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Dynamic AdS/QCD is a bottom-up model inspired from top-down, probe-brane extensions
to the renowned AdS/CFT correspondence. The AdS/CFT correspondence states that there
is an equivalence in the physics describing an N = 4 super-Yang-Mills gauge theory and that
pertaining to a type IIB superstring theory on an AdSsxS® background. Moreover, the duality
between the two theories in a particular limit requires that the gauge theory be strongly coupled
when the superstring theory is weakly coupled. From this, we have a tool for studying strongly
coupled gauge theories in a physically equivalent gravitational description. Using the AdS/CFT
correspondence as a springboard, relationships between more complex superstring constructions
on varying backgrounds have been studied to push the dual gauge theory to be more like those
of QCD. In this thesis, we use one such bottom-up model, Dynamic AdS/QCD, to probe the
behaviours of strongly coupled, asymptotically free gauge theories, including QCD. We show that
the model correctly describes the hyperscaling relations of quark masses and the condensate, the
behaviours expected of the scalar, vector and axial meson spectra in theories with infrared fixed
points and how the condensate is affected by temperature and magnetic field in such theories. We
finally go on to show that it is possible to describe QCD-like theories with a Lorentz-symmetry
breaking vacuum, e.g. a striped condensate, and follow up with the cosmological ramifications of
such a proposal and conclude that outside of a totally disconnected dark sector, this behaviour

is highly constrained.
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Chapter 1

AdS/QCD: A History

1.1 The road to 1974

Why has the path to understanding the strong nuclear force seemingly gone off-road,
headed for the more mathematically abstract (and indeed abstruse) landscape of string
theory and the arena of holography? This is a question that we address in this histor-
ical introduction, setting the scene for the relevance of the physics undertaken in the

following work.

Quantum chromodynamics (QCD) is the fundamental theory of the strong interac-
tion and its birth, and subsequent life, has been one of troubles, anguish and tribulations.
Ever since the discovery of the neutron by Chadwick! in 1932 [6], it was known that
the force that governs the interactions within the nuclei of atoms was different to the
known electromagnetic force: like charges seemed to attract one another and the two
nucleons appeared to be identical in all but their charge. The first major attempt at
trying to postulate an underlying theory for the strong interaction was done in 1934 by
Yukawa? [7]. In analogy to the quantisation of the electromagnetic interaction whereby
a photon is exchanged between charged particles to mediate the force, Yukawa pro-
posed the idea of the meson® as the ‘carrier’ of the strong interaction. Naturally, the

theory had to be modified away from that of electromagnetism (EM). The strong inter-

1Sir James Chadwick, 1891-1974.
2Hideki Yukawa, 1907-1981.
30riginally, he called it the U-quantum.



action is only dominant at the scale of the nucleus (~1071°m) with its effects unseen
at larger scales. Therefore the force carrier, the meson, had to be a massive particle
((10*15771)71 ~ 200MeV), unlike its massless EM twin, the photon, which mediates EM
across an infinite range. A spin-1 mediator was forbidden since it generates a repulsive
potential between like charges, so the meson had to be of either zero or even spin [8].
Since the force only affected one particle, the nucleon (in its two isospin forms), a scalar
(spin-0) meson seemed the most plausible. Lastly, and somewhat most importantly, the
interaction was ‘strong’, having to override the proton-proton EM interaction in the
nucleus. This then implied that the coupling strength between this meson and each
nucleon was big.

In 1936, Anderson® and Neddermeyer® discovered the muon from cosmic rays [9]
and initially the particle was associated to the strong-interaction mediator, the meson®,
because of its mass (~ 1056MeV) [10]. It just goes to show that some of the greatest
minds in the field get it wrong occasionally. However, cosmic rays relinquished more
particles in the form of a triplet of pions (7+, 77, 7°), detected in 1947, which seemed to
fit the job. A Lagrangian formalism for this theory was constructed with the now-famous

Yukawa term with coupling constant y:

_ _ 1 2 _
iNY'O,N —myNN + 5(9“77“8‘%‘1 — %W“ﬂ“ — iyNy° T N7, (1.1)

where N is the nucleon doublet containing the neutron and proton, 7¢ is the pion
triplet, 7° is the usual fifth Dirac matrix and 7% are the Pauli matrices. Despite a
Lagrangian formalism which seemed to describe the right physics witnessed by the strong
interaction, there was still the omnipresent elephant in the room: the strength of the
coupling. Because y had to be large, orders of magnitude stronger than the equivalent
electromagnetic charge, there were no calculations that could be done with Lagrangian
1.1. Perturbation theory, as used for the quantum version of electromagnetism, Quantum

Electrodynamics (QED), relies on a small coupling about which one can expand. Clearly

4Carl D. Anderson 1905-1991.

Seth Henry Neddermeyer 1907-1988.

5The muon was initially called the mesotron and then the p-meson. The meson was finally dropped
when it became known that the muon was in fact a heavier version of the electron, an idea so uncon-
templated that it lead Isador Rabi to exclaim the now famous “Who ordered that?!”.



this isn’t the case for Yukawa’s meson theory. To add insult to injury, throughout the
1950’s and into the 1960’s, experiments unveiled an ever-expanding plethora of other
particles [11-16] (on top of p, n and 7) — the discoveries were so frenetically frequent
that it become known as the ‘particle zoo’. In 1961, in a (desperately needed) attempt
to clean-up and categorise this ‘zoo’, Gell-Mann” found that the particles, collectively
known as hadrons, could be grouped® into octets and decuplets (transforming in the 8
and 10) of the group SU(3) [18,19], see figure 1.1. This group became known as the
flavour symmetry group. The question then arose as to what became of the seemingly
non-existent fundamental representations, the triplets of this flavour group. The genius

of Gell-Mann was to realise that, from a purely group theoretic perspective,

33=801 (1.2)

and

303R3=100838a 1. (1.3)

Gell-Mann named the fundamental field a quark? [20] and noticed that mesons, like the
pion, were comprised of a quark-antiquark pair and baryons of three quarks. The nonet
of light mesons comprised of the three quark flavours (up, down and strange) were the
adjoint octet (Tri,WO,K +* KO K 1) plus the 1’ singlet. The baryon decuplet is com-
prised of the (AT+, A* A0 y## ¥2+0 == =0 =) the octet is (p,n, BF, 20, 27,20, A)
and the singlet is in fact forbidden to exist by the Fermi-Dirac statistics and thus is never
seen. Particles like the discovered A*T, comprised of uuu all in the same spin state,
seemingly violate the Pauli-Exclusion principle. In order to rectify this, Han'® and
Nambu'!! [21] (and independently by Greenberg!? [22]) introduced another quantum

number called colour from yet another SU(3) symmetry. The delta-baryon’s quarks can

"Murray Gell-Mann 1929-.

81n fact, the Q= baryon, consisting of sss quark content, wasn’t yet found when Gell-Mann devised
this theory, yet he hypothesised its discovery to complete the decuplet. It was discovered in 1964 [17].

9Taken from James Joyce’s Finnegans Wake — “Three quarks for Muster Mark!”. George Zweig
also must be credited with hypothesising the existence of these fundamental representations of SU(3)(-
flavour), naming the particles aces.

1Moo-Young Han, 1934-2016.

"1Yoichiro Nambu, 1921-2015.

120scar W. Greenberg, 1932-.



thus be differentiated by their colour quantum number and are therefore not all in the

same quantum state.

Figure 1.1: [top] Gell-Mann octet of mesons. They are grouped such that the horizontal
layers each have the same strangeness quantum numbers, i.e. the same number of strange
quarks inside, and the diagonal lines connect mesons of like charges. The singlet 7’ is
missing from the diagram. [bottom]| The same categorisation for the octet and decuplet
of the baryons.

As soon as one question was answered, another seemed to pose itself. Why did we
never observe these quarks as isolated particles? It was proposed that the quarks were
somehow held prisoners of the hadrons they comprised, a theory so preposterous that
many didn’t believe in the existence of the quark at all, despite Gell-Mann’s group theory

arguments. It was not until the deep inelastic scattering experiments of the late 1960’s



that the nucleons were indeed found to be comprised of point-like charges [23,24], and
were quickly associated with Gell-Mann’s quarks — to quote Andrei Smilga ‘interago
ergo sum’ [25].

At last, things started falling into place. In 1973, it was proposed [26-28] that
the theory that was being used to understand the weak interaction, a Yang!'?-Mills™
formalism [29], could be employed to deal with its strong counterpart. The Yang-Mills
theory of QCD described quark matter mediated by massless, vector particles in the
adjoint of the non-Abelian, colour SU(3) group, the gluons. With the discovery of
the running of the strong coupling by Gross'®, Wilczek!® [30] and Politzer!” [31], it
was shown that at high energies the coupling asymptotically vanished and the quarks
became free. In the IR the perturbative coupling is seen to rise and become strong at
nuclear energy scales.

By the end of 1974, it is safe to say that QCD as we know it today had been born.
Yet, there was still the small issue of the strong coupling at the interesting energy
scales pertaining to subatomic physics. Perturbation theory remained defeated and

confinement unproven (it still is).

1.2 To the present day

The strong interaction has a long and complicated past with string theory. Before the
establishment of the theory we now know as QCD, at a time when questions about the
strong interaction were plentiful but solutions scant, string theory was borne out of the
need for a fundamental theory of the strong nuclear force. String theory described very
well a phenomenological aspect of the strong interaction called Regge trajectories. Yet
string theory, in its simplest format, is riddled with issues of tachyonic ground states,
spin-2 particles (then and to some extent still) unobserved in nature and requiring more
dimensions of space and time than anyone knew what to do with. One set of problems

was replaced by another. QCD was soon formulated so the stringy nature of the strong

13Yang Zhenning 1922-.

YRobert Laurence Mills 1927-1999
5David Jonathan Gross 1941-.
15Frank Anthony Wilczek 1951-.
'"Hugh David Politzer 1949-.



interaction was forgotten. In the framework of a gravity theory, string theory was
redeveloped and its inconsistencies and foibles were eradicated. The field of string theory

18 conjectured a mathematical duality (still as of

grew ever larger and in 1997, Maldacena
yet formally unproven) that a particular branch of string theory (namely type IIB) on a
specific geometry (that of a five dimensional Anti-de Sitter spacetime with compactified
five-sphere — AdS5xS°) contained all the same information (i.e. degrees of freedom)
of one particular type of gauge theory (an N' = 4 supersymmetric Yang-Mills theory
in four dimensions). This is the AdS/CFT correspondence [32]. This duality has more
treasures to bestow than initially meets the eye. Firstly, the duality is an example of the
holographic principle, hypothesised by 't Hooft'? and Susskind?® [33] as a solution to a
puzzle about entropy scaling in black hole thermodynamics. The holographic principle
says that information contained in a volume, V', of a d + 1-dimensional spacetime may
be expressed in terms of the degrees of freedom on the volume’s boundary 0V. The
AdS/CFT correspondence has the CFT living on the boundary of the higher-dimensional
curved AdSs spacetime (or bulk). The second treasure, and this is one of particular
importance to our story, is that in a particular form, the correspondence insists that
when the gravity theory is weakly coupled, the gauge theory on its boundary is strongly
coupled. If only there were such dualities between strongly-coupled QCD and a gravity
dual, one could perform calculations on the gravity side and translate the results into
QCD physics. Unfortunately, we are not so lucky. However, over the past decade or
S0, it has been the goal of many physicists to seek out such a duality by going back to
Maldacena’s conjecture and re-engineering the groundwork so that the gauge theory in
the duality is more and more like QCD. To this end, research still continues to thrive in

this field as the secrets of strongly coupled QCD slowly begin to be reveal themselves.

18 Juan Maldacena 1968-.
¥ Gerardus 't Hooft 1946-.
29Teonard Susskind 1940-.
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Chapter 2

Introduction

In the following sections, we will introduce the fundamental ideas that underpin the core
of this body of work. We begin by looking at the phenomenon of chiral symmetry and
how it is spontaneously broken in QCD-like gauge theories and then witness how QCD
gauge theories ‘run’ with energy and the consequences thereof. We next embark on a
brief guide to string theory, before uniting both the gauge theory and string aspects
together as we discuss and outline the idea of the AdAS/CFT correspondence. The
aim (and the hope) of this section is to be a clear and pedagogical guide for all those

interested in this field of research.

2.1 Chiral symmetry and its breaking

In this section, we introduce the concept of spontaneous symmetry breaking and its role

in chiral Quantum Chromodynamics.

2.1.1 Spontaneous symmetry breaking

Consider the Lagrangian for a complex scalar field theory parameterised by the field ¢,

A
£ = |0,0f2 + m?6f ~ {16, @)
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where m and X\ are some real coupling constants and A > 0. The Lagrangian has a
global symmetry ¢ — U¢, ¢* — U*¢*, where U is the unitary! matrix (or operator)
which induces the transformation leaving the Lagrangian invariant. For Lagrangian 2.1,
UecU(l),ie U=e“fora €R. For m? <0, the global minimum of the potential is
found at ¢ = 0 (see figure 2.1A). If the sign of m? is, by some mechanism, driven to be
m? > 0, then this theory becomes unstable around ¢ = 0 and the potential minimum
occurs at |¢|? = % (see figure 2.1B). The ground state is no longer invariant under

the U(1) symmetry due to the existence of a non-zero vacuum expectation value of the

field (¢) # 0 — this is spontaneous symmetry breaking (SSB).

~ | ) ///i}/%/
Jm(¢) S/ Jm(g) ~Re(e)

Figure 2.1: A) The potential with global minimum occurring at |¢p| = 0 exhibiting a
global U(1) symmetry. B) The old minimum becomes an unstable extremum of the
potential. The new global minimum is a set of solutions at fixed |¢| # 0 — there is a
non-zero vacuum expectation value of the field ¢.

In the case of m? > 0, there is a ring of equivalent vacua henceforth parameterised
as (Qg|o|Qy) = m\/geie for # € R. The most convenient parameterisation is chosen to

be, without loss of generality, § = 0, such that

(Q619) = m ; _ (2.2)

and defines our new vacuum with the vacuum expectation value (vev) of the field ¢
given by v.

An expansion of ¢ about this vev may be expressed as

;@)

o) = v+ sota)| . (23

Sl

!Unitarity implies U*U = L.
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where o(x) parameterises the radial fluctuations in ¢ about v (in the complex plane of
which ¢ is a vector), m(z) parameterises the angular fluctuations in ¢ about the chosen

0 =0, and f; € R. Substituting 2.3 into the Lagrangian 2.1, we arrive at

£ =007 + <v + 1a>2 1 @y
2+ ve ) it
- {m202 + 1\f)\mcrg + i)\0'4 - m4} . (2.4)
2 16 A

Choosing fr = v/2v, we make the 7-kinetic term canonically normalized. This La-
grangian is referred to as the linear sigma model [34]. The 7-field is seen to be massless
(a presupposition given it parameterises the equipotential angular fluctuations), whereas

the o-field has gained a mass.

Coleman’s theorem & Goldstone’s theorem

Consider a field theory Lagrangian that is invariant under a global SU(N,) transforma-
tion parameterised by the special?, unitary matrix U. The vacuum, |{2), being invariant

under this transformation implies
U|Q2) = |). (2.5)

From Noether’s® theorem, we also recognise that a continuous SU(N,) global symmetry
implies conserved Noether currents 9*.Jj; = 0 with conserved charges Q" = [ d3zJg(z)
[35], where a is an index running over the number of generators of the symmetry group.
One may express the transformation matrix in the basis* U = ¢***@e where Q, are
the conserved charges, implying that the infinitesimal transformation is given by U =

1+ ia®Q,. By using the infinitesimal transformation, equation 2.5 implies

Qa|Q> =0. (2.6)

2det(U) = 1 and hence tr(U) = 0.

3 Amalie Emmy Noether, 1882-1935.

“Usually, one would write the transformation matrix as U = €’*"' €SU(N,), where t* are the
N2 — 1 generators of the symmetry group. However, since the conserved charges, Q% = [ d3zJ¢, satisfy
the same Lie algebra, i.e. they satisfy the same commutation relations as ¢*, then we can write the
transformation matrix in a basis U = ¢'®" Q4.
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This is the basis of Coleman’s® theorem, which states that in order for the global sym-
metry of the Lagrangian to be spontaneously broken, the true vacuum or ground state
of the theory must be charged under that symmetry, i.e. Q|Q2) # 0 [36].

The state Q|Q2) is energetically degenerate with |2) (see Appendix A). Momentum

states constructed out of the vacuum from the symmetry current as,

7)) ~ o)1) = [ e na)|0), (2.7)

have energies E, = Eq + E(p), where Eq is the vacuum energy. In the limit as p — 0,
|m(p)) — Q|2) and so E; — Egq. From this we can conclude that the |7) states satisfy

a massless dispersion relation and this is the crux of Goldstone’s® theorem:

A spontaneous breaking of a continuous global symmetry implies massless particles in

the spectrum - the (Nambu-)Goldstone bosons [37,38].

The 7-field from equation 2.4 then satisfies this criterion.

2.1.2 Chiral Quantum Chromodynamics

A more pertinent case of spontaneous symmetry breaking is the chiral symmetry break-
ing of SU(N,) gauge theories.

The chiral Lagrangian

The Lagrangian of an SU(N,) gauge theory (of N, colours) with Ny fundamental, mass-

less flavours can be expressed as’

1 .
L=t (F"F) + igl)q, (2.8)
with
1
F/W = ;[DMaDu]a DN = 8ﬂ+igs>\aAZ (29)

®Sidney Richard Coleman 1937-2007.
5Jeffrey Goldstone 1933-.
"The kinetic term may be recast as

tr(F* Fpy) = tr(F* 4O F ) = PP F) tr(t*t?) = LProeFp, 60 = Lo rs,,

where ¢t are the generators of the SU(N;) flavour symmetry.
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and ¢ is the flavour Ng-component multiplet

g=1| d |- (2.10)

Above, g denotes the strong coupling constant, A% are the N2 — 1 generators of the
SU(N,) gauge group and the elements of ¢ are each a four-component Dirac® spinor.
Each Dirac spinor, e.g. u, can be expressed in terms of two, two-component Weyl? (or
chiral) spinors u = (ur,ug)?. We can then project out the left-handed and right-handed
Weyl spinors'; e.g. uy = %(1 — %) u and up = %(1 +~%)u. We can now see that the
Lagrangian 2.8 exhibits two independent U(Ny) global symmetries (a U(Ny), xU(N¢)g
symmetry) since the left- and right-handed quarks are completely decoupled — this is
the chiral symmetry. The chiral symmetry is easily re-expressed as U(Ny), x U(Ny) L, =
SU(Ny), x SU(Ns)p x U(1), x U(1) and acts on the flavour multiplets as

Uur, Uy, ur

qr, = dL N UL dL — e*i(lat”‘%»eL) dL , (211)
UR UR UR

ar=| dp | 2 Ur| dg |=e7""% | 4, |, (2.12)

where Up g € U(Ny), g, t* are the generators of the SU(Ny) subgroups with their group
parameters labelled [* and r® for the left- and right-subgroups respectively and with the

parameters 07, and 0 pertaining to the U(1) left- and right-subgroups. The associated

8Paul A. M. Dirac, 1902-1984.
“Hermann K. H. Weyl, 1885-1955.
1ONaturally we have chosen the chiral basis for the gamma matrices, i.e.

1 0 0 0
s | o -1 00
T=1 0 0 10

0 0 0 1
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left- and right-handed SU(NNf) conserved currents are

L = qy"t%qr, R = ari'tqr,

with the U(1) conserved singlet currents given by

L* = qrytqr, R" = qry"qr-

Recasting the global symmetry as a vector-axial symmetry, i.e.

SU(N£)yxSU(Nf)axU(1)yxU(1) 4,

we define our conserved vector and azial SU(Ny) currents as

VG = RO 4 [0 = gkt AW = RO _ [0 — gakaPiog

and the vector and azial U(1) singlet currents as

VI =R+ L' =qgyq, A =R'— L' =M.

(2.13)

(2.14)

(2.15)

(2.16)

The U(1)4 or axial singlet current, A", is only conserved classically: at the quantum

level, the ground state is charged under U(1)4 — it is anomalous (see Appendix B).

Explicit symmetry breaking by mass

Adding in a mass term to the chiral Lagrangian 2.8 has the effect of destroying the

chiral symmetry since it must mix the left- and right-handed quarks, in effect coupling

16



the two chiralities'!. Taking a diagonal quark mass matrix of the form,

my 0O 0
0 0

i.e. adding a term —@Mygq to the Lagrangian 2.8, the corresponding divergences of the

vector and axial currents are found to be [39]

ta
9,V =iq [M, 2] q, (2.18)
t(l
e =i {31, Yo (2.19)
9, VH =0, (2.20)
N¢T(R)g>
0, AF = 2igy° Mg — —L% (F)gs PAEL FD, (2.21)

1672

where in 2.21, the second term is the aforementioned U(1)4 anomaly (see Appendix
B). Now we can see directly that the singlet vector current is conserved even under the

addition of an explicit mass term. The associated conserved charge,
Qv = /d%q’yoq = /d3quq =N, (2.22)

counts the number of quarks minus the number of antiquarks. If we break N up flavour-
wise as N = (N, — Ng)+ (Ng— Nj) + ..., the eigenvalue of Qy may also represent baryon

number,
@ ~ (Nu—Ng) + (Ng— Ng) + ...

B —
Ny Ny ’

(2.23)

and hence the singlet vector symmetry is sometimes referred to as U(1)p.

From equation 2.18, it is evident that all of the SU(/Nf)y currents are once again

" Consider a diagonal mass matrix M with entries m. A term gMgq added to the Lagrangian can be

expanded as
0 ot 0 1 m 0 qr
q'v'Mgq —(quqlz)(l 0)<0 m)(%)

=m (qlqR + quL) .
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conserved if the mass matrix is a multiple of the identity, i.e. all quarks have the same
mass. Even so, in the limit of non-equal masses, the diagonal SU(Ny) generators still
commute with the mass matrix leaving some currents conserved and others not'?. The
fact that the currents pertaining to the diagonal generators are always conserved in this
manner exposes the natural flavour conservation of these theories.

The corresponding SU(NNf) 4 currents do not, however, retain any symmetry under

an explicit, non-vanishing mass term.

Chiral symmetry breaking and the chiral condensate

There is evidence from hadronic-scale QCD'? (QCD), that the chiral symmetry is spon-
taneously broken. The first piece of evidence comes from the absence of parity doublets
in the spectrum (see Appendix A). In Ny = 2 chiral QCD for example, the lowest-
lying J™ = 0% and 17 candidate states, the sigma- and a;-mesons, have masses of
me =500MeV and m,, =1260MeV respectively [40], whereas their axial counterparts,
the pions and the rho-mesons, are, comparatively, a lot lighter at m,=140MeV and
m, = T70MeV respectively [40]. This mass splitting is too large to be understood as the
result of small explicit mass terms (for the up and down quarks) and so we must conclude
that, at the hadronic scale at least, the chiral symmetry of QCD, SU(Ny)y xSU(Ny) 4,
is not fully realised'*.

A second piece of evidence comes in the form of the interaction strength between
a quark-antiquark pair increasing as the particles get further apart. It then becomes
energetically more favourable for the ground state of QCD to consist of a condensate of
quark-antiquark pairs. Since any change in the vacuum must have no net momentum
or angular momentum, the quark-antiquark pair must consist of one left-handed quark

field and the antiparticle of a right-handed quark field [41], see figure 2.2.

2\ 0 -1

Q3 = % Ik d®(uTu—d'd) and reflects on isospin — its eigenvalue is generally written as 3. In SU(3), both
t* and t® are diagonal, the latter’s respective charge eigenvalue being the strong hypercharge quantum
number, Y = %Q%

13 An SU(3.) gauge theory with SU(2;)xSU(2y) chiral symmetry. If the strange quarks are considered
light then this becomes an SU(3;)xSU(3y) chiral symmetry.

14T reiterate the point, in the limit of chiral symmetry restoration, one would expect M, = M, and
Mo, = M,.

2In SU(2), t* = 1 ( L0 ) and thus V*? = gy*t3q = @y"u — dy*d. The associated charge
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Figure 2.2: When quark-antiquark pairs are condensed out of the vacuum they must
have zero net momentum and angular momentum. This leaves us with two quark fields;
one right-handed quark field (a) and one antiparticle of a left-handed quark field (b) or
vice-versa.

The ground state of QCD then has explicit interactions between left- and right-
handed fields breaking the chiral symmetry.

A la Coleman’s theorem, it can be shown [39] that the axial charge operators, Q%,

do not annihilate the vacuum, meaning the symmetry spontaneously breaks to
SU(Nf)V X SU(Nf)A — SU(Nf)V (2.24)

when, by some mechanism (see section 2.2), the coupling strength g, is driven to be
greater than some critical value gs > ¢gX. This is spontaneous chiral symmetry breaking
(SxSB). In Ny = 2 chiral QCD, the corresponding axial Goldstone modes are the three
massless'® pions and in N ¢ = 3 chiral QCD, these also include the lightest, stranged,
pseudoscalar mesons, the kaons and the 7.

As alluded to in section 2.1.1, the dynamical generation of a non-zero vev of some field
theory operator is responsible for the ground state becoming charged under a symmetry
of the Lagrangian and thus defining SSB. In this light, the vev is an order parameter of
the transition; a zero value implying that the Lagrangian shares the same symmetries
as the ground state and a non-vanishing value indicating a spontaneous breaking of the
symmetry. In the case of the SySB of SU(N,) theories, such an order parameter is found
in [39]

(q9) = (Qqq|2). (2.25)

This is the chiral- or quark-condensate, which can be interpreted as quark-antiquark

pairs populating the vacuum, as described above. A non-zero value of the condensate

15Pions get a non-zero mass from an explicit m, = mg # 0 term in the QCD field Lagrangian.

19



can be seen to lead directly to Q%|Q2) # 0 by using the relation'
[Q%, 7°t"q) = —5"qq, (2.26)

and taking the vacuum expectation value of both sides.

A ‘massless’ quark travelling through such a vacuum then obtains a dynamical mass
of order (q‘q>%; a broken chiral symmetry giving rise to dynamical Dirac mass terms
mixing left- and right-handed fields. In Ny = 2 QCD, (gq) ~ (250MeV)?, which explains
why'” the masses of hadrons, such as the proton, are so much heavier than the total

mass of their constituent quarks.

Effective chiral Lagrangian

A low-energy, effective chiral Lagrangian can be written in terms of only the pion fields,
7w%(z). Here, we follow the work of [39]. We seek the simplest Lagrangian that exhibits
an SU(Ny)r,xSU(Ny)r global symmetry which is spontaneously broken to an SU(Ny)y

symmetry. We invoke a linear-sigma model with the Lagrangian
Lor = 0,87 + w20 — J]]" (2.27)
that has such a behaviour. The transformation
® — LORT, LeSU(Ny), and ReSUNy), (2.28)

leaves the Lagrangian invariant. The potential of the Lagrangian is arbitrarily chosen to

be simple yet trigger the required SSB. An expansion about the vev (®) = v is carried

16This relationship can be derived using
Q4 = /d%fﬂowst“q

and the identity [39]
Yyt A" = (7).

" There is also a contribution from a non-zero gluonic condensate.
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out, as performed in section 2.1.1,

O(x) = (v+ \}50(1‘)) exp(2im®(z)t*/ fr). (2.29)

We then write the group elements L = exp(i#}t*) and R = exp(if}t*), with 07 /g defined
as the SU(Ny)p, /R group parameters with ¢* as the group generators. Next, we apply the
transformation 2.28 with these definitions to the Lagrangian 2.27 with ® parameterised
as in 2.29. In doing this, the o-field remains invariant (expectedly since ® was invariant)
and so we can discard it altogether (since it is irrelevant to further predictions) but the

m-fields transform as

7r 1
% — 7w+ %(0; —0%) =5 Feeb + 05y + .. (2.30)
Since vector symmetries rotate the left- and right-handed fields by the same phase'®,

ie. 07 = 6%, the SU(Nf)y vector symmetry, which remains unbroken after SxSB, leaves

the pions transforming in an Ng-plet, i.e. the adjoint of SU(Ny)y,

7@ — 1% — fabegbpe 4 (2.31)

This agrees with Ny = 2 QCD of the Standard Model wherein the pions form a triplet
under SU(Ny)y, (7%, 7%). The exponent in the angular fluctuations can be expanded

as
2 7  V2r~

24 rata fﬂ' \/§7T+ - 7T0
=€

O(z) =efr , (2.32)

where we have set 7° = 7773 and 7+ = %(ﬂ'l +i7?) [39]. We can thus write the field ®
as ® = vO(x). Since O(x) transforms under the SU(Ny)r xSU(Ny)r global symmetry,
we may construct the most general Lagrangian out of ©(z) and this will be a valid

effective chiral theory describing low-energy QCD [39].

18Unlike the axial symmetries whereby the phase has a factor of 4°, and so there is a sign difference
between the phase rotating the left-handed fields and the right-handed counterparts.
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2.2 Asymptotically free gauge theories

Let’s return to the Lagrangian for an SU(NV,) gauge theory with massless quarks,

1 .
L= —§tr (F"™ E,,) +iqlq, (2.33)
with
1
Fu = ;[D”’ D,], Dy = 0y +igs\" A, (2.34)
S

where A® are the generators of the SU(N,) gauge group. Such a theory contains inter-
action vertices up to dimension four with a dimensionless coupling gs and so is renor-

malizable in four dimensions.

2.2.1 Renormalization

The theory’s parameters (masses, couplings etc.) will obtain radiative corrections to the
bare values (those given in the Lagrangian) from higher order terms in the perturbative
expansion [41]. Such corrections diverge as a result of unbounded loop-momenta. A
finite number of counterterms subtracted from the bare Lagrangian are introduced in
such a way as to cancel these divergences, leaving a finite, physical Lagrangian. This is
done as follows. The bare parameters are recast as Xpare = Zx Xrenorm, where the new
finite renormalized parameter is given by Xienorm and the renormalization constant Zx
soaks up the divergence of the bare parameters and is calculated perturbatively from
the counterterms. Our Lagrangian containing the bare parameters can now be recast
in two parts; a physical part containing only the finite renormalized parameters and a

divergent counterterm Lagrangian,

E(bare) = Ephys (Xrenorm) + £CT ([ZX - 1]Xrenorm) .

A renormalization scale, y, is then defined in the process at which the new renormalized
parameters are given. The fact that the bare parameters of the original Lagrangian are

p-independent but the finite renormalized parameters, to which they are related, aren’t
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(i.e. Xpare = Zx (1) Xrenorm (1)) leads to the first-order, differential Callan'?-Symanzik?®

equation [42,43],

0 0
_ E . (n) . =
(;ualu +B(gs> ags i PYZ(M)) G ($17$2,---7$n,ﬂ,gs) 07 (235)
with
. d9s _ 9 .
Blgs) =1 o and 7y = “on (InZ;), (2.36)

where Z; is the renormalization constant for a coupling parameter or operator and G
is an n-point Green’s function. g5 is now a renormalized parameter also. The so-called
beta-function, 3(gs), is a measure of how the renormalized, strong coupling varies with
the renormalization scale u. However, it is important to bear in mind that since the
beta-function can only be calculated perturbatively, its prediction of physical behaviour

outside of the regime where g; < 1 should be taken cum grano salis.

2.2.2 The beta function & the running coupling

Given the form a general SU(IV,) Lagrangian (equation 2.33) with Ny massless flavours
transforming in the representation R, the two-loop?! beta-function of the theory can be

expressed as follows?? [41]

Blaw) = 5905 = oo — o + 0ol (2.37)
with [44],
Bo = % (13102(G) - %NfCQ(R) jirmng;) (2.38)
and [44]
= o (5 [0 - [ Fea@cam + afeum | 5 T2 ) 29

19Curtis G. Callan, Jr., 1942-.

29Kurt Symanzik, 1923-1983.

