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by
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Dynamic AdS/QCD is a bottom-up model inspired from top-down, probe-brane extensions

to the renowned AdS/CFT correspondence. The AdS/CFT correspondence states that there

is an equivalence in the physics describing an N = 4 super-Yang-Mills gauge theory and that

pertaining to a type IIB superstring theory on an AdS5×S5 background. Moreover, the duality

between the two theories in a particular limit requires that the gauge theory be strongly coupled

when the superstring theory is weakly coupled. From this, we have a tool for studying strongly

coupled gauge theories in a physically equivalent gravitational description. Using the AdS/CFT

correspondence as a springboard, relationships between more complex superstring constructions

on varying backgrounds have been studied to push the dual gauge theory to be more like those

of QCD. In this thesis, we use one such bottom-up model, Dynamic AdS/QCD, to probe the

behaviours of strongly coupled, asymptotically free gauge theories, including QCD. We show that

the model correctly describes the hyperscaling relations of quark masses and the condensate, the

behaviours expected of the scalar, vector and axial meson spectra in theories with infrared fixed

points and how the condensate is affected by temperature and magnetic field in such theories. We

finally go on to show that it is possible to describe QCD-like theories with a Lorentz-symmetry

breaking vacuum, e.g. a striped condensate, and follow up with the cosmological ramifications of

such a proposal and conclude that outside of a totally disconnected dark sector, this behaviour

is highly constrained.
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Chapter 1

AdS/QCD: A History

1.1 The road to 1974

Why has the path to understanding the strong nuclear force seemingly gone off-road,

headed for the more mathematically abstract (and indeed abstruse) landscape of string

theory and the arena of holography? This is a question that we address in this histor-

ical introduction, setting the scene for the relevance of the physics undertaken in the

following work.

Quantum chromodynamics (QCD) is the fundamental theory of the strong interac-

tion and its birth, and subsequent life, has been one of troubles, anguish and tribulations.

Ever since the discovery of the neutron by Chadwick1 in 1932 [6], it was known that

the force that governs the interactions within the nuclei of atoms was different to the

known electromagnetic force: like charges seemed to attract one another and the two

nucleons appeared to be identical in all but their charge. The first major attempt at

trying to postulate an underlying theory for the strong interaction was done in 1934 by

Yukawa2 [7]. In analogy to the quantisation of the electromagnetic interaction whereby

a photon is exchanged between charged particles to mediate the force, Yukawa pro-

posed the idea of the meson3 as the ‘carrier’ of the strong interaction. Naturally, the

theory had to be modified away from that of electromagnetism (EM). The strong inter-

1Sir James Chadwick, 1891-1974.
2Hideki Yukawa, 1907-1981.
3Originally, he called it the U -quantum.
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action is only dominant at the scale of the nucleus (∼10−15m) with its effects unseen

at larger scales. Therefore the force carrier, the meson, had to be a massive particle

(
(
10−15m

)−1 ≈ 200MeV), unlike its massless EM twin, the photon, which mediates EM

across an infinite range. A spin-1 mediator was forbidden since it generates a repulsive

potential between like charges, so the meson had to be of either zero or even spin [8].

Since the force only affected one particle, the nucleon (in its two isospin forms), a scalar

(spin-0) meson seemed the most plausible. Lastly, and somewhat most importantly, the

interaction was ‘strong’, having to override the proton-proton EM interaction in the

nucleus. This then implied that the coupling strength between this meson and each

nucleon was big.

In 1936, Anderson4 and Neddermeyer5 discovered the muon from cosmic rays [9]

and initially the particle was associated to the strong-interaction mediator, the meson6,

because of its mass (∼ 105MeV) [10]. It just goes to show that some of the greatest

minds in the field get it wrong occasionally. However, cosmic rays relinquished more

particles in the form of a triplet of pions (π+, π−, π0), detected in 1947, which seemed to

fit the job. A Lagrangian formalism for this theory was constructed with the now-famous

Yukawa term with coupling constant y:

iN̄γµ∂µN −mN N̄N +
1

2
∂µπ

a∂µπa − m2
π

2
πaπa − iyN̄γ5τaNπa, (1.1)

where N is the nucleon doublet containing the neutron and proton, πa is the pion

triplet, γ5 is the usual fifth Dirac matrix and τa are the Pauli matrices. Despite a

Lagrangian formalism which seemed to describe the right physics witnessed by the strong

interaction, there was still the omnipresent elephant in the room: the strength of the

coupling. Because y had to be large, orders of magnitude stronger than the equivalent

electromagnetic charge, there were no calculations that could be done with Lagrangian

1.1. Perturbation theory, as used for the quantum version of electromagnetism, Quantum

Electrodynamics (QED), relies on a small coupling about which one can expand. Clearly

4Carl D. Anderson 1905-1991.
5Seth Henry Neddermeyer 1907-1988.
6The muon was initially called the mesotron and then the µ-meson. The meson was finally dropped

when it became known that the muon was in fact a heavier version of the electron, an idea so uncon-
templated that it lead Isador Rabi to exclaim the now famous “Who ordered that?!”.
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this isn’t the case for Yukawa’s meson theory. To add insult to injury, throughout the

1950’s and into the 1960’s, experiments unveiled an ever-expanding plethora of other

particles [11–16] (on top of p, n and π) — the discoveries were so frenetically frequent

that it become known as the ‘particle zoo’. In 1961, in a (desperately needed) attempt

to clean-up and categorise this ‘zoo’, Gell-Mann7 found that the particles, collectively

known as hadrons, could be grouped8 into octets and decuplets (transforming in the 8

and 10) of the group SU(3) [18, 19], see figure 1.1. This group became known as the

flavour symmetry group. The question then arose as to what became of the seemingly

non-existent fundamental representations, the triplets of this flavour group. The genius

of Gell-Mann was to realise that, from a purely group theoretic perspective,

3⊗ 3̄ = 8⊕ 1 (1.2)

and

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1. (1.3)

Gell-Mann named the fundamental field a quark9 [20] and noticed that mesons, like the

pion, were comprised of a quark-antiquark pair and baryons of three quarks. The nonet

of light mesons comprised of the three quark flavours (up, down and strange) were the

adjoint octet (π±, π0,K±,K0, K̄0, η) plus the η′ singlet. The baryon decuplet is com-

prised of the (∆++,∆±,∆0,Σ∗±,Σ∗0,Ξ∗−,Ξ∗0,Ω−), the octet is (p, n,Σ±,Σ0,Ξ−,Ξ0,Λ)

and the singlet is in fact forbidden to exist by the Fermi-Dirac statistics and thus is never

seen. Particles like the discovered ∆++, comprised of uuu all in the same spin state,

seemingly violate the Pauli-Exclusion principle. In order to rectify this, Han10 and

Nambu11 [21] (and independently by Greenberg12 [22]) introduced another quantum

number called colour from yet another SU(3) symmetry. The delta-baryon’s quarks can

7Murray Gell-Mann 1929-.
8In fact, the Ω− baryon, consisting of sss quark content, wasn’t yet found when Gell-Mann devised

this theory, yet he hypothesised its discovery to complete the decuplet. It was discovered in 1964 [17].
9Taken from James Joyce’s Finnegans Wake — “Three quarks for Muster Mark!”. George Zweig

also must be credited with hypothesising the existence of these fundamental representations of SU(3)(-
flavour), naming the particles aces.

10Moo-Young Han, 1934-2016.
11Yoichiro Nambu, 1921-2015.
12Oscar W. Greenberg, 1932-.
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thus be differentiated by their colour quantum number and are therefore not all in the

same quantum state.

Figure 1.1: [top] Gell-Mann octet of mesons. They are grouped such that the horizontal
layers each have the same strangeness quantum numbers, i.e. the same number of strange
quarks inside, and the diagonal lines connect mesons of like charges. The singlet η′ is
missing from the diagram. [bottom] The same categorisation for the octet and decuplet
of the baryons.

As soon as one question was answered, another seemed to pose itself. Why did we

never observe these quarks as isolated particles? It was proposed that the quarks were

somehow held prisoners of the hadrons they comprised, a theory so preposterous that

many didn’t believe in the existence of the quark at all, despite Gell-Mann’s group theory

arguments. It was not until the deep inelastic scattering experiments of the late 1960’s
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that the nucleons were indeed found to be comprised of point-like charges [23, 24], and

were quickly associated with Gell-Mann’s quarks — to quote Andrei Smilga ‘interago

ergo sum’ [25].

At last, things started falling into place. In 1973, it was proposed [26–28] that

the theory that was being used to understand the weak interaction, a Yang13-Mills14

formalism [29], could be employed to deal with its strong counterpart. The Yang-Mills

theory of QCD described quark matter mediated by massless, vector particles in the

adjoint of the non-Abelian, colour SU(3) group, the gluons. With the discovery of

the running of the strong coupling by Gross15, Wilczek16 [30] and Politzer17 [31], it

was shown that at high energies the coupling asymptotically vanished and the quarks

became free. In the IR the perturbative coupling is seen to rise and become strong at

nuclear energy scales.

By the end of 1974, it is safe to say that QCD as we know it today had been born.

Yet, there was still the small issue of the strong coupling at the interesting energy

scales pertaining to subatomic physics. Perturbation theory remained defeated and

confinement unproven (it still is).

1.2 To the present day

The strong interaction has a long and complicated past with string theory. Before the

establishment of the theory we now know as QCD, at a time when questions about the

strong interaction were plentiful but solutions scant, string theory was borne out of the

need for a fundamental theory of the strong nuclear force. String theory described very

well a phenomenological aspect of the strong interaction called Regge trajectories. Yet

string theory, in its simplest format, is riddled with issues of tachyonic ground states,

spin-2 particles (then and to some extent still) unobserved in nature and requiring more

dimensions of space and time than anyone knew what to do with. One set of problems

was replaced by another. QCD was soon formulated so the stringy nature of the strong

13Yang Zhenning 1922-.
14Robert Laurence Mills 1927-1999
15David Jonathan Gross 1941-.
16Frank Anthony Wilczek 1951-.
17Hugh David Politzer 1949-.
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interaction was forgotten. In the framework of a gravity theory, string theory was

redeveloped and its inconsistencies and foibles were eradicated. The field of string theory

grew ever larger and in 1997, Maldacena18 conjectured a mathematical duality (still as of

yet formally unproven) that a particular branch of string theory (namely type IIB) on a

specific geometry (that of a five dimensional Anti-de Sitter spacetime with compactified

five-sphere — AdS5×S5) contained all the same information (i.e. degrees of freedom)

of one particular type of gauge theory (an N = 4 supersymmetric Yang-Mills theory

in four dimensions). This is the AdS/CFT correspondence [32]. This duality has more

treasures to bestow than initially meets the eye. Firstly, the duality is an example of the

holographic principle, hypothesised by ’t Hooft19 and Susskind20 [33] as a solution to a

puzzle about entropy scaling in black hole thermodynamics. The holographic principle

says that information contained in a volume, V , of a d+ 1-dimensional spacetime may

be expressed in terms of the degrees of freedom on the volume’s boundary ∂V . The

AdS/CFT correspondence has the CFT living on the boundary of the higher-dimensional

curved AdS5 spacetime (or bulk). The second treasure, and this is one of particular

importance to our story, is that in a particular form, the correspondence insists that

when the gravity theory is weakly coupled, the gauge theory on its boundary is strongly

coupled. If only there were such dualities between strongly-coupled QCD and a gravity

dual, one could perform calculations on the gravity side and translate the results into

QCD physics. Unfortunately, we are not so lucky. However, over the past decade or

so, it has been the goal of many physicists to seek out such a duality by going back to

Maldacena’s conjecture and re-engineering the groundwork so that the gauge theory in

the duality is more and more like QCD. To this end, research still continues to thrive in

this field as the secrets of strongly coupled QCD slowly begin to be reveal themselves.

18Juan Maldacena 1968-.
19Gerardus ’t Hooft 1946-.
20Leonard Susskind 1940-.
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Chapter 2

Introduction

In the following sections, we will introduce the fundamental ideas that underpin the core

of this body of work. We begin by looking at the phenomenon of chiral symmetry and

how it is spontaneously broken in QCD-like gauge theories and then witness how QCD

gauge theories ‘run’ with energy and the consequences thereof. We next embark on a

brief guide to string theory, before uniting both the gauge theory and string aspects

together as we discuss and outline the idea of the AdS/CFT correspondence. The

aim (and the hope) of this section is to be a clear and pedagogical guide for all those

interested in this field of research.

2.1 Chiral symmetry and its breaking

In this section, we introduce the concept of spontaneous symmetry breaking and its rôle

in chiral Quantum Chromodynamics.

2.1.1 Spontaneous symmetry breaking

Consider the Lagrangian for a complex scalar field theory parameterised by the field φ,

L = |∂µφ|2 +m2|φ|2 − λ

4
|φ|4, (2.1)
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where m and λ are some real coupling constants and λ > 0. The Lagrangian has a

global symmetry φ → Uφ, φ∗ → U∗φ∗, where U is the unitary1 matrix (or operator)

which induces the transformation leaving the Lagrangian invariant. For Lagrangian 2.1,

U ∈ U(1), i.e. U = eiα for α ∈ R. For m2 < 0, the global minimum of the potential is

found at φ = 0 (see figure 2.1A). If the sign of m2 is, by some mechanism, driven to be

m2 > 0, then this theory becomes unstable around φ = 0 and the potential minimum

occurs at |φ|2 = 2m2

λ (see figure 2.1B). The ground state is no longer invariant under

the U(1) symmetry due to the existence of a non-zero vacuum expectation value of the

field 〈φ〉 6= 0 — this is spontaneous symmetry breaking (SSB).

Figure 2.1: A) The potential with global minimum occurring at |φ| = 0 exhibiting a
global U(1) symmetry. B) The old minimum becomes an unstable extremum of the
potential. The new global minimum is a set of solutions at fixed |φ| 6= 0 – there is a
non-zero vacuum expectation value of the field φ.

In the case of m2 > 0, there is a ring of equivalent vacua henceforth parameterised

as 〈Ωθ|φ|Ωθ〉 = m
√

2
λe

iθ for θ ∈ R. The most convenient parameterisation is chosen to

be, without loss of generality, θ = 0, such that

〈Ω|φ|Ω〉 = m

√
2

λ
≡ v, (2.2)

and defines our new vacuum with the vacuum expectation value (vev) of the field φ

given by v.

An expansion of φ about this vev may be expressed as

φ(x) =

[
v +

1√
2
σ(x)

]
e
i
π(x)
fπ , (2.3)

1Unitarity implies U∗U = I.
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where σ(x) parameterises the radial fluctuations in φ about v (in the complex plane of

which φ is a vector), π(x) parameterises the angular fluctuations in φ about the chosen

θ = 0, and fπ ∈ R. Substituting 2.3 into the Lagrangian 2.1, we arrive at

L =
1

2
(∂µσ)2 +

(
v +

1√
2
σ

)2 1

f2
π

(∂µπ)2

−
{
m2σ2 +

1

2

√
λmσ3 +

1

16
λσ4 − m4

λ

}
. (2.4)

Choosing fπ =
√

2v, we make the π-kinetic term canonically normalized. This La-

grangian is referred to as the linear sigma model [34]. The π-field is seen to be massless

(a presupposition given it parameterises the equipotential angular fluctuations), whereas

the σ-field has gained a mass.

Coleman’s theorem & Goldstone’s theorem

Consider a field theory Lagrangian that is invariant under a global SU(Nc) transforma-

tion parameterised by the special2, unitary matrix U . The vacuum, |Ω〉, being invariant

under this transformation implies

U |Ω〉 = |Ω〉. (2.5)

From Noether’s3 theorem, we also recognise that a continuous SU(Nc) global symmetry

implies conserved Noether currents ∂µJaµ = 0 with conserved charges Qa =
∫
d3xJa0 (x)

[35], where a is an index running over the number of generators of the symmetry group.

One may express the transformation matrix in the basis4 U = eiα
aQa , where Qa are

the conserved charges, implying that the infinitesimal transformation is given by U =

1 + iαaQa. By using the infinitesimal transformation, equation 2.5 implies

Qa|Ω〉 = 0. (2.6)

2det(U) = 1 and hence tr(U) = 0.
3Amalie Emmy Noether, 1882-1935.
4Usually, one would write the transformation matrix as U = eiα

ata ∈SU(Nc), where ta are the
N2
c − 1 generators of the symmetry group. However, since the conserved charges, Qa =

∫
d3xJa0 , satisfy

the same Lie algebra, i.e. they satisfy the same commutation relations as ta, then we can write the
transformation matrix in a basis Ũ = eiα

aQa .
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This is the basis of Coleman’s5 theorem, which states that in order for the global sym-

metry of the Lagrangian to be spontaneously broken, the true vacuum or ground state

of the theory must be charged under that symmetry, i.e. Q|Ω〉 6= 0 [36].

The state Q|Ω〉 is energetically degenerate with |Ω〉 (see Appendix A). Momentum

states constructed out of the vacuum from the symmetry current as,

|π(p)〉 ∼ J0(p)|Ω〉 =

∫
d3xeip·xJ0(x)|Ω〉, (2.7)

have energies Eπ = EΩ + E(p), where EΩ is the vacuum energy. In the limit as p→ 0,

|π(p)〉 → Q|Ω〉 and so Eπ → EΩ. From this we can conclude that the |π〉 states satisfy

a massless dispersion relation and this is the crux of Goldstone’s6 theorem:

A spontaneous breaking of a continuous global symmetry implies massless particles in

the spectrum - the (Nambu-)Goldstone bosons [37,38].

The π-field from equation 2.4 then satisfies this criterion.

2.1.2 Chiral Quantum Chromodynamics

A more pertinent case of spontaneous symmetry breaking is the chiral symmetry break-

ing of SU(Nc) gauge theories.

The chiral Lagrangian

The Lagrangian of an SU(Nc) gauge theory (of Nc colours) with Nf fundamental, mass-

less flavours can be expressed as7

L = −1

2
tr (FµνFµν) + iq̄ /Dq, (2.8)

with

Fµν =
1

gs
[Dµ, Dν ], Dµ = ∂µ + igsλ

aAaµ (2.9)

5Sidney Richard Coleman 1937-2007.
6Jeffrey Goldstone 1933-.
7The kinetic term may be recast as

tr(FµνFµν) = tr(Fµν,ataF bµνt
b) = Fµν,aF bµνtr(tatb) = 1

2
Fµν,aF bµνδ

ab = 1
2
Fµν,aF aµν ,

where ta are the generators of the SU(Nf ) flavour symmetry.
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and q is the flavour Nf -component multiplet

q =


u

d

...

 . (2.10)

Above, gs denotes the strong coupling constant, λa are the N2
c − 1 generators of the

SU(Nc) gauge group and the elements of q are each a four-component Dirac8 spinor.

Each Dirac spinor, e.g. u, can be expressed in terms of two, two-component Weyl9 (or

chiral) spinors u = (uL, uR)T . We can then project out the left-handed and right-handed

Weyl spinors10; e.g. uL = 1
2(1 − γ5)u and uR = 1

2(1 + γ5)u. We can now see that the

Lagrangian 2.8 exhibits two independent U(Nf ) global symmetries (a U(Nf )L×U(Nf )R

symmetry) since the left- and right-handed quarks are completely decoupled — this is

the chiral symmetry. The chiral symmetry is easily re-expressed as U(Nf )L×U(Nf )LR =

SU(Nf )L × SU(Nf )R ×U(1)L ×U(1)R and acts on the flavour multiplets as

qL =


uL

dL
...

→ UL


uL

dL
...

 = e−i(lat
a+θL)


uL

dL
...

 , (2.11)

qR =


uR

dR
...

→ UR


uR

dR
...

 = e−i(rat
a+θR)


uR

dR
...

 , (2.12)

where UL,R ∈ U(Nf )L,R, ta are the generators of the SU(Nf ) subgroups with their group

parameters labelled la and ra for the left- and right-subgroups respectively and with the

parameters θL and θR pertaining to the U(1) left- and right-subgroups. The associated

8Paul A. M. Dirac, 1902-1984.
9Hermann K. H. Weyl, 1885-1955.

10Naturally we have chosen the chiral basis for the gamma matrices, i.e.

γ5 =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1


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left- and right-handed SU(Nf ) conserved currents are

Lµ,a = q̄Lγ
µtaqL, Rµ,a = q̄Rγ

µtaqR, (2.13)

with the U(1) conserved singlet currents given by

Lµ = q̄Lγ
µqL, Rµ = q̄Rγ

µqR. (2.14)

Recasting the global symmetry as a vector-axial symmetry, i.e.

SU(Nf )V×SU(Nf )A×U(1)V×U(1)A,

we define our conserved vector and axial SU(Nf ) currents as

V µ,a = Rµ,a + Lµ,a = q̄γµtaq, Aµ,a = Rµ,a − Lµ,a = q̄γµγ5taq, (2.15)

and the vector and axial U(1) singlet currents as

V µ = Rµ + Lµ = q̄γµq, Aµ = Rµ − Lµ = q̄γµγ5q. (2.16)

The U(1)A or axial singlet current, Aµ, is only conserved classically: at the quantum

level, the ground state is charged under U(1)A — it is anomalous (see Appendix B).

Explicit symmetry breaking by mass

Adding in a mass term to the chiral Lagrangian 2.8 has the effect of destroying the

chiral symmetry since it must mix the left- and right-handed quarks, in effect coupling
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the two chiralities11. Taking a diagonal quark mass matrix of the form,

M =


mu 0 0

0 md 0

0 0
. . .

