process-based respective modeling, i.e., R′∼N(µ, σ).
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where K = erf
(

µ√
2σ

)
− erf

(
µ−rmax

C√
2σ

)
and erf(x) = 2√

π

∫ x
0 e
−t2dt (i.e., the error function).

130



Appendix B

Moment of Inertia of a Potentially
Tilted Cuboid

Calculating the moment of inertia of a tilted cuboid is essential for many practical appli-
cations, such as modeling a solar tracking system (as discussed in Section 5.3.2). In this
work we provide a general equation for calculating the moment of inertia of a potentially
tilted, respecting its axes of rotation, cuboid. This equation is used within our solar
tracking consumption model, proposed in Section 5.3.2), i.e., Equation 5.10.

B.1 General Cuboid Inertia Equation

The moment of inertia of a potentially tilted cuboid, Ic, can be calculated as:

Ic =
mc

12

(
l2 cos2(β) + d2 sin2(β) + w2

)
(B.1)

where mc is the mass of the cuboid, β stands for its slope angle, and l, w and d stand
for its length, width and depth respectively. The dimensions and the tilte angle of the
cuboid are all defined with respect to its axis of rotation, as seen in Figure B.1.

B.2 Deriving the General Equation

In order to calculate the moment of inertia of a tilted cuboid, Ic, we calculated the
moment of inertia of the imaginary cuboid that exactly contains the cuboid in question
and we then subtracted the moment of inertia of the extra right angled prisms.

In particular the moment of inertia of the cuboid can be calculated through Ic = IALL−
(IR1 + IR2 + IR3 + IR4), where IALL stands for the moment of inertia of the imaginary
cuboid, and IR1 , IR2 , IR3 and IR4 for the moment of inertia of the imaginary prisms, as
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Figure B.1: Tilted Cuboid

illustrated in Figure B.1. Note, however, that IR1 = IR3 and IR2 = IR4 , and hence our
calculation can be simplified as:

Ic = IALL − (2IR3 + 2IR4) (B.2)

Also note here, that this equation is suitable for non-tilted cuboids as well, as in that
case IR1 = IR2 = IR3 = IR4 = 0 and hence Ic = IAll (and hence so does Eq B.1). In the
following paragraphs we calculate the IALL, IR3 and IR4 above, in order to derive with
Ic.

B.2.1 IALL

IALL can be calculated from the non-tilted cuboid Equation B.3 (Myers (1962)).

IALL =
mALL

12

(
(B + b)2 + w2

)
(B.3)

where mALL is the mass of the imaginary cuboid and the quantity (B+ b) stands for the
length of the imaginary cuboid, as seen in Figure B.1. The mass of the imaginary cuboid
can be calculated based on its volume VALL, and its density ρ, via mALL = ρVALL.
The density of the imaginary cuboid will be the same as the density of the cuboid in
question and can be calculated as ρ = mc

lwd . The volume can be calculated as VALL =

(B + b)(H + h)w, where the quantity (H + h) stands for the depth of the imaginary
cuboid, as seen in Figure B.1. H, h, B and b can be computed based on the dimensions
and the tilt angle of the cuboid in question through Equations B.4, B.5, B.6 and B.7,
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respectively.
H = sin(β)l (B.4)

h = cos(β)d (B.5)

B = cos(β)l (B.6)

b = sin(β)d (B.7)

B.2.2 IR3

The moment of inertia of the right angled prism R3 with respect to an axis of rotation
that passes through its centroid and is parallel to the axis of rotation of the cuboid in
question can be calculated through Equation B.8 (Myers (1962)) below:

IcentroidR3
=
mR3

36
(2b2 + 3w2) (B.8)

where mR3 is the mass of the prism which can be calculated as mR3 = bhw
2 ρ.

Now the centroid of the right angled prism is defined as:

(−(xref + B
3 ), −(yref + H

3 ), −(zref + w
2 ))

As such, from Equation B.8 and by applying the parallel axes theorem (Kane and Levin-
son (1985)), we will have:

IR3 =
mR3

36
(2b2 + 3w2) +mR3D

2
R3

(B.9)

where DR3 is the distance of the centroid from the axis of rotation:

DR3 =
B + b

2
− b

3
(B.10)

B.2.3 IR4

With the same method in computing IR3 above, we will have:

IR4 =
mR4

36
(2B2 + 3w2) +mR4D

2
R4

(B.11)

where mR4 = BHw
2 ρ and for DR4 :

DR4 =
B + b

2
− B

3
(B.12)
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By combining Equations B.2, B.9, B.11 and B.3, and by applying simple arithmetic
operations we derive the general Equation B.1 for calculating the moment of inertia for
potentially tilted cuboids.
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