21Beyond two-loop the beta-function becomes renormalization scheme dependent.
22The beta-function may be expressed directly in terms of gs,

3 5
B(gs) = —fo (49;)2 — B (425)4 +0(g7).
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Figure 2.3: a) The beta function for Sy > 0 and 1 > 0 (top) with the running of the
coupling (bottom). b) The beta function for Sy > 0 and 1 < 0 (top) with the running
of the coupling (bottom) ¢) The beta function of Sy < 0 and 51 < 0 (top) with the
running of the coupling (bottom).

where a; = %. Above, we denote the adjoint representation as GG and its respective
quadratic Casimir?® as Co(G) = N,.. The form of j3 tells us directly about the running
coupling. Figure 2.3 shows the three main profiles of 5 in SU(N,) gauge theories and
their respective running couplings. In 2.3 a), we see 8 < 0 Vas, which occurs due to
Bo > 0 and B; > 0: it leads to profile of a (p) shared with the Standard Model QCD
gauge theory with fundamental quarks. Values of o such that §(a;s) = 0 indicate regions
where the running has ceased and are therefore called fized-points. In 2.3 a), this occurs
at as = 0 (a so-called trivial, and in this case ultraviolet(UV)-trivial fixed-point) and
translates into the coupling strength asymptotically vanishing at large . This is the
phenomenon of asymptotic freedom [30,31], whereby the interaction strength between
quarks asymptotically vanishes in the UV, yielding a free, non-interacting theory. The
regime shown in figure 2.3 b) occurs when Sy > 0 but 51 < 0. This leads to there being
two fixed points; the trivial one leading to asymptotic freedom and another non-trivial
infrared (NTIR) fixed point at as = «f. In the proximity of af, the running of the
coupling’s gradient is sufficiently small that it is referred to as walking, i.e. a slow run.

As By — 0T, the value of o is pushed closer to zero. Once the value of the coupling at

23Hendrik B. G. Casimir, 1909-2000.
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the fixed point is small enough to be used as a valid perturbative parameter, o} < 1,
we are said to be in the regime of a (Caswell?*-)Banks®*>-Zaks®S fived point [45,46]. If
Bo < 0, then asymptotic freedom is lost as the whole beta-function becomes positive,

see figure 2.3 c¢). The remaining fixed-point is a trivial IR fixed-point, like that of QED.

The other key behaviour of the beta-functions displaying asymptotic freedom is the
enhancement of the coupling in the IR, which in the case of figure 2.3 a) leads to an
IR-pole. This can be interpreted as the interaction strength between quarks growing as
their separation increases. Such a behaviour is known as infrared slavery and leads to
the phenomenon of confinement [25,47], whereby fields charged under the SU(N,) gauge
group cannot be isolated but form only ‘colour-neutral’, bound states called hadrons. Of
course, again, due to the perturbative nature of the beta-function, one cannot a priori
trust 8 above g; ~ 1, but experiment signifies that this type of behaviour is correct

within the remit of QCD, see figure 2.4 [48].

|
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Figure 2.4: Experimental verification of the asymptotically free nature of the strong
coupling parameter [48].

The scale at which these theories blow-up (i.e. the scale of the pole) is henceforth
referred to as Aqcp and this sets the values of all non-perturbative parameters such as

the chiral condensate, (qq).

2William E. Caswell, 1947-2001.
25Tom Banks, 1949-.
26 Alexander Zaks.
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Walking & the conformal window

We can also define another scale A, defined by?” af = a;(A,), at which SSB of the chiral
symmetry occurs. It has been hypothesised that this scale of chiral symmetry breaking
occurs when the anomalous dimension of the theory reaches unity; we discuss the role of
the anomalous dimension below. If the running of the coupling a,(1) passes through the
critical value o, chiral symmetry is spontaneously broken and the Ny massless quarks
gain a dynamical mass ~ A,. As such, at scales less energetic than A, these degrees
of freedom decouple leaving an ‘Ny = 0’, or pure glue, running into the deep IR with
a pole at a scale Agye. This behaviour can give rise to profiles of a,(p) which contain
intermediate ‘walking regimes’. In these walking scenarios, the running was destined
for a fixed point at o > aX but trips the critical coupling value before reaching it, see
figure 2.5. A third scale, A1, may also be defined as the scale generated by the one-loop
running, which roughly coincides with the transition between the UV-perturbative and
the IR-walking behaviours. Theories with intermediate walking regimes are purely non-
perturbative since in the framework of the perturbative beta-function, the NTIR fixed
point is always reached even if the coupling passes the critical value.

If the values of By and B; are such that a, never reaches ay, and a fixed point is
reached, o < aX; this is the regime of the so-called conformal window [44,49-56]. The
running in the conformal window has such a shallow gradient that it effectively does not
change over large aeons of the energy-scale, hence the name.

It is important to keep in mind that these walking and conformal window behaviours
are merely hypothesised situations based on the perturbative beta-function to two-loops.
Of course, we cannot know for sure that all these features do in fact appear in the full
theory of any SU(N.) model. It is purely a reasonable guess, given that there must
(presumably) exist a smooth transition between the QCD-like runnings with an IR-
pole and the (Caswell)-Banks-Zaks, fixed-point runnings as one changes either N, or
Ny whilst keeping the other fixed. A cartoon for SU(3) with Ny fundamental quarks
is shown in figure 2.6 to show how we can move between these different hypothesised

phases for this theory. A Ny — N, phase diagram for the same theory is shown in figure

27 x __ (gSX)2
Qg = “An -

26



walking regime

Aglue AX

Figure 2.5: Plot of as(p) for the case o > aX. The critical coupling is met at the scale,
A, triggering chiral symmetry breaking and generating a dynamic mass for the quarks
of order this scale. Below A, the quarks decouple and the theory then runs into the IR
as ‘Ny = 0’. The scale A; can be seen as the UV boundary of the walking regime and
it dictated by the scale generated by the one-loop running.

2.7.

2.2.3 Anomalous dimension

The Callan-Symanzik equation 2.35 also contains a second running function ~;(u) for
each n-point operator of the action. In order to understand its origin, we must look at
how those operators are affected by a rescaling of the coordinates z# — Az*, A € R.
Let’s assume the operator O(z) has classical mass dimension A, then under such a
rescaling we have

O(x) = A"20(\z). (2.40)

In the renormalization process of quantum field theories, we have seen that the bare La-

grangian operators, O, get recast as O = Zo (1) Orenorm, Where Zp () is the dimensionful
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Figure 2.6: A cartoon showing the different phases of an SU(3) gauge theory with Ny
fundamental flavours.
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Figure 2.7: The N. — Ny phase space for the fundamental representation, adapted
from [44]. Region A is where asymptotic freedom is lost. Region B is the conformal
window. Region C is where walking regimes will occur since the beta function displays
an NTIR fixed point but chiral symmetry is broken. Region D has only one trivial UV
fixed point.
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renormalization constant of the operator. Defining?®

Zo(p) = p e, (2.41)

and with the renormalized operator, Oyenorm, taking the same scaling dimension as
the classical scaling dimension of O, i.e. A, the bare Lagrangian operator O now has
quantum scaling dimension A — vo. Consequently, v» is known as the anomalous
dimension. If the renormalization constant of an operator vanishes then so does its
anomalous scaling dimension.

Starting at equation 2.41 and taking the natural logarithm of both sides

InZo =~olnu, (2.42)

we arrive at,

Yo = In Zp, (2.43)

Olnp

in agreement with equation 2.36 defined as part of the Callan-Symanzik equation.

2.2.4 Representation of the matter fields

Up to this point, we have considered only matter fields transforming in the fundamental
representation of the SU(N,) gauge group. Changing the representation of the matter
field affects the profile of the beta-function and hence the running of the coupling, see
equations 2.38 and 2.39. Of course, any SU(N,) group has an infinite number of higher
dimensional representations which could be explored, however it has been shown that
there are no asymptotically free theories satisfying Ny > 2 and N. > 10 other than
the fundamental, the adjoint and the two two-index (symmetric and antisymmetric)

representations®? [44]. In this light, for the purpose of this thesis, we shall only ever

281t is usual convention to have the mass dimension of the operator reduce in this fashion A — A —~
and its source to increase by the same value (d—A) — (d—A)++ so that the source-operator combination
in the Lagrangian is still of the correct dimension, d, of the field theory.

29The sign of the By coefficient of the beta-function indicates whether the theory is asymptotically free
or not — if By > 0 then asymptotic freedom is a property of the running, if 5 < 0 it is not. From equation
2.38, we can see that as the dimension of the representation is increased, the matter contribution (i.e. the
second term with the Ny coefficient) becomes more negative whereas the gauge term remains constant.
From this, it is clear that a higher dimensional representation will lose asymptotic freedom earlier than
a lower dimensional representation.
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consider these four representations. In a similar vein to the fundamental N; — N,
phase space in figure 2.7, the Ny — N, phase space for all four of these representations
can be seen in figure 2.8. An important property of the phase-space for the adjoint
representation is that the transition values of Ny (in and out of the conformal window
and with and without asymptotic freedom) are independent of N.. This is clear from
the structure of By and 31 whereby fixing R = G leaves the value of Ny which solves
Bo/1(Ny) = 0 independent of N.. A table of the important, distinguishing parameters

of the different representations can be seen in table 2.1.

Ny,,

18

16

14

12

C

Figure 2.8: The N, — N phase space for the fundamental representation (black), the
adjoint representation (green), the two-index symmetric representation (red) and the
two-index antisymmetric representation (blue), adapted from [44].

2.2.5 Large-N, expansion

In SU(V,) gauge theories exhibiting a confining infrared, the coupling g5 is not a good
expansion parameter at small py. This prevents the use of the powerful perturbative
tools, used to much success in the electroweak sector of the Standard Model, to try
to understand hadronic scale QCD. It was suggested by 't Hooft [57], that a different

expansion parameter, namely 1/N, as N. — oo, might be used in its place. In this
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R dim(R) Co(R) N

Fundamental N, A;%V_c 1 % N.

Adjoint (G) | N2-1 N, 23
21S Nc(l\Z{cH) (Nc—1]¥CNC+2) % Njcvb
9TA NC(J\QIC—U (NC-HJ)V(CNC—Q) u N]C\,i2

Table 2.1: Distinguishing quantities of representations of SU(N.) gauge theories with
asymptotic freedom valid for any N, > 2. dim(R) is the dimension of the representation,
C3(R) is the quadratic Casimir of the representation and N*** is the maximum number
of flavours allowed before asymptotic freedom is lost at fixed N..

section, we follow [58].
Studying the one-loop beta function of such an SU(N,) gauge theory with Ny fun-

damental flavours (see equation 2.38)

_ dgs (11 2 g2
6(95)_8ln,u_ (3Nc 3Nf> W’ (2.44)

it is clear that the beta-function is ill-defined for large N. — oco. In order to have a
sensible expansion in N;! for large N., a new coupling is defined as A = ¢2N,, the
so-called ’t Hooft coupling. For A to make sense as a coupling parameter as N. — oo,
one must also take the limit g2 — 0 such that \ is fixed — this is the * Hooft limit. The
beta-function can now be recast as

ON (11 2Np\ N
dlnp <3 B 3Nc> (4m)?’ (243)

which is well-defined in the limit N, — co. Moreover, in the limit N, — oo, the quark
contribution is suppressed.

In order to appreciate the expansion in large N., we introduce a double line nota-
tion. In this notation, gauge fields no longer carry one adjoint index but rather one
fundamental and one anti-fundamental index. The propagator of the gauge field is then
represented by a double line; one fundamental propagator and one anti-fundamental

propagator (examples of these diagrams can be see in figure 2.9). A schematic La-
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Figure 2.9: The double line notation for a) a gauge field propagator, b) a three point
gauge field vertex and c) a matter field interacting with a gauge field.

grangian for the theory can then be crudely written as follows;
L= 0'Di9,®] + g, @i OF + g20! &) OF DL + iT PV + g, T DIV, (2.46)

where <I>;- represents a field transforming in the adjoint representation (representing the
gauge field and now carrying one fundamental and one anti-fundamental index) and W*
represents a fundamental degree of freedom (representing the matter fields).

The effective Lagrangian 2.46, under the three transformations, A = g2N,, é; =
1/%@% and U’ = ,/N%\I/i yields

N ~ . ~ o~ e~~~ e o~ o~ ~ =~ . ~ . = o~ o~ .
ﬁ:f{wqm@+qﬂ@+%%@@+m%@+@%%) (2.47)
From 2.47, it is easy to see that for a given diagram, every propagator contributes a
factor of A/N, and each vertex yields a factor of N./A. If every loop also contributes a
factor of N, to run over the different colours, each diagram has a coefficient

E \%
N _ _
C= (5?) <,x> NL = NEZVHL)\V-E, (2.48)

where E is the number of propagators (or edges), V' the number of vertices and L the
number of loops. The coefficient NCE_VJFL is equivalent to NC2 29 where 2 — 2g is the
Euler characteristic [59] of the diagram’s topology having genus (i.e. number of handles)
g. The coefficient, C, can be recast as

NZNV—E

) 2.49
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which indicates that the planar, ¢ = 0, diagrams dominate over higher genera in the
N, — 00 limit — see figure 2.10. In summary, to understand a QCD-like theory at large
N., we need only to perform an expansion in the genus of the double-line diagram’s

topology; a calculation over all g = 0 diagrams yielding a first-order result and so on.

genus = 0
=9 =
L3 L3
~ N2 ~ N2
c C
genus = 1

Figure 2.10: The lower genus diagrams in the double line notation dominate over higher
genera. All diagrams of the same genus are proportional to the same power of N, and so,
to leading order, only the planar g = 0 diagrams, proportional to N2 need be considered
in the N, — oo limit.

2.3 String theory

Throughout the late 1950s and early 1960s, experimental evidence was surfacing that
indicated a strong linear relationship between the rotational angular momentum of what
we now know as hadrons and their squared masses; L ~ m?. No matter what the hadron,
the linear paths the excited states filled out on the (L, m?)-plane were all, remarkably,
parallel. Such paths are referred to as Regge trajectories®” [60] and the gradient referred
to as the Regge slope, o, giving L = o/m?. This linear behaviour is most unexpected

from the viewpoint of particles as small ‘billiard balls’. Spinning up a billiard ball to

30Named after Tullio Eugenio Regge (1931-2014) but first hypothesised by Geoffrey Chew (1924-) and
Steven C. Frautschi (1933-).
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greater and greater values of angular velocity will in turn increase its energy, up to a
point3!, as L ~ m: this is true even on the atomic scale. It was known that these hadrons
were necessarily composite, for one cannot spin up a point-particle?, but the structure
was still a mystery. One answer was that the bosonic hadron states (the mesons, as we
now refer to them) were formed of a quark and an antiquark point particles connected by
a string. A string is easily spun and, furthermore, a classical rotating string reproduces

the L ~ m? behaviour of the experimental Regge trajectories.

The models proposed within the new field of string theory were plagued by systemic
issues. The theories always seemed to predict a tachyon in the particle spectrum as
well as a massless spin-2 particle that related to nothing seen in nature. Furthermore,
these theories had to live in 26 dimensions and only accounted for the bosonic part of
the spectrum. After the emergence of QCD in the 1970s, string theory began to lose
favour as it became clear that QCD was able to satisfactorily explain the strong nuclear

interaction at large energy scales.

Despite the loss of interest in string theories as a description for the strong nuclear
interaction, they were later revived when it became apparent that the ineradicable spin-
2 particle could be justified as a graviton. This ‘discovery’ of a graviton allowed the
physics community to rationalise that such string theories might provide a candidate
to reconciling the two pillars of modern physics, to wit: Quantum Field Theory (QFT)
and General Relativity (GR). This section contains a brief introduction to string theory
leading on to the following section on D-branes, higher dimensional string-like objects
that are fundamental to the AdS/CFT correspondence and other related holographic
models. For a more in depth discussion on the fundamentals of string theory (and
the low energy supergravity limit), we recommend [61-66] whence the following brief

introduction is adapted.

31Until the centrifugal forces on the ball become too large and it rips apart.
32The reasoning as to why no higher excited states of the electron are found, for example.
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2.3.1 Bosonic string action

The underlying principle to string theory is to consider extended one-dimensional ‘strings’

of length®? [, = V&' as the fundamental objects rather than the point-like (zero-
dimensional) ‘particles’ that are usually assumed. Just as a point-particle will sweep out
a worldline as it moves, a one-dimensional string sweeps out a two-dimensional world-
sheet that can be parameterised by two coordinates; 7, the proper time, and o, the
spatial range of the string, which, without loss of generality, we set to be o € [0, 7],
for later convenience. The action of such a string is given by the area of the world-
sheet (the worldsheet being denoted by ) swept out by the string, with the simplest

parameterisation of such being the so-called Nambu-Goto action,

M N
SN(;——T/deU\/ det GMNaX 8X ) (2.50)

0c® Oob

where T is the string tension®*, X™ are the functions describing the embedding of
the worldsheet, G s is metric of the d-dimensional target spacetime, the spacetime in
which the worldsheet sits, and 0% = (7,0). Instead of a two-dimensional worldsheet
embedded in a higher-dimensional target space, one can just as easily interpret 2.50 as
a two-dimensional field theory with d bosonic fields X (7,). It is the excitations of
these fields which are to be understood as the ‘particle’ spectrum of the string theory.
The Nambu-Goto action in its present, square-root form gives rise to a rather la-
borious undertaking to quantise the system. An alternative, equivalent action is the

Polyakov3® action,

XM oxN
- _/ drdo/det hgph® bGMN(9 - 88 = (2.51)
O' (o

where we have now eliminated the uncooperative square root at the expense of an extra

auziliary field, hy,. The equations of motion of hy;, obtained by variation of the action

33The string length is naturally proportional to the tension carried in the string. This tension can be
cast in terms of the Regge slope parameter o', which pertains to how the angular momentum and mass
of a meson are related as the particle is spun: the extension of the string between the quarks, in the
string theory picture.

34The string tension (mass per unit length) is inversely proportional to the string length squared,
given as T~ % = 2rxl2.

35 Alexander M. Polyakov, 1945-.
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2.51 acts as constraints® to recover the Nambu-Goto action — this can be seen explicitly
by substituting the solutions to the equations of motion of h,, into the Polyakov action

to return to the form of the action in 2.50.

The Polyakov action 2.51 exhibits some important symmetries:

I) Poincaré invariance of the target spacetime covered by the metric Gy,
XM o x™M = AN XN M (2.52)

where A]\N/[ are the Lorentz transformations of the target spacetime and ¢™ are the trans-

lation transformations of the target spacetime.

ITI) Diffeomorphism invariance. The Polyakov action remains invariant under a repa-

rameterisation of the worldsheet coordinates,

(r,0) = (7',0") = (£(7), f(0)). (2.53)

IIT) Weyl transformation invariance. The Polyakov action is furthermore invariant

under a local rescaling of the worldsheet metric,
hap — hly = €T By, (2.54)

These symmetries allow us to choose a particular gauge in which the worldsheet metric
hap is equivalent to the two-dimensional Minkowski metric, 7., = diag(—1,1). As such,

the Polyakov action can be recast as
G T oM IM 1
Sp=—3 [ drdo (X X — X XM> , (2.55)

where X refers to a derivative with respect to 7, and X is likewise the derivative with

respect to o. It is evident from this form of the string action that the equation of motion

36These constraints are known as the Virasoro constraints and amount to the restrictions stemming
from a vanishing stress-energy tensor T,, = 0, an equivalence of requiring the variation of the action
under hgp to vanish.
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for the fields XM (7, ) is given by a relativistic wave equation,
XM = x"M (2.56)

with further constraint from a variational surface term yielding a supplementary bound-
ary condition,

XMAX |5 =0. (2.57)

This boundary condition leads to having one of two types of string; a closed string,
whereby XM (7,0) = XM (r,m) and X'M(7,0) = X'M(r,7), or an open string with
loose ends, which further imposes that either X’™ vanishes at o = 0, 7 (a Neumann?3T
boundary condition), or that AX,; = 0, equivalent to fixing the spacetime position of

the string ends (a Dirichlet3®

boundary condition).

If the two ends of the open string satisfy Neumann boundary conditions, it can be
shown that the total momentum of the string is conserved since the momentum at the
ends of the string vanishes. Conversely, for a string with two Dirichlet-type ends, by
fixing the location of the ends, we immediately break the translational invariance in
the target-space dimensions along which the string end is fixed, resulting in no total
momentum conservation in these directions. Therefore, we must postulate that the
Dirichlet ends of strings must attach to hypersurfaces, known as Dirichlet- (or D-)

branes, which carry the momentum away. As we shall see, these D-branes play an

important role in holographic models.

Mode expansions

Classical solutions to the equation of motion, equation 2.56, are easily found to be

39

a Fourier®” series expansion. For the open string, we have the solution restricted by

Neumann boundary conditions given by

M .
X(J‘]/l\,) (1,0) = 2™ + 1 ;rp™ + il Z O%‘e”” cos(mo), (N) (2.58)
n#0

37Carl Gottfried Neumann, 1832-1925.
38Johann P. G. L. Dirichlet, 1805-1859.
39 Jean-Baptiste Joseph Fourier, 1768-1830.
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M is the centre-of-mass position of the string, p™ the total, enclosed momen-

where z
tum and o are the Fourier modes. The solution constrained by Dirichlet boundary

conditions yields

X(]\ZI))(T, o) =XM(7,0) + % (XM (r,7) — XM(1,0)) 0 (2.59)

M
+ I Z In_g—int sin(no). (D)
n#0 n

In the case of the closed string, there are two solutions corresponding to the left-

and right-moving modes. In so-called light-cone coordinates, o4 = 7 &+ o, these are

XM ( )_}M+§M +&2%—W+ (L) (2.60)
(L) 0'+ = 233 2p 0'+ 2 n e s .
n#0
and
1 12 ils aM
X{h(oo) = §xM + 5pMa_ + 5 > —e ™ (R) (2.61)
n#0

Here, pM is the centre-of-mass momentum and we distinguish the Fourier modes of the
left and right movers as &, and a,, respectively.
Quantisation

Quantisation leads us to promoting X™ to an operator in the corresponding Hilbert*"

space, equivalent to promoting ™, pM and a% to operators. This gives the algebra

[, pN] = i, (2.62)
[a%7 O‘rly] = [d%v dizv] = m5m+n77MN7 (2'63)
[ al] = o0. (2.64)

The a-operators act like the raising and lowering operators of the quantised harmonic
oscillator, moving between higher and lower excited states. For n > 0, (aﬁ/‘f )Jr /v/n =

oM /\/n acts as the raising operator and o /\/n acts as the lowering operator. Negative

“ODavid hilbert, 1862-1943.
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norm states are removed by setting a normal ordering constant to be unity and ensuring
that the number of spacetime dimensions is less than or equal to 26. The masses of the

excited states can then be derived using light cone quantisation [61] as,

1
M? = Z—Q(N - 1), (open string) (2.65)
and
2
M? = ﬁ(N —1), (closed string) (2.66)

S

where N is the eigenvalue of the operator N = Yoo et ,@l s (withi=0,1,..,d—2 =

24), which acts like the number operator of the quantum harmonic oscillator, counting
the number of modes*!.

From this, it is clear that the lowest lying state (N = 0), in either the open or closed
sector, is tachyonic and therefore causing the vacuum, |0), to be unstable. In the open
sector, the first excited state is a massless vector o’ ;|0) and this will be of importance

when we discuss D-branes and the AdS/CFT correspondence.

The closed sector’s first excitation, aildil\m, is a set of (d — 2)? = 576 states; a

GMN

symmetric traceless part, the spin-2 graviton , a massless trace term, the dilaton

¢ = a’ @' ,|0), and an anti-symmetric part BMYN = —pNM,

Knowing the field content as described above, we can rewrite a general worldsheet

action with at most two worldsheet derivatives (9,) as,

S = —/ drdo/det hgy (habGMN + 6abBMN> oX" 0 — 'Ry, (2.67)
2 Jo Oo¢  Qob

where €® is the two-dimensional, totally antisymmetric tensor and R is the 2D Ricci

scalar of the geometry. The Polyakov action is recovered under By/y = ¢ = 0.

The final term,

1
o /deU\/det haR = x (2.68)
T

is a topological invariant*? in 2D for constant ¢, measuring the Euler characteristic of

41GQince there is no privileged position on the string, the number of left- and right-moving modes are
imposed to be the same, N = N, = Ng.
42¢f. Gauss-Bonnet theorem.
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the worldsheet.

2.3.2 Superstring theory

The bosonic string theory action has two major drawbacks; the lowest lying state is
tachyonic (leaving the theory unstable) and it does not account for fermionic degrees
of freedom, a necessity if string theory is to be a candidate for a UV-complete theory
of nature. Tachyonic modes will be discussed later as they reoccur in the superstring
formalism. Fermionic modes can be incorporated into the string framework by naturally
extending the Polyakov action, gauged to set h,, = 714 as before, by an extra term
resemblant of a free Dirac action,

T w (OXMOXy . 0V
S = —2/d7'd0'77 (80‘“ aab + W paW 5 (269)

where now M =0,...,9.

Here the fermionic fields, UM (1,0), are two-component spinors transforming as a
vector under the Lorentz transformations of the target spacetime and p® are the two-
dimensional equivalents of the 4d gamma matrices of the Standard Model. Assuming
the fermionic fields to be two component and Majorana (both components real), ¥ =

(WM, M) we can transform the fermionic part of the action 2.69 with oy =7+ 0 as

T p OV oM
Sy = —2/d0+d0j <@Z)+ 9o + 90 ) (2.70)

with J = % as the Jacobian of the transformation. As such, the equation of motion for
the real components, ¢4, are once again those describing relativistic wave equations,
this time one left-moving wave and one right moving wave,

oM M
doy  Oo_

~0. (2.71)

Once again, the variational methods used to derive 2.71 enforce boundary conditions

required to set surface terms to zero,

WM APy = VY Ay (2.72)
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Open superstrings - Type 1

If we are to have open superstrings, then we can make the surface term vanish by
imposing

i = M (2.73)

at the string ends o = 0, 7. Fixing the 0 = 0 end (without loss of generality) to take

the positive sign leaves us with a choice of sign for the other end, o = .

The so-called Ramond*3- (R-) sector chooses the positive sign,
P (m) =+ (m), R) (2.74)

giving the mode expansion of ¥}/ as,

P = " demino, (R) (2.75)

nez

Here, dM are Fourier modes, which will become real, fermionic operators after quanti-

sation, (d,]‘f )T = d]l/[n. The masses of R open superstring states are then found to be

o) (e}
oM?=> "o ol 4+ nddl, i=1,.,8 (2.76)
n=1 n=1
The remaining Neveu?4-Schwarz?- (NS-) sector chooses the negative sign,

¥ (m) = =M (7), (NS) (2.77)

giving the mode expansion of wﬁ\f as,

Y=Y pMem o, (NS) (2.78)
reZ+i

where b are Fourier modes, which will become real, fermionic operators after quanti-

43Pierre Ramond, 1943-.
4 André Neveu, 1943-.
45 John H. Schwarz, 1941-.
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sation, but with a half-odd-integer index to satisfy the boundary condition. The masses

of NS open superstring states are then found to be
Z ol ol + Z rbt b — i=1,.,8 (2.79)

It is important to note that vacuum of the NS open superstring is tachyonic with M? =
—1/2a/. The seemingly innocuous choice of sign has a significant impact on the states
after quantisation. The R-Sector (+ sign) leads to spacetime fermions (spinors) while

the NS-Sector (- sign) leads to spacetime bosons.

Closed superstrings

The construction of closed superstrings is again possible. In this scenario, the surface

term becomes a periodicity condition on the superstring,

wﬁ\:/[(T, o) = :twi/[(T, o+ ). (2.80)

Choosing the positive sign describes periodic boundary conditions (again known as Ra-
mond boundary conditions) and the negative sign describes an antiperiodic boundary
condition (Neveu-Schwarz condition). Of course, we can impose either condition on the
left- and right-moving wave solutions independently, generating four possible closed su-
perstring states intuitively labelled (R, R), (NS, NS), (NS, R) and (R, NS) describing

the boundary condition on the (left, right)-modes respectively, see table 2.2

Mode Expansion ‘ Sector
Right-moving solutions: ¢™(o_)
Z dMe=ino- R
nez
> pMeriro NS
T‘GZ"F%

Left-moving solutions: wf\r/[ (04)
Z Jﬂ/f e no+ R
nez
S Mo NS

TEZJr%

Table 2.2: Mode expansions for the left- and right-moving closed string solutions.
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After quantisation, the (NS, NS) and (R, R) states are bosonic string states whereas

the mixed (NS, R) and (R, NS) states are fermionic.

Gliozzi-Scherk-Olive projection & type ITA/B

In order to remove the tachyonic degrees of freedom and ensure an equal number of
bosonic and fermionic states (to satisfy having a manifest supersymmetry), we introduce

a G-Parity*® operator in the NS-sector,
Gns = (-1)FH (2.81)

where F' = > | b% bl counts the number of b, oscillators. The so-called Gliozzi*’-

r= '

1
2
Scherk*8-Olive*® (GSO) projection [67] removes the tachyonic mode by ensuring
Gns|state) = +|state).

Since the ground state has no b-oscillators, F' = 0, leading to a negative G-parity state

and is hence projected out of the spectrum. In the R-Sector, we define a similar operator,

GR = pn(—l)F, (2.82)

where F is now given by > >, d* ,d},, counting the number of d-oscillators, and p1; is
the 10-dimensional analogue of the 5 Dirac matrix. The massless string states in the

R-sector can be said to have a definite chirality, if they satisfy
p11|state) = +|state). (2.83)

Hence, by projecting out states of a certain G-parity in the R-sector, one imposes a
chirality projection onto the spinors. The freedom in choice over the chirality of the

R-sector fermionic modes leads to two different closed string theories; type ITA where

46The name is a remnant from when string theory was being proposed as a formalism for understanding
hadronic physics.

4TFerdinando Gliozzi, 1940-.

8 Joél Scherk, 1946-1980.

*David Ian Olive, 1937-2012.
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the chiralities of the left- and right-movers are different and type IIB where they are the
same.

Naturally, the (NS, NS)-type closed string is the same for types ITA and IIB; con-

GMN

taining the graviton , dilaton ¢ and the antisymmetric Kalb-Ramond tensor field

BMN _The latter two-form is the string generalisation to the one-form electromagnetic

potential A* and as such strings® can be seen as the source of BMYN

, just as charged
point-particles are the source of A* in electromagnetism. The (R, R)-sector differs be-
tween types ITA and IIB, as expected. In type IIB, we find®! a scalar C, and two
antisymmetric tensor fields CMY and CMNPQ | whereas in type ITA we get a vector CM

and an antisymmetric tensor field CMN? at the massless level. The mixed (NS, R)- and

(R, NS)-sectors contain the fermionic superpartners to the bosonic sectors.

2.3.3 Type 1IB low-energy action
String coupling and the dilaton

In an interacting type II theory with coupling g,, one can calculate perturbatively the

string scattering amplitudes via the formula [68]

String Amplitude = )~ g, X / DXMDhte SKITT W, (2.84)
topologies i

where xy = 2 — 2g is the Euler®® characteristic [59] of the worldsheet and g the genus - a

value counting the ‘holes’ in the worldsheet. V; are the relevant vertex operators of the

scattering.

Now assuming the dilaton field, ¢, acquires a non-zero vacuum expectation value
(vev), ¢ — ¢ + (), then the string Boltzmann®? factor e changes by a constant

factor of e X¥) (see equation 2.68). It is then natural to associate the string coupling

5These fundamental strings are known as F'l-strings in the literature [64].

5IThe notation for the type II fields is sometimes denoted by C(ry for an r-form; for example, the
Kalb-Ramond tensor is often denoted as B(g).

52Leonhard Euler, 1707-1783.

53Ludwig Eduard Boltzmann, 1844-1906.
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constant, g,, to the dilaton vev as
9o =€\, (2.85)

by direct comparison with equation 2.84. As such, the string coupling isn’t an indepen-

dent parameter of the theory; it is determined dynamically by the vev of the dilaton.

Supergravity limit

Up to this point, we have only considered the massless modes of the string spectrum.
Since the masses of the higher excited modes are proportional to (o )_%, all but the
massless modes are irrelevant in the low energy limit o/ = 2 — 0 — an effective
zooming-out, seeing the strings as point-like. We are then able to do perturbative

expansions about ', the leading order of this expansion is the limit of supergravity [65].