 , (2.17)

i.e. adding a term −q̄Mq to the Lagrangian 2.8, the corresponding divergences of the

vector and axial currents are found to be [39]

∂µV
µ,a = iq̄

[
M,

ta

2

]
q, (2.18)

∂µA
µ,a = iq̄γ5

{
M,

ta

2

}
q, (2.19)

∂µV
µ = 0, (2.20)

∂µA
µ = 2iq̄γ5Mq −

NfT (R)g2
s

16π2
εανβλF bανF

b
βλ, (2.21)

where in 2.21, the second term is the aforementioned U(1)A anomaly (see Appendix

B). Now we can see directly that the singlet vector current is conserved even under the

addition of an explicit mass term. The associated conserved charge,

QV =

∫
d3xq̄γ0q =

∫
d3xq†q = N, (2.22)

counts the number of quarks minus the number of antiquarks. If we break N up flavour-

wise as N = (Nu−Nū)+(Nd−Nd̄)+ ..., the eigenvalue of QV may also represent baryon

number,

B ≡ QV
Nf

=
(Nu −Nū) + (Nd −Nd̄) + ...

Nf
, (2.23)

and hence the singlet vector symmetry is sometimes referred to as U(1)B.

From equation 2.18, it is evident that all of the SU(Nf )V currents are once again

11Consider a diagonal mass matrix M with entries m. A term q̄Mq added to the Lagrangian can be
expanded as

q†γ0Mq = (q†L, q
†
R)

(
0 1
1 0

)(
m 0
0 m

)(
qL
qR

)

= m
(
q†LqR + q†RqL

)
.

.
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conserved if the mass matrix is a multiple of the identity, i.e. all quarks have the same

mass. Even so, in the limit of non-equal masses, the diagonal SU(Nf ) generators still

commute with the mass matrix leaving some currents conserved and others not12. The

fact that the currents pertaining to the diagonal generators are always conserved in this

manner exposes the natural flavour conservation of these theories.

The corresponding SU(Nf )A currents do not, however, retain any symmetry under

an explicit, non-vanishing mass term.

Chiral symmetry breaking and the chiral condensate

There is evidence from hadronic-scale QCD13 (QCD), that the chiral symmetry is spon-

taneously broken. The first piece of evidence comes from the absence of parity doublets

in the spectrum (see Appendix A). In Nf = 2 chiral QCD for example, the lowest-

lying Jπ = 0+ and 1+ candidate states, the sigma- and a1-mesons, have masses of

mσ =500MeV and ma1=1260MeV respectively [40], whereas their axial counterparts,

the pions and the rho-mesons, are, comparatively, a lot lighter at mπ=140MeV and

mρ = 770MeV respectively [40]. This mass splitting is too large to be understood as the

result of small explicit mass terms (for the up and down quarks) and so we must conclude

that, at the hadronic scale at least, the chiral symmetry of QCD, SU(Nf )V×SU(Nf )A,

is not fully realised14.

A second piece of evidence comes in the form of the interaction strength between

a quark-antiquark pair increasing as the particles get further apart. It then becomes

energetically more favourable for the ground state of QCD to consist of a condensate of

quark-antiquark pairs. Since any change in the vacuum must have no net momentum

or angular momentum, the quark-antiquark pair must consist of one left-handed quark

field and the antiparticle of a right-handed quark field [41], see figure 2.2.

12In SU(2), t3 =
1

2

(
1 0
0 −1

)
and thus V µ,3 = q̄γµt3q = ūγµu − d̄γµd. The associated charge

Q3
V = 1

2

∫
d3(u†u−d†d) and reflects on isospin – its eigenvalue is generally written as I3. In SU(3), both

t3 and t8 are diagonal, the latter’s respective charge eigenvalue being the strong hypercharge quantum
number, Y = 2√

3
Q8
V .

13An SU(3c) gauge theory with SU(2f )×SU(2f ) chiral symmetry. If the strange quarks are considered
light then this becomes an SU(3f )×SU(3f ) chiral symmetry.

14To reiterate the point, in the limit of chiral symmetry restoration, one would expect Mπ = Mσ and
Ma1 = Mρ.
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Figure 2.2: When quark-antiquark pairs are condensed out of the vacuum they must
have zero net momentum and angular momentum. This leaves us with two quark fields;
one right-handed quark field (a) and one antiparticle of a left-handed quark field (b) or
vice-versa.

The ground state of QCD then has explicit interactions between left- and right-

handed fields breaking the chiral symmetry.

À la Coleman’s theorem, it can be shown [39] that the axial charge operators, QaA,

do not annihilate the vacuum, meaning the symmetry spontaneously breaks to

SU(Nf )V × SU(Nf )A → SU(Nf )V (2.24)

when, by some mechanism (see section 2.2), the coupling strength gs is driven to be

greater than some critical value gs > gχs . This is spontaneous chiral symmetry breaking

(SχSB). In Nf = 2 chiral QCD, the corresponding axial Goldstone modes are the three

massless15 pions and in Nf = 3 chiral QCD, these also include the lightest, stranged,

pseudoscalar mesons, the kaons and the η.

As alluded to in section 2.1.1, the dynamical generation of a non-zero vev of some field

theory operator is responsible for the ground state becoming charged under a symmetry

of the Lagrangian and thus defining SSB. In this light, the vev is an order parameter of

the transition; a zero value implying that the Lagrangian shares the same symmetries

as the ground state and a non-vanishing value indicating a spontaneous breaking of the

symmetry. In the case of the SχSB of SU(Nc) theories, such an order parameter is found

in [39]

〈q̄q〉 ≡ 〈Ω|q̄q|Ω〉. (2.25)

This is the chiral- or quark-condensate, which can be interpreted as quark-antiquark

pairs populating the vacuum, as described above. A non-zero value of the condensate

15Pions get a non-zero mass from an explicit mu = md 6= 0 term in the QCD field Lagrangian.
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can be seen to lead directly to QaA|Ω〉 6= 0 by using the relation16

[QaA, q̄γ
5tbq] = −δabq̄q, (2.26)

and taking the vacuum expectation value of both sides.

A ‘massless’ quark travelling through such a vacuum then obtains a dynamical mass

of order 〈q̄q〉
1
3 ; a broken chiral symmetry giving rise to dynamical Dirac mass terms

mixing left- and right-handed fields. In Nf = 2 QCD, 〈q̄q〉 ' (250MeV)3, which explains

why17 the masses of hadrons, such as the proton, are so much heavier than the total

mass of their constituent quarks.

Effective chiral Lagrangian

A low-energy, effective chiral Lagrangian can be written in terms of only the pion fields,

πa(x). Here, we follow the work of [39]. We seek the simplest Lagrangian that exhibits

an SU(Nf )L×SU(Nf )R global symmetry which is spontaneously broken to an SU(Nf )V

symmetry. We invoke a linear-sigma model with the Lagrangian

Leff = |∂µΦ|2 + µ2|Φ|2 − λ

4
|Φ|4, (2.27)

that has such a behaviour. The transformation

Φ→ LΦR†, L ∈ SU(Nf )L and R ∈ SU(Nf )R (2.28)

leaves the Lagrangian invariant. The potential of the Lagrangian is arbitrarily chosen to

be simple yet trigger the required SSB. An expansion about the vev 〈Φ〉 ≡ v is carried

16This relationship can be derived using

QaA =

∫
d3xq̄γ0γ5taq

and the identity [39]
[γ0γ5ta, γ5ta] = (ta)2γ0.

17There is also a contribution from a non-zero gluonic condensate.
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out, as performed in section 2.1.1,

Φ(x) = (v +
1√
2
σ(x)) exp(2iπa(x)ta/fπ). (2.29)

We then write the group elements L = exp(iθaLt
a) and R = exp(iθaRt

a), with θaL/R defined

as the SU(Nf )L/R group parameters with ta as the group generators. Next, we apply the

transformation 2.28 with these definitions to the Lagrangian 2.27 with Φ parameterised

as in 2.29. In doing this, the σ-field remains invariant (expectedly since Φ was invariant)

and so we can discard it altogether (since it is irrelevant to further predictions) but the

π-fields transform as

πa → πa +
fπ
2

(θaL − θaR)− 1

2
fabc(θbL + θbR)πc + ... (2.30)

Since vector symmetries rotate the left- and right-handed fields by the same phase18,

i.e. θaL = θaR, the SU(Nf )V vector symmetry, which remains unbroken after SχSB, leaves

the pions transforming in an Nf -plet, i.e. the adjoint of SU(Nf )V ,

πa → πa − fabcθbπc + ... (2.31)

This agrees with Nf = 2 QCD of the Standard Model wherein the pions form a triplet

under SU(Nf )V , (π±, π0). The exponent in the angular fluctuations can be expanded

as

Θ(x) = e
2i
fπ
πata

= e

2i

fπ

 π0
√

2π−

√
2π+ −π0


, (2.32)

where we have set π0 ≡ πa=3 and π± = 1√
2
(π1± iπ2) [39]. We can thus write the field Φ

as Φ = vΘ(x). Since Θ(x) transforms under the SU(Nf )L×SU(Nf )R global symmetry,

we may construct the most general Lagrangian out of Θ(x) and this will be a valid

effective chiral theory describing low-energy QCD [39].

18Unlike the axial symmetries whereby the phase has a factor of γ5, and so there is a sign difference
between the phase rotating the left-handed fields and the right-handed counterparts.
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2.2 Asymptotically free gauge theories

Let’s return to the Lagrangian for an SU(Nc) gauge theory with massless quarks,

L = −1

2
tr (FµνFµν) + iq̄ /Dq, (2.33)

with

Fµν =
1

gs
[Dµ, Dν ], Dµ = ∂µ + igsλ

aAaµ, (2.34)

where λa are the generators of the SU(Nc) gauge group. Such a theory contains inter-

action vertices up to dimension four with a dimensionless coupling gs and so is renor-

malizable in four dimensions.

2.2.1 Renormalization

The theory’s parameters (masses, couplings etc.) will obtain radiative corrections to the

bare values (those given in the Lagrangian) from higher order terms in the perturbative

expansion [41]. Such corrections diverge as a result of unbounded loop-momenta. A

finite number of counterterms subtracted from the bare Lagrangian are introduced in

such a way as to cancel these divergences, leaving a finite, physical Lagrangian. This is

done as follows. The bare parameters are recast as Xbare = ZXXrenorm, where the new

finite renormalized parameter is given by Xrenorm and the renormalization constant ZX

soaks up the divergence of the bare parameters and is calculated perturbatively from

the counterterms. Our Lagrangian containing the bare parameters can now be recast

in two parts; a physical part containing only the finite renormalized parameters and a

divergent counterterm Lagrangian,

L(bare) = Lphys(Xrenorm) + LCT ([ZX − 1]Xrenorm) .

A renormalization scale, µ, is then defined in the process at which the new renormalized

parameters are given. The fact that the bare parameters of the original Lagrangian are

µ-independent but the finite renormalized parameters, to which they are related, aren’t
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(i.e. Xbare = ZX(µ)Xrenorm(µ)) leads to the first-order, differential Callan19-Symanzik20

equation [42,43],

(
µ
∂

∂µ
+ β(gs)

∂

∂gs
−
∑
i

γi(µ)

)
G(n)(x1, x2, ..., xn;µ, gs) = 0, (2.35)

with

β(gs) = µ
∂gs
∂µ

and γi = µ
∂

∂µ
(lnZi) , (2.36)

where Zi is the renormalization constant for a coupling parameter or operator and G(n)

is an n-point Green’s function. gs is now a renormalized parameter also. The so-called

beta-function, β(gs), is a measure of how the renormalized, strong coupling varies with

the renormalization scale µ. However, it is important to bear in mind that since the

beta-function can only be calculated perturbatively, its prediction of physical behaviour

outside of the regime where gs � 1 should be taken cum grano salis.

2.2.2 The beta function & the running coupling

Given the form a general SU(Nc) Lagrangian (equation 2.33) with Nf massless flavours

transforming in the representation R, the two-loop21 beta-function of the theory can be

expressed as follows22 [41]

β(αs) =
∂αs
∂ lnαs

= −β0α
2
s − β1α

3
s +O(α4

s), (2.37)

with [44],

β0 =
1

2π

(
11

3
C2(G)− 4

3
NfC2(R)

dim(R)

dim(G)

)
(2.38)

and [44]

β1 =
1

8π2

(
34

3
[C2(G)]2 −

[
20

3
C2(G)C2(R) + 4 [C2(R)]2

]
Nf

dim(R)

dim(G)

)
, (2.39)

19Curtis G. Callan, Jr., 1942-.
20Kurt Symanzik, 1923-1983.
21Beyond two-loop the beta-function becomes renormalization scheme dependent.
22The beta-function may be expressed directly in terms of gs,

β(gs) = −β0
g3
s

(4π)2
− β1

g5
s

(4π)4
+O

(
g7
s

)
.

23



Figure 2.3: a) The beta function for β0 > 0 and β1 > 0 (top) with the running of the
coupling (bottom). b) The beta function for β0 > 0 and β1 < 0 (top) with the running
of the coupling (bottom) c) The beta function of β0 < 0 and β1 < 0 (top) with the
running of the coupling (bottom).

where αs ≡ g2
s

4π . Above, we denote the adjoint representation as G and its respective

quadratic Casimir23 as C2(G) ≡ Nc. The form of β tells us directly about the running

coupling. Figure 2.3 shows the three main profiles of β in SU(Nc) gauge theories and

their respective running couplings. In 2.3 a), we see β ≤ 0 ∀αs, which occurs due to

β0 > 0 and β1 > 0: it leads to profile of αs(µ) shared with the Standard Model QCD

gauge theory with fundamental quarks. Values of αs such that β(αs) = 0 indicate regions

where the running has ceased and are therefore called fixed-points. In 2.3 a), this occurs

at αs = 0 (a so-called trivial, and in this case ultraviolet(UV)-trivial fixed-point) and

translates into the coupling strength asymptotically vanishing at large µ. This is the

phenomenon of asymptotic freedom [30, 31], whereby the interaction strength between

quarks asymptotically vanishes in the UV, yielding a free, non-interacting theory. The

regime shown in figure 2.3 b) occurs when β0 > 0 but β1 < 0. This leads to there being

two fixed points; the trivial one leading to asymptotic freedom and another non-trivial

infrared (NTIR) fixed point at αs = α∗s. In the proximity of α∗s, the running of the

coupling’s gradient is sufficiently small that it is referred to as walking, i.e. a slow run.

As β0 → 0+, the value of α∗s is pushed closer to zero. Once the value of the coupling at

23Hendrik B. G. Casimir, 1909-2000.
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the fixed point is small enough to be used as a valid perturbative parameter, α∗s � 1,

we are said to be in the regime of a (Caswell24-)Banks25-Zaks26 fixed point [45, 46]. If

β0 < 0, then asymptotic freedom is lost as the whole beta-function becomes positive,

see figure 2.3 c). The remaining fixed-point is a trivial IR fixed-point, like that of QED.

The other key behaviour of the beta-functions displaying asymptotic freedom is the

enhancement of the coupling in the IR, which in the case of figure 2.3 a) leads to an

IR-pole. This can be interpreted as the interaction strength between quarks growing as

their separation increases. Such a behaviour is known as infrared slavery and leads to

the phenomenon of confinement [25,47], whereby fields charged under the SU(Nc) gauge

group cannot be isolated but form only ‘colour-neutral’, bound states called hadrons. Of

course, again, due to the perturbative nature of the beta-function, one cannot a priori

trust β above gs ∼ 1, but experiment signifies that this type of behaviour is correct

within the remit of QCD, see figure 2.4 [48].

Figure 2.4: Experimental verification of the asymptotically free nature of the strong
coupling parameter [48].

The scale at which these theories blow-up (i.e. the scale of the pole) is henceforth

referred to as ΛQCD and this sets the values of all non-perturbative parameters such as

the chiral condensate, 〈q̄q〉.

24William E. Caswell, 1947-2001.
25Tom Banks, 1949-.
26Alexander Zaks.
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Walking & the conformal window

We can also define another scale Λχ, defined by27 αχs = αs(Λχ), at which SSB of the chiral

symmetry occurs. It has been hypothesised that this scale of chiral symmetry breaking

occurs when the anomalous dimension of the theory reaches unity; we discuss the rôle of

the anomalous dimension below. If the running of the coupling αs(µ) passes through the

critical value αχs , chiral symmetry is spontaneously broken and the Nf massless quarks

gain a dynamical mass ∼ Λχ. As such, at scales less energetic than Λχ, these degrees

of freedom decouple leaving an ‘Nf = 0’, or pure glue, running into the deep IR with

a pole at a scale Λglue. This behaviour can give rise to profiles of αs(µ) which contain

intermediate ‘walking regimes’. In these walking scenarios, the running was destined

for a fixed point at α∗s > αχs but trips the critical coupling value before reaching it, see

figure 2.5. A third scale, Λ1, may also be defined as the scale generated by the one-loop

running, which roughly coincides with the transition between the UV-perturbative and

the IR-walking behaviours. Theories with intermediate walking regimes are purely non-

perturbative since in the framework of the perturbative beta-function, the NTIR fixed

point is always reached even if the coupling passes the critical value.

If the values of β0 and β1 are such that αs never reaches αχs , and a fixed point is

reached, α∗s < αχs ; this is the regime of the so-called conformal window [44,49–56]. The

running in the conformal window has such a shallow gradient that it effectively does not

change over large aeons of the energy-scale, hence the name.

It is important to keep in mind that these walking and conformal window behaviours

are merely hypothesised situations based on the perturbative beta-function to two-loops.

Of course, we cannot know for sure that all these features do in fact appear in the full

theory of any SU(Nc) model. It is purely a reasonable guess, given that there must

(presumably) exist a smooth transition between the QCD-like runnings with an IR-

pole and the (Caswell)-Banks-Zaks, fixed-point runnings as one changes either Nc or

Nf whilst keeping the other fixed. A cartoon for SU(3) with Nf fundamental quarks

is shown in figure 2.6 to show how we can move between these different hypothesised

phases for this theory. A Nf −Nc phase diagram for the same theory is shown in figure

27αχs =
(gχs )2

4π
.
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Figure 2.5: Plot of αs(µ) for the case α∗s > αχs . The critical coupling is met at the scale,
Λχ, triggering chiral symmetry breaking and generating a dynamic mass for the quarks
of order this scale. Below Λχ, the quarks decouple and the theory then runs into the IR
as ‘Nf = 0’. The scale Λ1 can be seen as the UV boundary of the walking regime and
it dictated by the scale generated by the one-loop running.

2.7.

2.2.3 Anomalous dimension

The Callan-Symanzik equation 2.35 also contains a second running function γi(µ) for

each n-point operator of the action. In order to understand its origin, we must look at

how those operators are affected by a rescaling of the coordinates xµ → λxµ, λ ∈ R.

Let’s assume the operator O(x) has classical mass dimension ∆, then under such a

rescaling we have

O(x)→ λ−∆O(λx). (2.40)

In the renormalization process of quantum field theories, we have seen that the bare La-

grangian operators, O, get recast as O = ZO(µ)Orenorm, where ZO(µ) is the dimensionful
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Figure 2.6: A cartoon showing the different phases of an SU(3) gauge theory with Nf

fundamental flavours.

Figure 2.7: The Nc − Nf phase space for the fundamental representation, adapted
from [44]. Region A is where asymptotic freedom is lost. Region B is the conformal
window. Region C is where walking regimes will occur since the beta function displays
an NTIR fixed point but chiral symmetry is broken. Region D has only one trivial UV
fixed point.
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renormalization constant of the operator. Defining28

ZO(µ) = µ−γO , (2.41)

and with the renormalized operator, Orenorm, taking the same scaling dimension as

the classical scaling dimension of O, i.e. ∆, the bare Lagrangian operator O now has

quantum scaling dimension ∆ − γO. Consequently, γO is known as the anomalous

dimension. If the renormalization constant of an operator vanishes then so does its

anomalous scaling dimension.

Starting at equation 2.41 and taking the natural logarithm of both sides

lnZO = γO lnµ, (2.42)

we arrive at,

γO =
∂

∂ lnµ
lnZO, (2.43)

in agreement with equation 2.36 defined as part of the Callan-Symanzik equation.

2.2.4 Representation of the matter fields

Up to this point, we have considered only matter fields transforming in the fundamental

representation of the SU(Nc) gauge group. Changing the representation of the matter

field affects the profile of the beta-function and hence the running of the coupling, see

equations 2.38 and 2.39. Of course, any SU(Nc) group has an infinite number of higher

dimensional representations which could be explored, however it has been shown that

there are no asymptotically free theories satisfying Nf ≥ 2 and Nc ≥ 10 other than

the fundamental, the adjoint and the two two-index (symmetric and antisymmetric)

representations29 [44]. In this light, for the purpose of this thesis, we shall only ever

28It is usual convention to have the mass dimension of the operator reduce in this fashion ∆→ ∆− γ
and its source to increase by the same value (d−∆)→ (d−∆)+γ so that the source-operator combination
in the Lagrangian is still of the correct dimension, d, of the field theory.