Type IIB supergravity action

We now turn our focus away from the worldsheet action and write down a target-space
action, which encodes all of the same information and degrees of freedom contained in
the above analysis. The bosonic part of the type IIB supergravity action can then be
written as [65,60]
1 10 -2 M 1 2
S11B = g [/d X\/W{e v <R+48Mg08 ¢~ 5H) )

1 1 - 1 -~ 1
_§‘F(1)‘2 _ §’F(3)’2 _ 4‘F(5)‘2} — 2/0(4) /\H(3) A F(g),:l (2.86)
where we define

|F(T)|2 GMINI"'GMTNTFML"MTFNL“NT

o
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and F denoting the complex conjugate of F. We also define the field strength tensors
of the RR-forms [65, 66]
F

p) = dCp-1) Fg) = Fzy — CH)

1 1
Fs) = F5) = 50 N H) + 580 A F), (2.87)

and we define H(3) = dB(3) with d the exterior derivative.

2.4 D-branes

In this section, we briefly outline the importance of D-branes, the higher dimensional
string-like objects that we earlier postulated to exist in the case of open strings with
Dirichlet boundary conditions on their endpoints. For more discussion on D-branes we

recommend [69].

T-duality and D-branes

As previously mentioned, D-branes play an important role in string theory. Such hy-
persurfaces are necessitated when open strings are chosen to have Dirichlet endpoints
— see figure 2.11. One might argue, nonetheless, that if such Dirichlet endpoints in the
open sector aren’t compelled to exist then D-branes are nothing more than a hypothet-
ical excrescence of the theory. This argument is however flawed when one looks at the
so-called T-dual [70,71] of a Neumann open string.

T-Duality® is a symmetry arising from the closed string sector under compacti-
fication of one spacetime dimension. For example, take a closed superstring theory
compactified on a circle of radius R in the ninth spatial direction. Since the string
points 2 and 2” + 27 R should be identical, it follows that the translational operators
should be identical e~ 9’ = ¢=Po(@’+27R) anq as such the momentum is quantised in
the compactified direction;

K
P’ = & K € Z. (2.88)

51 0r target spacetime duality.
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» p

Figure 2.11: D-branes as hyperplanes over which Dirichlet strings can move freely,
spanning the dimensions (or a subset thereof) of the target spacetime along which the
string is Neumann. xp are the dimensions in the target spacetime where the shown
string ends are fixed. String A shows an open string with two Dirichlet ends stretched
between two different D-branes, string B shows a string attached at both ends on the
same brane and string C shows a string with one Dirichlet end (fixed to the D-brane)
and one free-to-move Neumann end.

K is known as the Kaluza®-Klein®® excitation quantum number. Since a closed string
can also be wound around the compactified dimension®”, 2° may not be single-valued,
instead changing by 27W R, where W € Z is the winding number. The masses of the
string states are then amended to
~ K? R?
M?*=M?+ — +W?—. 2.89
W (289)
T-Duality is the symmetry pertaining to the now-evident invariance under the simulta-

neous transformations

K+—W and R +— 7 (2.90)

i.e. the complete spectrum of the theory is unaware of a change in the radius of the
compactified direction, R — o//R, up to a relabelling of K and W. When R? > «/,

string effects are small and classical geometrical reasoning can be used, whereas in its

55 Theodor F. E. Kaluza, 1885-1954.

56Oskar B. Klein, 1894-1977.

5"Winding about a compact dimension is something which a point-particle cannot do and so it is a
pure string effect unlike the Kaluza-Klein excitations.
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A 2
T-dual, (%) < o and so string effects dominate. So T-dualising a theory can move
one’s system between two different regimes of validity; the classical and the stringy

quantum.

Naturally, the idea of T-Duality related to the compactification R — R x S can
be extended to more complicated compactifications [72]. One consequence of T-Duality
is that the chirality of the left-moving modes are flipped whereas the right-movers are
unaffected: T-dualising a type II superstring theory then has the realisation of morphing

type IIA theories into type IIB and vice-versa.

From equation 2.89 it can be seen that, as the radius of compactification becomes
smaller and smaller, the Kaluza-Klein modes get heavier and become more costly to
excite in opposition to the ever lighter winding modes. As R — 0, we lose one dimension
but it re-appears in the effective form of a continuum of winding modes (since they

become ever easier to excite as R diminishes).

Considering a Neumann open string sector, no such winding number is present, since
such a string can just unfurl. Therefore, as R — 0, Neumann open strings really do only
see d — 1 dimensions — there is no continuum of winding modes to compensate. Since
all interacting open string sectors contain closed strings®® and closed strings can wind
around the compactified dimension, we have a theory whereby open strings only see d—1
dimensions but the closed sector sees the full d dimensions. This threatens T-duality
since the open strings ‘know’ if they are living in a theory with a large compactified
circle or small, depending on the number of dimensions open to them. Such a quandary
is solved when we recognise that only the endpoints of an open string are distinguishable
from a point on a closed string. In this case, only the endpoints are restricted to move
in d — 1 dimensions allowing the rest of the string full knowledge of all d dimensions.
This implies that the endpoints must have a Dirichlet boundary condition in the one
dimension in which their movement is fixed. So an open string with Neumann boundary
conditions in all directions at large-R compactification becomes an open string with
Neumann boundary conditions in all but one direction in the T-Dual (the small circle

R — 0) and vice-versa. Thus we must postulate the existence of a D-brane to which

58 An interacting open string can trivially become a closed string if its two endpoints interact and join!
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the Dirichlet direction affixes. Thus T-Duality is an exact symmetry of the open sector
too, equivalent of exchanging Neumann<— Dirichlet endpoints along the T-dualised
directions. D-branes are therefore necessary objects for a fully-realised string theory.
We classify D-branes by their spatial dimension: a Dp-brane extends in p spatial
dimensions, making it a p + 1 dimensional object. E.g. a DO-brane is therefore a point-

particle, a D1-brane is itself a string, a D2-brane a membrane and so on.

2.4.1 The Dirac-Born-Infeld action

We wish now to construct an equivalent worldbrane action for a Dp-brane. In analogy
to the Nambu-Goto worldsheet action of a string, we may write the bosonic part of the

Dp-action as

pf/dpﬂfe ?\/—det (Gap + Bap), (2.91)

Spp = —

(2mV o)

where

OXM ogxN OXM oxN

907 Dot and By = Byn———— 907 Dot (2.92)

Gab = GUN—F—

are the so-called pullbacks of the metric and the Kalb-Ramond antisymmetric tensor,
and £ are the p+ 1 coordinates of the worldvolume. Recall that in the open superstring
NS-sector, after the removal of the tachyonic ground state by GSO projection, the lowest
lying state is a massless vector b® 1 |0). The components of this state longitudinal to a
connected Dp-brane lie within the brane itself and so one can define a U(1) vector field
Al with I = 1,...,p — 1 that ‘lives’ in the brane. The remaining degrees of freedom
transform as scalars on the D-brane world volume but naturally act as a vector field in
the transverse directions. It is necessary to account for this vector field in the action
of the D-brane. Appending this term, we arrive at the so-called Dirac-Born%-Infeld®’

(DBI) action,

SpBI = dPTi¢ em?\/— det (Gap + Bap + 21/ F, 2.93
DBI (%\/»p\ﬁ/ Ee?\/—det (Gup b+ 2ma’ Fp), (2.93)

59Max Born, 1882-1970.
50Leopold Infeld, 1898-1968.
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where Fy;, is the associated field strength tensor of the additional U(1) gauge field. In
the limit of a constant dilaton, e=% = g;'!, we see that the D-branes are non-perturbative
objects since their underlying Lagrangian is proportional to the inverse coupling. An
expansion about small g, then is unavailable to us to probe the dynamics of these objects

in string theory.

In flat space with Bpsny = 0, we can expand the action as
1 +1 ab
Sppr ~ — [ A" Fp 'Y, (2.94)
Yo

where we have used det(X) = e""(1+%) ~ 1 — 1tr(X?2) for an antisymmetric matrix X.
The DBI action now takes on a familiar form — that of a U(1) pure gauge (Yang-Mills)

theory with gs X Go,

2 = (2ma)" (Var) g, (2.99)

hinting towards the notion of a gauge/gravity duality.

Chan-Paton degrees of freedom

If we consider N D-branes stacked one on top of another, then there is no way to
distinguish a particular brane on which an open string ends. To account for this, we
introduce non-dynamical degrees of freedom called Chan-Paton factors A;;, which label
a string stretched between brane i and brane j. The N x N matrix A of elements of \;;
turns out to be an element of the Lie algebra U(N). A string state (or wavefunction)
can then be decomposed in a basis of the Chan-Paton factors,

N

k) = > |k, ig)Nij. (2.96)

ij=1
2.5 Gauge/Gravity duality

In this section, we will introduce the Anti-de-Sitter/Conformal Field Theory (AdS/CFT)

correspondence — a duality which relates a quantum field theory (QFT) on flat space-
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time to a string theory®!, thus uniting the previous sections’ discussions. This section

is based on the texts [64,73-78].

2.5.1 AdS/CFT correspondence: Motivation

The core of the AdS/CFT correspondence is the double interpretation of a stack of N,
coincident D3-branes in type IIB superstring theory. The interpretation, which is the
most appropriate, depends upon the value of the string coupling constant, g,. Since
both perspectives must describe the same theory, we conjecture that the interpretations

in the different limiting cases should be equivalent.

A useful analogy

A useful analogy to have in mind when we discuss the two interpretations of the D3-
brane stack is as follows. Consider the system of a heavy charged particle, a proton for
example, being orbited by an electron. There are two ways we can look at the interaction

between the proton and the electron:

1. By summing over all the appropriate Feynman®? diagrams for the proton-electron

interaction, or

2. By ignoring the presence of the proton altogether and just studying the motion
of the electron in a non-trivial electric field background (one which would be

generated by a proton).

We use similar reasoning below to obtain a dual-interpretation of the D3-brane stack.

Interpretation I

Consider D-branes as physical, dynamical entities sitting in the 10d-Minkowski space-
time and on which open strings may end.
We have seen that the low-energy (o/ — 0) Dp-brane action 2.94 has a tension

proportional to g, !. Therefore, for N, D3-branes, the total tension, being just the

5'Such a duality has been a great cause for excitement since it relates a string theory, a strong
candidate for quantum gravity, to a QFT on flat spacetime, i.e. a theory with no gravitational degrees
of freedom.

%2Richard P. Feynman, 1918-1988.
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sum of the individual tensions, implies the brane stress-energy tensor is proportional to
g;'N.. This additional contribution to the total stress-energy tensor has the effect of
warping the original flat geometry into which the D3-branes were placed — the process
of so-called backreaction. The associated geometry can then be found as a solution to

the Einstein® equations,

1
RMN — §gMNR = SWHIOTé\fa]I\Ifm (297)
where Té‘fajl\]’e is the stress-energy tensor taking into account the D-brane tension, and

the ten-dimensional Newton’s constant, k19, is proportional to g2 [73]. Overall, the

right-hand side of equation 2.97 is proportional to g, N. = A.

The first interpretation of the stack of D3-branes is described in the limit A — 0,
whereby the stack has an infinitesimal backreaction. In this limit, we can subdivide the

total action in this interpretation as follows;

S= Sbrane + Sbulk + Sinta (298)

where Sprane is the action pertaining to the D3-brane stack, Spuik is the action of the
closed strings in the 10d Minkowski spacetime or bulk, and Siyt describes the interaction

terms between the brane excitations and the closed strings in the bulk.

We have seen from equation 2.94 that the action of each D3-brane in the limit
o’ — 0 takes on the form of a U(1) Yang-Mills theory. It then follows that the action,
Shrane, Of a stack of N, coincident branes has the same form as an SU(N.) Yang-Mills
theory%. In fact, the action is equivalent to that of an V' = 4 supersymmetric Yang-
Mills (SYM) theory with vector multiplet consisting of the SU(N,) gauge fields A’,
four Weyl fermions, A4, and six scalars, ®!6  all in the adjoint of SU(N,). The
six scalars can be seen to parameterise fluctuations in the D3-brane stack in the six

transverse directions. The beta-function of NN = 4 SYM can be shown to vanish at

63 Albert Einstein, 1879-1955.

54n fact, it directly follows that it takes the form of a U(N,) Yang-Mills theory when examining
the Chan-Paton degrees of freedom. However one U(1)CU(IV.) pertains to the symmetry associated to
motion of the centre-of-mass of the stack and decouples, leaving us with an SU(N.) symmetry on the
brane itself.
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all orders of perturbation theory and is thus conformal. The theory also has an SO(6),
global R-Symmetry, an automorphism symmetry of the supersymmetry generators. The
conformal symmetry of the SYM theory, SO(2,4), is identical to the isometry of AdSs
spacetime.

Shuik contains the closed string states and is given by the type IIB supergravity
action 2.86. The interaction term Siy vanishes in the low energy limit [78], in effect
decoupling the brane action from the bulk action and separating the system into two

distinct parts:
(SU(N.) N =4 SYM Gauge Theory) & (10d type IIB Supergravity) (2.99)

This interpretation is similar to the Feynman diagram approach to the electron-
proton system of the aforementioned analogy. We are looking at open string excitations
(fluctuations) of the D3-brane stack and summing over all string diagrams perturba-

tively, genus by genus, giving us the behaviour of an N'=4 SYM theory.

Interpretation IT

The second, alternative interpretation is to be had in the A — oo limit. In this limit
one cannot ignore the backreaction of the D3-brane stack. We thus have a non-trivial,

deformed geometry given by the metric [73]

4

1 . R
nijdz’dz! + <1 + 744) [dr? 4+ r2dQ3] (2.100)

where 4,7 = 0,1, 2,3 are the directions parallel to the D3-branes and r, {25 are the radial

ds® =

and angular coordinates describing the transverse plane, 72 = Z?: 4 72, Importantly 73],

R = 4n)(o/)? (2.101)

and sets the radius of curvature of the space: the supergravity limit is only valid when
the curvature is large thus re-emphasising the A — oo limit we are in.

At large r > R, i.e. far from the D3-branes, the metric of 2.100 just returns the
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10-dimensional Minkowski metric, n™ . Close to the D3-branes at small r < R, called

. oy 1 2 .
the near-horizon limit, /1 + % — % and the metric reduces to

2 r’ i B s 90
dShorizon = lijde’da’ + —o [dr? + r2dQ3] . (2.102)

This is nothing other than the metric for the geometry AdSs x S°, where the radius of

curvature for each part is the same.

We now take the second perspective of the electron-proton system, whereby we just
monitor how the electron moves in the non-trivial background. In this case we study

how closed strings propagate in the background described by the metric 2.100.

Let’s take the point-of-view of an observer located at » = co. Imagine a closed string
sitting at a point r = ro with fixed energy E. The energy measured by the observer at
infinity is red-shifted due to the gravitational potential well formed of the non-trivial

spacetime geometry,

- 1 -
Fow=+v-GuE=——"——F. (2.103)
1+ 2)°
(1+7%)
For a closed string state in the near-horizon limit (rg < R), no matter what the energy

E, the observer at infinity sees a vanishing F.

Therefore, close to the branes, in the near-horizon limit, one cannot simply ignore
higher energy modes, since to an observer at r = oo they still appear to be low energy.
This implies that, close to the horizon, one must reintroduce and utilise the full type
IIB string theory rather than the supergravity limit. However, for closed string modes
far from the horizon, one retains the supergravity limit. In fact, it can be shown that
in the o/ — 0 limit, the two scenarios decouple: the large-wavelength modes at infinity
cannot ‘see’ the horizon and so the cross-section of interactions with near-horizon modes

tends to zero. In summary, the theory from the closed string perspective decouples as

(Type IIB superstring theory on AdSs X SS) @ (10D type IIB Supergravity.)
(2.104)
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2.5.2 AdS/CFT correspondence: A statement

Comparing the two different interpretations, we can see that both contain two decou-
pled theories one of which is 10d type IIB supergravity. The AdS/CFT correspondence,
therefore, is conjectured on the basis that if both interpretations are equivalent descrip-
tions of the same theory, then it must be true that 2.99 and 2.104 are equal. Therefore,

we deduce that

Type IIB superstring theory on AdSs x S° = SU(N,) N =4 SYM. (2.105)

This is Maldacena’s correspondence [32], and forms the basis of the conjectured, more

general AdS/CFT correspondence.

It is important to note that the stack of D3-branes that initiated this correspondence

is now obsolete and doesn’t feature on either side of the correspondence.

2.5.3 AdS/CFT correspondence: Parameter matching

In general, the AdS;.1/CFT  correspondence postulates a relationship between d + 1-
dimensional gravity theories living on an asymptotically anti-de Sitter spacetime and
conformal field theories in d dimensions. The most influential and celebrated of these
dualities is the one relating type IIB superstring theory on AdSs x S° with N/ = 4
SYM theory in 3+1 dimensions — Maldacena’s correspondence [32], equation 2.105.
The free parameters on either side of the correspondence are related via equations 2.95
and 2.101. From equation 2.95, we can immediately see that the A = g, N, parameter
used to motivate the different D-brane interpretations in the previous section is nothing
more than the 't Hooft coupling used for the large-IN. expansion of gauge fields. This
shouldn’t, retrospectively, be that surprising. The interacting string perturbation ex-
pansion, adding up worldsheet diagrams of ever increasing powers of the coupling g, is
identical to summing up worldsheet diagrams of ever increasing genus. This is also the

case for the large- N, perturbative expansion seen in section 2.2.5.
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2.5.4 Forms of the correspondence

Depending on the limits to which the free parameters of the theories are taken, different
‘forms’ of the correspondence can be had. Since the gravitational side of the correspon-
dence contains a string theory, the best method of obtaining tractable calculations is
to be in the perturbative limit, g, < 1, keeping R and o' fixed. At leading order in
g, string perturbation theory considers only those interaction diagrams of null genus®’.
Equation 2.95 then implies that for g, < 1, the CFT side of the duality requires g5 < 1
with the other relationship, equation 2.101, imposing g2N, is fixed. This is nothing
more than the 't Hooft limit described in section 2.2.5; gs — 0, N, — oo with g2N,
fixed. In other words, a perturbative string expansion on the gravity side of the duality
implies a large-N., planar limit of the conformal gauge theory. This is the so-called ’t
Hooft or strong form of the correspondence. A weak form of the correspondence is made
when we impose A — oo, whereby the field theory is strongly coupled. On the string
side, such a limit imposes R/va/ — 0o (see equation 2.101) whence it is deduced that
the AdS curvature is much greater than the string length. This is the limit in which we
can use type IIB supergravity on the AdS side of the correspondence. The weak form
of the correspondence is also known as a weak-strong duality since the CFT is strongly
coupled, yet its dual gravitational theory is weakly coupled. This is the foundation of
why the AdS/CFT correspondence is such a powerful tool — one is able to look at
non-perturbative gauge theories by calculating in a perturbative gravitational theory. It
is the weak form of the correspondence that we will be exploiting for the remainder of
this work. A table summarising the limits and forms of the correspondence is shown in

2.3.

Form Type IIB on AdS;xS°® N =4 SYM
Strongest | Non-pert’ string theory: any g,, R and o Any N, and A
’t Hooft Pert’ string theory: g, — 0, any R and o/ | N. — oo, \ fixed
Weak Pert’ supergravity: g, — 0, R/a/ — oo N, — 00, A = o0

Table 2.3: The various forms of the AdS;/CFT4 correspondence appearing in different
limits of the theories’ parameters.

550One can think of string Feynman diagrams where instead of interacting worldlines, one has interact-
ing worldsheets. Therefore, higher order ‘loop’ diagrams are depicted as manifolds with greater numbers
of ‘holes’ or of higher genus.
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2.5.5 The conformal boundary of AdS space

Anti de-Sitter spacetime can be covered by a wide variety of coordinate patches, some
emphasising certain properties of the geometry over others. In the derivation of the
AdS/CFT correspondence, we stipulated that the near horizon D3-brane geometry took
on the form of AdSs (crossed with the compactified S°® which we drop here) with the
metric

A |
ds? = r’n;dzda? + —Qd'rQ, (2.106)
r

where we have set the radius of curvature to unity. Taking the transformation r = %,
we can convert to the so-called Poincaré coordinates

1

ds? = = (—dt? + da? + dy? + dz* — d¢?) (2.107)

where we have explicitly expanded nijdxidxj of equation 2.106. We can see that this is
nothing more that the Minkowski space, R*!, foliated over an extra coordinate ¢. For
each slice of the AdS space at constant ¢ we recover a 4d Minkowski spacetime warped
by a factor (72. We define the boundary of the spacetime as the (-constant slice for
which the metric diverges; for the metric given in 2.107, this happens as ¢ — 0 (r — 00).
In order to analytically continue the metric onto the boundary in a sensible fashion, we
can make use of a conformal rescaling of the metric gyyny — Q(x,{)gun, for some
function 2, which leaves all distances and angles on the original metric invariant under
the change. For example, if we allow Q = (2f(x,(), where f(x,() is a well-defined,

smooth, positive-definite function in x and ¢, then the boundary is simply defined as,
dsaas, = f(x,¢) (—dt? + da® + dy* + d=?) . (2.108)

The ability to choose the function f(x,() leaves a whole class of equivalent boundaries,

Minkowskian in nature, related by conformal transformations.
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2.5.6 The holographic principle

The holographic principle [33,79] is an idea inspired from black hole thermodynamics,
wherein the (Bekenstein®®-Hawking®’) entropy of the black hole scales as the surface
area, A, of its horizon [80]. This is in stark contradiction to the expectations of quantum
field theory, which states that the entropy should scale as the volume®. In an attempt to
reconcile this, the holographic principle prescribes that information contained within a
d + 1-dimensional volume of spacetime V' can be equally understood from the viewpoint
of degrees of freedom living on the d-dimensional boundary 0V = A.

Working in the weak form of the AdS/CFT correspondence whereby A — oo, we
have a duality between type IIB supergravity on AdSsxS® and a large N., N' =4 SYM
gauge theory in 4 dimensions. In a Kaluza-Klein reduced form of AdSsxS®, whereby
we can ‘ignore’ the compactified 5-sphere, we are left with an AdSs; spacetime which
we have shown in section 2.5.5 to have a conformal boundary. The isometries of this
spacetime, namely SO(4,2), are the conformal symmetries associated to the N’ = 4 SYM
theory to which the spacetime is dual [73]. One may argue that the boundary of the
AdS-spacetime encodes all of the same degrees of freedom as the SYM theory and thus
the gauge theory can be postulated to ‘live’ on the boundary. This is a realisation of

the holographic principle at play.

2.5.7 Field-operator map

Having set up the nature of the correspondence, we now need to put it into a form which
we can utilise. In order to do this, one needs to set up a dictionary of rules that allows
us to interpret results calculated on one side of the duality into corresponding results
on the other. From [81], a mathematical formulation of the duality was set out which
allows one to initiate such a dictionary. The partition function of the 4d interacting

field theory can be expressed as

Zlg] = <exp (/ d4mz¢l z)O0g (z >> (2.109)

66 Jacob David Bekenstein, 1947-2015.
57Stephen W. Hawking, 1942-.
%8The entropy of a system is an extensive property and thus should scale up with the system.

58



where the fields ¢; are sources of the operators Oy, The gravitational side of the duality
is governed by a supergravity action over’® AdSs containing fields ¢(z, r). The partition

function of the supergravity dual, Zgugra, is then related to Z via,

Z = Zagralg(or o) - (2.110)

The crux of equation 2.110 is that

boundary values of the supergravity fields ¢(z,r — o0) are equivalent to the sources, ¢,

of operators in the field theory.

An example of this statement can be seen as follows. Let us consider a scalar field

¢ = ¢(x,r) and with mass My living in AdSs. The action is simply given by

S = /d‘*a:dr\/fg (6MN O pon g — Me°), (2.111)

where g = det(gpn) and the AdSs; metric is given by

-2 0 0 0 0
0o 2 0 0 0
gun=1 0 0 2 0 0 |, (2.112)
0 0 0 2 0
0 0 0 0 r2

where we have set the radius of curvature to unity. The equations of motion for the

radial dependent part of ¢, ¢(r), take the form,

O (r°0pg(r)) — r* M3 =0, (2.113)
which has solution
A B
P(r) = L (2.114)

%9The type IIB supergravity action over AdSsxS® is Kaluza-Klein reduced to five dimensional AdSs.
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where™

A(A —4) =M. (2.116)

The supergravity scalar field ¢(r) has no mass-dimension, therefore the coefficients A
and B are dimensionful with respective mass-dimensions A and 4 — A. In the limit
r — 00, the B-coefficient term dominates’!, so we have

lim ¢(z,r) = B(z)

r—00 7”4_A ’

(2.117)

which by equation 2.110 means that B(x) = ¢;(x). It subsequently transpires that we
can identify the coefficient A as the vev of the operator Oy [82]. The solution to the
equation of motion of the bulk field ¢(r) can then be reformulated as,
(Oz) | oz
B(r) = —2 + 4%2 (2.118)
r r
The results of equations 2.116 and 2.118 make the correspondence quite explicit: Fields

in the bulk can be expressed in terms of field theory operators and sources and the bulk

field’s mass pertains to the mass-dimension of those sources.

""The following constraint can also be recast as A = 24 ,/4 + M; More generally than adding a

scalar to the spacetime, a p-form can be added with the same solutions but with the more generalised
mass constraint,
(A=p)(A+p—4) = M jorm- (2.115)

"I The B-coefficient term is often referred to as the non-normalizable term, in the respect that its
contribution to the action 2.111 diverges. This is unlike the A-coefficient term, which is elsewise referred
to as the normalizable term and whose contribution to the action remains finite.
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Chapter 3

Holographic QCD

We now motivate the ideas behind using the AdS/CFT correspondence as a tool to

probe strongly coupled gauge theories like QCD.

3.1 Towards holographic QCD

The AdS/CFT correspondence in its weak form of a duality between type IIB su-
pergravity on AdSs;xS° and a large N, large A = ¢2>N., N' = 4 SYM theory is
well understood [32,83,84]. However, the gauge theory is far removed from the non-
supersymmetric, asymptotically free, SU(N,) gauge theories that are of interest in the
wider particle physics community, such as SU(3). QCD or Technicolor models. Such
models do not share large N, values, are not supersymmetric and contain fundamental
rather than adjoint matter fields, i.e. quarks. The hope of future physicists is to con-
struct a gravity dual of confining SU(V,) gauge theories. It is quite beyond the current
standing of particle physics to obtain a full correspondence between theories like QCD
and a gravity dual on the grounds that the perturbative regime of the gauge theory will
be dual to a non-perturbative quantum string theory on a non-trivial background —
analysis of which is outside the realms of our current capabilities. However, as we shall
show in the rest of this work, it is possible to incorporate quarks and running couplings
into holographic theories and slowly begin to edge towards constructing holographic

methods to understand asymptotically free gauge theories.
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3.1.1 Top-down wersus bottom-up approaches

Holographic models for QCD-like theories can be roughly split into two differing sec-
tors; top-down and bottom-up approaches. Top-down models start directly from a pure
string theory perspective such as the D3-brane scenario from which the Maldacena cor-
respondence [32] (between N' = 4 SYM and type IIB supergravity on AdS5xS®) was
conjectured. In order to adapt the correspondence to accommodate different bound-
ary field theories, the bulk is re-engineered, by the addition of new brane and string
structures. Some of the most successful top-down models to describe QCD-like gauge
theories, including the Sakai-Sugimoto model [85,86] and probe-brane constructions [87],
introduce new D-branes into the bulk which allow the description of phenomena such as
fundamental matter and confinement. The major drawback of working in a top-down
framework is the innate mathematical complexity of the base string theory and the
veritable smorgasbord of gravity fields which must be kept track of in order to fully

understand the dual field theory.

In bottom-up models, usually referred to as AdS/QCD models [82,88-90], inspiration
is taken from top-down approaches' but with the bulk geometry and fields chosen to
ensure the required phenomenological properties of the gauge theory. In this regard, the
mathematical rigour of the top-down models is lost but to the advantage of a cleaner,
more tractable model. Below, we will outline some key, basic top-down extensions and

use these as a springboard into the simpler bottom-up approach.

3.2 Top-down models

Two of the most important features of QCD-like gauge theories, for which N'= SYM is
lacking, are fundamental matter fields, i.e. quarks, and a running coupling which may
or may not trigger chiral symmetry breaking. The following sections begin to address

these problems from a top-down approach.

1Usually bottom-up models bear close relationship to truncated top-down models whereby undesired
fields have been omitted .
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3.2.1 Introducing flavour

The dual field theory of the Maldacena correspondence, N' = 4 SU(N,) SYM, only has
adjoint degrees of freedom. This stems from all open string states starting and ending
on one of the N, D3-branes in the coincident stack. To understand this, recall that a
stack of N, D3-branes has a U(N,) gauge group living on it. A string wavefunction can
then be in a superposition of N? different pure-states (a string from brane A to brane
B, from brane A to brane C and so on - see figure 3.1) and is therefore described by the
adjoint of the U(N,) gauge group on the stack which has N2 generators. For an SU(N,)
gauge theory on the stack (where we have lost one U(1)CU(IV,) since it decouples in
the AdS/CFT correspondence as it associates to the degree of freedom pertaining to the
centre-of-mass of the stack), we have N2 — 1 generators or independent pure states.

In order to add fundamental degrees of freedom, all that is required is to apply the
restriction that only one end of the string states may finish on the D3-brane stack. This
way, we only generate N, possible string configurations, rather than N, configurations
per brane [87]. The remaining string end must attach to another brane. In principle, we
can consider either another D3 brane, a D5 brane, a D7-brane or a D9-brane within the
remit of type IIB string theory. The D9-brane is ruled out immediately since it fills the
whole spacetime and thus cannot be separated from the D3-brane stack. This is severely
limiting when one wishes to describe massive fundamental degrees of freedom. The D3-
and D5-brane solutions lead to defect theories [91] [92-95] and so we are left with the
D7-brane. Multiple D7-branes can be introduced to mimic the number of flavours of
quarks, Ny.

Defining a p-q string as a string stretched between a Dp-brane and a Dg-brane, we
have in summary, 3-3 strings responsible for an N' = 4 adjoint multiplet, 3-7 strings
realising fundamental? fields (A = 2 hypermultiplet) and 7-7 strings which represent
mesonic operators again in the adjoint of SU(Ny) (as both strings end on a D7-brane
in the D7-brane coincident stack). Figure 3.1 demonstrates the different possible string

configurations. The corresponding dual field theory with this form of brane construction

2The 3-7 string is in fact bifundamental in both the SU(N.) gauge field on the D3-brane stack and
the SU(Ny) gauge field on the D7-brane stack. This implies that the quark can be seen to be in the
fundamental representation of colour and flavour, just like QCD.
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is then an N/ = 4 SYM gauge theory coupled to N/ = 2 matter.

Ny ~ d
D7-branes u
o f- )
G-b
N
sgagﬁne Lo I
[~ [

Figure 3.1: The D3/D7-brane set-up allows for fundamental fields e.g. quarks. Multiple
D7-branes allows for different flavours of quarks. E.g. string a) pertains to a red up-type
quark and string b) pertains to a red down-type quark. 3-3 strings generate the N' = 4
SYM theory, 3-7 strings realise quark-like fields and 7-7 strings represent mesons.

The number of D7-branes must be small compared to the number of D3-branes,
Ny < N, to avoid backreaction warping the AdS5xS° geometry and destroying the
Maldacena correspondence. This is referred to as the quenched approximation on the
field theory side or the probe brane limit in the supergravity bulk. Since we’re in the 't
Hooft limit whereby N. — oo, the quark contributions are suppressed unless Ny — oo

also.

D7-brane metric

dim | 0 |1 |23 ][4 |5|6|7[8]9
D3 | X | X |X|X | - | ] ] "
D7 | X | X | X[ X |X|X|X]|X

Table 3.1: The D3-brane extends in the 0123-directions of 10d spacetime, whereas the
D7-brane extends over the 01234567-directions. The branes thus overlap in the 0123-
directions. Here 0 denotes the time direction.

Let’s imagine that the Ny coincident D7-branes lie along the 01234567-directions of
the 10d spacetime, overlapping in coordinates with the D3-brane stack occupying the

0123-directions, see table 3.1. Let the AdS5xS® metric be recast as
i, 1
ds? = r’ndrda’ + = (dp* + p*dQ3 + dL? + L*d¢?) (3.1)

where 12 = p? + L?. From this, we can see that the D7-branes fill out the AdS-space as

64



well as an S® €S of radius p. The induced metric on the D7-worldvolume is therefore
given by

. . 2
dsd; = (p? + L2)m;jdaida’ + ~dp? + —L—d03, (3.2)

1
P2+ L2 p? + L?
since it is sitting in the AdS5xS® geometry generated by the D3-brane stack.

When the probe D7-branes are coincident with the D3-brane stack, the 3-7 strings
are naturally massless and the conformal nature of the dual field theory is still explicit.
However, if the D7-branes are separated from the D3-branes (in the L-direction), the
SO(2,4) isometry of the AdSs5 spacetime, equivalent to the conformal symmetry on the
boundary, is naturally broken by the presence of the brane obstruction. The broken
conformality goes hand in hand with the 3-7 strings now having a finite length and
thus becoming massive. Returning to the induced D7-metric 3.2, the limit L — 0
whereby the separation of the D3 and D7 brane vanishes, we see the D7-metric reduces
to an AdS5xS? geometry returning the conformal structure. We show below the explicit

introduction of a mass scale, the quark mass, by the D7-brane embedding.

D7-brane embedding

Figure 3.2 shows the 10d spacetime set-up of the D3/D7 system.

L
<89) T 77 L
Y (?}9)
X7
(0123) Ny
D7-branes
3—-7
3—3
>p
(4567)
N > P
D3-branes (4567)

Figure 3.2: 10d spacetime set-up of the D3/D7 system. The most stable configuration
of the D7 brane might have a non-trivial relation between L and p (as seen on the left
plot).
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The action governing the worldvolume of the D7-brane is given by the appropriate
DBI action (see section 2.4.1), which at constant dilaton (or fixed string coupling) is

given by

1

e 8 —de ol '
<2w>2<a'>4gg/ 46/ = det(Gu + 2mal Fup), (3.3)

Spr = —

where G, is the pullback of the metric on the D7-worldvolume, equation 3.2. Taking

into account that L could be a function of p, see figure 3.2, G, is explicitly given by

-2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 r2 0 0 0 0 0
0 0 0 r? 0 0 0 0

Gab = : (3.4)
0 0 0 0 % (1 + (6,,L)2> 0 0 0
2
0 0 0 0 0 0 0
2
0 0 0 0 0 0 & 0
2
0 0 0 0 0 0 0 &

where 72 = p? 4+ L(p)%. The action can now be simply expressed as®

Spr ~ /d4xdp P21+ (9,L(p))>. (3.5)

The equation of motion of L(p) is given by

o, oL

=z =0, (3.6)
Op 1+ (9,L)>

which is known as the embedding equation since the solution L(p) describes the profile
of the D7-brane in the 10d spacetime. Equation 3.6 can be satisfied by the solution
L(p) = m, for some constant m. This is a flat D7-brane embedding. For m = L = 0,
the D7-branes are sitting on top of the D3-branes and we retain the conformal invariance
of the dual field theory. However, if m # 0, the 3-7 strings, identifying as quarks, now

have a fixed, non-zero length, and thus a mass proportional to m. Such a mass breaks

3Setting F,p = 0. Integration over the angular coordinates yielding a non-important constant factor.
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the conformal invariance of the boundary field theory as expected for L # 0. The radial
direction p has dimensions of energy and is interpreted as the renormalization scale® |
. The flat embedding therefore implies a non-renormalization of the quark mass, an

effect of supersymmetric gauge theories.

In the limit p — oo, the general solution to equation 3.6 is given by
c
L(p) =m+ — + ... (3.7)

where m and ¢ are constants to be interpreted (see Appendix C).

Equation 3.7 agrees well with L(p) taking the role of a supergravity scalar of mass-

squared -3. For small 0,L — 0, the action of 3.5 can be linearised to,

S ~ / dpp® (9,L)* = / dpp® (p2 (0p0) + ¢* + 2p¢3p¢) : (3.8)

where ¢ = #. Integration by parts on the final term of the right-hand side of equation

3.8 yields
2 [ dpp'o0,0 = ~1 [ dpr°e® (3.9)

implying the action can be recast as

S ~ /dpp3 (p2 (0,0)% — 3¢2> , (3.10)

which is the Klein-Gordon® action of a scalar in AdSs of mass-squared -3. This is
shown as follows. From 2.116, ¢ corresponds to a field-theory operator vev and source
combination of respective mass-dimensions A = 3 and 4— A = 1 such as the gq operator

and the quark mass. Hence we can write ¢ as

o(p) = =+ 4. (3.11)

4This is not quite accurate; the RG scale directly corresponds to the AdSs radial coordinate r and
therefore the true relation between the RG scale and p is given by 72 = p? + L(p)?. This will become of
importance in the following chapters.

SWalter Gordon, 1893-1939.

67



Recalling L(p) = p¢, equation 3.11 implies that L(p) can be identified as such
L(p) =m+ v (3.12)
agreeing with equation 3.7, where ¢ = (gq).

3.2.2 Constable-Myers and dilaton flows

The next step towards a holographic dual of asymptotically free gauge theories is to in-
corporate a running coupling. This can be enabled by having a radially dependent dila-
ton field or dilaton flow, which can be obtained by a deformation of the AdS-geometry.
Since the dilaton is related to the string coupling and the string coupling is dual, in
some manner, to the field theory coupling, a dilaton flow is dual to a running of the field
theory coupling.

One such a solution is the Constable-Myers flow [96]. The metric of the bulk space-

time in this scenario is given by

ds® = H(T) 7"4 — b4 Ul]dCC dx’ +
-5
r e\ T ot —pt
H(r) (T4 — b4> —— (dp® + p?dQ5 + dL* + L2de?) (3.13)
with
rt bt o

where again r2 = p? + L2, b is a measure of the deformation and 6§ = 1/2b* [97]. The
geometry approaches AdSsxS® of unit radius of curvature in the large-r limit, such that

the field theory returns to A/ =4 SYM in the UV. The dilaton is given by

A
2

4 b4
e? = ef0 (:,44_—%) , (3.15)

where e? = g, and A2+ 6% = 10 [97]. At the scale r = b, the dilaton (and the geometry)

diverge. Such a scale then mimics the role of Aqcp on the field theory side of the dual.
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Combining both the Constable-Myers dilaton flow with additional probe D7-branes
allows for a dual field theory with quarks and a running coupling. The action of the

D7-brane with the appropriate Constable-Myers metric is given by

Spr ~ e /dp A(r)p* /1 + (9,L), (3.16)

with

A
& — b8 (bt 2
A(r) = = (7"4—1)4) . (3.17)

Evidently the action looks the same as equation 3.5 with the addition of a p-dependent

prefactor A(r) controlling the dilaton flow.

Let us now consider the action 3.16 in the limit L(p),0d,L — 0, i.e. a perturbation

away from the L = 0 chiral embedding. We can perform a series expansion on A(r) as

2 92
+ }L2 <87‘> 872‘
-0 2 oL) Or o

+ O(L?). (3.18)
L=0

follows,

A(r) = A= + L (222)

1 o (0% OX
ok <0L23>

Recalling 2 = p? + L%, Orr = Lr—!, which vanishes in the limit L — 0, and so we can
simplify A(r) to

. 1L2%2 O\
lim A(r) = M)l p—o + 37 ar

. (3.19)
L=0

Substituting back into the action and expanding the square-root to first order we have,

1L? oA
S~ /dpp3 (A(r)ho t3 9

LO) (1 + % (apL)2> : (3.20)

Again expanding to leading order we arrive at the action

1 oA
S~ /dPP3 (2 M=o (9,L)* + (L)

. L2> : (3.21)

where we have used 9r2A = (2r)719,\. It is now evident that adding a non-trivial

dilaton to these models allows for the masses of the bulk fields, such as L, to change
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with radial coordinate r. Since the masses of the bulk fields relate (see section 2.5.7)
to the mass-dimensions of the corresponding field theory operators, then a dilaton flow
can be seen directly as a running anomalous dimension in the field theory. We shall

capitalise on this when we turn to Dynamic AdS/QCD.

3.3 Bottom-up models

We now turn to the bottom-up approach, building-on and extending the ideas formed
from top-down models with the goal of trying to best mimic the phenomenology of

QCD-like gauge theories in a holographic arena.

Known as AdS/QCD, the starting point of these models is a much simpler AdSs
spacetime, on the boundary of which we seek a QCD-like gauge theory. The AdSs

metric of unit radius is given by
ds* = r? d’dj—i——lal2 3.22
s = rinijde'de’ + —dr. (3.22)

The bulk must contain fields which correspond to necessary source-operator combina-
tions in the field theory. Therefore, we require one scalar field of mass-squared -3 to
encode the quark mass and condensate as well as two massless gauge fields correspond-
ing to the SU(Ny)r, and SU(Ny)g current operators. A summary of the dictionary can

be seen in table 3.2

Bulk Field Mass + | QFT Operator | A =dim | p-form
X(x,p) M?=-3| & qq 3 p=0

LMo (x,p) | M?=0 | & | LM =g tqr 3 p=1

RMa(x, p) M?=0 | < | R = gry*t%g 3 p=1

Table 3.2: The dictionary between the bulk AdS fields and the field theory operators
on the boundary in a simple AdS/QCD model. The bulk fields masses are obtained via
the relation (A — p)(A +p —4) = M? (see section 2.5.7)

Collecting all the relevant pieces together, we can construct a bulk action which

70



encodes the very basics of a QCD-like theory:

S:/d%dr fdethNTr{(DMX)T(DMX)+3XTX

1
T [FrLun L™ + FpunFRY] } , (3.23)
5
where
Dy X =0y —iLl5; X +iX Ry (3.24)
and
Frun = 0Ly — OnLy — i[Lar, L] (3.25)

with LM = LM gand likewise for Frarn. We choose the scalar X to have the form

X (x,7) = L(r)e* ™ %, (3.26)
taken from the effective chiral approach in section 2.1.2, such that fluctuations in the
x-dependence of the scalar can describe the pion fields. The radial coordinate r acts as

an energy scale and so is matched to the renormalisation scale u of the field theory.

Hard-wall versus soft-wall

There is still however one small issue; the AdSs spacetime implies a conformal symmetry
in the field theory, which is not the case for QCD-like theories. One way to overcome
this obstacle is to impose a boundary or hard wall into the spacetime at fixed r = rg
(see [82,88]). By doing so, we break the SO(2,4) isometry of the spacetime and in turn
break the conformal invariance of the field theory. The bulk theory is then only valid in
the region rg < r < 0o, cutting out the deep infrared. The energy scale ro then acts like
Aqcp in the same way that it is the only scale in the system available to set dimensionful
parameters. The major drawback to the hard-wall method is that the corresponding

field theory has unnatural Regge trajectories of excited states of mesons M2 ~ n?.

One alternative approach is to introduce a so-called soft-wall in place of the hard

boundary (see [98]). This means having a non-trivial dilaton ¢(r), amending the action
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to

S = /d%dm/ det gprne? ™ Tr {(DMX)T(DMX) +3XTX
1
4g3

[FrunEMN + Fpun FRMY] } : (3.27)

Choosing a dilaton with profile ¢(r) ~ r—2

as r — 0 ensures the correct Regge tra-
jectories, M2 ~ n, whilst retaining the broken conformal symmetry of the field theory

dual [73,98].

3.3.1 Dynamic AdS/QCD

We now turn to the model with which the rest of this work was undertaken. Based
on the bottom-up AdS/QCD approach with influence from the D3/probe-D7 top-down

models, the model referred to as Dynamic AdS/QCD [1-3,89] is set up as follows.

We work with the action

= [ d*zdpp’Tr | —— (DM X)(Dy X
5 = [[atadn e |y (DX (Dux)
Am? 1
+ 2 |X|2+QQQ(FL,MNFg/[N“‘FR,MNF]J:\g/[N) , (3.28)
5
where
X = L(p)e*™t". (3.29)

Having outlined the standardised bottom-up approach in the previous section, such an
action might, at first sight, seem unexceptional. However, there are a few key differences.
Firstly we are working with the 5-dimensional metric inspired from the D3/probe-D7
models,

ds? = (p* + L*)n;;dx'da? + (3.30)

inpdﬂ
where, exactly like the top-down models, the scalar field L(p) enters into the metric,
defining a dummy radial coordinate r? = p? 4+ L2. The scale 7 will then be associated
to the renormalisation scale, u, of the field theory — again like the D3/D7 model. This

metric is used for spacetime contractions. We have also chosen the \/—g = p? factor
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3
2

directly from the D3/D7 model rather than the would-be factor of (p? + L?)2 using
metric 3.30. This is to ensure a soft-IR wall behaviour: when L is non-zero, the dummy
radial coordinate r cannot access the deep infrared, i.e. r < L, no matter how small the
holographic coordinate p becomes. As L — 0, the deep IR is once again available, metric
3.30 becomes that of AdSs; and the boundary field theory returns to being conformal.
Thirdly, the action contains a term proportional to | X |? = L?, which is inherited directly
from the L? term of the action for top-down models with a dilaton flow, 3.21. It allows
the model’s scalar field to have a radially dependent mass corresponding to an energy-

dependent mass-dimension of the field theory operator gg. For Am? = 0, the scalar

returns to M2 = —3.

The action can be expanded out fully (see Appendix D) giving

Am? 412
S = / d*zdpp®Tr ((apL)2 5 L* +412A% + CENEE (B — A,)?

1

+ 5 (OuVE = OnVip) (01 VN — oyt
95
1

+52 (O A%y — OnAGy) (OMA®N — 8NA“’M)> . (3.31)
95

Understanding g5

We now turn to calculating the vector two-point function in the Dynamic AdS/QCD
model and match it to perturbative QCD results in the UV, i.e. on the boundary. This

will fix the coupling g5. We follow [73] and [82].

Firstly, we find the solution to the equation of motion of the vector gauge field to be

7 7

where Vi = ey Ve(p)e ™% and V% (p — 00) — 1 (see Appendix E). Evaluating the
action 3.31 on the solution 3.32 then allows us to yield the vector-vector correlator from
the theory [73],

Myv(g?) = 5 In(g?). (3.33)



Comparing this to the perturbative QCD results [99]

N¢N,
2y _ Vfive 2
Iyv(¢®) = Y In(g”), (3.34)
one can see that we may match
2472
2
= . 3.35
95 N.N; ( )

The vacuum structure

In order to ascertain the vacuum structure of the theory, all fields except the scalar L(p)

are switched off. The action for L is given by

2
S = /d4xd,0 0’ ((8pL)2 + Am252> . (3.36)

For Am? = 0, the UV solution to the equation of motion is given by L = m + (gq)/p?
with m and (gq) pertaining to the quark mass and condensate respectively. A non-
zero Am?(p) allows the scalar to have a radially dependent mass relating to a energy-
dependent mass-dimension of the operator vev (gq) — the equivalent of introducing a

running anomalous dimension, 7y (u).

If the mass-dimension of a field theory operator changes from A to A — v as the
corresponding AdS-scalar’s mass grows from M? to M? 4+ Am?, then equation 2.116
becomes

(A=) (A —~—4) = M?>+ Am?, (3.37)

implying
Am? =% — 2y(A - 2). (3.38)

So for the operator vev (gq), for which A = 3, we have Am? = 42 — 2. The profile of
Am?(p) can then be imposed by using the one-loop result for the perturbative anomalous

dimension for the gauge theory [41],

3Cs(R)
2T

Y1(p; R) = as(u; R), (3.39)
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where «ay is the two-loop perturbative running coupling and R denotes the representation

of the Ny quarks. Assuming +y is small, the leading order result gives us (Am? = —27),

Am?(r) = -3

) o), (3.40)

where we re-emphasise r = \/p2—i—7L2 corresponds to p. Of course, beyond the regime
where the coupling is weak, the perturbative form of ~;(u) must be used with caution
and is no sense rigorous. However, methods used with such a parameterisation of the
running might uncover the broad behaviours exhibited by the gauge theories with similar

running profiles. The modified equation of motion becomes
0p (p33pL) — pAm?L = 0. (3.41)

Assuming Am? to be constant and non-zero, i.e. the regime of a fixed point whereby

~v # 0, the solution takes the form

__ mpp Crp
L( )_ p,y ,02777

(3.42)

such that (v —2) = Am2. In other scenarios, where Am? takes on the non-trivial run-
ning profile of 1, the solution to the equation of motion 3.41 must be found numerically.
To do so, one must impose boundary conditions. We choose the conditions

L(pir) = pir and OpL(p)|p:pIR =0. (3.43)

These are very similar to those conditions imposed on the D3/D7, top down models
(L(0) = constant and 9,L(0) = 0) but imposed at the renormalization scale where the
theory becomes ‘on mass-shell’. We assume L(p) behaves like a constituent quark mass
at the RG scale pertaining to p and therefore the imposed boundary conditions force

the constituent masses to always be less than the energy scale.

An example of the L(p) profile, of SU(3) with 3 flavours of fundamental quarks,
shown in figure 3.3, displays chiral behaviour since the constituent mass of the quark

vanishes as one approaches the boundary p — co. However the chiral symmetry breaking
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is self-evident as the constituent quark mass renormalizes to non-zero values as you push

towards the IR.

0.00 o
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Figure 3.3: Plot of L(p) for SU(3) with Ny = 3 in the fundamental representation. The
plot shows the chiral embedding, i.e. the profile asymptotes as (gq)/p* as p — oo (y — 0

in the field theory). Here the boundary condition on the beta function is imposed as
a(0) = 0.14.

Breitenlohner-Freedman bound

An important feature of the beta functions of QCD-like theories is whether the running
coupling passes through a critical value triggering chiral symmetry breaking. How does
this feature get brought into the Dynamic AdS/QCD model? As we have seen, chiral
symmetry breaking is tripped when the coupling constant passes through a critical value
causing the chirally symmetric ground state to become unstable. We must then look for
a method of triggering such an instability in the bulk.

In flat space, fields with negative mass-squared have a potential which is globally
unbounded from below and thus unstable. A similar feature occurs in AdS backgrounds.

Scalar fields in AdSgy; of unit curvature which have the asymptotic solution®

A
¢(T) = A + N (344)

where A = % + 4/ % + M?, become tachyonic, i.e. have an unstable potential, when

M; < -7 (3.45)

This is known as the Breitenlohner’-Freedman® (BF) bound [100].

5This is the generalised version of equation 2.114 for d 4+ 1 dimensional AdS-spacetime.
"Peter Breitenlohner, 1940-2015.
8Daniel Z. Freedman, 1939-.
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When the mass of the scalar field representing the field theory operator gg drops
below the BF bound, the theory becomes unstable around the ‘old’ global minimum,
just like chiral symmetry breaking. In Dynamic AdS/QCD in the AdS; background,
this instability occurs when the mass of the scalar L(p) drops below M? = —4. This
pertains to a value of Am? = —1. Using equation 3.38 (recalling in this case A = 3), we
arrive at v = 1 being the critical value of chiral symmetry breaking in the gauge theory.

The soft-wall behaviour of the Dynamic AdS/QCD model is now important. Were
the BF-bound to be violated and the L-field to become unstable, then equating the RG
scale, pu, directly to the AdS radial coordinate p would lead to a theory whereby the
L-field potential becomes unbounded from below in the IR. However, by setting, as we
have done, u = /p? + L(p)?, when L is finite, the deep IR cannot be accessed and so
we keep stable AdS solutions but at a different vacuum pertaining to a non-zero (Gq).
In terms of the L — p plane and the profile L(p) for the scalar, this amounts to a circular
region p? + L? < M% (where /1 is the scale for which v = 1) which cannot be accessed
by the field. The least-energetic, i.e. vacuum solution, of the L-embedding then takes
on a profile which rises off of the p-axis in the IR to meet the BF-bound scale, jiy, near
the on-mass shell condition L = p. This is expected since at p., (identical to the scale
A, ) the quarks get their dynamical mass o . Below this scale however, there is not
enough energy to excite these masses and so are decoupled. Off course in the Dynamic
AdS/QCD model, this is only approximate since the Lagrangian contains only the lowest
order terms in L following from a top-down DBI expansion. In the limit where all the

higher order terms are put back, the profile of L(p) should match exactly to L = p at

Hory-

Meson spectra

Recall from the D3/probe-D7, top-down models that the 7-7 strings, which can be
perceived as fluctuations of the D7-branes, pertained to mesonic operators. Bottom-up
models, such as Dynamic AdS/QCD, build on this idea with the scalar, vector and axial
mesons being described as perturbative fluctuations of the scalar L and the gauge fields

Vi, and A{, respectively.
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The isoscalar (o) mesons are described by linearised, perturbative fluctuations, d(p),
about the vacuum configuration, Ly(p) (the solution to equation of motion of the La-

grangian given in the action 3.36). Writing the scalar field plus fluctuation as

L(p) = Lo(p) + 6(p)e'®™", (3.46)
with ¢2 = —M? defining the meson’s mass, we can write the equation of motion of &(p)
as

OAmM? P30
9, (p20,8) — Am?2pd — pLyé + M?—"—— =0. 3.47
b (P°0,9) oL |,_;, (L2 = p2)2 (3.47)

Just as for Lo(p), solutions with the UV asymptotics of § ~ p~2 are sought with the IR

boundary condition 9,4|,,, = 0.

The isovector (p) meson spectrum can be determined similarly from the normalizable

solution of the equation of motion of the vector gauge field (derived in Appendix E)

pPMy

3
9p (:0 8PV) + (L% + p2)2

V=0, (3.48)

The axial meson spectrum is determined from the equation of motion of the axial gauge

field,
Lgp° PP M7

9, (p*0,A) — g2
U S e

SA=0. (3.49)

Finally, the pion mass spectrum is identified from the equation of motion of the spacetime
dependent phase field 7(z) of the scalar X; X = L(p) exp (2in*(z)t?),
PPLY

3, (pPL20,7) + M2—E=0__ra—. 3.50
p(P Op”)+ W(L%erz)fr ( )

Adding temperature and magnetic field

Understanding the gauge theories in question at finite temperature and within a finite
constant magnetic field is important to ensure a full comprehension of their phase dia-
grams. A temperature is added into the model by augmenting the AdSs-like Dynamic

AdS/QCD metric to AdS-Schwarzschild”-like metric, which at constant unit curvature

9Karl Schwarzschild, 1873-1916.
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is given by [73]

ds* = —p* f(p)dt* + p?dx* + dp?, (3.51)

1
f(p)p?
where

flp) =1~ (L(/)),;—H—f-pQ)Q’ (3.52)

with black hole horizon radius rz7. The thermal description of the gauge theory is then

introduced [73] (at constant unit AdS curvature) via
rg =nT, (3.53)

i.e. the Hawking temperature is defined as the hadronic temperature of the gauge field.
The black hole, in effect, reduces the available AdS-space, preventing access to values
of r below rg, i.e. energy scales below the corresponding renormalization scale. If the
temperature of the black hole exceeds the energy scale pertaining to the BF-bound, u.,
then the BF-bound violating region of the L — p plane is swallowed by the black hole
thus cutting it out of the accessible plane. Since the existence of this region pertained

to a chiral symmetry breaking, if 71" > j the chiral symmetry is restored.

Introducing a constant, finite magnetic field strength into the fray requires us to
withdraw a couple of steps back to the top-down probe-brane models. In the D7-brane
DBI action 2.93, by switching on a single magnetic component in the brane gauge field-
strength tensor, Fiyn (keeping By = 0), we can modify our metric to include a source

of a magnetic field in the gauge theory. Choosing all components of F', except Fio = B,
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to vanish, the total pullback on the D7 brane (with spacetime metric 3.1) becomes

—fr)r2 0 0 0 0 0 0 0
0 ? B 0 0 0 0 0

0 -B r* 0 0 0 0 0

0 0 0 12 0 0 0 0

gab - 1 9 5 (354)

0 0 0 0 = (1+@L?) 0 0 0

0 0 0 0 0 L0 0

2

0 0 0 0 0 0 % 0

2

0 0 0 0 0 0 0 %

where we've also added the Schwarzschild factors f(r) governing the thermal effects of

the model. Using 3.54, we can write down the D7-brane Lagrangian as

L~ p3\/1 + (1) (9,L)*\/1 + fj. (3.55)

Linearising about small 9,L and B/ r2, we simplify the Lagrangian to

2

! [1 + % £(r) (apL)2]> . (3.56)

L-p (f(”) (apL)Q + (CENE

Under the assumption L is small, we can use
(P*+ L2, _y=p " —2L% "+ .. (3.57)
to simplify the Lagrangian further to
N s B2 1 o 27 4

Returning to our bottom-up Dynamic AdS/QCD model, we allow for finite magnetic
field effects by the inclusion of the lowest order magnetic terms as derived above (equa-
tion 3.58) but with undetermined coefficients which can be tuned to give different phe-

nomenological behaviour in the gauge theory.
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3.4 A few questions

At this point, I think it is useful to answer some of the questions that may (or may not)

be puzzling the astute reader.

Why have we been matching to QCD in the UV, where QCD is perturbative and thus
weakly coupled?

The premise of the AdS/CFT correspondence in its weak form is that it is a duality
between a weakly coupled string theory and a strongly coupled gauge theory. In the
discussions above, we have often matched the boundary to perturbative QCD. For ex-
ample, the mass dimension of the gq operator represented by the scalar L is A = 3 on
the boundary, its value in the weakly-coupled, perturbative limit. Also g5 is determined
by matching the vector-vector correlator at the boundary to that of perturbative QCD.
So in what sense is it at all rigorous to use a weakly coupled string theory and match to
a boundary gauge theory with perturbative coupling? The simple answer is that is not!
In fact, early AdS/QCD models were trialled on the basis that such a duality should
not work but what was the harm in trying. In fact, by some odd quirk of mathematics
(or nature), a weakly coupled QCD theory is remarkably well described by an N = 4
strongly coupled supersymmetric theory as is still present on the boundary of most
AdS/QCD models, including Dynamic AdS/QCD [101-105]. This is in part due to the
anomalous dimensions of gg and m (and other source-operator combinations) being the
same in both the weakly-coupled limit of QCD and in the infinitely strongly coupled
N =4 SYM theories. The fact that in the AdS/QCD models the running causes 7y to
increase into the IR is, from the point of the view of the quark content on the boundary,
irrelevant.

Do we still have supersymmetries left over on in our ‘QCD’ theory?

Yes. The metric used in the Dynamic AdS/QCD model and other bottom-up approaches
returns to that of AdSs; in the limit of approaching the boundary. In this regard,
the boundary retains the supersymmetries of the conformal theories from the probe-
D7 top-down models from which they derive. As addressed in the previous question,

it is a remarkable coincidence that weakly coupled QCD is somehow similar to these
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supersymmetric theories in the respect that the bottom-up models match experimental
data very well and in the far-UV QCD is itself conformal with coupling approximately
Z€ro.

We showed that D3-brane stack had a supergravity action akin to that of N = 4
SYM ergo the D3-branes are sat at the boundary of my holographic model, correct?
It is a common misconception that, because the D3-branes share a supergravity YM
action with /' = 4 SYM, the D3-branes are still there in the AdS/CFT correspondence.
We showed in section 2.5.2 that, when we take the decoupling limit to arrive at the
AdS/CFT correspondence, the D3-brane stack is irrelevant to the descriptions on either

side of the duality.
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Chapter 4

HyperScaling Relations in the

Conformal Window

In this chapter and in those that follow, we utilise the Dynamic AdS/QCD model,
outlined in brief in the previous section, to probe the behaviours of asymptotically free

gauge theories akin to QCD.

This chapter focuses on using the model to describe the conformal window [44,45,
49-55] of SU(IV,.) gauge theories with Ny fundamental flavours. Again, it is important to
stipulate that the boundary theory in our holographic approach still retains supersym-
metry and is strongly coupled but its preservation of the perturbative SU(V,.) anomalous
dimensions allow us to have a perturbative SU(N,) gauge theory on the boundary. For
a theory with quarks in the fundamental representation, asymptotic freedom sets in
when Ny < 11N./2. Immediately below that point, at least at large IN., the two loop
beta function enforces a perturbative infra-red (IR) fixed point [45,46]. The fixed point
behaviour is expected to persist into the non-perturbative regime as Ny is further re-
duced. This behaviour is seen in the two-loop perturbative computation of the running
of the coupling of o and hence . We will use that ansatz here to model these theories.
Of course as the fixed point leaves the perturbative regime this becomes just a sensible
‘parametrization’ of the non-perturbative physics.

Below some critical value of the number of flavours, N, the coupling is expected to be

strong enough to trigger spontaneous symmetry breaking by the formation of a quark
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anti-quark condensate (so-called walking theories live just on the symmetry breaking
side of that transition). Above that critical value, chiral symmetry is restored and only
broken explicitly by the introduction of a non-zero quark mass - this is the regime of the
conformal window, see figure 4.1. Holographic models describe the quark condensate
by a scalar in AdS whose mass is related to the mass dimension, A, of the field theory
operator via [32,83,84] m? = A(A —4). As A falls below 2 (or equivalently v > 1), a
clear instability sets in as the mass violates the Breitenlohner-Freedman (BF) bound in
AdSs [100]. Remarkably, the v = 1 criterion precisely matches that deduced from gap
equation analysis of the same problem [106,107]. By using the two loop running for -,

the BF bound violation occurs for Ny 2 4N..

(0
S A

'S

7 TETTEEERPEEPEERRRR R deeremmer e

a’

fixed-point dominated log-running dominated

‘Aq v

Figure 4.1: An example of the running in the conformal window. The value of the
coupling at the IR fixed-point is below the critical coupling to trigger SxSB. The scale
A1, set by the perturbative one-loop log-running of a roughly separates the fixed-point
regime from the perturbative regime. Quarks with masses m > A; don’t see the IR
fixed point behaviour whereas as much lighter quarks will be affected by its presence.

We use as our main example an N, = 3 theory with fundamental quarks (NJ‘? ~ 11.9)
and look at a few discrete values of Ny (12, 13 and 15) which span the conformal window
regime. These examples suffice to explore the qualitative behaviour of observables on
the different running profiles with IR fixed points and are easily extendible to different
N.. In the massless quark limit, theories like these inside the conformal window flow to a
non-trivial and strongly coupled IR conformal theory. The existence of such theories is of

great theoretical interest and a sizeable lattice community [108-120] is seeking evidence
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for them in numerical simulations. On a lattice, the massless limit can only be obtained
as a fine tuned point in parameter space. Simulations are therefore performed with finite
mass and signals of the presence of, and approach to, the conformal phase are sought.
For this reason a simple model such as Dynamic AdS/QCD, that makes predictions for
this limit, should be helpful in identifying expected behaviours in physical, measurable
quantities as one approaches the fixed point. We will therefore concentrate on studying
the dependence of the quark condensate, meson masses and decay constants as a function

of the quark mass, m.

The condensate (gq) has a leading divergence in the UV of the form mA%]V, where
Apy is a UV cutoff scale, as one would expect on dimensional grounds'. In the IR
conformal regime v is a non-vanishing constant. Here, therefore, the divergence grows
as mA2U_V27. This again matches the naive dimensional analysis — the mass has scaling
dimension 1 4+ v and the condensate scaling dimension 3 — v, therefore we expect this
dependence on the UV cutoff scale. There is also a sub-leading term in the condensate
which grows as m3In Ay in the UV but changes to m?% In Ayy in the IR, due to
the fixed point regime with non-vanishing, constant . This is again consistent with
dimensional analysis in the IR. These are the hyperscalings relations found in [121].
One of the powers the Dynamic AdS/QCD model is that it reproduces this scaling

behaviour when the condensate is measured.

Changing the precise IR boundary condition on the AdS scalar leaves these power
relations invariant but changes the constant of proportionality between (gq) and m%
Once this constant is chosen the model allows one to follow the renormalization group
flow of the mass and the condensate. Numerical work lets us look at intermediate regimes
where the quark mass is of order the scale A; (the scale generated by the one-loop beta
function) where the coupling transitions from the perturbative regime (dominated by
the one-loop logarithmic running) in the UV to the non-perturbative fixed point in the

IR? (see figure 4.1). To analyze the impact of A1, we fit to a simple scaling relation of the

!The only scale in the theory is the quark mass, m, and so the remaining dimensions are made up
from the imposed UV cutoff scale Ayy.