29The sign of the β0 coefficient of the beta-function indicates whether the theory is asymptotically free
or not — if β0 > 0 then asymptotic freedom is a property of the running, if β < 0 it is not. From equation
2.38, we can see that as the dimension of the representation is increased, the matter contribution (i.e. the
second term with the Nf coefficient) becomes more negative whereas the gauge term remains constant.
From this, it is clear that a higher dimensional representation will lose asymptotic freedom earlier than
a lower dimensional representation.
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consider these four representations. In a similar vein to the fundamental Nf − Nc

phase space in figure 2.7, the Nf −Nc phase space for all four of these representations

can be seen in figure 2.8. An important property of the phase-space for the adjoint

representation is that the transition values of Nf (in and out of the conformal window

and with and without asymptotic freedom) are independent of Nc. This is clear from

the structure of β0 and β1 whereby fixing R = G leaves the value of Nf which solves

β0/1(Nf ) = 0 independent of Nc. A table of the important, distinguishing parameters

of the different representations can be seen in table 2.1.

Figure 2.8: The Nc − Nf phase space for the fundamental representation (black), the
adjoint representation (green), the two-index symmetric representation (red) and the
two-index antisymmetric representation (blue), adapted from [44].

2.2.5 Large-Nc expansion

In SU(Nc) gauge theories exhibiting a confining infrared, the coupling gs is not a good

expansion parameter at small µ. This prevents the use of the powerful perturbative

tools, used to much success in the electroweak sector of the Standard Model, to try

to understand hadronic scale QCD. It was suggested by ’t Hooft [57], that a different

expansion parameter, namely 1/Nc as Nc → ∞, might be used in its place. In this

30



R dim(R) C2(R) Nmax
f

Fundamental Nc
N2
c−1

2Nc
11
2 Nc

Adjoint (G) N2
c − 1 Nc 23

4

2IS Nc(Nc+1)
2

(Nc−1)(Nc+2)
Nc

11
2

Nc
Nc+2

2IA Nc(Nc−1)
2

(Nc+1)(Nc−2)
Nc

11
2

Nc
Nc−2

Table 2.1: Distinguishing quantities of representations of SU(Nc) gauge theories with
asymptotic freedom valid for any Nc ≥ 2. dim(R) is the dimension of the representation,
C2(R) is the quadratic Casimir of the representation and Nmax

f is the maximum number
of flavours allowed before asymptotic freedom is lost at fixed Nc.

section, we follow [58].

Studying the one-loop beta function of such an SU(Nc) gauge theory with Nf fun-

damental flavours (see equation 2.38)

β(gs) =
∂gs
∂ lnµ

= −
(

11

3
Nc −

2

3
Nf

)
g3
s

(4π)2
, (2.44)

it is clear that the beta-function is ill-defined for large Nc → ∞. In order to have a

sensible expansion in N−1
c for large Nc, a new coupling is defined as λ ≡ g2

sNc, the

so-called ’t Hooft coupling. For λ to make sense as a coupling parameter as Nc → ∞,

one must also take the limit g2
s → 0 such that λ is fixed — this is the ’t Hooft limit. The

beta-function can now be recast as

∂λ

∂ lnµ
= −

(
11

3
− 2

3

Nf

Nc

)
λ3

(4π)2
, (2.45)

which is well-defined in the limit Nc → ∞. Moreover, in the limit Nc → ∞, the quark

contribution is suppressed.

In order to appreciate the expansion in large Nc, we introduce a double line nota-

tion. In this notation, gauge fields no longer carry one adjoint index but rather one

fundamental and one anti-fundamental index. The propagator of the gauge field is then

represented by a double line; one fundamental propagator and one anti-fundamental

propagator (examples of these diagrams can be see in figure 2.9). A schematic La-
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Figure 2.9: The double line notation for a) a gauge field propagator, b) a three point
gauge field vertex and c) a matter field interacting with a gauge field.

grangian for the theory can then be crudely written as follows;

L = ∂µΦi
j∂µΦj

i + gsΦ
i
jΦ

j
kΦ

k
i + g2

sΦ
i
jΦ

j
kΦ

k
l Φ

l
i + iΨ̄i/∂Ψi + gsΨ̄

iΦi
jΨ

i, (2.46)

where Φi
j represents a field transforming in the adjoint representation (representing the

gauge field and now carrying one fundamental and one anti-fundamental index) and Ψi

represents a fundamental degree of freedom (representing the matter fields).

The effective Lagrangian 2.46, under the three transformations, λ = g2
sNc, Φ̃i

j =√
λ
Nc

Φi
j and Ψ̃i =

√
λ
Nc

Ψi yields

L =
Nc

λ

(
∂µΦ̃i

j∂µΦ̃j
i + Φ̃i

jΦ̃
j
kΦ̃

k
i + Φ̃i

jΦ̃
j
kΦ̃

k
l Φ̃

l
i + i ˜̄Ψi/∂Ψ̃i + ˜̄ΨiΦ̃i

jΨ̃
j
)
. (2.47)

From 2.47, it is easy to see that for a given diagram, every propagator contributes a

factor of λ/Nc and each vertex yields a factor of Nc/λ. If every loop also contributes a

factor of Nc to run over the different colours, each diagram has a coefficient

C ≡
(
λ

Nc

)E (Nc

λ

)V
NL
c = NE−V+L

c λV−E , (2.48)

where E is the number of propagators (or edges), V the number of vertices and L the

number of loops. The coefficient NE−V+L
c is equivalent to N2−2g

c where 2 − 2g is the

Euler characteristic [59] of the diagram’s topology having genus (i.e. number of handles)

g. The coefficient, C, can be recast as

N2
c λ

V−E

N2g
c

, (2.49)
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which indicates that the planar, g = 0, diagrams dominate over higher genera in the

Nc →∞ limit — see figure 2.10. In summary, to understand a QCD-like theory at large

Nc, we need only to perform an expansion in the genus of the double-line diagram’s

topology; a calculation over all g = 0 diagrams yielding a first-order result and so on.

Figure 2.10: The lower genus diagrams in the double line notation dominate over higher
genera. All diagrams of the same genus are proportional to the same power of Nc and so,
to leading order, only the planar g = 0 diagrams, proportional to N2

c need be considered
in the Nc →∞ limit.

2.3 String theory

Throughout the late 1950s and early 1960s, experimental evidence was surfacing that

indicated a strong linear relationship between the rotational angular momentum of what

we now know as hadrons and their squared masses; L ∼ m2. No matter what the hadron,

the linear paths the excited states filled out on the (L,m2)-plane were all, remarkably,

parallel. Such paths are referred to as Regge trajectories30 [60] and the gradient referred

to as the Regge slope, α′, giving L = α′m2. This linear behaviour is most unexpected

from the viewpoint of particles as small ‘billiard balls’. Spinning up a billiard ball to

30Named after Tullio Eugenio Regge (1931-2014) but first hypothesised by Geoffrey Chew (1924-) and
Steven C. Frautschi (1933-).
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greater and greater values of angular velocity will in turn increase its energy, up to a

point31, as L ∼ m: this is true even on the atomic scale. It was known that these hadrons

were necessarily composite, for one cannot spin up a point-particle32, but the structure

was still a mystery. One answer was that the bosonic hadron states (the mesons, as we

now refer to them) were formed of a quark and an antiquark point particles connected by

a string. A string is easily spun and, furthermore, a classical rotating string reproduces

the L ∼ m2 behaviour of the experimental Regge trajectories.

The models proposed within the new field of string theory were plagued by systemic

issues. The theories always seemed to predict a tachyon in the particle spectrum as

well as a massless spin-2 particle that related to nothing seen in nature. Furthermore,

these theories had to live in 26 dimensions and only accounted for the bosonic part of

the spectrum. After the emergence of QCD in the 1970s, string theory began to lose

favour as it became clear that QCD was able to satisfactorily explain the strong nuclear

interaction at large energy scales.

Despite the loss of interest in string theories as a description for the strong nuclear

interaction, they were later revived when it became apparent that the ineradicable spin-

2 particle could be justified as a graviton. This ‘discovery’ of a graviton allowed the

physics community to rationalise that such string theories might provide a candidate

to reconciling the two pillars of modern physics, to wit: Quantum Field Theory (QFT)

and General Relativity (GR). This section contains a brief introduction to string theory

leading on to the following section on D-branes, higher dimensional string-like objects

that are fundamental to the AdS/CFT correspondence and other related holographic

models. For a more in depth discussion on the fundamentals of string theory (and

the low energy supergravity limit), we recommend [61–66] whence the following brief

introduction is adapted.

31Until the centrifugal forces on the ball become too large and it rips apart.
32The reasoning as to why no higher excited states of the electron are found, for example.
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2.3.1 Bosonic string action

The underlying principle to string theory is to consider extended one-dimensional ‘strings’

of length33 ls =
√
α′ as the fundamental objects rather than the point-like (zero-

dimensional) ‘particles’ that are usually assumed. Just as a point-particle will sweep out

a worldline as it moves, a one-dimensional string sweeps out a two-dimensional world-

sheet that can be parameterised by two coordinates; τ , the proper time, and σ, the

spatial range of the string, which, without loss of generality, we set to be σ ∈ [0, π],

for later convenience. The action of such a string is given by the area of the world-

sheet (the worldsheet being denoted by Ω) swept out by the string, with the simplest

parameterisation of such being the so-called Nambu-Goto action,

SNG = −T
∫

Ω
dτdσ

√
−det

(
GMN

∂XM

∂σa
∂XN

∂σb

)
, (2.50)

where T is the string tension34, XM are the functions describing the embedding of

the worldsheet, GMN is metric of the d-dimensional target spacetime, the spacetime in

which the worldsheet sits, and σa = (τ, σ). Instead of a two-dimensional worldsheet

embedded in a higher-dimensional target space, one can just as easily interpret 2.50 as

a two-dimensional field theory with d bosonic fields XM (τ, σ). It is the excitations of

these fields which are to be understood as the ‘particle’ spectrum of the string theory.

The Nambu-Goto action in its present, square-root form gives rise to a rather la-

borious undertaking to quantise the system. An alternative, equivalent action is the

Polyakov35 action,

SP = −T
2

∫
Ω
dτdσ

√
dethabh

abGMN
∂XM

∂σa
∂XN

∂σb
, (2.51)

where we have now eliminated the uncooperative square root at the expense of an extra

auxiliary field, hab. The equations of motion of hab obtained by variation of the action

33The string length is naturally proportional to the tension carried in the string. This tension can be
cast in terms of the Regge slope parameter α′, which pertains to how the angular momentum and mass
of a meson are related as the particle is spun: the extension of the string between the quarks, in the
string theory picture.

34The string tension (mass per unit length) is inversely proportional to the string length squared,
given as T−1 = 2πl2s .

35Alexander M. Polyakov, 1945-.
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2.51 acts as constraints36 to recover the Nambu-Goto action — this can be seen explicitly

by substituting the solutions to the equations of motion of hab into the Polyakov action

to return to the form of the action in 2.50.

The Polyakov action 2.51 exhibits some important symmetries:

I) Poincaré invariance of the target spacetime covered by the metric GMN ,

XM → X ′M = ΛMN X
N + cM , (2.52)

where ΛMN are the Lorentz transformations of the target spacetime and cM are the trans-

lation transformations of the target spacetime.

II) Diffeomorphism invariance. The Polyakov action remains invariant under a repa-

rameterisation of the worldsheet coordinates,

(τ, σ)→ (τ ′, σ′) = (f(τ), f(σ)). (2.53)

III) Weyl transformation invariance. The Polyakov action is furthermore invariant

under a local rescaling of the worldsheet metric,

hab → h′ab = eω(τ,σ)hab. (2.54)

These symmetries allow us to choose a particular gauge in which the worldsheet metric

hab is equivalent to the two-dimensional Minkowski metric, ηab = diag(−1, 1). As such,

the Polyakov action can be recast as

S̃P = −T
2

∫
Ω
dτdσ

(
ẊMẊM −X ′MX ′M

)
, (2.55)

where Ẋ refers to a derivative with respect to τ , and X ′ is likewise the derivative with

respect to σ. It is evident from this form of the string action that the equation of motion

36These constraints are known as the Virasoro constraints and amount to the restrictions stemming
from a vanishing stress-energy tensor Tab = 0, an equivalence of requiring the variation of the action
under hab to vanish.
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for the fields XM (τ, σ) is given by a relativistic wave equation,

ẌM = X ′′M , (2.56)

with further constraint from a variational surface term yielding a supplementary bound-

ary condition,

X ′M∆XM

∣∣π
0

= 0. (2.57)

This boundary condition leads to having one of two types of string; a closed string,

whereby XM (τ, 0) = XM (τ, π) and X ′M (τ, 0) = X ′M (τ, π), or an open string with

loose ends, which further imposes that either X ′M vanishes at σ = 0, π (a Neumann37

boundary condition), or that ∆XM = 0, equivalent to fixing the spacetime position of

the string ends (a Dirichlet38 boundary condition).

If the two ends of the open string satisfy Neumann boundary conditions, it can be

shown that the total momentum of the string is conserved since the momentum at the

ends of the string vanishes. Conversely, for a string with two Dirichlet-type ends, by

fixing the location of the ends, we immediately break the translational invariance in

the target-space dimensions along which the string end is fixed, resulting in no total

momentum conservation in these directions. Therefore, we must postulate that the

Dirichlet ends of strings must attach to hypersurfaces, known as Dirichlet- (or D-)

branes, which carry the momentum away. As we shall see, these D-branes play an

important rôle in holographic models.

Mode expansions

Classical solutions to the equation of motion, equation 2.56, are easily found to be

a Fourier39 series expansion. For the open string, we have the solution restricted by

Neumann boundary conditions given by

XM
(N)(τ, σ) = xM + lsτp

M + il2s
∑
n6=0

αMn
n
einτ cos(mσ), (N) (2.58)

37Carl Gottfried Neumann, 1832-1925.
38Johann P. G. L. Dirichlet, 1805-1859.
39Jean-Baptiste Joseph Fourier, 1768-1830.
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where xM is the centre-of-mass position of the string, pM the total, enclosed momen-

tum and αMn are the Fourier modes. The solution constrained by Dirichlet boundary

conditions yields

XM
(D)(τ, σ) =XM (τ, 0) +

1

π

(
XM (τ, π)−XM (τ, 0)

)
σ (2.59)

+ ls
∑
n 6=0

αMn
n
e−inτ sin(nσ). (D)

In the case of the closed string, there are two solutions corresponding to the left-

and right-moving modes. In so-called light-cone coordinates, σ± = τ ± σ, these are

XM
(L)(σ+) =

1

2
xM +

l2s
2
pMσ+ +

ils
2

∑
n 6=0

α̃Mn
n
e−inσ+ , (L) (2.60)

and

XM
(R)(σ−) =

1

2
xM +

l2s
2
pMσ− +

ils
2

∑
n 6=0

αMn
n
e−inσ− . (R) (2.61)

Here, pM is the centre-of-mass momentum and we distinguish the Fourier modes of the

left and right movers as α̃n and αn, respectively.

Quantisation

Quantisation leads us to promoting XM to an operator in the corresponding Hilbert40

space, equivalent to promoting xM , pM and αMn to operators. This gives the algebra

[xM , pN ] = iηMN , (2.62)

[αMm , α
N
n ] = [α̃Mm , α̃

N
n ] = mδm+nη

MN , (2.63)

[αMm , α̃
N
n ] = 0. (2.64)

The α-operators act like the raising and lowering operators of the quantised harmonic

oscillator, moving between higher and lower excited states. For n > 0,
(
αMn
)†
/
√
n =

αM−n/
√
n acts as the raising operator and αMn /

√
n acts as the lowering operator. Negative

40David hilbert, 1862-1943.
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norm states are removed by setting a normal ordering constant to be unity and ensuring

that the number of spacetime dimensions is less than or equal to 26. The masses of the

excited states can then be derived using light cone quantisation [61] as,

M2 =
1

l2s
(N − 1), (open string) (2.65)

and

M2 =
2

l2s
(N − 1), (closed string) (2.66)

where N is the eigenvalue of the operator N̂ =
∑∞

n=1 :αi−nα̃
i
n : (with i = 0, 1, ..., d− 2 =

24), which acts like the number operator of the quantum harmonic oscillator, counting

the number of modes41.

From this, it is clear that the lowest lying state (N = 0), in either the open or closed

sector, is tachyonic and therefore causing the vacuum, |0〉, to be unstable. In the open

sector, the first excited state is a massless vector αi−1|0〉 and this will be of importance

when we discuss D-branes and the AdS/CFT correspondence.

The closed sector’s first excitation, αi−1α̃
j
−1|0〉, is a set of (d − 2)2 = 576 states; a

symmetric traceless part, the spin-2 graviton GMN , a massless trace term, the dilaton

ϕ = αi−1α̃
i
−1|0〉, and an anti-symmetric part BMN = −BNM .

Knowing the field content as described above, we can rewrite a general worldsheet

action with at most two worldsheet derivatives (∂a) as,

S = −T
2

∫
Ω
dτdσ

√
dethab

{(
habGMN + εabBMN

) ∂XM

∂σa
∂XN

∂σb
− α′Rϕ

}
, (2.67)

where εab is the two-dimensional, totally antisymmetric tensor and R is the 2D Ricci

scalar of the geometry. The Polyakov action is recovered under BMN = ϕ = 0.

The final term,

1

4π

∫
dτdσ

√
dethabR = χ (2.68)

is a topological invariant42 in 2D for constant ϕ, measuring the Euler characteristic of

41Since there is no privileged position on the string, the number of left- and right-moving modes are
imposed to be the same, N = NL = NR.

42cf. Gauss-Bonnet theorem.
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the worldsheet.

2.3.2 Superstring theory

The bosonic string theory action has two major drawbacks; the lowest lying state is

tachyonic (leaving the theory unstable) and it does not account for fermionic degrees

of freedom, a necessity if string theory is to be a candidate for a UV-complete theory

of nature. Tachyonic modes will be discussed later as they reoccur in the superstring

formalism. Fermionic modes can be incorporated into the string framework by naturally

extending the Polyakov action, gauged to set hab = ηab as before, by an extra term

resemblant of a free Dirac action,

S = −T
2

∫
dτdσηab

(
∂XM

∂σa
∂XM

∂σb
+ iΨ̄Mρa

∂ΨM

∂σb

)
, (2.69)

where now M = 0, ..., 9.

Here the fermionic fields, ΨM (τ, σ), are two-component spinors transforming as a

vector under the Lorentz transformations of the target spacetime and ρa are the two-

dimensional equivalents of the 4d gamma matrices of the Standard Model. Assuming

the fermionic fields to be two component and Majorana (both components real), Ψ =

(ψM+ , ψM− )T , we can transform the fermionic part of the action 2.69 with σ± = τ ± σ as

Sf = − iT
2

∫
dσ+dσ−J

(
ψM+

∂ψM+
∂σ+

+ ψM−
∂ψM−
∂σ−

)
, (2.70)

with J ≡ 1
2 as the Jacobian of the transformation. As such, the equation of motion for

the real components, ψ±, are once again those describing relativistic wave equations,

this time one left-moving wave and one right moving wave,

∂ψM−
∂σ+

=
∂ψM+
∂σ−

= 0. (2.71)

Once again, the variational methods used to derive 2.71 enforce boundary conditions

required to set surface terms to zero,

ψM− ∆ψ−M
∣∣π
0

= ψM+ ∆ψ+M

∣∣π
0
. (2.72)
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Open superstrings - Type I

If we are to have open superstrings, then we can make the surface term vanish by

imposing

ψM+ = ±ψM− (2.73)

at the string ends σ = 0, π. Fixing the σ = 0 end (without loss of generality) to take

the positive sign leaves us with a choice of sign for the other end, σ = π.

The so-called Ramond43- (R-) sector chooses the positive sign,

ψM+ (π) = +ψM− (π), (R) (2.74)

giving the mode expansion of ψM± as,

ψM± =
∑
n∈Z

dMn e
−inσ± . (R) (2.75)

Here, dMn are Fourier modes, which will become real, fermionic operators after quanti-

sation,
(
dMn
)†

= dM−n. The masses of R open superstring states are then found to be

α′M2 =

∞∑
n=1

αi−nα
i
n +

∞∑
n=1

ndi−rd
i
r, i = 1, .., 8. (2.76)

The remaining Neveu44-Schwarz45- (NS-) sector chooses the negative sign,

ψM+ (π) = −ψM− (π), (NS) (2.77)

giving the mode expansion of ψM± as,

ψM± =
∑

r∈Z+ 1
2

bMr e
−irσ± , (NS) (2.78)

where bMr are Fourier modes, which will become real, fermionic operators after quanti-

43Pierre Ramond, 1943-.
44André Neveu, 1943-.
45John H. Schwarz, 1941-.
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sation, but with a half-odd-integer index to satisfy the boundary condition. The masses

of NS open superstring states are then found to be

α′M2 =

∞∑
n=1

αi−nα
i
n +

∞∑
r= 1

2

rbi−rb
i
r −

1

2
, i = 1, .., 8. (2.79)

It is important to note that vacuum of the NS open superstring is tachyonic with M2 =

−1/2α′. The seemingly innocuous choice of sign has a significant impact on the states

after quantisation. The R-Sector (+ sign) leads to spacetime fermions (spinors) while

the NS-Sector (- sign) leads to spacetime bosons.