2We take only the one-loop beta-function here because it is this which is concerned about the be-
haviour in the UV. The sign of By dictates whether or not we see asymptotic freedom. The two-loop
beta function modifies the behaviour in the IR.
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form (gq) ~ m®. The exponent b can then be mapped, using the hyperscaling relation,
to an extracted value for v which we compare to the functional form of v that we have
input into the model (through the running of a;). In the running regime around A;, we
find significant deviations from the input +, showing that the one-scale m® functional
form breaks down in this regime where the running is fast. Of course, here the second
scale A1 will also enter into the scaling relations and so this is as expected. Our analysis
allows us to quantify the deviations.

Most importantly, for comparison to lattice simulations, are computations of physi-
cal observables. We compute the meson spectrum including M,, M, and M, and their
decay constants and display their scalings with m and against each other. When we
compute these dimension 1 quantities, we expect a hyperscaling behaviour for dimen-
sion one objects of the form mﬁ We again extract -« from each variable and display
variations from the input v function in the different regimes. The hyperscaling relations
are matched in the deep UV and IR fixed point regimes but there are significant de-
viations in the running regime where A; again enters the physics. These are the main

results of our analysis.

4.1 Dynamic AdS/QCD

Dynamic AdS/QCD [89], as introduced in detail in section 3.3.1, will be briefly recapped
here for convenience. The model maps onto the action of a probe D7 brane in an AdS
geometry expanded to quadratic order [122,123]. The anomalous dimension of the
quark mass/condensate is encoded through a mass term that depends on the radial AdS
coordinate p.

The five dimensional action of our effective holographic theory is

1
S = d*z dpTr p® | ————|DX|?
/ x dpTrp [p2+|X|2\ !

Am?

_|_
2

1
X%+ 2F3,] : (4.1)

The field X describes the quark condensate degree of freedom. Fluctuations in |X|
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around its vacuum configurations will describe the scalar meson. The 7 fields are the
phase of X,
X = L(p) ¥™T", (4.2)

fv are vector fields that will describe the vector (V') mesons. It is possible to include
additional mesonic states through extra holographic fields that describe further QCD
operators. For example, the a-mesons can be described through an axial gauge field
F4. In this chapter, we take a simpler model which suffices to contain enough physical

observables to display the scaling behaviours we are interested in.

We work with the five dimensional metric

dp?

ds? = —————
(p* + |X]%)

+ (0% + | X[*)da?, (4.3)

which will be used for contractions of the space-time indices. p is the holographic
coordinate (p = 0 is the IR, p — oo the UV) and |X| = L enters into the effective radial
coordinate in the space, i.e. there is an effective radial coordinate r* = p? + | X |%. This
is how the quark condensate generates a soft IR wall for the linearized fluctuations that
describe the mesonic states: when L is nonzero, the theory will exclude the deep IR at

r=0.

The normalizations of X and Fy are determined by matching to the gauge theory in
the UV. External currents are associated with the non-normalizable modes of the fields
in AdS. In the UV, we expect | X| ~ 0 and we can solve the equations of motion for the

scalar, L = Kg(p)e "2, and vector field, V# = ¢ Ky (p)e 4%, Each satisfies the same

equation,
2
"0, K] - LK =0, (4.4)
p
with the UV solution (p — o0) being
"
K= (14 L)), =57, (45)

where N, are normalization constants that are not fixed by the linearized equation of

motion. Substituting these solutions back into the action gives the scalar correlator Ilgg
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and the vector correlator Ilyy. Performing the usual matching to the UV gauge theory

requires us to set
NNy

Ns =NV = 5

(4.6)

The vacuum structure of the theory can be determined by setting all fields except
|X| = L to zero. We assume that L will have no dependence on the z coordinates. The

action for L is given by

L2
S = /d4az dp p? [(8PL)2 + Am2? . (4.7)

If Am? = 0 then the scalar, L, describes a dimension 3 operator and a dimension 1
source as is required for it to represent gq and the quark mass m. That is, in the UV
the solution for the L equation of motion is L = m + (qq)/p?. A non-zero Am? allows
us to introduce an anomalous dimension for this operator. If the mass squared of the
scalar violates the BF bound of -4 (Am? = —1, v = 1) then the scalar field L becomes

unstable and the theory enters a chiral symmetry breaking phase.

We will fix the form of Am? using the two loop running of the gauge coupling in

QCD (with fundamental matter) which is given by

d ,
,uﬁ = —bpa® — b1a?, (4.8)

where

1
bo = — (11N, — 2Ny), 4.9
0= ) (4.9)
and
1 N2 -1

=5 (34N§ —10N.N; — 3 N Nf) : (4.10)

Asymptotic freedom is present provided Ny < 11N./2. There is an IR fixed point with

value

ot = —bo/bl, (4.11)

which rises to infinity at Ny ~ 2.61V,.
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The one loop result for the anomalous dimension of the quark mass is

3C (N2 —1)

= — 5 C =
4! « 2 2N,

o (4.12)

Using the fixed point value «o*, the condition v = 1 occurs at N]? ~ 4N, (precisely
N]‘i — N, (1205011\>/;23_—1656> ).

We will identify the RG scale p with the AdS radial parameter r = \/p2—|—7L2 in our
model. Note it is important that L enters here. If it did not and the scalar mass was
only a function of p then, were the mass to violate the BF bound at some p, it would
leave the theory unstable however large L grew. Including L means that the creation of
a non-zero but finite L can remove the BF bound violation leading to a stable solution.

Working perturbatively from the AdS result m? = A(A — 4) we have

3(VE —1)

Am2 = —9~ — —
m m 2N,

a, (4.13)

where 7y is the one-loop perturbative gamma-function. This will then fix the r depen-
dence of the scalar mass through Am? as a function of N, and N [

Again, it is important to stress that using the perturbative result outside the per-
turbative regime is in no sense rigorous but simply a phenomenological parametrization
of the running as a function of p, N., Ny that shows fixed point behaviour. Similarly

the relation between Am? and ~; is a guess outside of the perturbation regime.

4.2 Scaling behaviour of the quark condensate

We are now ready to study the scaling behaviours of the parameters of the gauge the-
ory. Firstly, we will study the vacuum structure of an SU(3) gauge theory with Ny
fundamental quarks in the conformal window range 12 < Ny < 15. These theories are
conformal when the quarks are massless® so we will study the theories with a quark mass

which breaks conformality. We will show that the model correctly encodes the running

3In the AdS space this pertains to the vacuum embedding of the scalar L to have the profile L = 0
and so m = (gg) = 0. This is expected since the chiral symmetry is not spontaneously broken in the
conformal window of the gauge theory.
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dimensions of the quark mass and condensate.
The Euler-Lagrange equation for the determination of L, in the case of a constant
Am?, is

dplp*0,L) — pAmM*L = 0. (4.14)

If Am? depends on L then there is an additional term —pL?9;, Am? in the above equation
of motion. At the level of the equation of motion this is an effective contribution to the
running of the anomalous dimension ~ that depends on the gradient of the rate of
running in the gauge theory. At one-loop in the gauge theory there is no such term
depending on the gradient of the rate of running and as such we elect to drop it. We
are then effectively imposing the RG running of Am? only at the level of the equations
of motion, i.e. after the equations of motion have been derived at constant Am?. Since
we are interested in theories that run from a trivial UV fixed point to an IR fixed point
the dropped term would only influence the intermediate regime and then only for the
smaller values of Ny where the running is fast. We have checked there is no qualitative
change in the theory in the conformal window by including it.

To find solutions for L(p) and express the quark condensate in terms of the bare
mass, one needs to impose a regularity condition in the IR. The top-down D3-D7 system
[86,87,91] has the IR condition 9,L(0) = 0 as that condition. However, this issue is more
subtle in this model as we will show. The IR solutions do not satisfy d,L(0) = 0 except
in the conformal massless limit. We believe the reason for this is that the model does not
include the backreaction to the quark flavour’s mass (and condensate). Were the mass’
backreaction to be included, it would generate a small shift in the value of the dilaton at
the scale of the mass as the flavours decouple from the QCD running. We would expect
that variation in the geometry to accommodate a solution with 0,L(0) = 0. Rather
than attempt the backreaction, we shall simply use an on-mass shell condition in the IR
to terminate the RG flow. We discuss this issue in detail in the IR and UV.

In the full running theory at large energy scales, the running of the anomalous di-
mension 7 is determined by the one loop QCD results. There is then a regime, around
a scale we will call A;, where the coupling is sufficiently strong that the two loop con-

tribution to the running of the coupling will become important and at scales somewhat
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below this, the theory will approach an IR fixed point — see figure 4.1. A quark with
large bare mass (> Aj) will only experience the high energy regime since it will be
integrated from the theory at its mass scale which will be well above A;. For quarks
with very small bare mass (< Aj) their IR physics will be determined by the fixed point
behaviour. It is therefore useful to study these two extreme regimes before looking at

the full theory.

4.2.1 Infrared fixed point behaviour

In the IR of the conformal window o — —by/b1, 71 becomes constant and hence Am?
is a non-zero constant. Am? must lie in the regime —1 < Am? < 0 for the theory to be
stable and remain conformal in the IR without a dynamical chiral condensate forming.
Let us first, for simplicity, consider the theory that lives at the fixed point at all scales
and so has no running of the coupling (or therefore running of ).

The solutions of the RG flow equation (7.20) at the fixed point (with Am? = v*(y* —

2), v* being the fixed point value of the anomalous dimension) are of the form

m* c*

Here m* and ¢* are interpreted as being the operator-source combination for the operator

qq but, of course in this theory, they have dimensions 1 + v* and 3 — ~v*.

To extract the chiral condensate, we substitute the solution back into the action

1 dz
Z dm* |m

(7.14), integrate over p upto a cut off Ayy, and compute .. We find (see

Appendix F)
(@a) = BT
(4.16)
+ 2(Am? ++*(2 —v*))c* InAyy
The first term is the expected UV divergence in the condensate in the presence of a
mass - the mass and condensate share the same symmetry properties and the dimension
is then made up with the UV cutoff scale. Since the condensate has dimension 3 — v*

and m* dimension 14+, the power of Ay is the correct one to match this dimensional

analysis. This is already a sign that the model correctly describes scaling dimensions.
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The second term is, upto log renormalization, a constant times the parameter ¢*. There-
fore this term, in the m* = 0 limit, implies ¢* is directly proportional to the condensate
(@q)*. We will study ¢*’s scaling behaviour shortly.

To find solutions for L(p) and express ¢* in terms of m* one needs to impose a
regularity condition in the IR. The solutions in (4.15) clearly do not satisfy 9,L(0) =0
except in the conformal m* = ¢* = 0 limit. As we discussed in the introduction to
this chapter, this is most likely a failure of the model to include the backreaction of the
quark decoupling on the background metric. We will rectify this by choosing a suitable

boundary condition. A sensible first guess for the IR boundary condition is

L(p = pir) = p1r; L'(p= prr) = 0. (4.17)

This IR condition is similar to that from top down models but imposed at the renor-
malization scale where the flow becomes ‘on-mass-shell’. Here we are treating L(p) as a

constituent quark mass at each scale p. We then find (see Appendix G)

* ’7* —2 1+v*
m* = (27* — 2) pr (4.18)
and .
* 2Iv* — 92 % 3—7*
¢ = mj— 2 ( 77 —2 ) )5 (#19)

This shows analytically that the model obeys the ‘hyperscaling’ relation one would
expect at the conformal fixed point. The condensate has dimension 3 —~* and the mass
dimension 1+ 4*. Since m* is the only intrinsic scale, ¢* ~ (m*)% is ensured. In the
full theory with a running coupling, relations of this form will hold in any regime where
~* is running slowly and with the ¢ and m parameters those appropriate to that energy
regime.

The boundary condition L'(p = prr) = 0 is not crucial to obtain the hyperscaling
relations since the relative dimensions of m* and (gq)* are fixed in the holographic
model. Instead, the choice of this boundary condition fixes the proportionality constant

3—
between (gq)* and (m™) 1797 . Given that there is some freedom in this choice of boundary

condition, we will not be predicting this value - for this reason in our numerics we will
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choose a boundary condition to set the proportionality constant to unity in all cases.

That is, we will assume at the IR boundary the solution is of the form

*

3— *
ie. (qgg)* = (m*)ﬁ, and hence use the boundary conditions
L(p)’PIR = PIR;
(4.21)
/ ,Y*m* 7*_2 * %
L'(p)lprr = =551 + S (m*) 157,
PIR PIR

Note here that the value of v* used in the initial condition is that determined by (7.19)

(and the discussion below) evaluated at the scale

p=p+ LQ‘
L=p=prr

4.2.2 The large quark mass limit

If we now consider asymptotically free theories that lie at a < o in the UV, then the
far-UV running of Am? is controlled by the one-loop perturbative running coupling.
Holographic theories where the L profile lives only at large values of r = \/1127—#/)2 will
see only this behaviour, i.e. we can extract the large quark mass behaviour from this

limit. See figure 4.2.

Using Am? = —2v, and with the one-loop logarithmic running of o given by ay =

m, the embedding equation (7.20) becomes

0,l0°0,L] + , (1.23)

where A is the one-loop running scale and k is a constant which, at the one loop level,

can be shown to take the form k = 3%227;3) (see Appendix H). The solution to 4.23 has
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MIR > P

Figure 4.2: Profile for L(p) living only at scales above A; (i.e. outside the circle of radius

r = A1). It knows nothing of the behaviour of the running of the coupling below A; and
so is dominated only by the far-UV running — the logarithmic one-loop running.

the behaviour

(4.24)

To obtain the bare quark mass one simply extracts the non-normalizable term of the
solution at some fixed far-UV scale (we choose p = €% for the numerical work below?*)

— this is what we will refer to as mpare in plots that follow.

Applying the simple boundary conditions

L(p = prr) = pIR, L'(p=pir) =0, (4.25)
gives
2cyy PIR 2kt
S In P11 : 4.26
e (n A1> (4.26)
and
k 3
2 (ln ‘X—f)

This shows that cyy ~ m?[’]V in the UV upto a logarithmic renormalization. The model

is again correctly determining the scaling relations between the mass and condensate.

“To approximate the far-UV in the conformal window, a large value of p is necessary because the
running is so slow. Ideally we wish to run out to values of p whereby v < v* and for the conformal
window this pushes the cutoff up to high values p ~ €°°°. In theories where the running is fast, the
far-UV can be approximated with values of p ~ 100 or less.
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We assumed that L'(prr) = 0 here so that we could display the scaling behaviours
analytically. In our numerical work, we will use the boundary condition in (4.21) which

sets cyy = m%,v in the IR for large quark masses also.

4.2.3 Numerical solutions for the full running theory

We have seen that the model correctly describes scaling dimensions in the IR and UV
fixed point regimes. The transition between these fixed points is more model dependent
but also of more interest for lattice simulations where one would be interested in an
estimate of how quickly the IR scaling behaviour is likely to set in. We can see what
results this model gives by numerically solving for the mass and condensate as a function
of RG scale with the full two-loop running implemented.

We first discuss results for N, = 3 and Ny = 12 as an example. This model lies
close to the lower edge of the conformal window (N]? < Ny < 11N./2). Specifically, it
displays an IR fixed point value for v of 4v*=0.8 (a value calculated from the one and two
loop QCD beta-functions). We proceed by solving (7.20) subject to the IR boundary
condition (4.21). Then for intermediate values of p (between the IR and UV), we fit

L,L" and L"” to the functional form

m C
Lt

(4.28)

to extract an estimate of the running mass, m, condensate, ¢, and . Note here m is a
parameter that in the UV has dimension 3 and displays logarithmic running consistent
with the discussion of (4.24) whilst in the IR it runs to be a source of scaling dimension
1 + ~. This ansatz (equation 4.28) for the fitting is sound in the UV and IR fixed
point regimes and will likely be good locally in slowly running regimes but is necessarily
approximate.

Let us first evaluate the condensate at the deepest IR point (i.e. prr) for each value
of quark mass for each flow. We have fixed L’ at this point, assuming that the solution
takes the form in 4.20, therefore in the IR and UV fixed point regimes (i.e. at low and
high quark mass), we expect the numerical solution to match that form precisely. In the

intermediate regime where 7 is running, the form in (4.20) is only approximate. The
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Figure 4.3: Plots for the theory N, = 3 and Ny = 12. [a) top-left] log c against log mparc
[b) top-right] numerical points for v against log mpae — v is extracted by assuming

3—
the scaling relation (Gq) = me [c) bottom] the percentage difference between the
extracted form of 7 and the input form (solid line in b)). For all of these ¢ is evaluated

at prg.

numerical solutions for the quark condensate parameter ¢ against the quark mass are
displayed in figure 4.3a). The plot shows clear UV and IR scaling regimes where ¢ ~ m?
with a transition period between. Remember that a large bare mass (mpare > A1)
comes from a theory that doesn’t see the IR fixed point behaviour. As the bare mass
is decreased, it is able to ‘see’ more and more of the IR-running behaviour such that a
mass Mpare <K A1 is dominated by the fixed-point behaviour.

In figure 4.3b), the value of v extracted from b is plotted over the input form of ~

as discussed below Eq (7.19). If one assumes that b takes the form b = :1)’;—'77, one should

expect to return the input value of v, since the IR regularity condition is deliberately
chosen so that ¢ = mi% and we are evaluating c¢ at the IR boundary. It is clear from
figure 4.3b) that the extracted - does indeed agree very well with the input form bar
marginal discrepancies in the regime of steepest running. The extent of the deviation
in this intermediate regime can be seen more clearly in figure 4.3c) as a percentage

difference from the input form. Clearly the ansatz (4.15) works well at all scales. The

slight deviation between the input and output v, which reflects the additional scale A;
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Figure 4.4: N, = 3: [a) left] v versus mpare from ¢ for Ny = 13 [b) right] v versus
Mpare from ¢ for Ny =15

from the running, seems to persist for several decades of energy on either side of the
strongest running regime in this model. Such behaviour, if true of the full theory, would
further complicate lattice studies of such theories by requiring a very large box size to

include both the UV and IR fixed point behaviours.

The behaviour for other values of Ny in the conformal window are very similar in
spirit to the Ny = 12 case we have looked at in detail. To summarize the other cases, we
simply produce the plot of 4 extracted from the fit of the form ¢ ~ m®=7/+7) against
quark mass overlaid on the input ~ function from the two loop running. We show
results for the cases Ny = 13 and Ny = 15 in figure 4.4. These plots indicate that the
aforementioned discrepancy in the regime of strongest running becomes increasingly less
dominant at higher values of Ny. This trait encapsulates the idea that as the number of
flavours increases, the fixed point value of v drops and the rate of running slows causing

the IR fixed point behaviour to extend further away from p = 0.

4.3 Bound state masses

So far our analysis has consisted of checking that the vacuum configuration of the model
is consistent with naive scaling arguments. One of the powers of holographic models is
that these relations are inbuilt. We now turn to computing the physical parameters,
the masses of the bound states and their decay constants. These parameters are true
predictions of the model now that the dynamics has been included through the running

scalar mass and the condensate fixed by the IR boundary condition.
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4.3.1 Linearized fluctuations

The scalar gq (o) mesons are described by linearized fluctuations of L about its vacuum

configuration, Ly. We look for space-time dependent excitations, ie | X| = Lo+d(p)e "%,

q?> = —M?2. The equation of motion for § is, linearizing (7.20),

,(p%0") — Am2ps — pLod 25m° .

(4.29)
+M2R*

3
@y =0

We seek solutions with, in the UV, asymptotics of § = p~2 and with 050|p;r = 0 in
the IR, giving a discrete meson spectrum. Note that the distinction between this IR
boundary condition and that of the normalizable mode in (4.21) is negligible in the
spectrum obtained (of order 1 part in 10%). Recalling previous discussion of the 9, Am?

term, we elect to ignore it since it has negligible effects on the spectrum.

We must normalize § so that the kinetic term of the ¢ meson is canonical, i.e.

3
P 2
dp———550"=1. 4.30
/ PP+ 1) (4:30)

The scalar meson decay constant can be found using the solutions for the normal-
izable and non-normalizable wave functions. We concentrate on the action term (after
integration by parts)

S = / d*z dp 0,(—p*0,L)L. (4.31)

We substitute in the normalized solution § and the external non-normalizable scalar
function Kg at ¢> = 0 with normalization Ng to obtain the dimension one decay constant
fo as

72 = [ dooy-p'0,0) Ks(a? = 0). (432)

The vector (p) meson spectrum is determined from the normalizable solution of the

equation of motion for the spatial pieces of the vector gauge field V,,| = "V (p)e T
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with ¢> = —M?2. The appropriate equation is

,03M2

3
Ip [P 8PV] + (Lg +p2)2v

~0. (4.33)

We again impose 0,V |,,, = 0 in the IR and require in the UV that V' ~ c¢/p?. To fix c

we normalize the wave functions such that the vector meson kinetic term is canonical

3
14 2 _
/dp(p2 n L%)Q Ve=1. (4.34)

The vector meson decay constant is given by substituting the solution back into the
action and determining the coupling to an external ¢> = 0 vector current with wave

function Ky . We have for the dimension one fy

fi= / dpd, [-p*0,V] Kv(q*> = 0). (4.35)

The pion mass spectrum is identified by assuming a space-time dependent phase 7%(x)

of the AdS-scalar X describing the gq degree of freedom, i.e.
X = L(p) exp(2in®(z)T*). (4.36)

The equation of motion of the pion field is then,

3L2
8, (pPPL20,7%) + M2—L 0o _ g 4.37
p(p 0%p ) W(p2+L%)2 ( )

Again, we impose at the IR boundary that 0,7¢,,, = 0.

4.3.2 Bound states of the N, = 3, Ny = 12 theory

Focusing in detail once more on the N, = 3, Ny = 12 theory with v* ~ 0.8, we use
the formalism outlined above to compute the p,m and ¢ meson masses as a function
of quark mass. Hyperscaling arguments lead to the expectation that in a fixed point
theory the meson mass will scale as miﬁjw (in the UV v = 0 whilst in the IR v = 0.8).

In figures 4.5a), 4.6a) and 4.7a), we plot the dependence on the p-mass, o-mass and the
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Figure 4.6: N. = 3, Ny = 12:[a) left] o-meson mass against quark mass [b) right]
Extracted value v versus mpare from o-meson mass spectrum. The solid line shows the
holographic input of v from the two-loop running.
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Figure 4.7: N. =3, Ny = 12:[a) left] m-meson mass against bare quark mass [b) right]
Extracted value v versus mpare from m-meson mass spectrum. The solid line shows the
holographic input of v from the two-loop running.
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Figure 4.9: N, = 3, Ny = 12:[a) left] f, versus the bare quark mass [b) right] the
extracted vy versus mpare

m-mass respectively, against the bare quark mass Mmpare. Note here we define the bare
quark mass as the running quark mass evaluated at a very high UV scale of p = ¢°®. In
figures 4.5b), 4.6b) and 4.7b), we plot v extracted from the hyperscaling relation, again
as a function of the quark mass, and show the comparison to the input running of ~.
In a similar vein to the quark condensate scaling, we see excellent agreement with the
hyperscaling relations in the UV and IR regimes but a discrepancy in the intermediate
running region. In the central region, the discrepancy again reflects the presence of the
second scale A1 in the running coupling. The deviations from the naive IR and UV fixed
point values seem to persist in the meson masses over a slightly wider running period
than in the input 7. The percentage deviation in v extracted from the p mass and the
initial two-loop ~ input is shown in figure 4.5¢). In the regime of strongest running, the
disagreement is found to be as much as 47%.

Another interesting plot is to remove the unphysical quark mass and directly plot

M, versus M. Here, we naturally expect at a fixed point that M, o M? with b= 1. In

figure 4.8 we plot these masses against each other and the extracted value of b against
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Figure 4.10: N, = 3, Ny = 12:[a) left] f, versus the bare quark mass [b) right] the
extracted y versus mpare

M. We indeed see the expected proportionality between the masses in the fixed point
regimes as well as the deviation in the running regime between these, a telltale sign of
the running scale A; entering the relation. Here the deviations from the fixed point

scaling is only of order 5%.

Finally, we can compute the decay constants f, and f, and plot them against the

quark mass, see figures 4.9a) and 4.10a). Once again, we extract -, assuming a power
1

law relationship f,, o< m,.7 and plot the results in figures 4.9b) and 4.10b). They show

bare

similar behaviour to the meson masses.

4.3.3 N.=3, Ny = 13,15 mesons

For completion, we have also computed the mesonic variables for Ny = 13 and Ny = 15
in the N, = 3 theory, so that we can test this model across a large span of the conformal
window. We begin, as before, by computing the mass spectra of the p- and o-mesons
as a function of the quark mass and extract the corresponding ~, which can be seen in

figure 4.12a) for Ny = 13 and figure 4.12b) for Ny = 15. A similar behaviour to that

1

T

bare and

at Ny = 12 is observed with the clear IR and UV scaling regimes of M, oc m
M, o< Mpare respectively. We see the deviation from the input  running in the central
region where the running is strongest. However, as Ny is increased away from N]?, the
IR fixed point value, v*, decreases thus reducing the rate of the running with RG scale
so the deviation in v becomes less and less. It is most evident for the case Ny = 15 in

figure 4.12b), that not only does the discrepancy between the input v and the extracted

7 become less pronounced with increased Ny (at most only ~ 4.8% difference compared
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Figure 4.11: The running of o, for Ny = 12 switches drastically between the perturbative
one-loop running in the UV to the fixed point behaviour in the IR around A;. The profile
for Ny = 15 is a lot smoother, pushing the conformal behaviour further out and blurring
the two (IR and UV) regimes.

to 47% for Ny = 12), but that the conformal IR fixed point behaviour gets ‘pushed’
further out, slowly (over many aeons of energy scale) blurring the drastic change between
fixed point and perturbative one-loop behaviours. As such, the importance of the UV
scale Ay is masked and suppressed. To illustrate this, figure 4.11 shows the difference
in runnings for Ny = 12 and Ny = 15.

Next we turn again to plots of M, versus M, which remove the unphysical mass
parameter Mpare, see figures 4.13a) and 4.13c). In each of the cases, Ny = 13 and
Ny = 15, the linear relationship M, oc My, expected in the IR and UV regions, is
clearly observed and only by examining the exponent, b, of an assumed M, o M?
relationship do we notice the discrepancy attributed to the additional running scale Ay;
see figures 4.13b) and 4.13d). Once more we observe that an increase in the number
of flavours leads to an extended IR fixed point region and a reduction in the rate of
running of the anomalous dimension with RG scale. Figure 4.13d), showing b versus M
at Ny = 15, provides a prime example of such an observation - the greatest difference
between the extracted value of b and the linear behaviour (b = 1) is only of the order of

0.03%.
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Chapter 5

Meson Spectra of Asymptotically

Free Gauge Theories

Asymptotically free gauge theories are notoriously difficult to study since they run to
strong coupling in the infrared. Computing the bound state spectrum of theories such
as QCD is therefore very hard. First-principle lattice calculations are possible but very
numerically expensive and are typically guided by the answers observed in nature. It is
hard to easily explore the range of behaviour across the full space of asymptotically free
theories. As we have seen throughout this work, the holographic description of large N,
N'=4 gauge theory [32,83,84] has raised the prospect of a dual gravitational picture for
these theories in which the spectrum might be computed in a purely classical theory.
Top-down attempts [86,87,91,97,124] to rigorously find a gravity dual originating from
ten-dimensional string theory are complicated by the need to find a brane construction
that decouples all unwanted super-partners, and also by the challenge of finding the
appropriate gravitational background for embedding those branes. In any case, when
the gauge theory is weakly coupled, such as in the ultraviolet, the gravitational theory
will itself become strongly coupled. Bottom-up approaches to holographic modelling
[82,88,89] have taken broad brushstroke ideas from the AdS/CFT correspondence and
attempted to model the mesonic and glueball degrees of freedom. Basic AdS/QCD
models appear to work reasonably well, even at the quantitative 10% level or better. In

this section, we will firstly provide further support for the success of an existing top-
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down model and secondly, we present the bottom-up Dynamic AdS/QCD analysis for a

large range of different gauge theories.

The focus of this chapter will be the how the meson spectra varies with N., Ny and
the matter representation, R. We will explore all representations which have asymp-
totically free solutions for N., Ny > 2, i.e. fundamental, adjoint and the two-index
representations. Of particular interest will be how the meson spectrum alters as one
approaches walking theories. Walking theories are expected to have a quark condensate
which is enhanced in the UV. In these theories, there are two scales which dominate
the running; the scale A; which characterises the transition between the perturbative
logarithmic running in the UV and the slow walking regime in the IR (roughly the scale
generated by the one-loop beta function), and the scale A, where the running trips the
critical value to break chiral symmetry (where v = 7X). The UV condensate is then
given by the dimension 3 — yX IR condensate Aifvx with the dimensions made up

from the remaining UV scale,
_ _ X
(G@)uv o< AT7AT

Since vX ~ 1, it follows that (Gq)yy = AiAl. As the walking theory becomes more
dominant (i.e. as Ny increases at fixed N, and representation) the scale A gets pushed
further into the UV and so the condensate becomes enhanced. This enhancement of
the condensate is responsible for the subsequent enhancement of the p mass and the
7 mass to a lesser degree. A secondary effect of the enhancement of the condensate is
the suppression of the o mass [121,125-135]. As the condensate (i.e. the vev of gq)
is pushed out to high scales, the effective gg-potential flattens in the radial direction
characterised by the o-mass, see figure 5.1. As such, the o-mass becomes light. Of
course, this coincides with the transition that the c—meson becomes massless when the
chiral symmetry is restored in the conformal window. We observe all of these phenomena

in our model.
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Figure 5.1: As the UV scale A; (associated to the one-loop running) gets pushed out
as walking dominates, the condensate becomes enhanced and stretched the shape of
the effective potential. For large walking regimes the potential radial direction flattens
causing the sigma-mode to become light. This is in agreement with the walking region
enlarging as Ny increases towards the point where chiral symmetry is regained and the
sigma-mode becomes massless.

5.1 A top-down model

An early holographic description of QCD [97] was provided by placing D7-brane probes
in the dilaton flow geometry of Constable and Myers [96]. D3-D7 strings introduce
quenched quark degrees of freedom. The Constable-Myers deformation of AdSsxS® is
a very simple description of a gauge theory with a running coupling that breaks the
N = 4 supersymmetry completely. The non-trivial dilaton profile is dual to that run-
ning coupling and has an IR pole which is ill-understood. In practice, the geometry
describes a gravity dual of a soft-wall since the singularity is repulsive to probe branes.
The D7 probes bend away from the singularity and asymptotically the embedding de-
scribes a dynamically generated quark condensate at zero quark mass. In [91], the light
meson spectrum was computed and moreover, the M, versus M? plot was compared
to quenched lattice data [136]. We update these computations in figure 5.2. The fit is
remarkably good. This had seemed very surprising since the gauge theory apparently
lies close to infinitely strongly coupled N' = 4 gauge theory with all the associated
super-partners and has no asymptotic freedom. In this section, we return to this model

and analyse it in the spirit of [122] to shed some light on the success at describing the
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Figure 5.2: Plots of M, against M? - in each case the points are normalized by M,
at M; = 0 to set the non-perturbative scale A. As shown in the key, the plot shows
the data for quenched lattice computations taken from [136] (and linearly fitted to find
M, at M, = 0); the Constable Myers top down model; and the Dynamic AdS/QCD
predictions.

QCD spectrum.

5.1.1 Constable-Myers geometry: A recapitulation

Here we recap the Constable-Myers dilaton flow as described fully in section 5.1. The

gravity background of Constable and Myers [96] has the geometry

4 34N\ 0/4 3 4 74N\ (2-0)/4 4 44 6
ds? — H—1/2 <w +b > S da? 4 HY? (w +b ) %Zdwg, (5.1)
j=0 i=1

wt — v wd — bt

where b is the scale of the geometry that determines the size of the deformation (6 =

R*/(2b*) with R the AdS radius) and
wt + b4)6 6
= (=) -1 w? =3 w?. (5.2)
4 _ 4 9 (2
(w b P

In this coordinate system, the dilaton and four-form are, with A? + 62 = 10,

w* + b* A 1
62‘1) = 62‘1)0 (u]4—b4> y 0(4) = _ZH 1dt A d.’]j A dy AN dZ . (53)
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This geometry returns to AdSs x S° in the UV as may be seen by explicitly expanding
at large radial coordinate w.

To add quarks [97] we will use an embedded probe D7-brane. The D7-brane will be
embedded with world-volume coordinates identified with xg 12,3 and wq 23 4. Transverse
fluctuations will be parameterized by ws and wg (or L and ¢ in polar coordinates) - it
is convenient to define a coordinate p such that Zf‘:l dwi2 = dp* + p2d3 and the radial
coordinate is given by w? = p? + ws? + we? = p? + L2,

The Dirac-Born-Infeld action of the D7-brane probe in the Constable-Myers back-

ground takes the form

1/2
Spr = ~TeR [ &6 ca 290, 1)(1+ 9910000 + 90000050 + 2 F)

(5.4)
where

(P + L2+ (0 + 17)° = bY)

G=p (02 + L2)

Here we have rescaled w and b in units of R, so that factors of R only occur as an overall

factor on the embedding Lagrangian.

5.1.2 Analysis

From this action, we derive the corresponding equation of motion. We look for classical
solutions of the form L(p), ¢ = 0. Numerically, we shoot from a regular boundary
condition in the IR (L’ = 0) and find solutions with the asymptotic behaviour L ~
m + ¢/p?. These coefficients are then identified with the quark mass and condensate
(1)) respectively (formally c is only the unique contribution to the condensate in zero
mass limit [137]), in agreement with the usual AdS/CFT dictionary obtained from the
asymptotic boundary behaviour.

Mesonic states are identified by looking at linearized fluctuations about the back-
ground embedding. Fluctuations in ¢ correspond to the pion (since it parameterises the
angular fluctuations) and fluctuations in the worldvolume gauge field correspond to the

p meson. In each case, one seeks solutions of the form f(p)e’*® k? = —M? with the
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mass states being picked out by the condition that f(p) is regular.

figure5.2 shows the first example of the plots we will be producing in this chapter: it
shows the p meson mass as a function of the pion mass squared. Note that in any given
theory, we must fix the strong coupling scale A. Here and throughout this chapter, we
choose to do this by setting the p mass at M, = 0 (ie when the quark mass is zero) to be
the same in all theories, and we express all physical quantities in units of that fixed mass.
The figure shows the results from the Constable-Myers model. We also display quenched
lattice results for the plot in theories with gauge group SU(3), SU(5) and SU(7) (data
taken from [136]). It is important to note that in order to place the lattice data on
the plot we have taken the two data points at lowest M, and linearly extrapolated (to
M, = 0) to find the value of M, at M, = 0. This is somewhat naive and we will argue
later that this maybe puts the points a little high in the plane. Conservatively, we will
use the spread of the lattice data across the different SU(N.) theories as reflective of
the systematic errors in the lattice simulations. The remarkable thing is the lack of
dependence on NV, in the lattice data and the match of the holographic model to this
data. The aim of this section is to identify why there is such a close match given the
large deviations in the holographic dual that includes different adjoint particle content

and UV behaviour.

Following [122], we argue that the key element for the quark physics in the top-down
model is the running of the anomalous dimension + with the renormalization scale.
We show that this running is very similar to that in QCD, especially in the regime
where v ~ 1, the point at which the BF bound-violating instability sets in causing
chiral symmetry breaking. To study this instability, we look for when the flat chirally
symmetric L = 0 embedding becomes unstable. We simply take our DBI action, which

up to a multiplicative constant, we may write as

Sor= [ oMo Lp* 1+ @12 (5.5)

where \(p, L) = p3e®G(p, L) and r = /p? + L2, and expand around L = L' = 0 to
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quadratic order

Spr = [dpp® ()“L:() + 2|, L2> (1 + 3 (8pL)2) ,
(5.6)

= Jdp p* (3 Ny (9pL)” + 92l 7).

In order to ensure that the kinetic term in our Lagrangian is canonical, we perform

a coordinate transformation on p,

(5.7)

Il

Y
Q
bi‘ Q@

5 0
37
Ap)p 9

11 53
P= |57 T 5 .
2 [ 5 mdp

We may rewrite our action in terms of the g-variable. Along with writing L(p) =

that is,

p¢(p), we obtain

Spr = / 45 =7 (52<8~¢)2+3¢>2+ A2 ”5¢2) (5.9)
2 g Op | P
The first two terms in the action describe a canonical m? = —3 scalar in AdSs,

whereas the remaining term gives a p-dependent mass to the scalar field in AdS;. We

find an overall mass squared

m?=-3—-om?  omi=- " (5.10)

Using the standard scalar mass/operator dimension relation of the AdS/CFT dictionary,
m? = A(A — 4), but now assuming the mass dimension of the gg-operator to be 3 — 7,
where 7 is the running anomalous dimension of the gauge theory quark mass, we obtain
the relation

m? = -3 — 2y + 2. (5.11)

Thus we associate dm? = —2v + ~2, and are thus able to extract a running anomalous

dimension in the Constable-Myers background.
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The key point to note is that the only way that the background geometry and running
dilaton enters into the equation for the embedding is through the running of . The
background D7 embedding is then the key ingredient for the computation of linearized
fluctuations that determine the mesonic masses. Effectively, the origin of the running of
v is lost and so questions about whether the background has too many superpartners of
the gauge fields, or whether the running coupling is correctly that of QCD in the UV,

and so forth become subsumed into simply asking whether  is close to that of QCD.

In figure 5.3, we plot the RG scale dependence of the anomalous dimension v ex-
tracted from the Constable-Myers model and the one loop running of large N, quenched
QCD theory. We have matched the strong-coupling scale of the two theories by assum-
ing that they each take the value v = 1 at the same scale. Setting the AdS radius R to
one, we identify the RG scale and the radial coordinate by u = In p (i.e. we are arbi-
trarily choosing to set this relation by matching to the calculation of the physical RG
scale in the quenched QCD theory). This is the scale where chiral symmetry breaking
is triggered, in the holographic model by the BF bound violation. From the figure it is
immediately obvious that the scale dependence of the anomalous dimension « is similar
in both cases, and the gradient of 7 is almost the same near v = 1. Deviations in the
UV are present but are mild. They occur in the regime where the BF bound is not

violated in the holographic model.

This close matching of the scale dependence of the anomalous dimension is, we
believe, the reason for the success of the holographic model. It is worth pointing out
that the reason that the holographic description and QCD match in the UV is somewhat
artificial. The UV of the Constable-Myers theory is infinitely strongly coupled N = 4
super Yang-Mills theory, yet the theory’s large amount of supersymmetry preserves the
perturbative dimension of the quark operator, i.e. v = 0. In QCD, the UV result v =0
simply follows from weak coupling. This coincidence has long been behind the successes

of AdS/QCD models.

Given that the key ingredient to describe the mesonic spectrum is simply the running
of 7y, it seems an obvious step to do away with the background construction of a geometry

that mimics QCD, since there is no top-down holographic construction of real QCD, and
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Figure 5.3: A plot of the anomalous dimension v in the top-down Constable-Myers
model. It is compared to QCD by using the one-loop perturbative result for the running
coupling in large N, Yang-Mills theory (uda/dp = —11N.a?/67) as input for calculating
the anomalous dimension v (7 = 3N.a(u)/47). We set the scale at which v = 1 to be
equal in each case.

to simply use the assumed form of v as an input in the DBI action. This is essentially
the starting point for the bottom-up model Dynamic AdS/QCD [89], which we will now

move to using.

5.2 Dynamic AdS/QCD

We now turn to the bottom-up Dynamic AdS/QCD model. As we have encountered,
the model is just the linearized DBI action of the D3/probe-D7 system, but with an
arbitrary running for . Using the standard AdS relations, the running can be translated
into a radially dependent mass squared for the scalar describing the condensate. The
model then makes predictions for the spectrum of the theory. The Dynamic AdS/QCD
model allows us to explore the space of gauge theories as a function of N., N; and the
representation of the quarks through the input running of the gauge theory ~-function.
In this chapter, we will again concentrate on calculating and analysing the spectrum
of masses pertaining to the p meson and the pions, as well as the o meson ( i.e. the
singlet gg bound state with vanishing quantum numbers, also identified with the fy) and
the lightest glueball. For the glueball, only qualitative statements are possible since the

Dynamic AdS/QCD model concentrates on the quark sector.
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5.2.1 The running of v

For the analysis that follows, we use the two loop running of the gauge coupling in QCD

with N; flavours transforming under a representation R. This takes the form

da

i = —boa® — bia®,
where
by = % <1102(G) _AN;Cy(R) jﬁgg;) ,
and
b= ooz (5 1@ - [Fca@cam) +alcamP| N

Again, denoting the adjoint representation as G, its respective Casimir is given by
C3(G) = N.. Table 2.1 in section 2.2.4 shows all the distinguishing quantities associated
to each of the representations we consider: the dimension of the representation, Co(R),
and the minimum number of flavours required for loss of asymptotic freedom, N,

The one loop result for the anomalous dimension of the quark mass is

a(p; R). (5.12)

a(u; R). (5.13)

This will then fix the r dependence of the scalar mass through Am? as a function of N,
and Ny for each R. Note that if one were to attempt such a matching beyond two loop
order the perturbative result would become gauge dependent. We hope that the lower

order gauge independent results provide sensible insight into the running in the theory.

5.2.2 Linearized fluctuations

We now turn to computing the physical parameters, the masses of the (p, o, 7)-mesons

and the scalar glueball, for each viable representation. These parameters are true pre-
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dictions of the model which, just as in the gauge theories, depend only on the choice of
the quark mass, N., Ny and the scale A.

The isoscalar gg (o) mesons are described by linearized fluctuations of L about its
vacuum configuration, Ly. We look for space-time dependent excitations, ie |X| =
Lo + 6(p)e’d®, ¢> = —M?2. The equation of motion for § is, linearizing (7.20),

OAm? p3

+MIRA
oL |, " (T3 p2)?

9,(p38") — Am?ps — pLod §=0. (5.14)

We seek solutions with, in the UV, asymptotics of § = p~2 and with 0,01, = 0 in the

IR, giving a discrete meson spectrum.

The isovector (p) meson spectrum is determined from the normalizable solution of
the equation of motion for the spatial pieces of the vector gauge field V,,| = "V (p)eid®

with ¢> = —M?2. The appropriate equation is

3772
p° M
9, [p*0,V] + —5——5V =0. 5.15
b [P70pV] (L2 + p2)? (5.15)
We again impose 9,V |, = 0 in the IR and require in the UV that V ~ ¢/p?.
The pion mass spectrum is identified by assuming a space-time dependent phase

() of the AdS-scalar X describing the gg degree of freedom, i.e X = L(p) exp(2in®(z)T*).

The equation of motion of the pion field is then,

3712

Loy oy (5.16)

8, (p°L20,7%) + M2 L0 _
P( 0~p ) (p2+L3)2

Again, we impose at the IR boundary that d,7%|r, = 0.

5.2.3 Meson spectra results

The results presented in this section will be in the style of ‘Edinburgh’ plots [138] used by
lattice gauge theorists. These plots display only physical observables, such as the mass
of the p as a function of the pion mass, in order to remove scheme-dependent quantities
such as the bare quark mass. Firstly, we have again fixed the strong coupling scale A by

ensuring that the p mass at M; = 0 is the same for each choice of representation, Ny
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Figure 5.4: A Log-Log plot of M, versus M? - the plot displays the quenched lattice
data from [136], the top-down Constable-Myers model of section 2 and the quenched
results for varying NV, in Dynamic AdS/QCD from section 3. The solid line corresponds
to M, = M.

and N.. We express all quantities in units of that scale. It follows therefore that within
our plots, the only input parameters are the quark mass, Ny and N.. We will explore a

range of gauge theories with different quark matter.

Quenched fundamental representation

To test the model, we first compute M), and M in the model with quenched fundamental
quarks. This means that we do not include the quark contribution in the running of
the gauge coupling — effectively a pure YM theory. We compute the meson masses
as functions of N, to compare with the previously discussed quenched lattice data of
Fig 5.2. The results are shown alongside the lattice data in Fig 5.2. We note that all
choices of SU(N,) give essentially the same curve in this plot. This curve lies below, but
within 5% of the prediction of the Constable-Myers top-down model. The results from
the Dynamic AdS/QCD model in this plot display some curvature over the range of
the lattice data, suggesting that the linear extrapolation used to place the lattice data
on the plot could be incorrect. Moreover, the expected lattice data point for M, (i.e.
M, at M, = 0) should be greater than that predicted by the linear fit, meaning the

lattice points should be reduced by up to 5%. Indeed in [136], evidence is presented for
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a non-linear fit already in the lattice data. Given the expectation of some systematic
error on the lattice data (see [136]) the match between all these models is remarkable

and lends considerable support to further predictions of the Dynamic AdS/QCD model.

To emphasise how well the results match, we also plot the same Dynamic AdS/QCD
and lattice data on a Log-Log plot in Fig 5.4. The figure also displays the line M, = M,
which would be the one appropriate to a very weakly coupled (i.e. perturbative) theory.
In such a theory, the bare and constituent quark masses are approximate and the mesons
masses become just twice the bare quark mass. This line is expected to be approached
at large M, i.e. in the limit of large quark mass since a heavy quark decouples in
the IR and knows only of the UV perturbative running. Clearly, the very different
computations for these theories agree rather well. Whilst both the holographic model’s
curves are compatible with the lattice data at the level of the errors due to the coarse
lattice spacing taken in [136], the top-down Constable Myers model does fit the data
mildly better (the M, points are raised by upto 2% or so), including in the large M,
limit. This may be reasoned by the profile of v in the Constable-Myers model falling to
zero more quickly than in the quenched-QCD, and so the holographic description of the

UV is probably closer to perturbative QCD where v = 0.

Fundamental representation

The quenched results display very little dependence on N.. The reason is that the
running of v at the point v = 1 is very fast in all these cases so the dynamics comes out
very similar. To see some NN, dependence we should unquench the theory and include a
sufficient number of quarks to affect the running. For example, in Fig 5.5, we show the
N, variation in the M, — M? plane of a theory with Ny = 8. The dependence on N,
is again not large but there is a clear distinction between theories at low N, and those
at larger values which are effectively quenched. This further emphasises the success of
the holographic model in lying so close to the quenched lattice data. The fact that the
Dynamic AdS/QCD spectra of the quenched SU(N,) theories of the previous subsection
were all similar could have easily been misinterpreted as being ignorant of N, and Ny.

However, here we see that is clearly not the case.
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Figure 5.6: SU(3) gauge theory with N; fundamental quarks showing the approach
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quenched theory [136] and unquenched Ny = 3 theory [139-141].
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We can now turn to study the question of whether there are choices of Ny and N, that
provide spectra very different from QCD-like theories. As is well known, the theories
that are most unlike QCD are those on the edge of the conformal window exhibiting
walking behaviours. To demonstrate the impact of this on the spectrum, we plot the
N dependence of the SU(3) theory in the M, - M2 plane in figure 5.6. The p mass is
substantially enhanced relative to the 7 mass at larger Ny. The usual expectation is that

1/3 whilst the m mass will scale as m;/2<q’q)1/6.

the p mass will be proportional to (Gq)
An enhancement of the condensate, as occurs in these walking theories, would therefore
raise M, at any fixed M as is seen in figure 5.6. Generically for different V. we observe

the same behaviour as Ny/N., — 4.

This is a good point to compare our Dynamic AdS/QCD theory to unquenched
lattice data [139-141]. We have seen that the effect of including more flavours within
our model is that the value of M, rises at fixed M. This suggests that the effect of
quark loops is to raise M,. We display lattice data in the top plot of figure 5.6 — we
show both the quenched results previously discussed for SU(3) gauge theory, but now
also unquenched data for the same theory with Ny = 3, taken from [139-141]. The three
sets of lattice data show some spread in the low M, region, but we indeed observe a
shift upwards in M, by 20% or so. In fact, the fit to the Dynamic AdS/QCD model for
Ny = 3 is alittle poorer than the fit to the quenched lattice data. The lattice points here
are more similar to the Ny = 5 version of Dynamic AdS/QCD (ignoring the uncertainty
provided in the spread of lattice results). This is most plausibly explained as a failure
of the very naive perturbative based running ansatz we have used as an input into the
model. The key measure is the gradient of -y at the scale where v = 1 (the scale of chiral
symmetry breaking/BF-bound violation). For Ny = 3, v/ = —4.25, whereas at Ny =5
the value of v is 4/ = —3.70. This implies that the shift in the spectrum is caused
by a 15% shift in this gradient. Clearly, the perturbative ansatz cannot be trusted at
this level of accuracy. It is not surprising that the precise features of the spectrum are
dependent on the choice of assumed running for ~. It is encouraging that the Dynamic
AdS/QCD model correctly gets the gross features correct, such as the rise in M, in

theories with more quark loops. This gives us confidence that the holographic model
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can be useful in understanding broad trends in the spectrum as quark content of the
theory is changed.

As we have discussed, an additional expectation in a walking theory is that the o
mode gg bound state should become light as one approaches the edge of the conformal
window from below. To observe this, let us now turn to computing the ¢ meson mass.
We will again pick N, = 3 as an example and show the Ny dependence of M, against
M2 in figure 5.7. The N ¢ = 7 curve is perhaps what one would have predicted for QCD
- at large quark mass the o and 7 masses become degenerate. Heavy quarks only see the
perturbative UV running and aren’t witness to the chiral symmetry breaking scale in
the IR. As such, they see an effective restoration of the chiral symmetry and the 7 and
o mesons become degenerate parity doublets. On the other hand, at low quark mass, as
the m mass tends to zero, the ¢ mass saturates to a non-zero value. If the sigma-mass
saturates to a value less than that of the p mass, one might then identify this state
with the fy(500), lighter than the 770MeV p, as observed in experiment. However, for
Ny = 3 the holographic model predicts that the lightest o is heavier than the p and it
looks more sensible to match it to the fy(980) which it matches at the 10% level. An
explanation of the origin of the lighter fy would then be needed. In fact, the literature
has considerable speculation about this state which might be a molecule or some other
exotic state (see for example [142]). We can not resolve this issue here. However, the
main use of our model is to look at significant trends in the behaviour of the spectra as
we adjust the running of . Here our plot very strongly supports the speculation that
this ¢ mode becomes light as one approaches the walking regime and the edge of the

conformal window at Ny = 12.

Other representations

As we have stressed above, Dynamic AdS/QCD can accommodate a description of any
arbitrary quark representation. The flavour representation enters through the running
of the anomalous dimension ~ (for which we continue to use the two loop perturbative
result). In this section, we provide some plots showing some exploration of the larger

space of theories.
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Figure 5.7: M, versus M2 in SU(3) gauge theory with varying Ny fundamental quarks.
The lower plot is a Log Log version of the top plot. The solid line corresponds to
My, = M;.
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As a first example, in figures 5.8 and 5.9 we show results for different representations
for N. = 3. The top plot shows the results in the M, — M2 plane for the theory with
a single quark in the fundamental representation (here the same as the two-index anti-
symmetric representation), the adjoint representation, and the two-index symmetric
representation. Increasing the size of the representation makes a bigger impact on the
running of the coupling and moves the curve away from QCD-like towards the walking
regime. In the lower two plots we show the Ny dependence for the adjoint and two-index
symmetric representation (here we allow Ny = 1.5 since by Ny = 2 chiral symmetry
breaking is lost). Adding flavours makes the theory more walking in behaviour.

We can also explore the N. dependence of these theories at fixed Ny. For example, in
figure 5.10 we vary N, with two, two-index symmetric representation quarks. Increasing
N, moves the theory closer to the quenched limit and a more QCD-like spectrum. Within
this space of theories, we do not find any additional structure beyond the dependence
on the rate of running at the point v = 1.

One final interesting case is that of two-index anti-symmetric representation quarks.
As one moves to higher N, at fixed Ny the two-loop IR fixed point value of the coupling
actually decreases due to the nature of the beta function’s dependence on .. For these
theories increasing N, moves one towards the walking regime. We show this in figure
5.11.

The walking regimes of these theories also display a light ¢ meson. We show this
trend for a variety of sequences of theories moving towards the walking regime in figures
5.12 and 5.13. The trends in the spectrum as one approaches the walking regime across

a wide range of theories are very similar.
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Figure 5.8: A Log-Log plot in the M,-M? plane for SU(3) gauge theory. The plot shows
the results in models with Ny = 1 but with the fermions in the fundamental, adjoint
and 2-index symmetric representations. The middle figure shows the Ny dependence in
the case with adjoint fermions and the bottom plot the same for the 2-index symmetric
representation. The solid line corresponds to M, = M.
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Figure 5.9: A Log-Log plot in the M,-M2 plane for SU(3) gauge theory. The top plot
shows the N; dependence in the case with adjoint fermions and the bottom plot the
same for the 2-index symmetric representation. The solid line corresponds to M, = M.

5.2.4 The scalar glueball

Another state that one might be interested in studying as part of the lightest spectra
of these theories is the lightest glueball state (see [56,121,132-135] for some discussions
in preliminary lattice simulations). AdS/QCD is not suited to study this state since
the model is fundamentally a description of the quark sector. The glueball could be
included as a separate scalar in AdS but one would then need to correctly encode its

dynamics to describe the gauge theory’s vacuum (TrF?) condensate and make a guess
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Figure 5.11: A Log-Log plot in the M,-M? plane for SU(N,) gauge theory with Ny =3
2-index anti-symmetric representation quarks. The solid line corresponds to M, = M.
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Figure 5.12: Log-Log plots in the M,-M? plane. The top plot shows the results in
SU(3) gauge theory with adjoint quarks. The bottom plot is for SU(N,) gauge theory

with Ny = 2 2-index symmetric representation quarks. The solid line corresponds to
My, = M.
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Figure 5.13: Log-Log plots in the M,-M? plane. Plot shows the spectra for SU(N,)
gauge theory with Ny = 3 2-index anti-symmetric representation quarks. The solid line
corresponds to M, = M.

as to how it couples, in the scalar potential, to the quark condensate field X. There
are a lot of unknown parameters that describe the mixing of the o and glueball state.
Rather than attempt this here, we will instead make a back of the envelope computation
for the glueball state.

In pure Yang Mills, the glueball is expected to be between 5 and 10 times the one
loop strong coupling scale, figures originating from lattice data [143]. In the Dynamic
AdS/QCD model, we have assumed the two-loop running for the gauge coupling to
obtain v and then the IR quark mass gap, the value of L at the on-mass shell condition,
is computed. A simple thing to do is to decouple the quarks at that scale Lon_mass
and use the one loop pure Yang Mills coupling into the IR. We compute the position of
the IR pole and multiply by 8 to estimate the glueball mass. This will at least give a
ball-park behaviour although mixing is explicitly not addressed.

In figure 5.14, we display the spectra of the N. = 3 theory for Ny = 3 (QCD-like)
and Ny = 11 (close to walking) including the glueball. As we have seen before, the
o becomes light and interchanges ordering with the p as one approaches the walking
regime. For large quark masses, the glueball is the lightest state in both Ny theories.
The heavy quarks again decouple at their mass scale, where the glue is still weakly

coupled, and the pure glue theory then runs logarithmically to strong coupling at a
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much lower scale, Agye, which sets the glueball mass. Since 8A e < 2my, the glueball
appears light. For a very small quark mass, the glueball becomes the heaviest state
in both cases. At the light quark mass scale, the gauge coupling is sufficiently strong
that the BF-bound has been violated and the quarks acquire a dynamical mass. The
pure-glue running between the quark mass scale and the IR pole is very fast since we are
already at strong coupling when the quarks decouple. Here, Ay, is set by essentially
the quark decoupling scale and the glueball mass ~ 8Ag,e is much heavier than the

meson masses set by the condensate (gq) ~ A3

glue (m ~ Aglue)-

The interesting difference between the two cases with different Ny is in the interme-
diate regime. The crossover between these two cases is fast for the Ny = 3 theory but
much slower for the walking Ny = 11 theory. The reason is that, for a range of inter-
mediate quark mass scales, the walking theory has run to a strong regime but with a
coupling insufficient to trip the critical value triggering chiral symmetry breaking. Since
it is walking, the quark mass scale, at which the quarks decouple, and the pure-glue, IR
pole are pushed apart and so the cross-over occurs over a wider range of quark mass.
This is a signal in the spectra of walking theories. Such a signal is important because it

does not depend on gauge dependent objects such as the coupling itself.
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Figure 5.14: The spectra of the N, = 3 gauge theory with fundamental quarks - the top
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Chapter 6

Inverse Magnetic Catalysis

The study of strongly coupled theories at finite temperature in the presence of an exter-
nal magnetic field is a topic of great interest for QCD. Cosmologically, large magnetic
fields may have been present at phase transitions [144,145] and such conditions are also
being produced in collisions at the Large Hadron Collider (LHC) and Relativistic Heavy
Ion Collider (RHIC) [146]. A key question is how they impact on the thermal, chiral
restoration transition. As we have seen, at zero temperature the strong dynamics of
QCD forms a non-zero chiral condensate that breaks the global chiral flavour symme-
tries to the vector subgroup. At high temperatures, where asymptotic freedom sets in
and renders the coupling small (less than the critical value for SxSB), the condensate
vanishes. The two phases are separated by a second order transition at zero tempera-
ture; i.e. the order parameter (the chiral condensate) becomes discontinuous in its first
derivative at the critical temperature T.. At small quark mass, this becomes a crossover
transition [147,148] such that there is no discontinuity in the order parameter or any of
its derivatives (i.e. it’s not strictly a phase transition); see figure 6.1 for an illustrative

guide.

Recent lattice studies of QCD with light quarks and an applied magnetic field
[149-151] have revealed some surprisingly complex behaviour. At zero temperature,
the presence of an external magnetic field enhances the chiral condensate o = (qq),
a process known as magnetic catalysis, which is a generally predicted effect in many

models [152-158]. However, at temperatures approaching the critical temperature of
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Figure 6.1: First order phase transitions are discontinuous in the order parameter -
for the chiral symmetry breaking transition this is the chiral condensate. Second order
phase transitions are discontinuous in the first derivative of the order parameter. The
crossover transition isn’t strictly a phase transition but a smooth bridge between two

regions of different phenomena.

the transition for no external field, the magnetic field has been shown to reduce the
chiral condensate thus lowering the critical temperature of the transition; so-called in-

verse magnetic catalysis. At intermediate temperatures there appears a non-monotonic
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behaviour with small magnetic field, B, favouring chiral condensation but larger B
disfavouring it. These results are summarized in Fig 6.2 taken from [150].

There has been considerable work in a number of approaches to explain these re-
sults [159-180]. One such approach is holography [32,58,81,84,91], which we continue to
pursue here within the remit of the Dynamic AdS/QCD model. The effects of magnetic
field in gauge theories with known duals from a top-down perspective have been studied
in [124,181-184]. Bottom up holographic approaches have also considered external mag-
netic fields within gauge theories [183,185,186], and the work in the following chapters

using Dynamic AdS/QCD naturally adds to this latter literature.

6.1 Dynamic AdS/QCD in the context of finite tempera-

ture & magnetic field strength

The main assumption of Dynamic AdS/QCD is that the chiral phase transition is the
most important behaviour in QCD. At that transition the quarks acquire a constituent
mass and integrate from the running of the IR, pure glue theory. Since the glue is
already at very strong coupling it will essentially instantaneously run into the regime
of confinement. In [122] it was shown that the instability for chiral condensation is
governed by the DBI action expanded to quadratic order in the fields, since one is
expanding about the zero solution. Any dilaton profile or warp factor of the background
metric in this expansion simply shows as the running mass of an AdS scalar describing
the chiral condensate. One can therefore discard the details of the background, replacing
them with a sensible ansatz for the running mass, and concentrate on the quark physics.
Naively, the probe approximation is a quenched approximation, Ny < N,, but one
should view it as looking at the dynamics of a single quark in an unquenched background
including backreaction of the remaining quarks. Ny-dependent factors enter through the
running of the AdS scalar mass and potentially other parameters of the AdS theory. This
Ny-dependent physics is put in by hand in the model, which, given the absence of a true

dual, is inevitable.

The background space of the model then is AdS5 so that there is a clear identification
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of the RG scale with the AdS radius, p. The chiral condensate o = (Gq) is identified
with a scalar field in the bulk, which from the top-down intuition can be thought of
as a brane embedding. The QCD dynamics at T' = B = 0 is introduced by hand by
giving the AdS scalar a radially dependent mass term so that the anomalous dimension,
7, of o matches that in QCD perturbation theory (naively extrapolated to the strongly
coupled regime near Agcp). When the mass of the AdS scalar runs down through
the Breitenlohner-Freedman (BF) bound [100] (at which point v = 1) the scalar be-
comes unstable and chiral condensation occurs [90,122,123]. Finite temperature can be
introduced by replacing the AdS space with an AdS Schwarzschild black hole of the ap-
propriate radius [81]. Here, a single phenomenological parameter [187] can be dialled to
switch the order of the phase transition (between first and second order and vice versa).
We select a value of this parameter to give an appropriate second order transition to

match QCD [147,148].

To introduce the magnetic field, we revert back to the top-down approach. Since the
lowest lying mode of the open-string sector is a vector field, its components transverse to
the D7-branes manifest themselves as a U(1) gauge-field on the field theory dual. This
must then be accounted for in the pullback metric of the D7-branes. As the Dynamic
AdS/QCD model inherits a lot from these D3/D7 top-down models, the lowest-order
interactions between the D7-brane embedding, parameterised as the scalar field L, and
the magnetic field component of the gauge field, B, are then added to the bottom-up
dynamic model. See section 3.3.1 Here, we take the two lowest-order terms that link
the chiral condensate field to a background magnetic field and study their impact. The
coefficients of these terms are not a priori fixed (unlike in the top-down scenarios) and it
is not surprising that by picking suitable signs they can be made to favour or disfavour
chiral condensation. The two terms have different temperature dependence so one can
also play them off against each other to find regions of parameter space in which there is
magnetic catalysis at low T" but inverse magnetic catalysis at high T'. This confirms that
the Dynamic AdS/QCD model allows the behaviour seen in the lattice QCD simulations,
which is a positive sign for the approach but perhaps not surprising given the freedom

of the model’s parameters.
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The model can however offer some more interesting insights. It turns out that it
is possible to reproduce the QCD behaviour with just a single one of the two lowest-
order terms. The reason is down to this term producing magnetic catalysis in the low
T phase where the brane embedding lies off the black hole but inverse catalysis for
the phase where the brane lies on the black hole. In the intermediate regime of the
model, o(B,T) exhibits non-monotonicity, enhancing the condensate for small B but
suppressing it at larger values. A summary of the typical behaviour we find is shown
in Fig 6.3 for comparison with the lattice results in Fig 6.2. The similarity in the
generic behaviour is quite striking although the extremum in the holographic model is a
point of discontinuity since it is associated with the second order meson-melting phase
transition, i.e. the point where the embedding brane touches the black hole from a
top-down perspective (see Section 6.1.1 below).

Adjustment of the UV boundary conditions on the bulk field describing ¢ allows the
study of heavier quarks also. Generically, these are associated with embeddings that
typically do not touch the black hole horizon (unless 7" becomes comparable to m) and we
see magnetic catalysis for such configurations persist to larger B. One should be careful
though not to extrapolate the results to too large m or B since the holographic framework
is presumably unreliable when the key physics is happening in the asymptotically free,
weakly coupled regime (the duality is of course built on the premise that a weakly

coupling string description implies that the gauge theory is strongly coupled).