Closed superstrings

The construction of closed superstrings is again possible. In this scenario, the surface

term becomes a periodicity condition on the superstring,

ψM± (τ, σ) = ±ψM± (τ, σ + π). (2.80)

Choosing the positive sign describes periodic boundary conditions (again known as Ra-

mond boundary conditions) and the negative sign describes an antiperiodic boundary

condition (Neveu-Schwarz condition). Of course, we can impose either condition on the

left- and right-moving wave solutions independently, generating four possible closed su-

perstring states intuitively labelled (R, R), (NS, NS), (NS, R) and (R, NS) describing

the boundary condition on the (left, right)-modes respectively, see table 2.2

Mode Expansion Sector

Right-moving solutions: ψM− (σ−)∑
n∈Z

dMn e
−inσ− R∑

r∈Z+ 1
2

bMr e
−irσ− NS

Left-moving solutions: ψM+ (σ+)∑
n∈Z

d̃Mn e
−inσ+ R∑

r∈Z+ 1
2

b̃Mr e
−irσ+ NS

Table 2.2: Mode expansions for the left- and right-moving closed string solutions.
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After quantisation, the (NS, NS) and (R, R) states are bosonic string states whereas

the mixed (NS, R) and (R, NS) states are fermionic.

Gliozzi-Scherk-Olive projection & type IIA/B

In order to remove the tachyonic degrees of freedom and ensure an equal number of

bosonic and fermionic states (to satisfy having a manifest supersymmetry), we introduce

a G-Parity46 operator in the NS-sector,

GNS = (−1)F+1, (2.81)

where F =
∑∞

r= 1
2
bi−rb

j
r counts the number of br oscillators. The so-called Gliozzi47-

Scherk48-Olive49 (GSO) projection [67] removes the tachyonic mode by ensuring

GNS |state〉 = +|state〉.

Since the ground state has no b-oscillators, F = 0, leading to a negative G-parity state

and is hence projected out of the spectrum. In the R-Sector, we define a similar operator,

GR = ρ11(−1)F , (2.82)

where F is now given by
∑∞

n=1 d
i
−nd

j
n, counting the number of d-oscillators, and ρ11 is

the 10-dimensional analogue of the γ5 Dirac matrix. The massless string states in the

R-sector can be said to have a definite chirality, if they satisfy

ρ11|state〉 = ±|state〉. (2.83)

Hence, by projecting out states of a certain G-parity in the R-sector, one imposes a

chirality projection onto the spinors. The freedom in choice over the chirality of the

R-sector fermionic modes leads to two different closed string theories; type IIA where

46The name is a remnant from when string theory was being proposed as a formalism for understanding
hadronic physics.

47Ferdinando Gliozzi, 1940-.
48Joël Scherk, 1946-1980.
49David Ian Olive, 1937-2012.
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the chiralities of the left- and right-movers are different and type IIB where they are the

same.

Naturally, the (NS, NS)-type closed string is the same for types IIA and IIB; con-

taining the graviton GMN , dilaton ϕ and the antisymmetric Kalb-Ramond tensor field

BMN . The latter two-form is the string generalisation to the one-form electromagnetic

potential Aµ and as such strings50 can be seen as the source of BMN , just as charged

point-particles are the source of Aµ in electromagnetism. The (R, R)-sector differs be-

tween types IIA and IIB, as expected. In type IIB, we find51 a scalar C, and two

antisymmetric tensor fields CMN and CMNPQ, whereas in type IIA we get a vector CM

and an antisymmetric tensor field CMNP at the massless level. The mixed (NS, R)- and

(R, NS)-sectors contain the fermionic superpartners to the bosonic sectors.

2.3.3 Type IIB low-energy action

String coupling and the dilaton

In an interacting type II theory with coupling gσ, one can calculate perturbatively the

string scattering amplitudes via the formula [68]

String Amplitude =
∑

topologies

g−χσ

∫
DXMDhabe−S[X]

∏
i

Vi, (2.84)

where χ = 2− 2g is the Euler52 characteristic [59] of the worldsheet and g the genus - a

value counting the ‘holes’ in the worldsheet. Vi are the relevant vertex operators of the

scattering.

Now assuming the dilaton field, ϕ, acquires a non-zero vacuum expectation value

(vev), ϕ → ϕ + 〈ϕ〉, then the string Boltzmann53 factor e−S changes by a constant

factor of e−χ〈ϕ〉 (see equation 2.68). It is then natural to associate the string coupling

50These fundamental strings are known as F1-strings in the literature [64].
51The notation for the type II fields is sometimes denoted by C(r) for an r-form; for example, the

Kalb-Ramond tensor is often denoted as B(2).
52Leonhard Euler, 1707-1783.
53Ludwig Eduard Boltzmann, 1844-1906.
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constant, gσ, to the dilaton vev as

gσ = e〈ϕ〉, (2.85)

by direct comparison with equation 2.84. As such, the string coupling isn’t an indepen-

dent parameter of the theory; it is determined dynamically by the vev of the dilaton.

Supergravity limit

Up to this point, we have only considered the massless modes of the string spectrum.

Since the masses of the higher excited modes are proportional to (α′)−
1
2 , all but the

massless modes are irrelevant in the low energy limit α′ = l2s → 0 — an effective

zooming-out, seeing the strings as point-like. We are then able to do perturbative

expansions about α′, the leading order of this expansion is the limit of supergravity [65].

Type IIB supergravity action

We now turn our focus away from the worldsheet action and write down a target-space

action, which encodes all of the same information and degrees of freedom contained in

the above analysis. The bosonic part of the type IIB supergravity action can then be

written as [65,66]

SIIB =
1

27π7α′4

[∫
d10X

√
−detGMN

{
e−2ϕ

(
R+ 4∂Mϕ∂

Mϕ− 1

2
|H(3)|2

)
−1

2
|F(1)|2 −

1

2
|F̃(3)|2 −

1

4
|F̃(5)|2

}
− 1

2

∫
C(4) ∧H(3) ∧ F(3),

]
(2.86)

where we define

|F(r)|2 =
1

r!
GM1N1 ...GMrNrF

M1...Mr F̄N1...Nr
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and F̄ denoting the complex conjugate of F . We also define the field strength tensors

of the RR-forms [65,66]

F(p) = dC(p−1) F̃(3) = F(3) − CH(3)

F̃(5) = F(5) −
1

2
C(2) ∧H(3) +

1

2
B(2) ∧ F(3), (2.87)

and we define H(3) = dB(2) with d the exterior derivative.

2.4 D-branes

In this section, we briefly outline the importance of D-branes, the higher dimensional

string-like objects that we earlier postulated to exist in the case of open strings with

Dirichlet boundary conditions on their endpoints. For more discussion on D-branes we

recommend [69].

T-duality and D-branes

As previously mentioned, D-branes play an important rôle in string theory. Such hy-

persurfaces are necessitated when open strings are chosen to have Dirichlet endpoints

— see figure 2.11. One might argue, nonetheless, that if such Dirichlet endpoints in the

open sector aren’t compelled to exist then D-branes are nothing more than a hypothet-

ical excrescence of the theory. This argument is however flawed when one looks at the

so-called T-dual [70, 71] of a Neumann open string.

T-Duality54 is a symmetry arising from the closed string sector under compacti-

fication of one spacetime dimension. For example, take a closed superstring theory

compactified on a circle of radius R in the ninth spatial direction. Since the string

points x9 and x9 + 2πR should be identical, it follows that the translational operators

should be identical e−ip9x9
= e−ip9(x9+2πR) and as such the momentum is quantised in

the compactified direction;

p9 =
K

R
, K ∈ Z. (2.88)

54Or target spacetime duality.
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Figure 2.11: D-branes as hyperplanes over which Dirichlet strings can move freely,
spanning the dimensions (or a subset thereof) of the target spacetime along which the
string is Neumann. xD are the dimensions in the target spacetime where the shown
string ends are fixed. String A shows an open string with two Dirichlet ends stretched
between two different D-branes, string B shows a string attached at both ends on the
same brane and string C shows a string with one Dirichlet end (fixed to the D-brane)
and one free-to-move Neumann end.

K is known as the Kaluza55-Klein56 excitation quantum number. Since a closed string

can also be wound around the compactified dimension57, x9 may not be single-valued,

instead changing by 2πWR, where W ∈ Z is the winding number. The masses of the

string states are then amended to

M̃2 = M2 +
K2

R2
+W 2 R2

(α′)2
. (2.89)

T-Duality is the symmetry pertaining to the now-evident invariance under the simulta-

neous transformations

K ←→W and R←→ α′

R
, (2.90)

i.e. the complete spectrum of the theory is unaware of a change in the radius of the

compactified direction, R → α′/R, up to a relabelling of K and W . When R2 � α′,

string effects are small and classical geometrical reasoning can be used, whereas in its

55Theodor F. E. Kaluza, 1885-1954.
56Oskar B. Klein, 1894-1977.
57Winding about a compact dimension is something which a point-particle cannot do and so it is a

pure string effect unlike the Kaluza-Klein excitations.
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T-dual,
(
α′

R

)2
� α′ and so string effects dominate. So T-dualising a theory can move

one’s system between two different regimes of validity; the classical and the stringy

quantum.

Naturally, the idea of T-Duality related to the compactification R1,9 → R1,8×S1 can

be extended to more complicated compactifications [72]. One consequence of T-Duality

is that the chirality of the left-moving modes are flipped whereas the right-movers are

unaffected: T-dualising a type II superstring theory then has the realisation of morphing

type IIA theories into type IIB and vice-versa.

From equation 2.89 it can be seen that, as the radius of compactification becomes

smaller and smaller, the Kaluza-Klein modes get heavier and become more costly to

excite in opposition to the ever lighter winding modes. As R→ 0, we lose one dimension

but it re-appears in the effective form of a continuum of winding modes (since they

become ever easier to excite as R diminishes).

Considering a Neumann open string sector, no such winding number is present, since

such a string can just unfurl. Therefore, as R→ 0, Neumann open strings really do only

see d− 1 dimensions — there is no continuum of winding modes to compensate. Since

all interacting open string sectors contain closed strings58 and closed strings can wind

around the compactified dimension, we have a theory whereby open strings only see d−1

dimensions but the closed sector sees the full d dimensions. This threatens T-duality

since the open strings ‘know’ if they are living in a theory with a large compactified

circle or small, depending on the number of dimensions open to them. Such a quandary

is solved when we recognise that only the endpoints of an open string are distinguishable

from a point on a closed string. In this case, only the endpoints are restricted to move

in d − 1 dimensions allowing the rest of the string full knowledge of all d dimensions.

This implies that the endpoints must have a Dirichlet boundary condition in the one

dimension in which their movement is fixed. So an open string with Neumann boundary

conditions in all directions at large-R compactification becomes an open string with

Neumann boundary conditions in all but one direction in the T-Dual (the small circle

R → 0) and vice-versa. Thus we must postulate the existence of a D-brane to which

58An interacting open string can trivially become a closed string if its two endpoints interact and join!
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the Dirichlet direction affixes. Thus T-Duality is an exact symmetry of the open sector

too, equivalent of exchanging Neumann←→Dirichlet endpoints along the T-dualised

directions. D-branes are therefore necessary objects for a fully-realised string theory.

We classify D-branes by their spatial dimension: a Dp-brane extends in p spatial

dimensions, making it a p+ 1 dimensional object. E.g. a D0-brane is therefore a point-

particle, a D1-brane is itself a string, a D2-brane a membrane and so on.

2.4.1 The Dirac-Born-Infeld action

We wish now to construct an equivalent worldbrane action for a Dp-brane. In analogy

to the Nambu-Goto worldsheet action of a string, we may write the bosonic part of the

Dp-action as

SDp = − 1

(2π
√
α′)p
√
α′

∫
dp+1ξ e−ϕ

√
−det (Gab + Bab), (2.91)

where

Gab = GMN
∂XM

∂σa
∂XN

∂σb
and Bab = BMN

∂XM

∂σa
∂XN

∂σb
(2.92)

are the so-called pullbacks of the metric and the Kalb-Ramond antisymmetric tensor,

and ξa are the p+1 coordinates of the worldvolume. Recall that in the open superstring

NS-sector, after the removal of the tachyonic ground state by GSO projection, the lowest

lying state is a massless vector bi− 1
2

|0〉. The components of this state longitudinal to a

connected Dp-brane lie within the brane itself and so one can define a U(1) vector field

AI with I = 1, ..., p − 1 that ‘lives’ in the brane. The remaining degrees of freedom

transform as scalars on the D-brane world volume but naturally act as a vector field in

the transverse directions. It is necessary to account for this vector field in the action

of the D-brane. Appending this term, we arrive at the so-called Dirac-Born59-Infeld60

(DBI) action,

SDBI = − 1

(2π
√
α′)p
√
α′

∫
dp+1ξ e−ϕ

√
−det (Gab + Bab + 2πα′Fab), (2.93)

59Max Born, 1882-1970.
60Leopold Infeld, 1898-1968.
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where Fab is the associated field strength tensor of the additional U(1) gauge field. In

the limit of a constant dilaton, e−ϕ = g−1
σ , we see that the D-branes are non-perturbative

objects since their underlying Lagrangian is proportional to the inverse coupling. An

expansion about small gσ then is unavailable to us to probe the dynamics of these objects

in string theory.

In flat space with BMN = 0, we can expand the action as

SDBI ∼
1

gσ

∫
dp+1ξ FabF

ab, (2.94)

where we have used det(X) = etr ln(1+X) ∼ 1− 1
2tr(X2) for an antisymmetric matrix X.

The DBI action now takes on a familiar form — that of a U(1) pure gauge (Yang-Mills)

theory with g2
s ∝ gσ,

g2
s =

(
2πα′

)p−2
(√

α′
)1−p

gσ, (2.95)

hinting towards the notion of a gauge/gravity duality.

Chan-Paton degrees of freedom

If we consider N D-branes stacked one on top of another, then there is no way to

distinguish a particular brane on which an open string ends. To account for this, we

introduce non-dynamical degrees of freedom called Chan-Paton factors λij , which label

a string stretched between brane i and brane j. The N ×N matrix λ of elements of λij

turns out to be an element of the Lie algebra U(N). A string state (or wavefunction)

can then be decomposed in a basis of the Chan-Paton factors,

|k〉 =
N∑

i,j=1

|k, ij〉λij . (2.96)

2.5 Gauge/Gravity duality

In this section, we will introduce the Anti-de-Sitter/Conformal Field Theory (AdS/CFT)

correspondence — a duality which relates a quantum field theory (QFT) on flat space-
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time to a string theory61, thus uniting the previous sections’ discussions. This section

is based on the texts [64,73–78].

2.5.1 AdS/CFT correspondence: Motivation

The core of the AdS/CFT correspondence is the double interpretation of a stack of Nc

coincident D3-branes in type IIB superstring theory. The interpretation, which is the

most appropriate, depends upon the value of the string coupling constant, gσ. Since

both perspectives must describe the same theory, we conjecture that the interpretations

in the different limiting cases should be equivalent.

A useful analogy

A useful analogy to have in mind when we discuss the two interpretations of the D3-

brane stack is as follows. Consider the system of a heavy charged particle, a proton for

example, being orbited by an electron. There are two ways we can look at the interaction

between the proton and the electron:

1. By summing over all the appropriate Feynman62 diagrams for the proton-electron

interaction, or

2. By ignoring the presence of the proton altogether and just studying the motion

of the electron in a non-trivial electric field background (one which would be

generated by a proton).

We use similar reasoning below to obtain a dual-interpretation of the D3-brane stack.

Interpretation I

Consider D-branes as physical, dynamical entities sitting in the 10d-Minkowski space-

time and on which open strings may end.

We have seen that the low-energy (α′ → 0) Dp-brane action 2.94 has a tension

proportional to g−1
σ . Therefore, for Nc D3-branes, the total tension, being just the

61Such a duality has been a great cause for excitement since it relates a string theory, a strong
candidate for quantum gravity, to a QFT on flat spacetime, i.e. a theory with no gravitational degrees
of freedom.

62Richard P. Feynman, 1918-1988.
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sum of the individual tensions, implies the brane stress-energy tensor is proportional to

g−1
σ Nc. This additional contribution to the total stress-energy tensor has the effect of

warping the original flat geometry into which the D3-branes were placed — the process

of so-called backreaction. The associated geometry can then be found as a solution to

the Einstein63 equations,

RMN − 1

2
gMNR = 8πκ10T

MN
brane, (2.97)

where TMN
brane is the stress-energy tensor taking into account the D-brane tension, and

the ten-dimensional Newton’s constant, κ10, is proportional to g2
σ [73]. Overall, the

right-hand side of equation 2.97 is proportional to gσNc ≡ λ.

The first interpretation of the stack of D3-branes is described in the limit λ → 0,

whereby the stack has an infinitesimal backreaction. In this limit, we can subdivide the

total action in this interpretation as follows;

S = Sbrane + Sbulk + Sint, (2.98)

where Sbrane is the action pertaining to the D3-brane stack, Sbulk is the action of the

closed strings in the 10d Minkowski spacetime or bulk, and Sint describes the interaction

terms between the brane excitations and the closed strings in the bulk.

We have seen from equation 2.94 that the action of each D3-brane in the limit

α′ → 0 takes on the form of a U(1) Yang-Mills theory. It then follows that the action,

Sbrane, of a stack of Nc coincident branes has the same form as an SU(Nc) Yang-Mills

theory64. In fact, the action is equivalent to that of an N = 4 supersymmetric Yang-

Mills (SYM) theory with vector multiplet consisting of the SU(Nc) gauge fields AI ,

four Weyl fermions, λ1,..,4, and six scalars, Φ1,...,6, all in the adjoint of SU(Nc). The

six scalars can be seen to parameterise fluctuations in the D3-brane stack in the six

transverse directions. The beta-function of N = 4 SYM can be shown to vanish at

63Albert Einstein, 1879-1955.
64In fact, it directly follows that it takes the form of a U(Nc) Yang-Mills theory when examining

the Chan-Paton degrees of freedom. However one U(1)⊂U(Nc) pertains to the symmetry associated to
motion of the centre-of-mass of the stack and decouples, leaving us with an SU(Nc) symmetry on the
brane itself.
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all orders of perturbation theory and is thus conformal. The theory also has an SO(6),

global R-Symmetry, an automorphism symmetry of the supersymmetry generators. The

conformal symmetry of the SYM theory, SO(2,4), is identical to the isometry of AdS5

spacetime.

Sbulk contains the closed string states and is given by the type IIB supergravity

action 2.86. The interaction term Sint vanishes in the low energy limit [78], in effect

decoupling the brane action from the bulk action and separating the system into two

distinct parts:

(SU(Nc) N = 4 SYM Gauge Theory) ⊕ (10d type IIB Supergravity) (2.99)

This interpretation is similar to the Feynman diagram approach to the electron-

proton system of the aforementioned analogy. We are looking at open string excitations

(fluctuations) of the D3-brane stack and summing over all string diagrams perturba-

tively, genus by genus, giving us the behaviour of an N = 4 SYM theory.

Interpretation II

The second, alternative interpretation is to be had in the λ → ∞ limit. In this limit

one cannot ignore the backreaction of the D3-brane stack. We thus have a non-trivial,

deformed geometry given by the metric [73]

ds2 =
1√(

1 + R4

r4

)ηijdxidxj +

√(
1 +

R4

r4

)[
dr2 + r2dΩ2

5

]
, (2.100)

where i, j = 0, 1, 2, 3 are the directions parallel to the D3-branes and r,Ω5 are the radial

and angular coordinates describing the transverse plane, r2 =
∑9

i=4 x
2
i . Importantly [73],

R4 = 4πλ(α′)2 (2.101)

and sets the radius of curvature of the space: the supergravity limit is only valid when

the curvature is large thus re-emphasising the λ→∞ limit we are in.

At large r � R, i.e. far from the D3-branes, the metric of 2.100 just returns the
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10-dimensional Minkowski metric, ηMN . Close to the D3-branes at small r � R, called

the near-horizon limit,
√

1 + R4

r4 → R2

r2 and the metric reduces to

ds2
horizon =

r2

R2
ηijdx

idxj +
R2

r2

[
dr2 + r2dΩ2

5

]
. (2.102)

This is nothing other than the metric for the geometry AdS5 × S5, where the radius of

curvature for each part is the same.

We now take the second perspective of the electron-proton system, whereby we just

monitor how the electron moves in the non-trivial background. In this case we study

how closed strings propagate in the background described by the metric 2.100.

Let’s take the point-of-view of an observer located at r =∞. Imagine a closed string

sitting at a point r = r0 with fixed energy Ẽ. The energy measured by the observer at

infinity is red-shifted due to the gravitational potential well formed of the non-trivial

spacetime geometry,

E∞ =
√
−GttẼ =

1(
1 + R4

r4
0

) 1
4

Ẽ. (2.103)

For a closed string state in the near-horizon limit (r0 � R), no matter what the energy

Ẽ, the observer at infinity sees a vanishing E∞.

Therefore, close to the branes, in the near-horizon limit, one cannot simply ignore

higher energy modes, since to an observer at r =∞ they still appear to be low energy.

This implies that, close to the horizon, one must reintroduce and utilise the full type

IIB string theory rather than the supergravity limit. However, for closed string modes

far from the horizon, one retains the supergravity limit. In fact, it can be shown that

in the α′ → 0 limit, the two scenarios decouple: the large-wavelength modes at infinity

cannot ‘see’ the horizon and so the cross-section of interactions with near-horizon modes

tends to zero. In summary, the theory from the closed string perspective decouples as

(
Type IIB superstring theory on AdS5 × S5

)
⊕ (10D type IIB Supergravity.)

(2.104)
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2.5.2 AdS/CFT correspondence: A statement

Comparing the two different interpretations, we can see that both contain two decou-

pled theories one of which is 10d type IIB supergravity. The AdS/CFT correspondence,

therefore, is conjectured on the basis that if both interpretations are equivalent descrip-

tions of the same theory, then it must be true that 2.99 and 2.104 are equal. Therefore,

we deduce that

Type IIB superstring theory on AdS5 × S5 ≡ SU(Nc) N = 4 SYM. (2.105)

This is Maldacena’s correspondence [32], and forms the basis of the conjectured, more

general AdS/CFT correspondence.

It is important to note that the stack of D3-branes that initiated this correspondence

is now obsolete and doesn’t feature on either side of the correspondence.

2.5.3 AdS/CFT correspondence: Parameter matching

In general, the AdSd+1/CFTd correspondence postulates a relationship between d + 1-

dimensional gravity theories living on an asymptotically anti-de Sitter spacetime and

conformal field theories in d dimensions. The most influential and celebrated of these

dualities is the one relating type IIB superstring theory on AdS5 × S5 with N = 4

SYM theory in 3+1 dimensions — Maldacena’s correspondence [32], equation 2.105.

The free parameters on either side of the correspondence are related via equations 2.95

and 2.101. From equation 2.95, we can immediately see that the λ = gσNc parameter

used to motivate the different D-brane interpretations in the previous section is nothing

more than the ’t Hooft coupling used for the large-Nc expansion of gauge fields. This

shouldn’t, retrospectively, be that surprising. The interacting string perturbation ex-

pansion, adding up worldsheet diagrams of ever increasing powers of the coupling gσ, is

identical to summing up worldsheet diagrams of ever increasing genus. This is also the

case for the large-Nc perturbative expansion seen in section 2.2.5.
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2.5.4 Forms of the correspondence

Depending on the limits to which the free parameters of the theories are taken, different

‘forms’ of the correspondence can be had. Since the gravitational side of the correspon-

dence contains a string theory, the best method of obtaining tractable calculations is

to be in the perturbative limit, gσ � 1, keeping R and α′ fixed. At leading order in

gσ, string perturbation theory considers only those interaction diagrams of null genus65.

Equation 2.95 then implies that for gσ � 1, the CFT side of the duality requires gs � 1

with the other relationship, equation 2.101, imposing g2
sNc is fixed. This is nothing

more than the ’t Hooft limit described in section 2.2.5; gs → 0, Nc → ∞ with g2
sNc

fixed. In other words, a perturbative string expansion on the gravity side of the duality

implies a large-Nc, planar limit of the conformal gauge theory. This is the so-called ’t

Hooft or strong form of the correspondence. A weak form of the correspondence is made

when we impose λ → ∞, whereby the field theory is strongly coupled. On the string

side, such a limit imposes R/
√
α′ → ∞ (see equation 2.101) whence it is deduced that

the AdS curvature is much greater than the string length. This is the limit in which we

can use type IIB supergravity on the AdS side of the correspondence. The weak form

of the correspondence is also known as a weak-strong duality since the CFT is strongly

coupled, yet its dual gravitational theory is weakly coupled. This is the foundation of

why the AdS/CFT correspondence is such a powerful tool — one is able to look at

non-perturbative gauge theories by calculating in a perturbative gravitational theory. It

is the weak form of the correspondence that we will be exploiting for the remainder of

this work. A table summarising the limits and forms of the correspondence is shown in

2.3.

Form Type IIB on AdS5×S5 N = 4 SYM

Strongest Non-pert’ string theory: any gσ, R and α′ Any Nc and λ
’t Hooft Pert’ string theory: gσ → 0, any R and α′ Nc →∞, λ fixed
Weak Pert’ supergravity: gσ → 0, R/α′ →∞ Nc →∞, λ→∞

Table 2.3: The various forms of the AdS5/CFT4 correspondence appearing in different
limits of the theories’ parameters.

65One can think of string Feynman diagrams where instead of interacting worldlines, one has interact-
ing worldsheets. Therefore, higher order ‘loop’ diagrams are depicted as manifolds with greater numbers
of ‘holes’ or of higher genus.
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2.5.5 The conformal boundary of AdS space

Anti de-Sitter spacetime can be covered by a wide variety of coordinate patches, some

emphasising certain properties of the geometry over others. In the derivation of the

AdS/CFT correspondence, we stipulated that the near horizon D3-brane geometry took

on the form of AdS5 (crossed with the compactified S5 which we drop here) with the

metric

ds2 = r2ηijdx
idxj +

1

r2
dr2, (2.106)

where we have set the radius of curvature to unity. Taking the transformation r = 1
ζ ,

we can convert to the so-called Poincaré coordinates

ds2 =
1

ζ2

(
−dt2 + dx2 + dy2 + dz2 − dζ2

)
, (2.107)

where we have explicitly expanded ηijdx
idxj of equation 2.106. We can see that this is

nothing more that the Minkowski space, R3,1, foliated over an extra coordinate ζ. For

each slice of the AdS space at constant ζ we recover a 4d Minkowski spacetime warped

by a factor ζ−2. We define the boundary of the spacetime as the ζ-constant slice for

which the metric diverges; for the metric given in 2.107, this happens as ζ → 0 (r →∞).

In order to analytically continue the metric onto the boundary in a sensible fashion, we

can make use of a conformal rescaling of the metric gMN → Ω(x, ζ)gMN , for some

function Ω, which leaves all distances and angles on the original metric invariant under

the change. For example, if we allow Ω = ζ2f(x, ζ), where f(x, ζ) is a well-defined,

smooth, positive-definite function in x and ζ, then the boundary is simply defined as,

ds2
∂AdS5

= f(x, ζ)
(
−dt2 + dx2 + dy2 + dz2

)
. (2.108)

The ability to choose the function f(x, ζ) leaves a whole class of equivalent boundaries,

Minkowskian in nature, related by conformal transformations.
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2.5.6 The holographic principle

The holographic principle [33, 79] is an idea inspired from black hole thermodynamics,

wherein the (Bekenstein66-Hawking67) entropy of the black hole scales as the surface

area, A, of its horizon [80]. This is in stark contradiction to the expectations of quantum

field theory, which states that the entropy should scale as the volume68. In an attempt to

reconcile this, the holographic principle prescribes that information contained within a

d+ 1-dimensional volume of spacetime V can be equally understood from the viewpoint

of degrees of freedom living on the d-dimensional boundary ∂V = A.

Working in the weak form of the AdS/CFT correspondence whereby λ → ∞, we

have a duality between type IIB supergravity on AdS5×S5 and a large Nc, N = 4 SYM

gauge theory in 4 dimensions. In a Kaluza-Klein reduced form of AdS5×S5, whereby

we can ‘ignore’ the compactified 5-sphere, we are left with an AdS5 spacetime which

we have shown in section 2.5.5 to have a conformal boundary. The isometries of this

spacetime, namely SO(4,2), are the conformal symmetries associated to the N = 4 SYM

theory to which the spacetime is dual [73]. One may argue that the boundary of the

AdS-spacetime encodes all of the same degrees of freedom as the SYM theory and thus

the gauge theory can be postulated to ‘live’ on the boundary. This is a realisation of

the holographic principle at play.

2.5.7 Field-operator map

Having set up the nature of the correspondence, we now need to put it into a form which

we can utilise. In order to do this, one needs to set up a dictionary of rules that allows

us to interpret results calculated on one side of the duality into corresponding results

on the other. From [81], a mathematical formulation of the duality was set out which

allows one to initiate such a dictionary. The partition function of the 4d interacting

field theory can be expressed as

Z[φ̄] =

〈
exp

(∫
d4x

∑
i

φ̄i(x)Oφ̄i(x)

)〉
, (2.109)

66Jacob David Bekenstein, 1947-2015.
67Stephen W. Hawking, 1942-.
68The entropy of a system is an extensive property and thus should scale up with the system.
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where the fields φ̄i are sources of the operators Oφ̄i . The gravitational side of the duality

is governed by a supergravity action over69 AdS5 containing fields φ(x, r). The partition

function of the supergravity dual, Zsugra, is then related to Z via,

Z ≡ Zsugra|φ(x,r→∞) . (2.110)

The crux of equation 2.110 is that

boundary values of the supergravity fields φ(x, r →∞) are equivalent to the sources, φ̄,

of operators in the field theory.

An example of this statement can be seen as follows. Let us consider a scalar field

φ = φ(x, r) and with mass Mφ living in AdS5. The action is simply given by

S =

∫
d4xdr

√
−g
(
gMN∂Mφ∂Nφ−M2

φφ
2
)
, (2.111)

where g = det(gMN ) and the AdS5 metric is given by

gMN =



−r2 0 0 0 0

0 r2 0 0 0

0 0 r2 0 0

0 0 0 r2 0

0 0 0 0 r−2


, (2.112)

where we have set the radius of curvature to unity. The equations of motion for the

radial dependent part of φ, φ(r), take the form,

∂r
(
r5∂rφ(r)

)
− r3M2

φ = 0, (2.113)

which has solution

φ(r) =
A

r∆
+

B

r4−∆
, (2.114)

69The type IIB supergravity action over AdS5×S5 is Kaluza-Klein reduced to five dimensional AdS5.
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where70

∆(∆− 4) = M2
φ. (2.116)

The supergravity scalar field φ(r) has no mass-dimension, therefore the coefficients A

and B are dimensionful with respective mass-dimensions ∆ and 4 − ∆. In the limit

r →∞, the B-coefficient term dominates71, so we have

lim
r→∞

φ(x, r) =
B(x)

r4−∆
, (2.117)

which by equation 2.110 means that B(x) = φ̄i(x). It subsequently transpires that we

can identify the coefficient A as the vev of the operator Oφ̄i [82]. The solution to the

equation of motion of the bulk field φ(r) can then be reformulated as,

φ(r) =
〈Oφ̄〉
r∆

+
φ̄(x)

r4−∆
. (2.118)

The results of equations 2.116 and 2.118 make the correspondence quite explicit: Fields

in the bulk can be expressed in terms of field theory operators and sources and the bulk

field’s mass pertains to the mass-dimension of those sources.

70The following constraint can also be recast as ∆ = 2 +
√

4 +M2
φ. More generally than adding a

scalar to the spacetime, a p-form can be added with the same solutions but with the more generalised
mass constraint,

(∆− p)(∆ + p− 4) = M2
p-form. (2.115)

71The B-coefficient term is often referred to as the non-normalizable term, in the respect that its
contribution to the action 2.111 diverges. This is unlike the A-coefficient term, which is elsewise referred
to as the normalizable term and whose contribution to the action remains finite.
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Chapter 3

Holographic QCD

We now motivate the ideas behind using the AdS/CFT correspondence as a tool to

probe strongly coupled gauge theories like QCD.

3.1 Towards holographic QCD

The AdS/CFT correspondence in its weak form of a duality between type IIB su-

pergravity on AdS5×S5 and a large Nc, large λ = g2
sNc, N = 4 SYM theory is

well understood [32, 83, 84]. However, the gauge theory is far removed from the non-

supersymmetric, asymptotically free, SU(Nc) gauge theories that are of interest in the

wider particle physics community, such as SU(3)c QCD or Technicolor models. Such

models do not share large Nc values, are not supersymmetric and contain fundamental

rather than adjoint matter fields, i.e. quarks. The hope of future physicists is to con-

struct a gravity dual of confining SU(Nc) gauge theories. It is quite beyond the current

standing of particle physics to obtain a full correspondence between theories like QCD

and a gravity dual on the grounds that the perturbative regime of the gauge theory will

be dual to a non-perturbative quantum string theory on a non-trivial background —

analysis of which is outside the realms of our current capabilities. However, as we shall

show in the rest of this work, it is possible to incorporate quarks and running couplings

into holographic theories and slowly begin to edge towards constructing holographic

methods to understand asymptotically free gauge theories.
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3.1.1 Top-down versus bottom-up approaches

Holographic models for QCD-like theories can be roughly split into two differing sec-

tors; top-down and bottom-up approaches. Top-down models start directly from a pure

string theory perspective such as the D3-brane scenario from which the Maldacena cor-

respondence [32] (between N = 4 SYM and type IIB supergravity on AdS5×S5) was

conjectured. In order to adapt the correspondence to accommodate different bound-

ary field theories, the bulk is re-engineered, by the addition of new brane and string

structures. Some of the most successful top-down models to describe QCD-like gauge

theories, including the Sakai-Sugimoto model [85,86] and probe-brane constructions [87],

introduce new D-branes into the bulk which allow the description of phenomena such as

fundamental matter and confinement. The major drawback of working in a top-down

framework is the innate mathematical complexity of the base string theory and the

veritable smörg̊asbord of gravity fields which must be kept track of in order to fully

understand the dual field theory.

In bottom-up models, usually referred to as AdS/QCD models [82,88–90], inspiration

is taken from top-down approaches1 but with the bulk geometry and fields chosen to

ensure the required phenomenological properties of the gauge theory. In this regard, the

mathematical rigour of the top-down models is lost but to the advantage of a cleaner,

more tractable model. Below, we will outline some key, basic top-down extensions and

use these as a springboard into the simpler bottom-up approach.

3.2 Top-down models

Two of the most important features of QCD-like gauge theories, for which N = SYM is

lacking, are fundamental matter fields, i.e. quarks, and a running coupling which may

or may not trigger chiral symmetry breaking. The following sections begin to address

these problems from a top-down approach.

1Usually bottom-up models bear close relationship to truncated top-down models whereby undesired
fields have been omitted .
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3.2.1 Introducing flavour

The dual field theory of the Maldacena correspondence, N = 4 SU(Nc) SYM, only has

adjoint degrees of freedom. This stems from all open string states starting and ending

on one of the Nc D3-branes in the coincident stack. To understand this, recall that a

stack of Nc D3-branes has a U(Nc) gauge group living on it. A string wavefunction can

then be in a superposition of N2
c different pure-states (a string from brane A to brane

B, from brane A to brane C and so on - see figure 3.1) and is therefore described by the

adjoint of the U(Nc) gauge group on the stack which has N2
c generators. For an SU(Nc)

gauge theory on the stack (where we have lost one U(1)⊂U(Nc) since it decouples in

the AdS/CFT correspondence as it associates to the degree of freedom pertaining to the

centre-of-mass of the stack), we have N2
c − 1 generators or independent pure states.

In order to add fundamental degrees of freedom, all that is required is to apply the

restriction that only one end of the string states may finish on the D3-brane stack. This

way, we only generate Nc possible string configurations, rather than Nc configurations

per brane [87]. The remaining string end must attach to another brane. In principle, we

can consider either another D3 brane, a D5 brane, a D7-brane or a D9-brane within the

remit of type IIB string theory. The D9-brane is ruled out immediately since it fills the

whole spacetime and thus cannot be separated from the D3-brane stack. This is severely

limiting when one wishes to describe massive fundamental degrees of freedom. The D3-

and D5-brane solutions lead to defect theories [91] [92–95] and so we are left with the

D7-brane. Multiple D7-branes can be introduced to mimic the number of flavours of

quarks, Nf .

Defining a p-q string as a string stretched between a Dp-brane and a Dq-brane, we

have in summary, 3-3 strings responsible for an N = 4 adjoint multiplet, 3-7 strings

realising fundamental2 fields (N = 2 hypermultiplet) and 7-7 strings which represent

mesonic operators again in the adjoint of SU(Nf ) (as both strings end on a D7-brane

in the D7-brane coincident stack). Figure 3.1 demonstrates the different possible string

configurations. The corresponding dual field theory with this form of brane construction

2The 3-7 string is in fact bifundamental in both the SU(Nc) gauge field on the D3-brane stack and
the SU(Nf ) gauge field on the D7-brane stack. This implies that the quark can be seen to be in the
fundamental representation of colour and flavour, just like QCD.
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is then an N = 4 SYM gauge theory coupled to N = 2 matter.

Figure 3.1: The D3/D7-brane set-up allows for fundamental fields e.g. quarks. Multiple
D7-branes allows for different flavours of quarks. E.g. string a) pertains to a red up-type
quark and string b) pertains to a red down-type quark. 3-3 strings generate the N = 4
SYM theory, 3-7 strings realise quark-like fields and 7-7 strings represent mesons.

The number of D7-branes must be small compared to the number of D3-branes,

Nf � Nc, to avoid backreaction warping the AdS5×S5 geometry and destroying the

Maldacena correspondence. This is referred to as the quenched approximation on the

field theory side or the probe brane limit in the supergravity bulk. Since we’re in the ’t

Hooft limit whereby Nc → ∞, the quark contributions are suppressed unless Nf → ∞

also.

D7-brane metric

dim 0 1 2 3 4 5 6 7 8 9

D3 X X X X · · · · · ·
D7 X X X X X X X X · ·

Table 3.1: The D3-brane extends in the 0123-directions of 10d spacetime, whereas the
D7-brane extends over the 01234567-directions. The branes thus overlap in the 0123-
directions. Here 0 denotes the time direction.

Let’s imagine that the Nf coincident D7-branes lie along the 01234567-directions of

the 10d spacetime, overlapping in coordinates with the D3-brane stack occupying the

0123-directions, see table 3.1. Let the AdS5×S5 metric be recast as

ds2 = r2ηijdx
idxj +

1

r2

(
dρ2 + ρ2dΩ2

3 + dL2 + L2dφ2
)
, (3.1)

where r2 = ρ2 +L2. From this, we can see that the D7-branes fill out the AdS-space as
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well as an S3 ⊂S5 of radius ρ. The induced metric on the D7-worldvolume is therefore

given by

ds2
D7 = (ρ2 + L2)ηijdx

idxj +
1

ρ2 + L2
dρ2 +

ρ2

ρ2 + L2
dΩ2

3, (3.2)

since it is sitting in the AdS5×S5 geometry generated by the D3-brane stack.

When the probe D7-branes are coincident with the D3-brane stack, the 3-7 strings

are naturally massless and the conformal nature of the dual field theory is still explicit.

However, if the D7-branes are separated from the D3-branes (in the L-direction), the

SO(2,4) isometry of the AdS5 spacetime, equivalent to the conformal symmetry on the

boundary, is naturally broken by the presence of the brane obstruction. The broken

conformality goes hand in hand with the 3-7 strings now having a finite length and

thus becoming massive. Returning to the induced D7-metric 3.2, the limit L → 0

whereby the separation of the D3 and D7 brane vanishes, we see the D7-metric reduces

to an AdS5×S3 geometry returning the conformal structure. We show below the explicit

introduction of a mass scale, the quark mass, by the D7-brane embedding.

D7-brane embedding

Figure 3.2 shows the 10d spacetime set-up of the D3/D7 system.

Figure 3.2: 10d spacetime set-up of the D3/D7 system. The most stable configuration
of the D7 brane might have a non-trivial relation between L and ρ (as seen on the left
plot).
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The action governing the worldvolume of the D7-brane is given by the appropriate

DBI action (see section 2.4.1), which at constant dilaton (or fixed string coupling) is

given by

SD7 = − 1

(2π)2(α′)4gσ

∫
d8ξ
√
−det(Gab + 2πα′Fab), (3.3)

where Gab is the pullback of the metric on the D7-worldvolume, equation 3.2. Taking

into account that L could be a function of ρ, see figure 3.2, Gab is explicitly given by

Gab =



−r2 0 0 0 0 0 0 0

0 r2 0 0 0 0 0 0

0 0 r2 0 0 0 0 0

0 0 0 r2 0 0 0 0

0 0 0 0 1
r2

(
1 + (∂ρL)2

)
0 0 0

0 0 0 0 0 ρ2

r2 0 0

0 0 0 0 0 0 ρ2

r2 0

0 0 0 0 0 0 0 ρ2

r2



, (3.4)

where r2 = ρ2 + L(ρ)2. The action can now be simply expressed as3

SD7 ∼
∫
d4xdρ ρ3

√
1 + (∂ρL(ρ))2. (3.5)

The equation of motion of L(ρ) is given by

∂

∂ρ

ρ3 ∂ρL√
1 + (∂ρL)2

 = 0, (3.6)

which is known as the embedding equation since the solution L(ρ) describes the profile

of the D7-brane in the 10d spacetime. Equation 3.6 can be satisfied by the solution

L(ρ) = m, for some constant m. This is a flat D7-brane embedding. For m = L = 0,

the D7-branes are sitting on top of the D3-branes and we retain the conformal invariance

of the dual field theory. However, if m 6= 0, the 3-7 strings, identifying as quarks, now

have a fixed, non-zero length, and thus a mass proportional to m. Such a mass breaks

3Setting Fab = 0. Integration over the angular coordinates yielding a non-important constant factor.
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the conformal invariance of the boundary field theory as expected for L 6= 0. The radial

direction ρ has dimensions of energy and is interpreted as the renormalization scale4 ,

µ. The flat embedding therefore implies a non-renormalization of the quark mass, an

effect of supersymmetric gauge theories.

In the limit ρ→∞, the general solution to equation 3.6 is given by

L(ρ) = m+
c

ρ2
+ ... (3.7)

where m and c are constants to be interpreted (see Appendix C).

Equation 3.7 agrees well with L(ρ) taking the rôle of a supergravity scalar of mass-

squared -3. For small ∂ρL→ 0, the action of 3.5 can be linearised to,

S ∼
∫
dρρ3 (∂ρL)2 =

∫
dρρ3

(
ρ2 (∂ρφ)2 + φ2 + 2ρφ∂ρφ

)
, (3.8)

where φ = L(ρ)
ρ . Integration by parts on the final term of the right-hand side of equation

3.8 yields

2

∫
dρρ4φ∂ρφ = −4

∫
dρρ3φ2, (3.9)

implying the action can be recast as

S ∼
∫
dρρ3

(
ρ2 (∂ρφ)2 − 3φ2

)
, (3.10)

which is the Klein-Gordon5 action of a scalar in AdS5 of mass-squared -3. This is

shown as follows. From 2.116, φ corresponds to a field-theory operator vev and source

combination of respective mass-dimensions ∆ = 3 and 4−∆ = 1 such as the q̄q operator

and the quark mass. Hence we can write φ as

φ(ρ) =
m

ρ
+
〈q̄q〉
ρ3

. (3.11)

4This is not quite accurate; the RG scale directly corresponds to the AdS5 radial coordinate r and
therefore the true relation between the RG scale and ρ is given by r2 = ρ2 +L(ρ)2. This will become of
importance in the following chapters.