6.1.1 Meson melting

From a top-down perspective, the transition from embeddings that avoid the black hole
to those that end on its horizon is associated with the mesons developing a thermal
width [97,188-190]. Those branes avoiding the black hole have fluctuations that are
completely supported by the brane, i.e. the meson’s wavefunction cannot fall into the
black hole — the meson has a zero-width and so is a perfectly stable particle (I' ~ 771).
However, for the branes which end on the black hole, the fluctuations can be lost and so
the meson develops a non-zero, thermal width implying a non-infinite decay time. As T

increases, the black hole eats more and more of the spacetime and so the width will rise
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Figure 6.2: Lattice results for the change in the quark condensate as a function of
magnetic field strength over a range of temperatures - figure taken from [150].
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Figure 6.3: The holographic model’s results for the change in the condensate of light
quarks as a function of magnetic field strength over a range of temperatures for N, =
Ny = 3. Tgo is the thermal transition temperature at B = 0 which is used to set
our holographic energy scale (and is approximately 160 MeV according to the lattice
simulations). For this plot the model parameters are taken as x = 0.05 and b = 0.037.

sufficiently until one considers the meson melted. We do not perform the full analysis of
this phenomenology in this work. As pointed out in [187], such models naturally predict
that the transition where the thermal width develops, i.e. the smallest value of T such
that there occurs an embedding ending on the black hole horizon, happens ahead of the
chiral transition. For a second order phase transition, the flavour brane of the model
smoothly encounters (the point at which a thermal width develops) and then moves
along the black hole horizon to reach the chirally symmetric phase. To this point, the

model has been tuned to match expectations in QCD. This is illustrated in figure 6.6.
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6.2 The Dynamic AdS/QCD model at finite temperature

Finite temperature can be included in Dynamic AdS/QCD by replacing the background
metric with an AdS-Schwarzschild metric with the black hole horizon at r = rg [81],
dp’ rh

ds® = p*(— fdt* + da3) + -~ f=1--4

o (6.1)

where rp is proportional to the temperature (T' = rg /). The action for the scalar L,

again describing the mass and quark condensate, becomes instead

S = [d'adp (F5O,L7 + pAmi(p)L?). (6.2)

One then again seeks numerical solutions of the Euler-Lagrange equations subject to
L — 0 as p — oo to describe massless quarks. In the IR, one chooses either d,L = 0 at
the on-mass shell condition or for the end point of the flow to lie perpendicular to the

black hole horizon.

Again, we choose to relate the RG scale i to the effective radial coordinate r (inspired

from the top-down D3/D7-model),

r=+/p?+ kL2, (6.3)

where we have introduced a new parameter x € R, which in all previous calculations
was set to unity. As shown in Fig 6.5, the phase transition for k = 1 is first order.
The main signal of the first order transition is that of a third embedding solution which
emerges from the chirally symmetric L = 0 embedding and then moves up the black
hole horizon to join the off-black hole solution at a higher temperature. This extra
solution corresponds to the local maximum of the effective potential between the chiral
symmetry breaking and the chirally symmetric solutions; see figure 6.4. The first-order
transition occurs when the black hole eats enough of the L = 0 embedding such that its
action is reduced to that of the off-black hole embedding. At temperatures above this
value the action of the L = 0 embedding is always less than that of the second solution

no matter how large the black hole becomes. In the limit of large temperature, the two
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solutions become identical.

As pointed out in [187], lower values of k turn the transition second order. Here, we
are distorting the surface of the black hole so that it is not a circle in the p — L plane.
In particular, if the energy scale p is stretched along the L-axis, as the temperature
of the black hole increases the horizon moves up the L-axis quicker than along the p-
axis. This in turn means that the horizon will consume less of the L. = 0 embedding
(and its action) and makes a transition to the chirally symmetric phase less likely,
favouring a second order transition. In the second order transition case, the solution
for L transforms smoothly from the off-black hole chiral symmetry breaking solution to
a solution ending on the black hole horizon. The solution then slides down the black
hole horizon to merge with the L = 0 embedding at the critical temperature. In Fig
6.5, we plot the chiral condensate, o, against T for k = 0.05; a value which is close to
the largest x that generates a second order transition. Making s smaller, squashes the
black hole further towards and along the L-axis and has little effect qualitatively on the
physics: the L-profile in the bulk away from small p is indifferent to this. Larger values
of k revert back to first order transitions. In Fig 6.6, we show the explicit second-order
behaviour at Kk = 0.05 by plotting the embeddings of the scalar L in the chiral limit
(i.e. L(p — o0) = 0) as the temperature is increased towards the critical value. At
p = 1 it is already evident that the value of the condensate, which is proportional to the
gradient of the embedding 0,L|,—c, decreases with increasing temperature. Moreover,
as we approach the critical temperature, the angle subtended by the arc of the black-
hole horizon between L(p) and L = 0 decreases smoothly to zero at T' = T;.. Above this

value only the flat, chirally symmetric L = 0 embedding exists.

It’s important to stress the physics of the two continuous transitions shown in Fig 6.6.
At low temperatures, the embedding lies off the black hole horizon and small fluctuations
about the embedding are associated with mesonic modes [86]. They are stable in this
phase. When the embedding moves on to the black hole the mesonic fluctuations become
replaced by quasi-normal modes that describe unstable plasma fluctuations [190]. The
configuration then continues to evolve with T until a flat embedding is reached and

chiral symmetry is restored. Clearly in a second order transition these two transitions
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must be separate and the development of a thermal width for the mesons must occur
earlier.

In the effective description of the model, we view k as a parameter one must adjust
to correctly reproduce the expected phase structure at a given N, Ny. To represent
QCD, we will choose the second order behaviour and x = 0.05. We will use the value of
rg at which the phase transition occurs (at B = 0) to set the scale of the radial energy
direction, p, in the holographic model. We set Tog = 160MeV as is generally predicted

from empirical data.

6.3 Magnetic fields in Dynamic AdS/QCD: Introduction

and analysis

Background U(1) electromagnetic fields are introduced into AdS/CFT via sources for
the operator gy*q [181-184]. These operators are described by a bulk, massless U(1)
gauge field. The quark condensate has no baryon number charge so interactions will be
products between the field L plus its derivative d,L and F' 2. The leading two terms in

an expansion in L and F' are
AS = / d*zdp (apF?L* + bp® fF?(0,L)?) . (6.4)

In the case of a fixed external magnetic field, including the metric factors, F2 = B2/p*
and we will treat @ and b as phenomenological parameters.

The expansion in fields is valid at small B and for studying the instability of the
L = 0 embedding, but generically in the chirally broken phase, or at larger B, terms
with higher orders of L may play an equal role. We will however just study these two
terms as the lowest-order example to try to provide insight into the response of the
theory to an applied B field. We hope to provide some qualitative insight more than
explicit, quantitative results.

Returning to the action with the extra terms of equation 6.4, the a-term is then a
direct B-dependent contribution to the running of the L mass or anomalous dimension

of the quark condensate. Clearly, choice of the sign of a can favour or disfavour chiral
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V(qq) A first order

V(aq) A second order

Figure 6.4: [top] At T = 0 there are two solutions to the embedding equation; the
chirally symmetric solution L = 0 for which g¢ = 0 (a), and the energetically more
favourable chirally broken solution (b). A first order transition is signalled by the
presence of a third unstable solution (c) for T'> 0. At T' = T, the chirally broken and
chirally symmetric phases are degenerate (d). Above T, the chirally symmetric phases
remains energetically favourable. [bottom]| A second order phase transition occurs when
the chirally broken phase (b) smoothly merges with the chirally symmetric phase (a) at
T=T..
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Figure 6.5: Thermal phase transitions in the holographic model with N, = Ny = 3.
For values of the parameter k close to k = 1, a first order chiral transition is present.
As the value of k is reduced and the black hole is deformed along the L-axis, the
phase transition switches to becoming second order. The introduction of a background
magnetic field can be seen to affect the value of the transition order parameter, o. Here
we show an example with magnetic catalysis at low temperature and inverse magnetic

catalysis at higher temperatures, a phenomenon which reduces the critical temperature,
T.(B) < T.(0).
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Figure 6.6: Plot showing the chiral embeddings (at B = 0) for a range of temperatures.
Each embedding is coloured to match the black hole horizon pertaining to the relevant
temperature. The second order nature of the transition is evident; the embedding
smoothly transforms into the flat L. = 0 embedding at the critical temperature, T..
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condensation by affecting where the BF-bound is violated. The b-term, again depending
on the sign, either favours or disfavours curvature in the L-profile which again encourages
or discourages L to take up a profile away from L = 0 (the chirally symmetric state).
Note that the magnetic field now enters into the action in the combinations aB? and
bB? so it is possible by choice of the magnitude of a and b to move the scale of effects
in B.

Interestingly, only the second b—term has temperature dependence when one naively
inserts the metric factors (from the p index contraction in (9,L)?). This term decreases
as one approaches the black hole horizon. One can hope to play these a— and b— terms
off against each other. At zero temperature the b—term might dominate and favour
chiral condensation. At finite temperature though, it will be less favoured and the
a—term might take over suppressing chiral condensation. This is our initial strategy to

realize the observed pattern of catalysis and inverse catalysis with temperature.

The numerical analysis is again to find the solutions for L at each value of T and
B for our chosen values of a,b and x at Ny=N.=3. For k of order one, the thermal
transition is first order as discussed: The embedding profile for L jumps from a solution
off the black hole to the flat embedding ending on the horizon. The transition is driven
by the black hole eating the L = 0 configuration until its action is less than the chiral
symmetry breaking embedding. For this reason, the chirally symmetric, low-T phase is
fairly insensitive to the actual temperature and it is very hard to engineer T" dependent
behaviour. The only shifts from magnetic catalysis to inverse catalysis that we can find
occur when the a and b terms are so finely tuned that they have negligible net effect
at T' = 0. The catalysis effect is well below a percent. We conclude that the QCD

behaviour with B, T is a result of the second order transition behaviour.

Hence we turn to k = 0.05 as an example of a model with a second order transition.
For each point in the (a,b)-plane, we can plot the condensate against T' at non-zero B.
In all cases, the transitions are second order. An example curve is shown in Fig 6.5 for
a case where the condensate is enhanced at small 7" but suppressed at 7' ~ T o, where

Tc,o is the critical temperature at zero magnetic field.

In Fig 6.7, we show the phase structure of the model in terms of the phenomenological
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Figure 6.7: The phase-structure of the holographic model in terms of the phenomeno-
logical parameters a and b. The a — b plane can be dissected into four sectors wherein
the condensate is affected differently with temperature and an external magnetic field.
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Figure 6.8: Plots of the critical temperature against eB, Too = 160MeV. We show the
best fit lattice data taken from [151] and the holographic model’s best fit (in the chiral
limit) to that data (kx = 0.05,a = 0,b = 0.037). We also show the holographic models
prediction for another value of b = 0.33 - the model depends on the quantity bB? so the
eB axis is simply rescaled by this change.

parameters a and b. This a — b phase space comprises four different sectors; a region
in which the chiral condensate, o, is always enhanced relative to no external magnetic
field, a region in which o is always suppressed relative to no external magnetic field
and two regions where it is either enhanced at low temperatures and suppressed at high

temperatures or vice versa.

The value of the critical temperature of the chiral phase transition is dependent on
how the external magnetic field affects the value of the condensate. If at high temper-
atures the value of the condensate is suppressed due to inverse magnetic catalysis, the
value of the critical temperature is reduced, see an example in Fig 6.8, or if enhanced

at high temperatures the critical temperature is increased.
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The Lattice QCD data from [150], shown in Fig 6.2, indicates a non-trivial relation-
ship between the chiral condensate and the strength of the external magnetic field. At
low temperatures, magnetic catalysis of the condensate is apparent and at temperatures
approaching the B = 0 critical value, there is a suppression of the condensate (inverse
magnetic catalysis). This, first of all, points us to working in the top centre quadrant
of the a — b plane seen in Fig 6.7. It is encouraging that the holographic model can
incorporate the QCD behaviour although we must stress again that the freedom of the

a — b parameter space suggested it should be possible.

A further interesting feature of the lattice plot is that for a narrow range of tem-
peratures approaching the critical value, o(B) behaves non-monotonically, indicating
magnetic catalysis for small values of the magnetic field but as the strength of the
external B-field is increased, the field catalyses a suppression - we will refer to this
intermediate behaviour as the ‘cross-over’ regime. One question we could ask of our
model is whether or not this cross-over behaviour can be obtained if one were to select
values of the phenomenological parameters a and b to be inside the appropriate sector

of the a — b plane.

The key observation that allows us to achieve this cross-over behaviour in the holo-
graphic model is to notice that the appropriate quadrant in Fig 6.7 contains the b-axis
along which a = 0. Intriguingly, the b-term alone can generate magnetic catalysis at low
temperatures but inverse catalysis at higher temperatures. Further exploration shows
that it is because the b-term acts differently on black hole embeddings to off-black hole
embeddings. In Fig 6.9, we show the effect of B on the embeddings at an intermediate
temperature T = 0.757.. For B = 0, we are still in the phase before the mesons have
melted. As B rises in the theory with just the b-dependent interaction term, derivatives
are encouraged in the UV but not close to the horizon where the b-term is killed off due
to its T-dependence. The result is that, in the IR, the B-field moves the embedding to-
wards a melted phase whilst the UV condensate grows. Once the embedding is brought
onto the black hole, further increasing B moves the embedding down the horizon pulling
the UV behaviour and the UV condensate down. We did not deliberately engineer this

behaviour but it does match the observed lattice results.
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Figure 6.9: Plot showing the chiral embeddings at T' = 0.75T¢q for a range of magnetic
field. Increasing B moves the embedding towards and on to the horizon but initially
also increases the condensate value.

One can now survey the (a, b, k)-space for the best fit to the QCD behaviour. Here
we work in the chiral limit of the holographic model. Although the lattice data lies
away from that limit, we will see shortly that small quark masses do not change the
holographic model’s numerical predictions greatly We have found a decent fit to the
QCD behaviour when we take k£ = 0.05 and a = 0. To fit b we have used the lattice fit
in [151] for the B-dependence of the critical temperature in the theory. There, they fit

to the form
Tc(eB) 1+ a(eB)?
Teo 1+ B(eB)?

(6.5)

where e?/4m = 1/137. The lattice results find central values, from fitting to the light
quark condensate, of & = 0.54 and 8 = 0.82. In Fig 6.8, we show our fit to this data for
b = 0.037 — the lattice and holographic models can be made to lie very close to each
other when b = 0.037. Here, the holographic model best fits the functional form with

a=0.78 and g = 1.08.

Now, with all parameters fixed, we can plot the fractional change in the condensate
against eB at different T" as shown in Fig 6.3. We see the enhancement of the condensate
at zero temperature but a suppression near the critical value. Of course, it should be
reiterated that without the lattice data already in place displaying the behaviour it
does, we do not know a priori which values of a and b should be chosen to best fit QCD.
Having chosen these appropriate values for the parameters a and b, it is no surprise

that we reproduce the expected enhancement and suppression of ¢ at low and high
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Figure 6.10: Plot showing the change in the chiral condensate as a function of B for
different quark masses. The parameters are those used to make Fig 6.7.

temperatures respectively. More remarkable however, as we have discussed, is that we
also find the cross-over regime needed by Fig 6.2. For intermediate temperatures, a
transition occurs at some value of B at which the condensate switches from increasing
to decreasing with an increasing magnetic field strength. The turn over point of this
transition can be identified in the holographic model as the value of the magnetic field
at which the chiral embedding switches from being off the black hole to being a solution
ending on the black hole, i.e. the meson-melting phase transition. The match between
Fig 6.2 and Fig 6.3 is not perfect: the holographic model has less catalysis at low T
and too much inverse catalysis at higher T" but the general structure is similar. The
Dynamic AdS/QCD model teaches us that the meson melting behaviour is key to the

structure of the transitions seen with B.

6.4 Non-zero quark masses

It is straightforward to include quark mass into the analysis. The asymptotic value of
the field L is simply the UV quark mass and we can set it to some finite value at a large-p
scale. We show the variation in the quark condensate with B in Fig 6.10. Raising the
mass increases the B-value at which inverse catalysis takes over from catalysis. Since the
effective theory does not apply at B-field values that begin to probe the asymptotically
free regime, and since perturbative analysis suggests only magnetic catalysis, this hints
at our results possibly moving smoothly to an absence of catalysis at large m. It is

indeed found on the lattice that inverse catalysis is present only for small quark masses.
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Chapter 7

Translational Symmetry Breaking

& Striped Condensation

Translational invariance is known to be spontaneously broken in a number of supercon-
ducting cuprate systems [191]. They display phases where the condensate varies spatially
as sin(kz) manifesting as visible stripes in some measurements. The existence of such
translationally non-invariant phases have also been speculated to exist in finite density
gauge theory [192-194]. There has been some work recently on modelling such phases
in holographic descriptions of superconductors and finite density QCD [195-199]. More
complex, two-dimensional chequer-board patterns are also possible [200]. The chemical
potential in these systems already breaks Lorentz invariance' and provides a natural
Lorentz frame for stripes to form. In this section however, we wish to ask whether spon-
taneous breaking of Lorentz invariance, in this pattern, can occur in scalar or gauge
theories at zero chemical potential (see [201] for a well known related discussion of
Lorentz violation in string theory).

A preference for spatially dependent vacuum expectation values for operators essen-
tially requires that the relevant operators have negative kinetic terms in the unbroken
vacuum which manifest in the effective potential as a negative k% dependent contribu-

tion to the mass term. Normally, this is associated with ghost like behaviour and seems

!The addition of chemical potential to a field theory implies the existence of an additional term in the
action ~ pN, counting the number of particles N in the system. In QFT, we can associate the number
operator as {7 giving us and extra term in the Lagrangian equivalent to p1py°y. However, 1) is not
a Lorentz invariant quantity and so the Lagrangian no-long contains this symmetry explicitly.
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forbidden at weak coupling. We will argue though that it can happen in a theory where
many higher-dimension operators are present and are sufficiently large that, when sym-
metry breaking occurs, they generate effective terms that mimic negative kinetic terms.
The true vacuum will then be characterized by Lorentz breaking vevs and fluctuations
will then be ghost free in the true vacuum. Again, in principle, higher-dimension oper-
ators evaluated in the striped vacuum can correct the signs and leave a stable theory.
One could therefore imagine a Higgs-like theory with condensation occurring close to its
UV-cutoff scale displaying dynamical Lorentz invariance breaking. A natural environ-
ment for such an effective theory is the strong coupling regime of a gauge theory. At
the scale of strong coupling, many higher-dimension operators become important and
simultaneously, chiral condensation and the gluonic condensation of TrF? occur. It at
least seems possible that within the space of gauge theories, Lorentz symmetry breaking
dynamics might exist. Our effective field theory discussions will not prove that any par-
ticular theory will behave in this way but it is a novel possibility that should be borne
in mind in lattice simulations of models beyond the Standard Model. Alternatively, in
gauge theories without translational symmetry breaking, one can reinterpret our results

as bounds on the sizes of certain higher-dimension operators in the effective theory.

We present our results in the remit of the Dynamic AdS/QCD holographic model [89,
90]. We describe the operators TrF'2, gq and F?q and represent their running anomalous
dimensions as running mass-squareds for the appropriate scalars in AdS space. The
UV of the theory is stable and has vanishing operator vevs. As the Breitenlohner
Freedman (BF) bound [100] is violated in the IR, condensation occurs and, if suitable (k2

dependent) potentials are chosen, an instability for Lorentz violating vevs can emerge.

Whilst the possibility of Lorentz violation is intriguing in itself, we also present
a more explicit phenomenological motivation. It has recently been shown [202,203]
that in R? gravity, short distance fluctuations in the metric can be converted by the
non-linearities of the Einstein’s equations into an effective long distance cosmological
constant. Our interest in Lorentz violating vacua is partially motivated by thinking
about how to generate such short distance fluctuations with sufficient power. Intrigu-

ingly, if one considers this mechanism in Starobinsky early-universe inflation models,
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where the R? term is set by the scalaron? scale of M ~ 10 GeV, then stripes at the
electroweak scale generate the observed cosmological constant!

Could gauge theories close to the Standard Model involve Lorentz violation? The
answer is fairly strongly no. Limits on Lorentz violation [204,205] in the electron-
photon system are extremely stringent and constrain any coupling of such a system to
be associated with very high scales. Therefore, if stripes are the source of the observed
cosmological constant then they must be well hidden in a dark sector.

One might also presume that the spontaneous breaking of Lorentz symmetry would
generate Goldstone poles in the non-relativistic propagators of the theory but clearly
no such massless modes exist in the visible Universe. In fact, the number of long range
propagating Goldstone modes depends on the pattern of symmetry breaking as has
been discussed in [206]. There are massless modes associated to each broken direc-
tion of translation but they only propagate along unbroken directions transverse to the
breaking®. Thus there will be long-range propagating Goldstones for striped (one bro-
ken dimension) or chequer-board (two broken dimensions) configurations where there
still exist unbroken directions. However, this will not be the case for cuboid or general
crystal-like configurations (where three dimensions have broken Lorentz invariance). We
will not exhibit these Goldstone structures here since we concentrate on the instability
for the formation of stripes rather than a full model of the final ground state. Since

phenomenologically the Lorentz breaking sector must be extremely weakly coupled to

2A general f(R) Lagrangian,

2

F(R) = Rt s + O(R?), (7.1)
can be recast as a scalar-tensor theory (in the Jordan frame)
f(R) = ¢R—V(9), (7.2)
under the Legendre transformation,
f(R)=¢ and V'(¢)=R. (7.3)

The dimensionless scalar, ¢, is then a parameterisation of the theory’s scalar mode, the scalaron. Trun-
cating f(R) at R?, leaving the only the Starobinsky Lagrangian, yields a potential of the form

_3M7

V(g) (¢ —1)% (7.4)

3This is identical to the case of massless modes resulting from D-brane fluctuations. The open string
gauge field components transverse to the brane are seen in the bulk as massless scalar modes. E.g. we
have seen the six massless scalar modes transverse to the D3-brane stack when building up the idea of
the AdS/CFT correspondence.
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the visible sector, the presence of Goldstones in anycase is probably not an issue.
Finally we note that we have considered whether striped ground states are ruled
out in QCD-like gauge theories by the theorems of Vafa and Witten [207,208]. For
example, one theorem [207] (see Appendix J for a derivation) asserts that any state
associated with the gg operator must be heavier than the pion; given the pion may
be made massive by a small explicit quark mass, breaking of vector symmetries is, for
example, forbidden. This may indeed forbid the appearance of striped and chequer
board phases in vector-like gauge theories where there will be Goldstone modes able
to propagate in some directions but does not clearly prevent cuboid phases where the

Goldstones can not propagate.

7.1 Effective Higgs theories

Let us begin by writing down the simplest possible Higgs theory with one scalar and to

quadratic order to demonstrate the usual instability

L=0"¢"0ud—V(o]), V=-m?¢]. (7.5)

Now, if we consider a ground state where the vev of the scalar is striped in one direction,

(¢) = vsin kx, then there is an effective potential

V= —(m® - k%o, (7.6)

with the additional term arising from the kinetic term after condensation in ¢; i.e.
|0(e)*.

Non-zero k reduces the strength of the potential instability and is therefore dis-
favoured in this set-up; see figure 7.1. We can see that for there to be an instability that
favours stripes (i.e. favouring a non-zero k), we need to reverse the sign of the scalar
kinetic term. However, we can not simply flip the sign on the kinetic term since the

theory would become ill-behaved with ghosts.

Scalar theories like this are known to suffer from a hierarchy problem and the nai
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Figure 7.1: Assuming a striped vev of the scalar ¢ from 7.5, a non-zero wavenumber
k actively disfavours an instability in the potential. Here we show the profile of the
potential for 0 = k1 < ko < kg < k4.

ve expectation is that new physics will enter at a scale reasonably close to the scalar’s
mass; we will call this somewhat higher scale Ay, The expectation is that at the scale
Ayvy, higher-dimension operators will generically be present (having been suppressed
at perturbative values of the coupling). Such higher-dimension operators can, once
symmetry breaking is triggered, lead to effective kinetic terms that have the right sign
to favour translational symmetry breaking. For example, let us consider including an

additional scalar f. We can imagine an additional Lagrangian term containing f to be
uv
for some generic coefficient xg. Were f to condense at some scale and kg be large enough

then the reversal of the kinetic term’s sign can be achieved.

Once a striped phase has condensed, other higher-dimension operators can step in
to secure the ghost inducing negative (9;¢)? term is not present in the true vacuum. For
example, consider the term

ag!

AL = ——
Aty

0" 6|0 ¢ (7.8)

evaluated on the symmetry breaking solution (a Lorentz invariant term results if the
vev occurs twice in one derivative term but a spatially preferring term occurs if the

two vevs occur in the different derivative terms). This term will distinguish the spatial
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directions in which there are stripes from the temporal direction and the coefficient

could be concocted to cure the ghost problem once the stripy vev had formed.

Of course, in this discussion many other terms might be present that oppose the
effect, or indeed kg might be small or negative. We simply wish to identify terms
that could trigger translational symmetry breaking. Another possible mechanism is to
introduce yet another new scalar, y, with the same symmetry properties as the original

¢. In doing so, we consider the Lagrangian containing the terms

K2

AL = |01 + |0"x[* +m?|6” = M|x|” + 15—
uv

| f|20"$*D,.x. (7.9)

Were f to get a vev then an off-diagonal kinetic mixing is induced for the ¢, x pair. The

effective k£ dependent quadratic potential is then given by

—mP k()R [ e
(6, X) Aoy . (7.10)
A’;ﬁ<f>2k2 M2—|—/€2 %

For small k, the negative mass-squared eigenvalue becomes

(e t22)’

1
2 _ 2 2

(7.11)
Again for not unreasonable choices of parameters this term could be made to favour
translational symmetry breaking. Of course, this is an argument for an instability
rather than a full model of the final vacuum. The potential at large k% would need to
be stabilized by terms with higher powers and the dynamically determined value of k
may lie close to Ayy. The precise form of the vacuum is also dynamically determined

— one could envisage 1D stripes, 2D chequer board patterns or 3D cuboid patterns.

Such Lorentz violation would have to dynamically pick a frame of reference in our
Universe, however, it seems likely that the innate frame of the matter in the Universe
that sets the frame of the 3K cosmic microwave background radiation would be chosen.
As the gauge theory cooled and condensed the small chemical potential of the Universe

would be the only parameter biasing a specific frame.
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Such scalar models with ¢, x and f may at first glance appear baroque and over-
wrought. To argue that this is a sensible arena for discussion, we should recast this
analysis as the effective description of a QCD-like gauge theory. Consider an SU(N,)
gauge theory and consider a single, quenched quark (Ny < N¢) in that theory. We
know that the vacuum has a non-zero value of the quark condensate (Gq) which car-
ries a U(1)4 charge of +2 (neglecting the U(1)4 anomaly). This operator should be
mapped to ¢. We also know that the operator TrF? is non-zero in the vacuum and a
singlet under flavour symmetries. It is the scalar f above. Finally, x could represent
the higher-dimension operator of the form GF?q (or possibly those with higher powers
of F'): this operator has the same symmetry properties as gq but in the quantum theory
is a distinct operator whose vev should be determined by the effective theory. In fact,
above we assumed that the y field does not condense but simply mixes with ¢.

In asymptotically free theories, the running coupling enters a regime of strong cou-
pling at some scale which should be associated with the cutoff Ay of the scalar theory.
At this scale the strong coupling is expected to generate higher-dimension operators
including of the form we have discussed above. The chiral condensate will then form in
QCD quite quickly in RG running.

These arguments map the dynamics of strongly coupled gauge theories to the scalar
models discussed above and suggest that translational symmetry breaking is at least
possible in the vacuum. Of course, we have in no way proved the phenomena occurs
or, indeed, is even likely. However, given the wide range of asymptotically free gauge
theories that can be constructed, it is possible that amongst them there exists some that
do concoct their higher-dimension operator couplings to conspire to this end.

In the main bulk of this chapter, we will construct a holographic model of a gauge
theory’s dynamics that reproduces this line of argument and moreover carefully takes

into account the scaling dimensions and RG flow in such a theory.

7.2 A holographic model

To demonstrate the effective field theory arguments above a little more robustly, we will

utilise our Dynamic AdS/QCD model to inspect gauge theories with such phenomena. It
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will show the possible translational symmetry breaking instability of a QCD-like gauge
theory we discussed above. We assume there is some SU(N,) gauge theory with a small
number of quenched quarks. As usual, we place the effective theory in AdSs;

B dr?

ds® = = T rdr3, (7.12)

with r2 = \/p2 + | X|? as usual. We will identify the RG scale p with the AdS radial
parameter r in our model. We assume the underlying Yang-Mills theory generates a vev
for the four-dimensional operator TrF2. Using the relation (A — p)(A +p —4) = M?
with A = 4 and p = 0, we represent the TrF? operator as a massless scalar of in the
AdS5 background. Following the rules of the correspondence (see equation 2.118), the

scalar will take the asymptotic (r — oo) form

f=—. (7.13)

Our model will concentrate on the quenched quark sector rather than the generation of

this vev.

Although we will allow the AdS space to extend to r = oo, such a gravity description
should really only extend to the UV cutoff where the asymptotically free theory crosses
over to strong coupling (as r is decreased). Experience teaches us that the models still
work well without a UV cutoff because the dynamics is determined around the scale of

the BF-bound violation.

The behaviour of the gq operator in the theory is as before. The Dynamic AdS/QCD

model represents gq by a field X with action

Am?
2

1
S = /d4x dp p? [2|DX]2 + X2 . (7.14)
r
If Am? = 0 then the scalar, X, describes a dimension 3 operator and dimension 1
source as is required for it to represent gq and the quark mass m. That is, in the UV
the solution for the X equation of motion is | X | ~ m+qq/p?. We will work in the chiral

limit with the quark mass zero henceforth. A non-zero Am? allows us to introduce an
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anomalous dimension for this operator, . If the mass squared of the scalar violates
the BF bound of -4 (Am? = —1, v = 1) then the scalar field X becomes unstable
and the theory enters a chiral symmetry breaking phase. We will fix the form of Am?
using the two loop perturbative running of the gauge coupling in QCD with Ny flavours
transforming under a representation R. Of course, it is important to reiterate that this
is but a crude approximation to the running of the anomalous dimension =, yet it serves

as a reasonable guess. This then takes the form

d

,uﬁ = —bpa?® — b1o?, (7.15)

where

1 dim(R)
bo = = (1102(G) — AN;Cy(R) dim(G)> , (7.16)
and
b = g (% [Co(G))?

(7.17)

~ [Ben@)Co(R) + 4 [Ca(R)?] Ny i)

The one loop result for the anomalous dimension of the quark mass is

a(p; R). (7.18)

a(u; R). (7.19)

This will then fix the r dependence of the scalar mass through Am? as a function of N,
and Ny for each R. The Euler-Lagrange equation for the vacuum embedding X is given

at fixed Am? by the solution of
9 3 2
o (p°0,X) — pAm*X =0. (7.20)

Again, to find X (p) we solve the equation of motion numerically with shooting techniques
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with an input IR initial condition. We have once more the IR boundary condition set
to be

X(p = Xo) = X(), X/(p = Xo) =0. (721)

Now we can introduce the scalar field Y that describes the operator gF2q. It will

have an intrinsic action
S = /d4x dp p'! [:2|DY|2 + Ap”;%qy\’z : (7.22)
where we must now accommodate for Y in the RG scale by setting
r?=p? + X2+ p°lY 2 (7.23)
Here, Y has energy dimension of -3 and when Am3. = 0 has the solution

Y:a—kpﬂlo. (7.24)

a is the dimension -3 source for the §F2¢ term in the action and 3 has the dimension of
the vev. If we include an r-dependent Am%/, as we have done for the field X, then the
dimension of §F?q will run away from the UV value of 7. For this toy model, we will
assume the dimension is 7 — 1 so its dimension falls but the BF-bound for this scalar

will not be violated at the scale where y; = 1 where X condenses.