5Walter Gordon, 1893-1939.
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Recalling L(ρ) = ρφ, equation 3.11 implies that L(ρ) can be identified as such

L(ρ) = m+
〈q̄q〉
ρ2

, (3.12)

agreeing with equation 3.7, where c ≡ 〈q̄q〉.

3.2.2 Constable-Myers and dilaton flows

The next step towards a holographic dual of asymptotically free gauge theories is to in-

corporate a running coupling. This can be enabled by having a radially dependent dila-

ton field or dilaton flow, which can be obtained by a deformation of the AdS-geometry.

Since the dilaton is related to the string coupling and the string coupling is dual, in

some manner, to the field theory coupling, a dilaton flow is dual to a running of the field

theory coupling.

One such a solution is the Constable-Myers flow [96]. The metric of the bulk space-

time in this scenario is given by

ds2 =
1√
H(r)

(
r4 + b4

r4 − b4

) δ
4

ηijdx
idxj+

√
H(r)

(
r4 + b4

r4 − b4

) 2−δ
4 r4 − b4

r4

(
dρ2 + ρ2dΩ2

3 + dL2 + L2dφ2
)
, (3.13)

with

H(r) =

(
r4 + b4

r4 − b4

)δ
− 1, (3.14)

where again r2 = ρ2 + L2, b is a measure of the deformation and δ = 1/2b4 [97]. The

geometry approaches AdS5×S5 of unit radius of curvature in the large-r limit, such that

the field theory returns to N = 4 SYM in the UV. The dilaton is given by

eφ = eφ0

(
r4 + b4

r4 − b4

)∆
2

, (3.15)

where eφ0 = gσ and ∆2 +δ2 = 10 [97]. At the scale r = b, the dilaton (and the geometry)

diverge. Such a scale then mimics the rôle of ΛQCD on the field theory side of the dual.
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Combining both the Constable-Myers dilaton flow with additional probe D7-branes

allows for a dual field theory with quarks and a running coupling. The action of the

D7-brane with the appropriate Constable-Myers metric is given by

SD7 ∼ eφ0

∫
dρ λ(r)ρ3

√
1 + (∂ρL)2, (3.16)

with

λ(r) =
r8 − b8

r8

(
r4 + b4

r4 − b4

)∆
2

. (3.17)

Evidently the action looks the same as equation 3.5 with the addition of a ρ-dependent

prefactor λ(r) controlling the dilaton flow.

Let us now consider the action 3.16 in the limit L(ρ), ∂ρL → 0, i.e. a perturbation

away from the L = 0 chiral embedding. We can perform a series expansion on λ(r) as

follows,

λ(r) = λ(r)|L=0 + L

(
∂λ

∂r

∂r

∂L

)∣∣∣∣
L=0

+
1

2
L2

((
∂r

∂L

)2 ∂2λ

∂r2

)∣∣∣∣∣
L=0

+
1

2
L2

(
∂2r

∂L2

∂λ

∂r

)∣∣∣∣
L=0

+O(L3). (3.18)

Recalling r2 = ρ2 + L2, ∂Lr = Lr−1, which vanishes in the limit L→ 0, and so we can

simplify λ(r) to

lim
L→0

λ(r) = λ(r)|L=0 +
1

2

L2

r

∂λ

∂r

∣∣∣∣
L=0

. (3.19)

Substituting back into the action and expanding the square-root to first order we have,

S ∼
∫
dρρ3

(
λ(r)|L=0 +

1

2

L2

r

∂λ

∂r

∣∣∣∣
L=0

)(
1 +

1

2
(∂ρL)2

)
. (3.20)

Again expanding to leading order we arrive at the action

S ∼
∫
dρρ3

(
1

2
λ|L=0 (∂ρL)2 +

∂λ

∂(L2)

∣∣∣∣
L=0

L2

)
, (3.21)

where we have used ∂L2λ = (2r)−1∂rλ. It is now evident that adding a non-trivial

dilaton to these models allows for the masses of the bulk fields, such as L, to change
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with radial coordinate r. Since the masses of the bulk fields relate (see section 2.5.7)

to the mass-dimensions of the corresponding field theory operators, then a dilaton flow

can be seen directly as a running anomalous dimension in the field theory. We shall

capitalise on this when we turn to Dynamic AdS/QCD.

3.3 Bottom-up models

We now turn to the bottom-up approach, building-on and extending the ideas formed

from top-down models with the goal of trying to best mimic the phenomenology of

QCD-like gauge theories in a holographic arena.

Known as AdS/QCD, the starting point of these models is a much simpler AdS5

spacetime, on the boundary of which we seek a QCD-like gauge theory. The AdS5

metric of unit radius is given by

ds2 = r2ηijdx
idxj +

1

r2
dr2. (3.22)

The bulk must contain fields which correspond to necessary source-operator combina-

tions in the field theory. Therefore, we require one scalar field of mass-squared -3 to

encode the quark mass and condensate as well as two massless gauge fields correspond-

ing to the SU(Nf )L and SU(Nf )R current operators. A summary of the dictionary can

be seen in table 3.2

Bulk Field Mass ↔ QFT Operator ∆ = dim p-form

X(x, ρ) M2 = −3 ↔ q̄q 3 p=0
LM,a(x, ρ) M2 = 0 ↔ Lµ,a = q̄Lγ

µtaqL 3 p=1
RM,a(x, ρ) M2 = 0 ↔ Rµ,a = q̄Rγ

µtaqR 3 p=1

Table 3.2: The dictionary between the bulk AdS fields and the field theory operators
on the boundary in a simple AdS/QCD model. The bulk fields masses are obtained via
the relation (∆− p)(∆ + p− 4) = M2 (see section 2.5.7)

Collecting all the relevant pieces together, we can construct a bulk action which
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encodes the very basics of a QCD-like theory:

S =

∫
d4xdr

√
−det gMNTr

{
(DMX)†(DMX) + 3X†X

− 1

4g2
5

[
FL,MNF

MN
L + FR,MNF

MN
R

]}
, (3.23)

where

DMX = ∂M − iLaMX + iXRM (3.24)

and

FL,MN = ∂MLN − ∂NLM − i[LM , LN ] (3.25)

with LM = La,M ta and likewise for FR,MN . We choose the scalar X to have the form

X(x, r) = L(r)e2iπa(x)ta , (3.26)

taken from the effective chiral approach in section 2.1.2, such that fluctuations in the

x-dependence of the scalar can describe the pion fields. The radial coordinate r acts as

an energy scale and so is matched to the renormalisation scale µ of the field theory.

Hard-wall versus soft-wall

There is still however one small issue; the AdS5 spacetime implies a conformal symmetry

in the field theory, which is not the case for QCD-like theories. One way to overcome

this obstacle is to impose a boundary or hard wall into the spacetime at fixed r = r0

(see [82,88]). By doing so, we break the SO(2,4) isometry of the spacetime and in turn

break the conformal invariance of the field theory. The bulk theory is then only valid in

the region r0 < r <∞, cutting out the deep infrared. The energy scale r0 then acts like

ΛQCD in the same way that it is the only scale in the system available to set dimensionful

parameters. The major drawback to the hard-wall method is that the corresponding

field theory has unnatural Regge trajectories of excited states of mesons M2
n ∼ n2.

One alternative approach is to introduce a so-called soft-wall in place of the hard

boundary (see [98]). This means having a non-trivial dilaton φ(r), amending the action
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to

S =

∫
d4xdr

√
−det gMNe

φ(r)Tr
{

(DMX)†(DMX) + 3X†X

− 1

4g2
5

[
FL,MNF

MN
L + FR,MNF

MN
R

]}
. (3.27)

Choosing a dilaton with profile φ(r) ∼ r−2 as r → 0 ensures the correct Regge tra-

jectories, M2
n ∼ n, whilst retaining the broken conformal symmetry of the field theory

dual [73,98].

3.3.1 Dynamic AdS/QCD

We now turn to the model with which the rest of this work was undertaken. Based

on the bottom-up AdS/QCD approach with influence from the D3/probe-D7 top-down

models, the model referred to as Dynamic AdS/QCD [1–3,89] is set up as follows.

We work with the action

S =

∫
d4xdρρ3Tr

[
1

ρ2 + L2
(DMX)†(DMX)

+
∆m2

ρ2
|X|2 +

1

2g2
5

(FL,MNF
MN
L + FR,MNF

MN
R )

]
, (3.28)

where

X = L(ρ)e2iπata . (3.29)

Having outlined the standardised bottom-up approach in the previous section, such an

action might, at first sight, seem unexceptional. However, there are a few key differences.

Firstly we are working with the 5-dimensional metric inspired from the D3/probe-D7

models,

ds2 = (ρ2 + L2)ηijdx
idxj +

1

ρ2 + L2
dρ2, (3.30)

where, exactly like the top-down models, the scalar field L(ρ) enters into the metric,

defining a dummy radial coordinate r2 = ρ2 + L2. The scale r will then be associated

to the renormalisation scale, µ, of the field theory — again like the D3/D7 model. This

metric is used for spacetime contractions. We have also chosen the
√
−g = ρ3 factor
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directly from the D3/D7 model rather than the would-be factor of (ρ2 + L2)
3
2 using

metric 3.30. This is to ensure a soft-IR wall behaviour: when L is non-zero, the dummy

radial coordinate r cannot access the deep infrared, i.e. r < L, no matter how small the

holographic coordinate ρ becomes. As L→ 0, the deep IR is once again available, metric

3.30 becomes that of AdS5 and the boundary field theory returns to being conformal.

Thirdly, the action contains a term proportional to |X|2 = L2, which is inherited directly

from the L2 term of the action for top-down models with a dilaton flow, 3.21. It allows

the model’s scalar field to have a radially dependent mass corresponding to an energy-

dependent mass-dimension of the field theory operator q̄q. For ∆m2 = 0, the scalar

returns to M2 = −3.

The action can be expanded out fully (see Appendix D) giving

S =

∫
d4xdρρ3Tr

(
(∂ρL)2 +

∆m2

ρ2
L2 + 4L2A2

ρ +
4L2

(ρ2 + L2)2
(∂µπ −Aµ)2

+
1

2g2
5

(∂MV
a
N − ∂NV a

M )
(
∂MV a,N − ∂NV a,M

)
+

1

2g2
5

(∂MA
a
N − ∂NAaM )

(
∂MAa,N − ∂NAa,M

))
. (3.31)

Understanding g5

We now turn to calculating the vector two-point function in the Dynamic AdS/QCD

model and match it to perturbative QCD results in the UV, i.e. on the boundary. This

will fix the coupling g5. We follow [73] and [82].

Firstly, we find the solution to the equation of motion of the vector gauge field to be

V a(ρ) = 1 +
q2

4ρ2
ln

(
q2

ρ2

)
+ ..., (3.32)

where V a
M = εMV

a(ρ)e−iq·x and V a(ρ → ∞) → 1 (see Appendix E). Evaluating the

action 3.31 on the solution 3.32 then allows us to yield the vector-vector correlator from

the theory [73],

ΠVV(q2) =
1

g2
5

ln(q2). (3.33)
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Comparing this to the perturbative QCD results [99]

ΠVV(q2) =
NfNc

24π2
ln(q2), (3.34)

one can see that we may match

g2
5 =

24π2

NcNf
. (3.35)

The vacuum structure

In order to ascertain the vacuum structure of the theory, all fields except the scalar L(ρ)

are switched off. The action for L is given by

S =

∫
d4xdρ ρ3

(
(∂ρL)2 + ∆m2L

2

ρ2

)
. (3.36)

For ∆m2 = 0, the UV solution to the equation of motion is given by L = m + 〈q̄q〉/ρ2

with m and 〈q̄q〉 pertaining to the quark mass and condensate respectively. A non-

zero ∆m2(ρ) allows the scalar to have a radially dependent mass relating to a energy-

dependent mass-dimension of the operator vev 〈q̄q〉 — the equivalent of introducing a

running anomalous dimension, γ(µ).

If the mass-dimension of a field theory operator changes from ∆ to ∆ − γ as the

corresponding AdS-scalar’s mass grows from M2 to M2 + ∆m2, then equation 2.116

becomes

(∆− γ)(∆− γ − 4) = M2 + ∆m2, (3.37)

implying

∆m2 = γ2 − 2γ(∆− 2). (3.38)

So for the operator vev 〈q̄q〉, for which ∆ = 3, we have ∆m2 = γ2 − 2γ. The profile of

∆m2(ρ) can then be imposed by using the one-loop result for the perturbative anomalous

dimension for the gauge theory [41],

γ1(µ;R) =
3C2(R)

2π
αs(µ;R), (3.39)
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where αs is the two-loop perturbative running coupling and R denotes the representation

of the Nf quarks. Assuming γ is small, the leading order result gives us (∆m2 = −2γ),

∆m2(r) = −3
C2(R)

π
αs(µ;R), (3.40)

where we re-emphasise r =
√
ρ2 + L2 corresponds to µ. Of course, beyond the regime

where the coupling is weak, the perturbative form of γ1(µ) must be used with caution

and is no sense rigorous. However, methods used with such a parameterisation of the

running might uncover the broad behaviours exhibited by the gauge theories with similar

running profiles. The modified equation of motion becomes

∂ρ
(
ρ3∂ρL

)
− ρ∆m2L = 0. (3.41)

Assuming ∆m2 to be constant and non-zero, i.e. the regime of a fixed point whereby

γ 6= 0, the solution takes the form

L(ρ) =
mFP

ργ
+
cFP
ρ2−γ , (3.42)

such that γ(γ− 2) = ∆m2. In other scenarios, where ∆m2 takes on the non-trivial run-

ning profile of γ1, the solution to the equation of motion 3.41 must be found numerically.

To do so, one must impose boundary conditions. We choose the conditions

L(ρIR) = ρIR and ∂ρL(ρ)|ρ=ρIR
= 0. (3.43)

These are very similar to those conditions imposed on the D3/D7, top down models

(L(0) = constant and ∂ρL(0) = 0) but imposed at the renormalization scale where the

theory becomes ‘on mass-shell’. We assume L(ρ) behaves like a constituent quark mass

at the RG scale pertaining to ρ and therefore the imposed boundary conditions force

the constituent masses to always be less than the energy scale.

An example of the L(ρ) profile, of SU(3) with 3 flavours of fundamental quarks,

shown in figure 3.3, displays chiral behaviour since the constituent mass of the quark

vanishes as one approaches the boundary ρ→∞. However the chiral symmetry breaking
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is self-evident as the constituent quark mass renormalizes to non-zero values as you push

towards the IR.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
ρ0.00

0.01

0.02

0.03

0.04

L(ρ)

Figure 3.3: Plot of L(ρ) for SU(3) with Nf = 3 in the fundamental representation. The
plot shows the chiral embedding, i.e. the profile asymptotes as 〈q̄q〉/ρ2 as ρ→∞ (γ → 0
in the field theory). Here the boundary condition on the beta function is imposed as
α(0) = 0.14.

Breitenlohner-Freedman bound

An important feature of the beta functions of QCD-like theories is whether the running

coupling passes through a critical value triggering chiral symmetry breaking. How does

this feature get brought into the Dynamic AdS/QCD model? As we have seen, chiral

symmetry breaking is tripped when the coupling constant passes through a critical value

causing the chirally symmetric ground state to become unstable. We must then look for

a method of triggering such an instability in the bulk.

In flat space, fields with negative mass-squared have a potential which is globally

unbounded from below and thus unstable. A similar feature occurs in AdS backgrounds.

Scalar fields in AdSd+1 of unit curvature which have the asymptotic solution6

φ(r) =
A

r∆
+

B

rd−∆
, (3.44)

where ∆ = d
2 +

√
d2

4 +M2
φ, become tachyonic, i.e. have an unstable potential, when

M2
φ < −

d2

4
. (3.45)

This is known as the Breitenlohner7-Freedman8 (BF) bound [100].

6This is the generalised version of equation 2.114 for d+ 1 dimensional AdS-spacetime.
7Peter Breitenlohner, 1940-2015.
8Daniel Z. Freedman, 1939-.
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When the mass of the scalar field representing the field theory operator q̄q drops

below the BF bound, the theory becomes unstable around the ‘old’ global minimum,

just like chiral symmetry breaking. In Dynamic AdS/QCD in the AdS5 background,

this instability occurs when the mass of the scalar L(ρ) drops below M2
L = −4. This

pertains to a value of ∆m2 = −1. Using equation 3.38 (recalling in this case ∆ = 3), we

arrive at γ = 1 being the critical value of chiral symmetry breaking in the gauge theory.

The soft-wall behaviour of the Dynamic AdS/QCD model is now important. Were

the BF-bound to be violated and the L-field to become unstable, then equating the RG

scale, µ, directly to the AdS radial coordinate ρ would lead to a theory whereby the

L-field potential becomes unbounded from below in the IR. However, by setting, as we

have done, µ =
√
ρ2 + L(ρ)2, when L is finite, the deep IR cannot be accessed and so

we keep stable AdS solutions but at a different vacuum pertaining to a non-zero 〈q̄q〉.

In terms of the L−ρ plane and the profile L(ρ) for the scalar, this amounts to a circular

region ρ2 + L2 ≤ µ2
γ (where µγ is the scale for which γ = 1) which cannot be accessed

by the field. The least-energetic, i.e. vacuum solution, of the L-embedding then takes

on a profile which rises off of the ρ-axis in the IR to meet the BF-bound scale, µγ , near

the on-mass shell condition L = ρ. This is expected since at µγ (identical to the scale

Λχ) the quarks get their dynamical mass ∝ µγ . Below this scale however, there is not

enough energy to excite these masses and so are decoupled. Off course in the Dynamic

AdS/QCD model, this is only approximate since the Lagrangian contains only the lowest

order terms in L following from a top-down DBI expansion. In the limit where all the

higher order terms are put back, the profile of L(ρ) should match exactly to L = ρ at

µγ .

Meson spectra

Recall from the D3/probe-D7, top-down models that the 7-7 strings, which can be

perceived as fluctuations of the D7-branes, pertained to mesonic operators. Bottom-up

models, such as Dynamic AdS/QCD, build on this idea with the scalar, vector and axial

mesons being described as perturbative fluctuations of the scalar L and the gauge fields

V a
M and AaM respectively.
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The isoscalar (σ) mesons are described by linearised, perturbative fluctuations, δ(ρ),

about the vacuum configuration, L0(ρ) (the solution to equation of motion of the La-

grangian given in the action 3.36). Writing the scalar field plus fluctuation as

L(ρ) = L0(ρ) + δ(ρ)eiqµx
µ
, (3.46)

with q2 = −M2
σ defining the meson’s mass, we can write the equation of motion of δ(ρ)

as

∂ρ
(
ρ3∂ρδ

)
−∆m2ρδ − ρL0δ

∂∆m2

∂L

∣∣∣∣
L=L0

+M2
σ

ρ3δ

(L2
0 = ρ2)2

= 0. (3.47)

Just as for L0(ρ), solutions with the UV asymptotics of δ ∼ ρ−2 are sought with the IR

boundary condition ∂rδ|ρIR = 0.

The isovector (ρ) meson spectrum can be determined similarly from the normalizable

solution of the equation of motion of the vector gauge field (derived in Appendix E)

∂ρ
(
ρ3∂ρV

)
+

ρ3M2
ρ

(L2
0 + ρ2)2

V = 0. (3.48)

The axial meson spectrum is determined from the equation of motion of the axial gauge

field,

∂ρ
(
ρ3∂ρA

)
− g2

5

L2
0ρ

3

(L2
0 + ρ2)2

A+
ρ3M2

a

(L2
0 + ρ2)2

A = 0. (3.49)

Finally, the pion mass spectrum is identified from the equation of motion of the spacetime-

dependent phase field πa(x) of the scalar X; X = L(ρ) exp (2iπa(x)ta),

∂ρ
(
ρ3L2

0∂ρπ
a
)

+M2
π

ρ3L2
0

(L2
0 + ρ2)2

πa = 0. (3.50)

Adding temperature and magnetic field

Understanding the gauge theories in question at finite temperature and within a finite

constant magnetic field is important to ensure a full comprehension of their phase dia-

grams. A temperature is added into the model by augmenting the AdS5-like Dynamic

AdS/QCD metric to AdS-Schwarzschild9-like metric, which at constant unit curvature

9Karl Schwarzschild, 1873-1916.
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is given by [73]

ds2 = −ρ2f(ρ)dt2 + ρ2dx2 +
1

f(ρ)ρ2
dρ2, (3.51)

where

f(ρ) = 1− rH
(L(ρ)2 + ρ2)2

, (3.52)

with black hole horizon radius rH . The thermal description of the gauge theory is then

introduced [73] (at constant unit AdS curvature) via

rH = πT, (3.53)

i.e. the Hawking temperature is defined as the hadronic temperature of the gauge field.

The black hole, in effect, reduces the available AdS-space, preventing access to values

of r below rH , i.e. energy scales below the corresponding renormalization scale. If the

temperature of the black hole exceeds the energy scale pertaining to the BF-bound, µγ ,

then the BF-bound violating region of the L − ρ plane is swallowed by the black hole

thus cutting it out of the accessible plane. Since the existence of this region pertained

to a chiral symmetry breaking, if πT > µγ the chiral symmetry is restored.

Introducing a constant, finite magnetic field strength into the fray requires us to

withdraw a couple of steps back to the top-down probe-brane models. In the D7-brane

DBI action 2.93, by switching on a single magnetic component in the brane gauge field-

strength tensor, FMN (keeping BMN = 0), we can modify our metric to include a source

of a magnetic field in the gauge theory. Choosing all components of F , except F12 = B,
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to vanish, the total pullback on the D7 brane (with spacetime metric 3.1) becomes

Gab =



−f(r)r2 0 0 0 0 0 0 0

0 r2 B 0 0 0 0 0

0 −B r2 0 0 0 0 0

0 0 0 r2 0 0 0 0

0 0 0 0 1
f(r)r2

(
1 + (∂ρL)2

)
0 0 0

0 0 0 0 0 ρ2

r2 0 0

0 0 0 0 0 0 ρ2

r2 0

0 0 0 0 0 0 0 ρ2

r2



, (3.54)

where we’ve also added the Schwarzschild factors f(r) governing the thermal effects of

the model. Using 3.54, we can write down the D7-brane Lagrangian as

L ∼ ρ3
√

1 + f(r) (∂ρL)2

√
1 +

B2

r4
. (3.55)

Linearising about small ∂ρL and B/r2, we simplify the Lagrangian to

L − ρ3

(
f(r) (∂ρL)2 +

B2

(ρ2 + L2)2

[
1 +

1

2
f(r) (∂ρL)2

])
. (3.56)

Under the assumption L is small, we can use

(ρ2 + L2)−2
∣∣
L=0

= ρ−4 − 2L2ρ−6 + ... (3.57)

to simplify the Lagrangian further to

L = ρ3

(
f(r) (∂ρL)2 +

B2

ρ4

[
1 +

1

2
f(r) (∂ρL)2 − 2L2

ρ2
+O

(
L4
)])

. (3.58)

Returning to our bottom-up Dynamic AdS/QCD model, we allow for finite magnetic

field effects by the inclusion of the lowest order magnetic terms as derived above (equa-

tion 3.58) but with undetermined coefficients which can be tuned to give different phe-

nomenological behaviour in the gauge theory.
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3.4 A few questions

At this point, I think it is useful to answer some of the questions that may (or may not)

be puzzling the astute reader.

Why have we been matching to QCD in the UV, where QCD is perturbative and thus

weakly coupled?

The premise of the AdS/CFT correspondence in its weak form is that it is a duality

between a weakly coupled string theory and a strongly coupled gauge theory. In the

discussions above, we have often matched the boundary to perturbative QCD. For ex-

ample, the mass dimension of the q̄q operator represented by the scalar L is ∆ = 3 on

the boundary, its value in the weakly-coupled, perturbative limit. Also g5 is determined

by matching the vector-vector correlator at the boundary to that of perturbative QCD.

So in what sense is it at all rigorous to use a weakly coupled string theory and match to

a boundary gauge theory with perturbative coupling? The simple answer is that is not!

In fact, early AdS/QCD models were trialled on the basis that such a duality should

not work but what was the harm in trying. In fact, by some odd quirk of mathematics

(or nature), a weakly coupled QCD theory is remarkably well described by an N = 4

strongly coupled supersymmetric theory as is still present on the boundary of most

AdS/QCD models, including Dynamic AdS/QCD [101–105]. This is in part due to the

anomalous dimensions of q̄q and m (and other source-operator combinations) being the

same in both the weakly-coupled limit of QCD and in the infinitely strongly coupled

N = 4 SYM theories. The fact that in the AdS/QCD models the running causes γ to

increase into the IR is, from the point of the view of the quark content on the boundary,

irrelevant.

Do we still have supersymmetries left over on in our ‘QCD’ theory?

Yes. The metric used in the Dynamic AdS/QCD model and other bottom-up approaches

returns to that of AdS5 in the limit of approaching the boundary. In this regard,

the boundary retains the supersymmetries of the conformal theories from the probe-

D7 top-down models from which they derive. As addressed in the previous question,

it is a remarkable coincidence that weakly coupled QCD is somehow similar to these
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supersymmetric theories in the respect that the bottom-up models match experimental

data very well and in the far-UV QCD is itself conformal with coupling approximately

zero.

We showed that D3-brane stack had a supergravity action akin to that of N = 4

SYM ergo the D3-branes are sat at the boundary of my holographic model, correct?

It is a common misconception that, because the D3-branes share a supergravity YM

action with N = 4 SYM, the D3-branes are still there in the AdS/CFT correspondence.

We showed in section 2.5.2 that, when we take the decoupling limit to arrive at the

AdS/CFT correspondence, the D3-brane stack is irrelevant to the descriptions on either

side of the duality.
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Part Two: Research

83





Chapter 4

HyperScaling Relations in the

Conformal Window

In this chapter and in those that follow, we utilise the Dynamic AdS/QCD model,

outlined in brief in the previous section, to probe the behaviours of asymptotically free

gauge theories akin to QCD.

This chapter focuses on using the model to describe the conformal window [44, 45,

49–55] of SU(Nc) gauge theories with Nf fundamental flavours. Again, it is important to

stipulate that the boundary theory in our holographic approach still retains supersym-

metry and is strongly coupled but its preservation of the perturbative SU(Nc) anomalous

dimensions allow us to have a perturbative SU(Nc) gauge theory on the boundary. For

a theory with quarks in the fundamental representation, asymptotic freedom sets in

when Nf < 11Nc/2. Immediately below that point, at least at large Nc, the two loop

beta function enforces a perturbative infra-red (IR) fixed point [45,46]. The fixed point

behaviour is expected to persist into the non-perturbative regime as Nf is further re-

duced. This behaviour is seen in the two-loop perturbative computation of the running

of the coupling of α and hence γ. We will use that ansatz here to model these theories.

Of course as the fixed point leaves the perturbative regime this becomes just a sensible

‘parametrization’ of the non-perturbative physics.

Below some critical value of the number of flavours, N c
f , the coupling is expected to be

strong enough to trigger spontaneous symmetry breaking by the formation of a quark
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anti-quark condensate (so-called walking theories live just on the symmetry breaking

side of that transition). Above that critical value, chiral symmetry is restored and only

broken explicitly by the introduction of a non-zero quark mass - this is the regime of the

conformal window, see figure 4.1. Holographic models describe the quark condensate

by a scalar in AdS whose mass is related to the mass dimension, ∆, of the field theory

operator via [32, 83, 84] m2 = ∆(∆ − 4). As ∆ falls below 2 (or equivalently γ ≥ 1), a

clear instability sets in as the mass violates the Breitenlohner-Freedman (BF) bound in

AdS5 [100]. Remarkably, the γ = 1 criterion precisely matches that deduced from gap

equation analysis of the same problem [106, 107]. By using the two loop running for γ,

the BF bound violation occurs for Nf & 4Nc.

Figure 4.1: An example of the running in the conformal window. The value of the
coupling at the IR fixed-point is below the critical coupling to trigger SχSB. The scale
Λ1, set by the perturbative one-loop log-running of αs roughly separates the fixed-point
regime from the perturbative regime. Quarks with masses m > Λ1 don’t see the IR
fixed point behaviour whereas as much lighter quarks will be affected by its presence.

We use as our main example an Nc = 3 theory with fundamental quarks (N c
f ' 11.9)

and look at a few discrete values of Nf (12, 13 and 15) which span the conformal window

regime. These examples suffice to explore the qualitative behaviour of observables on

the different running profiles with IR fixed points and are easily extendible to different

Nc. In the massless quark limit, theories like these inside the conformal window flow to a

non-trivial and strongly coupled IR conformal theory. The existence of such theories is of

great theoretical interest and a sizeable lattice community [108–120] is seeking evidence
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for them in numerical simulations. On a lattice, the massless limit can only be obtained

as a fine tuned point in parameter space. Simulations are therefore performed with finite

mass and signals of the presence of, and approach to, the conformal phase are sought.

For this reason a simple model such as Dynamic AdS/QCD, that makes predictions for

this limit, should be helpful in identifying expected behaviours in physical, measurable

quantities as one approaches the fixed point. We will therefore concentrate on studying

the dependence of the quark condensate, meson masses and decay constants as a function

of the quark mass, m.

The condensate 〈q̄q〉 has a leading divergence in the UV of the form mΛ2
UV , where

ΛUV is a UV cutoff scale, as one would expect on dimensional grounds1. In the IR

conformal regime γ is a non-vanishing constant. Here, therefore, the divergence grows

as mΛ2−2γ
UV . This again matches the näıve dimensional analysis — the mass has scaling

dimension 1 + γ and the condensate scaling dimension 3 − γ, therefore we expect this

dependence on the UV cutoff scale. There is also a sub-leading term in the condensate

which grows as m3 ln ΛUV in the UV but changes to m
3−γ
1+γ ln ΛUV in the IR, due to

the fixed point regime with non-vanishing, constant γ. This is again consistent with

dimensional analysis in the IR. These are the hyperscalings relations found in [121].

One of the powers the Dynamic AdS/QCD model is that it reproduces this scaling

behaviour when the condensate is measured.

Changing the precise IR boundary condition on the AdS scalar leaves these power

relations invariant but changes the constant of proportionality between 〈q̄q〉 and m
3−γ
1+γ .

Once this constant is chosen the model allows one to follow the renormalization group

flow of the mass and the condensate. Numerical work lets us look at intermediate regimes

where the quark mass is of order the scale Λ1 (the scale generated by the one-loop beta

function) where the coupling transitions from the perturbative regime (dominated by

the one-loop logarithmic running) in the UV to the non-perturbative fixed point in the

IR2 (see figure 4.1). To analyze the impact of Λ1, we fit to a simple scaling relation of the

1The only scale in the theory is the quark mass, m, and so the remaining dimensions are made up
from the imposed UV cutoff scale ΛUV .

2We take only the one-loop beta-function here because it is this which is concerned about the be-
haviour in the UV. The sign of β0 dictates whether or not we see asymptotic freedom. The two-loop
beta function modifies the behaviour in the IR.
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form 〈q̄q〉 ∼ mb. The exponent b can then be mapped, using the hyperscaling relation,

to an extracted value for γ which we compare to the functional form of γ that we have

input into the model (through the running of αs). In the running regime around Λ1, we

find significant deviations from the input γ, showing that the one-scale mb functional

form breaks down in this regime where the running is fast. Of course, here the second

scale Λ1 will also enter into the scaling relations and so this is as expected. Our analysis

allows us to quantify the deviations.

Most importantly, for comparison to lattice simulations, are computations of physi-

cal observables. We compute the meson spectrum including Mρ,Mπ and Mσ and their

decay constants and display their scalings with m and against each other. When we

compute these dimension 1 quantities, we expect a hyperscaling behaviour for dimen-

sion one objects of the form m
1

1+γ . We again extract γ from each variable and display

variations from the input γ function in the different regimes. The hyperscaling relations

are matched in the deep UV and IR fixed point regimes but there are significant de-

viations in the running regime where Λ1 again enters the physics. These are the main

results of our analysis.

4.1 Dynamic AdS/QCD

Dynamic AdS/QCD [89], as introduced in detail in section 3.3.1, will be briefly recapped

here for convenience. The model maps onto the action of a probe D7 brane in an AdS

geometry expanded to quadratic order [122, 123]. The anomalous dimension of the

quark mass/condensate is encoded through a mass term that depends on the radial AdS

coordinate ρ.

The five dimensional action of our effective holographic theory is

S =

∫
d4x dρTr ρ3

[
1

ρ2 + |X|2
|DX|2

+
∆m2

ρ2
|X|2 +

1

2
F 2
V

]
. (4.1)

The field X describes the quark condensate degree of freedom. Fluctuations in |X|
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around its vacuum configurations will describe the scalar meson. The π fields are the

phase of X,

X = L(ρ) e2iπaTa . (4.2)

fV are vector fields that will describe the vector (V ) mesons. It is possible to include

additional mesonic states through extra holographic fields that describe further QCD

operators. For example, the a-mesons can be described through an axial gauge field

FA. In this chapter, we take a simpler model which suffices to contain enough physical

observables to display the scaling behaviours we are interested in.

We work with the five dimensional metric

ds2 =
dρ2

(ρ2 + |X|2)
+ (ρ2 + |X|2)dx2, (4.3)

which will be used for contractions of the space-time indices. ρ is the holographic

coordinate (ρ = 0 is the IR, ρ→∞ the UV) and |X| = L enters into the effective radial

coordinate in the space, i.e. there is an effective radial coordinate r2 = ρ2 + |X|2. This

is how the quark condensate generates a soft IR wall for the linearized fluctuations that

describe the mesonic states: when L is nonzero, the theory will exclude the deep IR at

r = 0.

The normalizations of X and FV are determined by matching to the gauge theory in

the UV. External currents are associated with the non-normalizable modes of the fields

in AdS. In the UV, we expect |X| ∼ 0 and we can solve the equations of motion for the

scalar, L = KS(ρ)e−iq.x, and vector field, V µ = εµKV (ρ)e−iq.x. Each satisfies the same

equation,

∂ρ[ρ
2∂ρK]− q2

ρ
K = 0 , (4.4)

with the UV solution (ρ→∞) being

Ki = Ni

(
1 +

q2

4ρ2
ln(q2/ρ2)

)
, (i = S, V ), (4.5)

where Ni are normalization constants that are not fixed by the linearized equation of

motion. Substituting these solutions back into the action gives the scalar correlator ΠSS
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and the vector correlator ΠV V . Performing the usual matching to the UV gauge theory

requires us to set

N2
S = N2

V =
NcNf

24π2
. (4.6)

The vacuum structure of the theory can be determined by setting all fields except

|X| = L to zero. We assume that L will have no dependence on the x coordinates. The

action for L is given by

S =

∫
d4x dρ ρ3

[
(∂ρL)2 + ∆m2L

2

ρ2

]
. (4.7)

If ∆m2 = 0 then the scalar, L, describes a dimension 3 operator and a dimension 1

source as is required for it to represent q̄q and the quark mass m. That is, in the UV

the solution for the L equation of motion is L = m + 〈q̄q〉/ρ2. A non-zero ∆m2 allows

us to introduce an anomalous dimension for this operator. If the mass squared of the

scalar violates the BF bound of -4 (∆m2 = −1, γ = 1) then the scalar field L becomes

unstable and the theory enters a chiral symmetry breaking phase.

We will fix the form of ∆m2 using the two loop running of the gauge coupling in

QCD (with fundamental matter) which is given by

µ
dα

dµ
= −b0α2 − b1α3, (4.8)

where

b0 =
1

6π
(11Nc − 2Nf ), (4.9)

and

b1 =
1

24π2

(
34N2

c − 10NcNf − 3
N2
c − 1

Nc
Nf

)
. (4.10)

Asymptotic freedom is present provided Nf < 11Nc/2. There is an IR fixed point with

value

α∗ = −b0/b1 , (4.11)

which rises to infinity at Nf ∼ 2.6Nc.
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The one loop result for the anomalous dimension of the quark mass is

γ1 =
3C2

2π
α, C2 =

(N2
c − 1)

2Nc
. (4.12)

Using the fixed point value α∗, the condition γ = 1 occurs at N c
f ∼ 4Nc (precisely

N c
f = Nc

(
100N2

c−66
25N2

c−15

)
).

We will identify the RG scale µ with the AdS radial parameter r =
√
ρ2 + L2 in our

model. Note it is important that L enters here. If it did not and the scalar mass was

only a function of ρ then, were the mass to violate the BF bound at some ρ, it would

leave the theory unstable however large L grew. Including L means that the creation of

a non-zero but finite L can remove the BF bound violation leading to a stable solution.

Working perturbatively from the AdS result m2 = ∆(∆− 4) we have

∆m2 = −2γ1 = −3(N2
c − 1)

2Ncπ
α , (4.13)

where γ1 is the one-loop perturbative gamma-function. This will then fix the r depen-

dence of the scalar mass through ∆m2 as a function of Nc and Nf .

Again, it is important to stress that using the perturbative result outside the per-

turbative regime is in no sense rigorous but simply a phenomenological parametrization

of the running as a function of µ,Nc, Nf that shows fixed point behaviour. Similarly

the relation between ∆m2 and γ1 is a guess outside of the perturbation regime.

4.2 Scaling behaviour of the quark condensate

We are now ready to study the scaling behaviours of the parameters of the gauge the-

ory. Firstly, we will study the vacuum structure of an SU(3) gauge theory with Nf

fundamental quarks in the conformal window range 12 ≤ Nf ≤ 15. These theories are

conformal when the quarks are massless3 so we will study the theories with a quark mass

which breaks conformality. We will show that the model correctly encodes the running

3In the AdS space this pertains to the vacuum embedding of the scalar L to have the profile L = 0
and so m = 〈q̄q〉 = 0. This is expected since the chiral symmetry is not spontaneously broken in the
conformal window of the gauge theory.
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dimensions of the quark mass and condensate.

The Euler-Lagrange equation for the determination of L, in the case of a constant

∆m2, is

∂ρ[ρ
3∂ρL]− ρ∆m2L = 0 . (4.14)

If ∆m2 depends on L then there is an additional term −ρL2∂L∆m2 in the above equation

of motion. At the level of the equation of motion this is an effective contribution to the

running of the anomalous dimension γ that depends on the gradient of the rate of

running in the gauge theory. At one-loop in the gauge theory there is no such term

depending on the gradient of the rate of running and as such we elect to drop it. We

are then effectively imposing the RG running of ∆m2 only at the level of the equations

of motion, i.e. after the equations of motion have been derived at constant ∆m2. Since

we are interested in theories that run from a trivial UV fixed point to an IR fixed point

the dropped term would only influence the intermediate regime and then only for the

smaller values of Nf where the running is fast. We have checked there is no qualitative

change in the theory in the conformal window by including it.

To find solutions for L(ρ) and express the quark condensate in terms of the bare

mass, one needs to impose a regularity condition in the IR. The top-down D3-D7 system

[86,87,91] has the IR condition ∂ρL(0) = 0 as that condition. However, this issue is more

subtle in this model as we will show. The IR solutions do not satisfy ∂ρL(0) = 0 except

in the conformal massless limit. We believe the reason for this is that the model does not

include the backreaction to the quark flavour’s mass (and condensate). Were the mass’

backreaction to be included, it would generate a small shift in the value of the dilaton at

the scale of the mass as the flavours decouple from the QCD running. We would expect

that variation in the geometry to accommodate a solution with ∂ρL(0) = 0. Rather

than attempt the backreaction, we shall simply use an on-mass shell condition in the IR

to terminate the RG flow. We discuss this issue in detail in the IR and UV.

In the full running theory at large energy scales, the running of the anomalous di-

mension γ is determined by the one loop QCD results. There is then a regime, around

a scale we will call Λ1, where the coupling is sufficiently strong that the two loop con-

tribution to the running of the coupling will become important and at scales somewhat
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below this, the theory will approach an IR fixed point — see figure 4.1. A quark with

large bare mass (� Λ1) will only experience the high energy regime since it will be

integrated from the theory at its mass scale which will be well above Λ1. For quarks

with very small bare mass (� Λ1) their IR physics will be determined by the fixed point

behaviour. It is therefore useful to study these two extreme regimes before looking at

the full theory.

4.2.1 Infrared fixed point behaviour

In the IR of the conformal window α → −b0/b1, γ1 becomes constant and hence ∆m2

is a non-zero constant. ∆m2 must lie in the regime −1 < ∆m2 < 0 for the theory to be

stable and remain conformal in the IR without a dynamical chiral condensate forming.

Let us first, for simplicity, consider the theory that lives at the fixed point at all scales

and so has no running of the coupling (or therefore running of γ).

The solutions of the RG flow equation (7.20) at the fixed point (with ∆m2 = γ∗(γ∗−

2), γ∗ being the fixed point value of the anomalous dimension) are of the form

L =
m∗

ργ∗
+

c∗

ρ2−γ∗ . (4.15)

Here m∗ and c∗ are interpreted as being the operator-source combination for the operator

q̄q but, of course in this theory, they have dimensions 1 + γ∗ and 3− γ∗.

To extract the chiral condensate, we substitute the solution back into the action

(7.14), integrate over ρ upto a cut off ΛUV , and compute 1
Z

dZ
dm∗

∣∣
m∗

. We find (see

Appendix F)

〈q̄q〉∗ = (∆m2+(γ∗)2)
(1−γ∗) m∗Λ2−2γ∗

UV

+ 2(∆m2 + γ∗(2− γ∗))c∗ ln ΛUV

(4.16)

The first term is the expected UV divergence in the condensate in the presence of a

mass - the mass and condensate share the same symmetry properties and the dimension

is then made up with the UV cutoff scale. Since the condensate has dimension 3 − γ∗

and m∗ dimension 1+γ∗, the power of ΛUV is the correct one to match this dimensional

analysis. This is already a sign that the model correctly describes scaling dimensions.
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The second term is, upto log renormalization, a constant times the parameter c∗. There-

fore this term, in the m∗ = 0 limit, implies c∗ is directly proportional to the condensate

〈q̄q〉∗. We will study c∗’s scaling behaviour shortly.