We can now include higher order terms in the action, mixing the fields that favour

translational symmetry breaking. For example we might include
o7
AL = Rz | flPouXT0MY (7.25)
T

where kK3 is dimensionless. As the vev of f grows this will introduce a kinetic mixing
term that will drive the lowest mass eigenstate more negative by a k-dependent factor.
As written, this term tends to drive the kinetic term in the holographic p direction

negative also. However, there are terms that break the p — x symmetry after the f field
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acquires a vev. For example, we might consider the term
9
~ P
AL = Fa' 7 (Oum foM Xy (anfolNY). (7.26)

k4 is again dimensionless. Since f is only dependent on the holographic coordinate p,
upon substitution of its profile in equation 7.13, we simply get a correction to the p-
derivative mixing of the X and Y scalars. By picking &4 appropriately (k3 = —16Fk4)
one can remove the mixing term in the p derivative but leave a mixing term behind in
the x* coordinates,

2
. C
AL = @Wau)ﬂa“y. (7.27)

For our computation below we will assume that the correction to the p kinetic term is

zero and that Ko is our free parameter.

In such a model, one can numerically solve the coupled ODEs for the profiles of X and
Y and then evaluate the action on those solutions to determine the effective potential of
a solution. Performing this computation for a solution of the form @ ~ fqg(p) sin kx, for
Q € {X,Y}, allows one to plot the potential against k. For example, to set the runnings,
we can study N, = 3 Ny = 3 (of course QCD with these values does not generate stripes
but these choices are indicative of the behaviour), with the scale at which v = 1 to be
Agcp and further set ¢ = AéC’D' In Figure 1, we plot the potential as a function of k2
for different choices of the higher-dimension operator’s coefficient, Ko. We see that for
O(1) negative values, an instability for stripes is indeed present. Strictly for the case of
QCD, which we know respects Lorentz invariance, we have placed limits on Ko by this

argument. The instability mechanism may be present in other gauge theories however.

At this point we will cease speculating about such unknown gauge dynamics and
simply assume that field theories with translational symmetry broken in the vacuum
exist. We will explore whether they are phenomenologically interesting and viable as

part of Beyond the Standard Model physics.
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Figure 7.2: Potential (normalized by that at £ = 0) against In[k/Agcp] for varying
values of the coefficient of the higher-dimension operator (which is a mix of 2 and &s.
We set here N, = 3 Ny = 3, the scale at which v =1 to be Agcp and set ¢ = AéCD.

7.3 Striped phases and the cosmological constant in R*-

gravity

Our interest in such striped, chequer-board-like or cuboid phases is that they could
have a dramatic cosmological consequence. The basic observation is that the response
of the metric to such an inhomogeneity in the mass-energy distribution will be replaced
by some average effect on scales much larger than 1/Agtipe, the scale that sets the
wavelength of the Lorentz symmetry breaking stripe. Since the dynamical equations for
the metric are non-linear, this averaging does not lead to the same dynamical equations

for some ‘average’ metric but rather results in corrections to the equations themselves.

The fact that inhomogeneity can in general result in a “cosmological back-reaction”
has been widely investigated, see e.g. [209-216]. These papers were inspired by the
possibility that cosmological inhomogeneity (the fact that matter is not uniformly dis-
tributed at scales smaller than about 100 Mpc, but instead concentrated in walls and
clusters of galaxies, containing stars and planets etc.) leads to corrections to the average
expansion rate which could explain the observations that indicate that the universe is
currently undergoing accelerated expansion, such as [217]. However to date the results

of these studies have been either negative or inconclusive.

160



One particularly elegant and clean approach to inhomogeneity in a cosmological
context, was put forward by Green and Wald [218,219]. A brief summary of the analysis

is as follows: one splits the metric as

Jab = 959 + hag (7.28)

where g(()?ﬁ) is the Freedman-Robertson-Walker metric of standard cosmology and hqg is

the piece sensitive to the matter distribution which here we imagine is the stripy phase
of the gauge theory with structure on scale Agripe. The R, — %gaBR terms in the
equation of motion split into the standard ones for ggg plus extra pieces dependent on
hag- The philosophy is to take the spatial average of the pieces dependent on h,g and
then treat the resulting terms as an effective addition to the stress energy tensor of the
matter content of the Universe. Assuming that a certain weak limit exists, they perform
a rigorous diffeomorphism-invariant averaging process of the gravitational response to
mass density fluctuations through the application of this weak limit. Assuming that
the matter stress-energy tensor 7,5 satisfies the weak energy condition (Taﬁto‘tﬁ >0
for every time-like vector field ¢*), Green and Wald prove that the averaged effect of
the coupled matter plus gravitational fluctuations is then encoded in this limit in an
additive correction tgoﬁ) to the stress-energy which is traceless and also satisfies the weak
energy condition. They therefore identify it with gravitational radiation. In particular
in a FLRW background metric, tgg is diagonal, corresponding to an effective fluid with

pressure p = p/3 > 0, leading to the conclusion that such a backreaction cannot mimic

dark energy.

The situation changes dramatically however, if we now entertain the possibility that
Einstein’s General Relativity equations themselves already have gravitational correc-
tions. In the Starobinsky model of ‘R? inflation’ [220,221], a theory that remains highly
favoured observationally [222], one can show that such a backreaction can mimic Dark

Energy. In this model, the Lagrangian density is given by

1 R?
L= % R+ 6M2 + EMatter (729)
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(where k = 817G, and \/—g is included in the integration measure of the action). The
new parameter is the so-called scalaron mass, which must be M ~ 3x 10 GeV, in order
to agree with cosmological observations. Following the above philosophy, we continue
to assume that the underlying (quantum field theoretic) net vacuum energy effectively
vanishes (hence the absence of a cosmological constant term above). Back-reaction is
again encoded in a diffeomorphism-invariant, effective additive correction, t&oﬁ), to the

matter stress energy tensor, however it is now not traceless. Instead [202]

RL?

(O
w weak 6M2 ’

(7.30)

where R is the linearised Ricci scalar of the gravitational fluctuations h,g, t©) is the
trace of tg)ﬁ) with respect to the full background metric and the equality holds rigorously
in a certain weak limit. Encouragingly, t() thus must be negative, in agreement with the
current acceleration of the universe. Furthermore it behaves parametrically in the right
way, in the sense that if we assume that the fluctuations are generated independently of
the scalaron scale, then we recover the tracelessness of the additive correction [218,219]
in the limit M — oco. Therefore, it seems reasonable to apply order of magnitude esti-
mates to 7.30 in order to obtain a rough estimate of the effective cosmological constant
generated by gravitational back-reaction from a striped phase. Setting RV ~ 82h ~ kp
where p is the local mass over-density, we have from 7.30 that the effective vacuum

energy t(0) ~ —k(p?)/(6M?). Now we recognise that x = 1/M32 where the reduced

lanck?

Planck mass is Mplana = 2.44 x 108 GeV, that t(0) = —E% _where the current effective

vac

vacuum energy is Fyae = 1072 GeV in order to agree with observations, and finally

that the RMS value /(p?) ~ A;ltripe, where Agtripe is the energy scale that sets both the

amplitude and wavelength of the striped phase. Combining these, we therefore find that
A2

stripe (7 3 1)
\ 6MMPlanck

from which we deduce that Aguipe ~ 140 GeV, intriguingly close to the Higgs’ mass

Evac ~

and the EW (electroweak) scale. Of course, if t(9) is to mimic a cosmological constant

and thus drive the present day acceleration of the universe, it must also be (at least
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approximately) constant. This is guaranteed by the present mechanism since, as the
universe expands, the stripes are not diluted (unlike the matter content and the more
rapidly diluted radiation content of the Universe) but instead rearrange and get created
to fill the ‘gaps’, since the wavelength is set at Aggripe by the microscopic dynamics
described in the previous section.

We note again that we have not suggested a mechanism that naturally suppresses
large contributions to the cosmological constant, in other words we are not attempting
to solve the infamous cosmological constant problem. Nevertheless, we have still shown
how to generate a new type of contribution that can be significant, indeed can be suffi-
ciently large to explain on its own the value deduced from the present day cosmological

acceleration.
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Chapter 8

Concluding Remarks

The last few pages in a complete, fundamental theory of QCD are far from being written.
The strongly-coupled, non-perturbative aspects such as confinement, walking theories,
phase transitions, meson and baryon spectra et cetera are still providing many puzzles
to answer. Whether on the lattice, using holographic approaches or by other means,

research into this field will likely continue for a long time.

In the first chapter, we saw an overview of the history of the field and introduc-
tory material on the fundamental topics of chiral symmetry, asymptotically free gauge
theories, string theory and D-branes. We then turned to motivating the AdS/CFT cor-
respondence which allows us to equate the partition functions of a CFT to that of a type
IIB string theory in AdSsxS®. This correspondence supports all of the following chap-
ters’ work. In chapter 3, we turned our focus on re-engineering the famous Maldacena
conjecture to work in the arena of gauge theories with flavour and a running coupling like
that of QCD and associated asymptotically free theories. We examined both top-down
and bottom-up approaches, in particular the theory of Dynamic AdS/QCD. Sticking
with latter, part two of this work looked into using the Dynamic AdS/QCD theory to
examine various aspects of asymptotically free gauge theories. In chapter 4, we studied
the so-called hyperscaling relations of the quark mass and condensate (as well as meson
states) with RG scale in theories with an IR fixed point. Chapter 5 dealt with calcu-
lating the spectra of mesons, including the pions, the rho and sigma mesons, as well

as the scalar glueball for a range of asymptotically free theory of varying numbers of
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flavours and colours, and in multiple representations. In Chapter 6, we examined the
effect of temperature and magnetic field on QCD-like theories, finding a non-monotonic
relationship between the condensate and the magnetic field strength also found in lattice
calculations. The final chapter uses the Dynamic AdS/QCD theory to probe whether
or not it is possible to obtain striped condensate phases in QCD-like theories and the
ramifications of such a phenomenon in the physical world.

One question remains. What is left for the future of this field? Of course, the
bottom-up approaches to QCD such as Dynamic AdS/QCD are still relatively young,
and although they are reproducing lattice results within 5-10% error, there is still much
that can be done to improve upon the theories and still many more phenomena to ex-
plore regarding them. Future directions of the Dynamic AdS/QCD model are to look
at asymptotically safe theories and the physical phenomena that they provide as well
as investigating the renowned Banks-Casher result from a holographic perspective. At
the moment of writing this thesis, I am currently working on using this theory in col-
laboration with particle phenomenologists to look at the current standing of technicolor
and whether such theories remain a viable candidate for extending the Standard Model

of Particle Physics.
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Appendix A

Parity doublets of chiral

symmetry

The full chiral symmetry necessitates parity doublets in the following way. Consider
a state |a,4+) which has energy E,, H|a,+) = E,|a,+), and has a positive parity,
Pla,+) = +|a, +). We now define a new state [1)*) = Q%|co, +). [¢*) is degenerate in

energy with [1)%),
H[y®) = HQYlo, +) = ([H, Q] + Q4 H )|, +) = Q% Hlev, +) = Ea[y)?),
but has opposite parity,
Ply®) = PQ4P™'Pla, +) = PQYP ™ a, +) = —Q4la, +) = —[v%).

Hence for every state |a,+) there is a state |¢)*) which is degenerate but of opposite

parity eigenvalue.
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Appendix B

U(1) 4 anomaly

This Appendix follows [41]. In order to investigate the anomalous behaviour of axial
currents we begin by examination of the anomaly associated with the U(1) AU(l)éED

triangle diagram — referred to as the Adler-Bell-Jackiw (ABJ) anomaly, see figure B.1.

AVAVAVAVAVAV
UM gep

AVAVAVAVAVAV
UM gep

Figure B.1: The U(1) AU(l)ZQ pp triangle diagram calculation pinpoints to an anomalous
U(1)4 symmetry.

Such a diagram is the leading order contribution to the matrix element
(p, k|A"(2)|€2),

where A* is the associated U(1) 4 current! and the momenta p and k pertain to the two

'The U(1)a comes from the global chiral symmetry U(1),xU(1)g =U(1)y xU(1)4 of the massless
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external U(1)ggp fields. Following [41], one can show, with strict implementation of
some regulator (e.g. dimensional regularisation), that (p, k|0, A*(x)|€2) is non-zero,

62
(p, k[0, A%(0)]Q) = —

1672 (p, klfaljﬁ)\FauFﬁ/\|Q>' (B.l)

Hence 0, A" # 0 and the symmetry is thus anomalous.

In theories such as QCD, we are also interested the fate of the axial currents in
triangle diagrams such as SU(Nf) 4SU(N,)? and U(1)4SU(N,)?, as shown in figure B.2,
the axial currents again stemming from the global, flavour symmetry of the chiral La-

grangian.

SU(N,) SU(N.)
SU(Ny) 1 U(L) 4 !

TSN SUNG

a) b)
Figure B.2: a) The SU(N{) 4SU(N,)? triangle diagram and b) the U(1) 4SU(N,)? triangle
diagram.
The equivalent versions of equation B.1 can be adapted by reading off the additional
group theory factors arising at the vertices. For the SU(Nf)4SU(N,)? diagram we have

2
(p. k|0, A**(0)[Q) = =85 tr(E"NX) (p, K| FL, 5 2), (B.2)

where ¢ are the generators of SU(Ny) and A® are the generators of SU(N,). We can fac-
torise the trace over flavours and colours as tr(t?APA°) = tr(t?)tr(A\’A°), which vanishes
as a result of the tracelessness of all SU(N) generators. Hence such a diagram doesn’t
suffer an ABJ-type chiral anomaly.

The second diagram of figure B.2 is afflicted by an ABJ-anomaly since tr(t%) is

Dirac Lagrangian and is different from the QED U(1) gauge symmetry.
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replaced by tr(]IfoNf) = Ny. Hence

~ NyT(r)

2
g
0, AH = 6.3 S eVPARY Fhy (B.3)

using the relation tr(A\?A\’) = T'(r)§%, where T'(r) is the Dynkin index of the repre-
sention r of the SU(N,) group — e.g. in the fundamental representation, T'(F) = %, N
N. and in the adjoint representation 7'(G) =N,, V N,.. This is the root of the axial sin-
glet current being non-zero. Thus the true chiral symmetry of a chiral Dirac Lagrangian

of the form in equation 2.8 is
SU(Ny),, x SU(Ny) , x U(1)y,.

We might be convinced that the non-Abelian SU(Nf)4 group is anomaly-free, yet

SU(Nf)A Y

Figure B.3: The SU(Nf)4U(1)%,, has direct consequences relating to the decay process
0
T = 7.

we’re missing part of the whole picture. Quarks, being charged particles, couple under
the electromagnetic interaction to photons and thus one needs to consider the triangle

diagram SU(Ny)aU(1)%,,, see figure B.3, which yields a matrix-element,

(p, k|9, A*(0)[Q) = ———5tr(t"NQ?) (p, k™ Fy, F§,[Q), (B.4)

1672

173



where (@ is the quark charge matrix,

The right-hand side of B.4 vanishes identically for all off-diagonal generators. However
the diagonal generators (t3 for SU(2), 3,¢® for SU(3), t3,¢%, 15 for SU(4) etc.) leave an
anomalous term thanks to a non-vanishing tr(t*N.Q?). In SU(2) the diagonal generator
is related to the neutral pion, 7°, (see section 2.1.2) and so it is the anomalous A*3

current which leads to the decay channel, 70 — ~+.
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Appendix C

UV expansion of L(p)

Let’s start with the metric of AdSsxS?® in global coordinates with unit radius of curva-

ture,

ds® = — r? 1+i 2dt2+r2 1—i 2d§22
472 472 3

1
+3 (dp* + p?dQ23 + dL? + L?d¢?) , (C.1)
where 72 = p? 4+ L?. The metric on the D7-worldvolume is thus simply

2 2
ds?, = —r? 1+i dt? + r? 1—i A2
D7 = 472 r 472 3

1
+ -5 (dp” + p?d%3) (C.2)
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The D7 DBI-action is given by equation 3.3 with F, = 0 and G, given by,

—r2X?2 0 0 0 0 0 0 0
0 r2y?2 0 0 0 0 0 O
0 0 r2y?2 0 0 0 0 0
0 0 0 ry? 0 0 0 0
Gab = s (03)
0 o 0o o0 4 (1 + (apL)Q) 0 0 0
2
0 0 0 0 L 0 0
2
0 0 0 0 0 & 0
2
0 0 0 0 0 0 0 &

with X = (1 + ﬁ) and Y = (1 - ﬁ) The action is then expressed as

Spyy ~ /d,o (1 4 M) (1 _ M)Q A1+ @02 (C4)

The equation of motion is then

0 1 1 . 9L
o \ T e )\ i) P >
P P P 1+ (9,L)

L L 3L L 3 2
_ + - 1+(9,L)° =0.
((L2 +02)7 2024027 16(L2 4 p2)" 32(L2 +02)5> g m

(C.5)
Linearising in the limit p — oo and 9,L — 0 we get,
0 , 4 L

— (p°0,L) = —, (C.6

8/) ( p ) P )

where all but the leading first term on the right-hand side of equation C.5 are negligible.
The solution to the linearised equation of motion is given by
262]1 (l) ClKl (l)

+ )

p 2y/7p

L(p)
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where I; and K7 are the modified Bessel functions of the first and second kind respec-

tively and c; 2 are constants. The p — oo limit of equation C.7 is simply,
Co Inp 1
Lp201+—C3+O<>, C.8
) e p pe (C.8)

where C1 23 are constants.
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Appendix D

Expanding the Dynamic
AdS/QCD action

The dynamic AdS/QCD action is given by,

S = [ d*zdpp®T: DM X\'(Dy X
[ ke T | (DX (D)
Am? 1
+ P |X|2+@(FL,MNF£4N+FR,MNF§4N) , (D.1)
5
where
X = L(p)e*™ ", (D.2)

We now proceed to expand the action fully, term by term. Firstly the kinetic term of

the scalar X can be written as follows:

(DMX)(Dy X) =0 XTOMX
=A
—i( O XNIMX +i(Ou XNRM X +iXTLp (0™ X) — iRy X T(0M X))

=B

+ XDy IMX — XLy XRM — Ry XTIMX + Ry XTXRM,
=C
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where we assume the gauge fields are Hermitian. Also assuming L(p) is flavour-independent,

i.e. all flavours have same mass, part A simplifies to,
A =4L20,m0" T + 0,L0°L, (D.3)

with m = 7272 Writing LM = VM + AM and RM = VM — AM  thereby defining the

vector and axial bulk gauge fields, part B simplifies to
B = —8L*(dym)AM. (D.4)

Likewise part C simplifies to
C = 4L2 A AM (D.5)

In total the scalar kinetic term expands out as,

(DMX)H(Dy X) 1 2 2 MM 2
rrr =y 97 O ALY O — Ay) ]
2 ALY 2
= (8PL) + 4L2A12) + m (8H7T — A”) . (Dﬁ)
The mass term simplifies to
Am? Am?
2 XX =—-1" (D.7)

The gauge kinetic term can be expanded in terms of the vector and axial fields, V™ and

AM as follows

FrunFMY + Fpun RN =Fy yn FPY + Faun FATY
= (M VE — On Vi) (M VN — Ny M) 4

(Om A%y — OnAGy) (9MABN — 9N A= | (D.8)

where we have used t%t? = %(5‘”’.
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Appendix E

Vector-field equation of motion

Consider the bottom-up AdS/QCD action 3.23 on an AdSs background,
ds? = L (niidaidad + ds2) = daMdz™N E.1)
s—;(m]xm—kz)_?m\/ﬂvx . (E.
The action of the vector fields V}; is given by (with \/—g = 279)

Sy = / dox Z%Tr [212 (OmVy — OnViy) (M Vel — anavM)]
95

1 1
= /d5$ Tr [292 ;»2277MR«2277NS (Om VN — OnVip) (OrRVS — asvﬁ)}
5

11
— / Az Tr [292 ;nMRnNS (O V& — ONVEY) (ORVE — asv,g)] (E.2)
5

The equation of motion for V; can then be found by requiring that the functional

change in the action, 05{, = Sy [V® + 6V ?] — Sy [V?], vanishes. To first order in 6V},

05 = / B Tr [;zinMRnNS {(Om VR — OnViy) (0R0VS — Os0Vi)
95

+ (Om0VN — On6Vip) (OrVS — OsVi)H - (E.3)

Expanding the brackets and performing integration by parts to ‘remove’ the derivative

from 0Vy;, we arrive at

58% = —4 / Pz Tr {nMRnNSaS (i (ONVE — an]@)> 5v;g] , (E.4)
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such that the equation of motion is simply,
1
N Eop <z (ONVE — an;;)> = 0. (E.5)
Letting Vi, = ey V%(2)e™?, the equation of motion is given by

v pv
T nvye 5,0,V + 0, (18ZV“(Z)> — 0. (160‘/;1) =0.  (E6)
z z z <

Using the knowledge that Vj; is massless and therefore transverse, oM Vi = 0, the
second term of equation E.6 vanishes. The last term can be gauged away by utilising

the gauge freedom of the action, gauge fixing with V? = 0, thus leaving
o q, 1
I Ak yyayy g, (azva(z)) —0. (E.7)
z z

Turning our focus back to the dynamic AdS/QCD model, the metric 3.30, in the limit
p — oo where p > L, returns to that of AdSs with z = %. Performing this change
of coordinates requires 0, — —p28p and so the equation of motion becomes (dividing
through by p?)

0 (79" (0) - L) =0 (E3)
The solution to this equation of motion with the boundary condition V' (c0) = 1, such
that the solution matches on to the field theory current at the boundary, is given by

va(p) = 20p, (g) + %Kl <q> , (E.9)

qp p

where I and K7 are modified Bessel functions of the first and second kind respectively

and ¢ is a constant. The p — oo (UV) limit is then calculated to be

2

q ¢
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Appendix F

Derivation of (qq)*

To obtain the chiral condensate, (gq)*, we first substitute the solution

m* c*
L= s 702*7*’ (F.1)
into the action
L2
S = /d4x dp p* [(BpL)2 + Am2p2} , (F.2)
giving us
S dpd 3 () (m)? N (v =22 () 29'(y" —2m*e”
PAP P22 627 o
*\2 *\2 * %
o [ (m7) (<") 2m*c
+Am p( T + P + e . (F.3)

Grouping like powers of p we simplify F.3 to

2c*

Sw/dp {pl_%* ((7*)2—1—Am2) (m*)2+ ;

SRR

where the ‘+..." refers to terms not-containing m* — these c¢*-only contributions will
vanish when we take a functional derivative of the partition function with respect to p*.

We next perform the integral between prr and Ayy. Concentrating on the diverging
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UV parts, we have

p272’y* *\2 2 *\ 2 2c* * * 2
S:m«v) +Am)(m) +1n(p)(7(2—7)+Am)m*+... (F.5)
We now take (Gq)* = %5%*,
o\ * (7*)2 + Amz * A 2—2v* * * * 2
(qq)* = m* A7+ 2In(A)c (vF(2 — %) + Am?) . (F.6)
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Appendix G

Derivation of fixed point mass

and condensate

To derive m™* and c*, we take the two IR boundary conditions,

and

and apply them to the fixed point solution for the scalar L

L(p = prr) = pIr

0,L

The condition G.1 gives us explicitly

implying

* *
m c
L=—7+4+—5—.
pr
m* c*
pIR == 7 + 27,},* 9
PIR  PIR
* 3= 2—2~*
¢ =P — P M

|P:P1R =0,

(G.2)

(G.3)

(G.4)



The second boundary condition G.2 likewise implies

229", %
«_ P 7'M

V=2

C

Equating G.5 and G.6 allows us to find m*,
* /}/* —2 14+*
" (27* —2) P

2v* —2 oy L
= 14+~*
PIR (7*_2>(m) oAl

Rearranging G.7 as

and substituting G.8 into G.1 or G.2 give us c¢*:

*

* * 377"/* Ak
s <27 2>1+W (m*) TP

T2 —2\ -2
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Appendix H

Derivation of k

In the perturbative region (as < 1) in the far-UV, the one-loop beta-function has a

logarithmic solution

1
as(p) = .
(1) Golng
Since Am? = —2v; and
3Cy(R
() = 22 0 ),

(H.1)

(H.2)

it follows that (bearing in mind that in the UV L < p and so p = /p? + L? =~ p),

T Polnp
Setting
£— 30 (R)
- 7h
L has the equation of motion
9, (FPO,L) — >—pL =0,
P P lnp

Assuming the equation of motion has solutions of the form

(H.3)

(H.4)

(H.5)

(H.6)



for some other constant k, by substituting H.6 into H.5 we find

2pkm k(1 +k)pm pEm
— — = . H.7
(111 p)k+1 (ln ,0) 2+k (111 p)k+1 ( )

Since the second term on the left-handside is subleading in the UV, we can ignore it and

we find the relation £ = —2k. That is

_ 3C3(R)
o 2mBy
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Appendix 1

The Banks-Casher Relation

Despite the strongly coupled nature of QCD, there are a few analytical relations which
can be nonetheless derived. One such is the Banks-Casher relation [223] which relates

the value of the chiral condensate to the density of the eigenvalue of the Dirac operator

in limit of vanishing eigenvalue. A derivation is as follows and is based on [25].

The QCD partition function:

Hsa

Zqep = / (H DAZ) [[DéyDyse @ wbsiPmmvse=svar, (1.1)
f

where,

1
Sy = i / Fo Rl die. (1.2)

We start by rewriting the fermion fields of QCD, v(x) and (x), in terms of the

eigenfunctions of the Dirac operator I;

P(x) = Z bpun (), (1.3)

such that

Dup(x) = Mun(z), /d4m ujnun = Omn, (1.4)
where b, are Grassmann coefficients and A are the respective eigenvalues.
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The QCD partition function can be written down as

Zqcep = / (H DAa> HDdeDwfe_fd aty (i)~ mf)¢f6—SYw1 (1.5)

m,a

where,

1
Sy = I / Fi, Fi¥d. (1.6)

Re-expressing the fermion fields in terms of the Dirac eigenfunction basis 1.3, the

QCD partition function becomes
wa
where there is an intrinsic summation of m and n. This simplifies to

/ [[ dbndb;, [ DAGe e PrbnliAn=my), (1.7)
n w,a

for which we can perform a Gaussian integral over the Grassmannian variables' b,, and

b} to leave us with

/ [[Ase 5 T](iAn — my). (1.8)
H,a n

The quark propagator may then be expressed as

@)l 0) = 5

/Hdb b’ (Zbul ) Zb* f(y b ba(iAa—my)
(1.9)

which becomes

(Wr (@) (y)

Z U (x H (iAm —my) (I.10)

ZQCD it

after the Grassmannian integration is completed. Now using the form of Zgcp from 1.5

!The Gaussian integral is undertaken as
/ dbdb* e " MY = det M,

for any matrix operator M and Grassmannian variables b and b*.
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we reach

W@y = m (L11)

with all but a sole (i\, —my) cancelling between the numerator and denominator.

In order to obtain the condensate, we must integrate over all spacetime and find the

average (i.e. o [ d'z),

Wiy = [ e (or@is) = [ate Y2 )

leaving us with

T g— (113)

— Ay —my

Due to the relation {y™,~v°} = 0 and hence {I),7°} = 0, it can be shown that for
every eigenfunction u,, of I) having eigenvalue ), there is another eigenfunction v°u,,
with eigenvalue —\;,:

D (Vun) = =7 Pun = =Xyt (L14)

Using this information, we can write the result in 1.13 as,

- 1 1 —2my
Wi =3 (5t o)~ S 0)
= iAp —myp  —iAy — My = )\n+mf
noting that the number of eigenvalues of the Dirac operator that vanish also vanishes?.
In the thermodynamic limit, the eigenvalues become continuous so the result is of the

form,

Wiy [ X ooV 55 (1.16)

s
+my
where p()) is the density of (eigenvalue) states function and g, is the degeneracy factor

of the states.

As per usual, one can work out the density of states by considering the number of

2This is because the number of vanishing eigenvalues of the Dirac operator is exactly the topological
charge or Pontryagin index of the field theory, which in QCD is vanishingly small by experiment.
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allowed states with a value of A between A and A + dA,

volume in A-space of 2% of D-dimensional spherical shell (A > 0)

A)d\ =
P volume in A-space occupied per each state

So in a D-dimensional spacetime we have

2 D
p(A)dA = ,rDF( z)
o
Or, for D =4,
Lr2)330N VA
p(Ndx = BT 20 S
W T

(L.17)

(L18)

(L.19)

This form of p(A) is only strictly valid in the non-interacting QCD theory, as we will

discuss below. The degeneracy of the eigenvalues gy is 2/N. because we now have two

eigenfunctions associated to each eigenvalue and have N, variations of each fermion field.

Equation 1.16 is however somewhat ill-defined. In the free (4, = 0) case, whereby

the eigenfunctions u(x) can be associated to plane-wave solutions, the eigenvalues are

just the momentum of the state,

lpfreeeiklz = ’LkCZkI

But with this in mind, the integral of equation 1.16 diverges as Ay for some ultraviolet

cutoff Ay, A solution to this problem is to take the chiral limit in which m; — 0 much

faster than Ayy — oco. We first recall that we can define the delta-function as the limit,

1 2e
= 1. _——
o) = limy 5o

to write the corresponding part of the integrand of 1.16 as,

W) =~ [ dgrpN 75,

The integral is no-longer providing us with a divergence and we arrive at the famous
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Banks-Casher relation

(V) = =mp(0).

It is now evident that the necessary condition for the condensate to exist is p(0) # 0
(the free theory whereby p(A\) ~ A3 does not satisfy this criterion). We must conclude
that whichever mechanism gives rise to chiral symmetry breaking and thus a non-zero
condensate arises from the vacuum field configurations which yield a non-zero spectral

density, p(A).
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Appendix J

Vafa-Witten Theorem

The Vafa-Witten theorem states that in a vector-like gauge theory' (like QCD), vector
symmetries cannot be spontaneously broken [207]. We show the proof of this below,
again following [25].

Consider a QCD-like field theory with two massive quark flavours v and d: m, =

mgq # 0. Consider the set of Euclidean correlators

Cr (@, y) = (J™(z)J% (y)), (J.1)
where

Ji — gTd, J% = dlu, (1.2)
for

I € {1,9%, ivu, " o} (1.3)

Inserting a complete set of states into Cr,

Cr(z,y) = Y _(0]J" (@, 0)[n)(nle~ P T (y,0)[0), (J.4)

n

we see that the asymptotic, late time behaviour is dominated by the lightest state (with

!Gauge theories are historically called ‘vector-like’ if Dirac mass terms can be written down in the
Lagrangian without breaking the gauge symmetry. A term —ma)t is written in terms of its left- and
right-handed components as —m (@LTZJR + YR L) and so the left- and right-handed fields must be in
the same representation of the gauge group with equal and opposite charge under that group. This is
not true of the electroweak sector which is referred to as a chiral gauge theory and wherein masses must
be generated via Yukawa terms coupled to a Higgs field.
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lowest E,) pertaining to the I'-channel,

Cr ~ e Mrt, (1.5)

We can also express the correlator in terms of the QCD partition function as
1 . _
Cr(e,y) = / T[] DA% () [ det Imy — iBle 57T LGz, ))TG(y,2)},  (J.6)
m,a f
where G(z,y) are Euclidean Greens function,

G(z,y) = (¥(x)d(y)). (J.7)

From equation 1.13, we can rewrite the Greens function as

my — i\,

U (T UL
Gla,y) =Y un(z)un(y) (1.8)

where u,, are eigenfunction of I with eigenvalue \,. For every eigenfunction w, of

eigenvalue ), there exists an eigenfunction v°u, with eigenvalue —\, and so we can
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write

5

3G Zvun _M (y)y

Sup(x Sup f
_ 3 Ol >>_<3An (4))

Using this identity inside J.6 with I' = 4°, we arrive at
Cys(z,y) /HDA“ Hdet imy —ilple” SYMTr{|G (z,9)c|? I (J.10)

which, because of the factor of |G|? implies that

Cr < 075, (J.11)
or from J.5,
Mr > M.s. (J.12)

This therefore implies, that the lightest pseudoscalar state associated with the 5 channel
must be the lighter than any other bound state, from any other I'-channel. So, were a
vector symmetry to be spontaneously broken, massless scalar Goldstone particles would
be present in the spectrum. However, the inequality above insists that there must also
be massless pseudoscalars in the particle spectrum if this is the case. Since we have

assumed that the quark masses are finite and therefore explicitly breaking any axial
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symmetries the theory might otherwise have, no such massless pseudoscalars can exist
in the spectrum. Hence, we must conclude that the spontaneous breaking of a vector

symmetry in this scenario is forbidden.
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