To find solutions for L(ρ) and express c∗ in terms of m∗ one needs to impose a

regularity condition in the IR. The solutions in (4.15) clearly do not satisfy ∂ρL(0) = 0

except in the conformal m∗ = c∗ = 0 limit. As we discussed in the introduction to

this chapter, this is most likely a failure of the model to include the backreaction of the

quark decoupling on the background metric. We will rectify this by choosing a suitable

boundary condition. A sensible first guess for the IR boundary condition is

L(ρ = ρIR) = ρIR, L′(ρ = ρIR) = 0. (4.17)

This IR condition is similar to that from top down models but imposed at the renor-

malization scale where the flow becomes ‘on-mass-shell’. Here we are treating L(ρ) as a

constituent quark mass at each scale ρ. We then find (see Appendix G)

m∗ =

(
γ∗ − 2

2γ∗ − 2

)
ρ1+γ∗

IR (4.18)

and

c∗ =
γ∗

2γ∗ − 2

(
2γ∗ − 2

γ∗ − 2

) 3−γ∗
1+γ∗

(m∗)
3−γ∗
1+γ∗ . (4.19)

This shows analytically that the model obeys the ‘hyperscaling’ relation one would

expect at the conformal fixed point. The condensate has dimension 3−γ∗ and the mass

dimension 1 + γ∗. Since m∗ is the only intrinsic scale, c∗ ∼ (m∗)
3−γ∗
1+γ∗ is ensured. In the

full theory with a running coupling, relations of this form will hold in any regime where

γ∗ is running slowly and with the c and m parameters those appropriate to that energy

regime.

The boundary condition L′(ρ = ρIR) = 0 is not crucial to obtain the hyperscaling

relations since the relative dimensions of m∗ and 〈q̄q〉∗ are fixed in the holographic

model. Instead, the choice of this boundary condition fixes the proportionality constant

between 〈q̄q〉∗ and (m∗)
3−γ∗
1+γ∗ . Given that there is some freedom in this choice of boundary

condition, we will not be predicting this value - for this reason in our numerics we will
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choose a boundary condition to set the proportionality constant to unity in all cases.

That is, we will assume at the IR boundary the solution is of the form

L =
m∗

ργ∗
+

(m∗)
3−γ∗
1+γ∗

ρ2−γ∗ , (4.20)

i.e. 〈q̄q〉∗ = (m∗)
3−γ∗
1+γ∗ , and hence use the boundary conditions

L(ρ)|ρIR = ρIR,

L′(ρ)|ρIR = − γ∗m∗

ργ
∗+1
IR

+ γ∗−2

ρ3−γ∗
IR

(m∗)
3−γ∗
1+γ∗ .

(4.21)

Note here that the value of γ∗ used in the initial condition is that determined by (7.19)

(and the discussion below) evaluated at the scale

µ =
√
ρ2 + L2

∣∣∣
L=ρ=ρIR

=
√

2ρIR. (4.22)

4.2.2 The large quark mass limit

If we now consider asymptotically free theories that lie at α < α∗ in the UV, then the

far-UV running of ∆m2 is controlled by the one-loop perturbative running coupling.

Holographic theories where the L profile lives only at large values of r =
√
L2 + ρ2 will

see only this behaviour, i.e. we can extract the large quark mass behaviour from this

limit. See figure 4.2.

Using ∆m2 = −2γ, and with the one-loop logarithmic running of αs given by αs =

1
β0 ln(ρ/Λ1) , the embedding equation (7.20) becomes

∂ρ[ρ
3∂ρL] +

2kρ

ln
(
ρ

Λ1

)L = 0, (4.23)

where Λ1 is the one-loop running scale and k is a constant which, at the one loop level,

can be shown to take the form k = 3N
2
c−1

Ncπb0
(see Appendix H). The solution to 4.23 has
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Figure 4.2: Profile for L(ρ) living only at scales above Λ1 (i.e. outside the circle of radius
r = Λ1). It knows nothing of the behaviour of the running of the coupling below Λ1 and
so is dominated only by the far-UV running — the logarithmic one-loop running.

the behaviour

L = mUV(
ln
(
ρ

Λ1

))k + cUV
ρ2

(
ln
(
ρ

Λ1

))k
,

≡ m(ρ) + c(ρ)
ρ2 .

(4.24)

To obtain the bare quark mass one simply extracts the non-normalizable term of the

solution at some fixed far-UV scale (we choose ρ = e500 for the numerical work below4)

— this is what we will refer to as mbare in plots that follow.

Applying the simple boundary conditions

L(ρ = ρIR) = ρIR, L′(ρ = ρIR) = 0, (4.25)

gives

mUV = −2cUV
kρ2

IR

(
ln
ρIR
Λ1

)2k+1

, (4.26)

and

cUV = − k

2
(

ln ρIR
Λ1

)4k+1
m3
UV . (4.27)

This shows that cUV ∼ m3
UV in the UV upto a logarithmic renormalization. The model

is again correctly determining the scaling relations between the mass and condensate.

4To approximate the far-UV in the conformal window, a large value of ρ is necessary because the
running is so slow. Ideally we wish to run out to values of ρ whereby γ � γ∗ and for the conformal
window this pushes the cutoff up to high values ρ ∼ e500. In theories where the running is fast, the
far-UV can be approximated with values of ρ ∼ 100 or less.
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We assumed that L′(ρIR) = 0 here so that we could display the scaling behaviours

analytically. In our numerical work, we will use the boundary condition in (4.21) which

sets cUV = m3
UV in the IR for large quark masses also.

4.2.3 Numerical solutions for the full running theory

We have seen that the model correctly describes scaling dimensions in the IR and UV

fixed point regimes. The transition between these fixed points is more model dependent

but also of more interest for lattice simulations where one would be interested in an

estimate of how quickly the IR scaling behaviour is likely to set in. We can see what

results this model gives by numerically solving for the mass and condensate as a function

of RG scale with the full two-loop running implemented.

We first discuss results for Nc = 3 and Nf = 12 as an example. This model lies

close to the lower edge of the conformal window (N c
f < Nf < 11Nc/2). Specifically, it

displays an IR fixed point value for γ of γ∗=0.8 (a value calculated from the one and two

loop QCD beta-functions). We proceed by solving (7.20) subject to the IR boundary

condition (4.21). Then for intermediate values of ρ (between the IR and UV), we fit

L,L′ and L′′ to the functional form

L =
m

ργ
+

c

ρ2−γ (4.28)

to extract an estimate of the running mass, m, condensate, c, and γ. Note here m is a

parameter that in the UV has dimension 3 and displays logarithmic running consistent

with the discussion of (4.24) whilst in the IR it runs to be a source of scaling dimension

1 + γ. This ansatz (equation 4.28) for the fitting is sound in the UV and IR fixed

point regimes and will likely be good locally in slowly running regimes but is necessarily

approximate.

Let us first evaluate the condensate at the deepest IR point (i.e. ρIR) for each value

of quark mass for each flow. We have fixed L′ at this point, assuming that the solution

takes the form in 4.20, therefore in the IR and UV fixed point regimes (i.e. at low and

high quark mass), we expect the numerical solution to match that form precisely. In the

intermediate regime where γ is running, the form in (4.20) is only approximate. The
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Figure 4.3: Plots for the theoryNc = 3 and Nf = 12. [a) top-left] log c against logmbare

[b) top-right] numerical points for γ against logmbare — γ is extracted by assuming

the scaling relation 〈q̄q〉 = m
3−γ
1+γ [c) bottom] the percentage difference between the

extracted form of γ and the input form (solid line in b)). For all of these c is evaluated
at ρIR.

numerical solutions for the quark condensate parameter c against the quark mass are

displayed in figure 4.3a). The plot shows clear UV and IR scaling regimes where c ∼ mb

with a transition period between. Remember that a large bare mass (mbare > Λ1)

comes from a theory that doesn’t see the IR fixed point behaviour. As the bare mass

is decreased, it is able to ‘see’ more and more of the IR-running behaviour such that a

mass mbare � Λ1 is dominated by the fixed-point behaviour.

In figure 4.3b), the value of γ extracted from b is plotted over the input form of γ

as discussed below Eq (7.19). If one assumes that b takes the form b = 3−γ
1+γ , one should

expect to return the input value of γ, since the IR regularity condition is deliberately

chosen so that c = m
3−γ
1+γ and we are evaluating c at the IR boundary. It is clear from

figure 4.3b) that the extracted γ does indeed agree very well with the input form bar

marginal discrepancies in the regime of steepest running. The extent of the deviation

in this intermediate regime can be seen more clearly in figure 4.3c) as a percentage

difference from the input form. Clearly the ansatz (4.15) works well at all scales. The

slight deviation between the input and output γ, which reflects the additional scale Λ1

98



Figure 4.4: Nc = 3: [a) left] γ versus mbare from c for Nf = 13 [b) right] γ versus
mbare from c for Nf = 15

from the running, seems to persist for several decades of energy on either side of the

strongest running regime in this model. Such behaviour, if true of the full theory, would

further complicate lattice studies of such theories by requiring a very large box size to

include both the UV and IR fixed point behaviours.

The behaviour for other values of Nf in the conformal window are very similar in

spirit to the Nf = 12 case we have looked at in detail. To summarize the other cases, we

simply produce the plot of γ extracted from the fit of the form c ∼ m(3−γ)/(1+γ) against

quark mass overlaid on the input γ function from the two loop running. We show

results for the cases Nf = 13 and Nf = 15 in figure 4.4. These plots indicate that the

aforementioned discrepancy in the regime of strongest running becomes increasingly less

dominant at higher values of Nf . This trait encapsulates the idea that as the number of

flavours increases, the fixed point value of γ drops and the rate of running slows causing

the IR fixed point behaviour to extend further away from µ = 0.

4.3 Bound state masses

So far our analysis has consisted of checking that the vacuum configuration of the model

is consistent with näıve scaling arguments. One of the powers of holographic models is

that these relations are inbuilt. We now turn to computing the physical parameters,

the masses of the bound states and their decay constants. These parameters are true

predictions of the model now that the dynamics has been included through the running

scalar mass and the condensate fixed by the IR boundary condition.
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4.3.1 Linearized fluctuations

The scalar q̄q (σ) mesons are described by linearized fluctuations of L about its vacuum

configuration, L0. We look for space-time dependent excitations, ie |X| = L0+δ(ρ)e−iq.x,

q2 = −M2
σ . The equation of motion for δ is, linearizing (7.20),

∂ρ(ρ
3δ′)−∆m2ρδ − ρL0δ

∂∆m2

∂L

∣∣∣
L0

+M2
σR

4 ρ3

(L2
0+ρ2)2 δ = 0 .

(4.29)

We seek solutions with, in the UV, asymptotics of δ = ρ−2 and with ∂ρδ|ρIR = 0 in

the IR, giving a discrete meson spectrum. Note that the distinction between this IR

boundary condition and that of the normalizable mode in (4.21) is negligible in the

spectrum obtained (of order 1 part in 105). Recalling previous discussion of the ∂L∆m2

term, we elect to ignore it since it has negligible effects on the spectrum.

We must normalize δ so that the kinetic term of the σ meson is canonical, i.e.

∫
dρ

ρ3

(ρ2 + L2
0)2

δ2 = 1 . (4.30)

The scalar meson decay constant can be found using the solutions for the normal-

izable and non-normalizable wave functions. We concentrate on the action term (after

integration by parts)

S =

∫
d4x dρ ∂ρ(−ρ3∂ρL)L . (4.31)

We substitute in the normalized solution δ and the external non-normalizable scalar

function KS at q2 = 0 with normalization NS to obtain the dimension one decay constant

fσ as

f2
σ =

∫
dρ∂ρ(−ρ3∂ρδ)KS(q2 = 0) . (4.32)

The vector (ρ) meson spectrum is determined from the normalizable solution of the

equation of motion for the spatial pieces of the vector gauge field Vµ⊥ = εµV (ρ)e−iq.x
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with q2 = −M2. The appropriate equation is

∂ρ
[
ρ3∂ρV

]
+

ρ3M2

(L2
0 + ρ2)2

V = 0 . (4.33)

We again impose ∂ρV |ρIR = 0 in the IR and require in the UV that V ∼ c/ρ2. To fix c

we normalize the wave functions such that the vector meson kinetic term is canonical

∫
dρ

ρ3

(ρ2 + L2
0)2

V 2 = 1 . (4.34)

The vector meson decay constant is given by substituting the solution back into the

action and determining the coupling to an external q2 = 0 vector current with wave

function KV . We have for the dimension one fV

f2
V =

∫
dρ∂ρ

[
−ρ3∂ρV

]
KV (q2 = 0) . (4.35)

The pion mass spectrum is identified by assuming a space-time dependent phase πa(x)

of the AdS-scalar X describing the q̄q degree of freedom, i.e.

X = L(ρ) exp(2iπa(x)T a). (4.36)

The equation of motion of the pion field is then,

∂ρ
(
ρ3L2

0∂ρπ
a
)

+M2
π

ρ3L2
0

(ρ2 + L2
0)2

πa = 0. (4.37)

Again, we impose at the IR boundary that ∂ρπ
a|ρIR = 0.

4.3.2 Bound states of the Nc = 3, Nf = 12 theory

Focusing in detail once more on the Nc = 3, Nf = 12 theory with γ∗ ' 0.8, we use

the formalism outlined above to compute the ρ, π and σ meson masses as a function

of quark mass. Hyperscaling arguments lead to the expectation that in a fixed point

theory the meson mass will scale as m
1/1+γ
bare (in the UV γ = 0 whilst in the IR γ = 0.8).

In figures 4.5a), 4.6a) and 4.7a), we plot the dependence on the ρ-mass, σ-mass and the
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Figure 4.5: Nc = 3, Nf = 12: [a) top-left] ρ-meson mass against quark mass [b)
top-right] extracted value γ versus mbare from ρ-meson mass spectrum. The solid line
shows the holographic input of γ from the two-loop running [c) bottom] the percentage
difference seen between the input γ running and the extracted γ running

Figure 4.6: Nc = 3, Nf = 12:[a) left] σ-meson mass against quark mass [b) right]
Extracted value γ versus mbare from σ-meson mass spectrum. The solid line shows the
holographic input of γ from the two-loop running.

Figure 4.7: Nc = 3, Nf = 12:[a) left] π-meson mass against bare quark mass [b) right]
Extracted value γ versus mbare from π-meson mass spectrum. The solid line shows the
holographic input of γ from the two-loop running.
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Figure 4.8: Nc = 3, Nf = 12: [a) left] ρ-mass versus π-mass [b) right] b versus Mπ,
where we’ve assumed Mρ ∝M b

π

Figure 4.9: Nc = 3, Nf = 12:[a) left] fρ versus the bare quark mass [b) right] the
extracted γ versus mbare

π-mass respectively, against the bare quark mass mbare. Note here we define the bare

quark mass as the running quark mass evaluated at a very high UV scale of ρ = e500. In

figures 4.5b), 4.6b) and 4.7b), we plot γ extracted from the hyperscaling relation, again

as a function of the quark mass, and show the comparison to the input running of γ.

In a similar vein to the quark condensate scaling, we see excellent agreement with the

hyperscaling relations in the UV and IR regimes but a discrepancy in the intermediate

running region. In the central region, the discrepancy again reflects the presence of the

second scale Λ1 in the running coupling. The deviations from the näıve IR and UV fixed

point values seem to persist in the meson masses over a slightly wider running period

than in the input γ. The percentage deviation in γ extracted from the ρ mass and the

initial two-loop γ input is shown in figure 4.5c). In the regime of strongest running, the

disagreement is found to be as much as 47%.

Another interesting plot is to remove the unphysical quark mass and directly plot

Mρ versus Mπ. Here, we naturally expect at a fixed point that Mρ ∝M b
π with b = 1. In

figure 4.8 we plot these masses against each other and the extracted value of b against
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Figure 4.10: Nc = 3, Nf = 12:[a) left] fσ versus the bare quark mass [b) right] the
extracted γ versus mbare

Mπ. We indeed see the expected proportionality between the masses in the fixed point

regimes as well as the deviation in the running regime between these, a telltale sign of

the running scale Λ1 entering the relation. Here the deviations from the fixed point

scaling is only of order 5%.

Finally, we can compute the decay constants fρ and fσ and plot them against the

quark mass, see figures 4.9a) and 4.10a). Once again, we extract γ, assuming a power

law relationship fρ,σ ∝ m
1

1+γ

bare and plot the results in figures 4.9b) and 4.10b). They show

similar behaviour to the meson masses.

4.3.3 Nc = 3, Nf = 13, 15 mesons

For completion, we have also computed the mesonic variables for Nf = 13 and Nf = 15

in the Nc = 3 theory, so that we can test this model across a large span of the conformal

window. We begin, as before, by computing the mass spectra of the ρ- and σ-mesons

as a function of the quark mass and extract the corresponding γ, which can be seen in

figure 4.12a) for Nf = 13 and figure 4.12b) for Nf = 15. A similar behaviour to that

at Nf = 12 is observed with the clear IR and UV scaling regimes of Mρ ∝ m
1

1+γ∗
bare and

Mρ ∝ mbare respectively. We see the deviation from the input γ running in the central

region where the running is strongest. However, as Nf is increased away from N c
f , the

IR fixed point value, γ∗, decreases thus reducing the rate of the running with RG scale

so the deviation in γ becomes less and less. It is most evident for the case Nf = 15 in

figure 4.12b), that not only does the discrepancy between the input γ and the extracted

γ become less pronounced with increased Nf (at most only ∼ 4.8% difference compared
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Figure 4.11: The running of αs forNf = 12 switches drastically between the perturbative
one-loop running in the UV to the fixed point behaviour in the IR around Λ1. The profile
for Nf = 15 is a lot smoother, pushing the conformal behaviour further out and blurring
the two (IR and UV) regimes.

to 47% for Nf = 12), but that the conformal IR fixed point behaviour gets ‘pushed’

further out, slowly (over many aeons of energy scale) blurring the drastic change between

fixed point and perturbative one-loop behaviours. As such, the importance of the UV

scale Λ1 is masked and suppressed. To illustrate this, figure 4.11 shows the difference

in runnings for Nf = 12 and Nf = 15.

Next we turn again to plots of Mρ versus Mπ which remove the unphysical mass

parameter mbare, see figures 4.13a) and 4.13c). In each of the cases, Nf = 13 and

Nf = 15, the linear relationship Mρ ∝ Mπ, expected in the IR and UV regions, is

clearly observed and only by examining the exponent, b, of an assumed Mρ ∝ M b
π

relationship do we notice the discrepancy attributed to the additional running scale Λ1;

see figures 4.13b) and 4.13d). Once more we observe that an increase in the number

of flavours leads to an extended IR fixed point region and a reduction in the rate of

running of the anomalous dimension with RG scale. Figure 4.13d), showing b versus Mπ

at Nf = 15, provides a prime example of such an observation - the greatest difference

between the extracted value of b and the linear behaviour (b = 1) is only of the order of

0.03%.
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Figure 4.12: Nc = 3: [a) left] γ extracted from Mρ against the bare quark mass at
Nf = 13, Nc = 3 [b) right] The same for Nf = 15.

Figure 4.13: Nc = 3: [a) top-left] Mρ versus Mπ for Nf = 13 [b) top-right] extracted γ
for Nf = 13 [c) bottom-left] Mρ versus Mπ for Nf = 15 [d) bottom-right] extracted
γ for Nf = 15
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Chapter 5

Meson Spectra of Asymptotically

Free Gauge Theories

Asymptotically free gauge theories are notoriously difficult to study since they run to

strong coupling in the infrared. Computing the bound state spectrum of theories such

as QCD is therefore very hard. First-principle lattice calculations are possible but very

numerically expensive and are typically guided by the answers observed in nature. It is

hard to easily explore the range of behaviour across the full space of asymptotically free

theories. As we have seen throughout this work, the holographic description of large Nc

N=4 gauge theory [32,83,84] has raised the prospect of a dual gravitational picture for

these theories in which the spectrum might be computed in a purely classical theory.

Top-down attempts [86,87,91,97,124] to rigorously find a gravity dual originating from

ten-dimensional string theory are complicated by the need to find a brane construction

that decouples all unwanted super-partners, and also by the challenge of finding the

appropriate gravitational background for embedding those branes. In any case, when

the gauge theory is weakly coupled, such as in the ultraviolet, the gravitational theory

will itself become strongly coupled. Bottom-up approaches to holographic modelling

[82, 88, 89] have taken broad brushstroke ideas from the AdS/CFT correspondence and

attempted to model the mesonic and glueball degrees of freedom. Basic AdS/QCD

models appear to work reasonably well, even at the quantitative 10% level or better. In

this section, we will firstly provide further support for the success of an existing top-
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down model and secondly, we present the bottom-up Dynamic AdS/QCD analysis for a

large range of different gauge theories.

The focus of this chapter will be the how the meson spectra varies with Nc, Nf and

the matter representation, R. We will explore all representations which have asymp-

totically free solutions for Nc, Nf ≥ 2, i.e. fundamental, adjoint and the two-index

representations. Of particular interest will be how the meson spectrum alters as one

approaches walking theories. Walking theories are expected to have a quark condensate

which is enhanced in the UV. In these theories, there are two scales which dominate

the running; the scale Λ1 which characterises the transition between the perturbative

logarithmic running in the UV and the slow walking regime in the IR (roughly the scale

generated by the one-loop beta function), and the scale Λχ where the running trips the

critical value to break chiral symmetry (where γ = γχ). The UV condensate is then

given by the dimension 3 − γχ IR condensate ∝ Λ3−γχ
χ with the dimensions made up

from the remaining UV scale,

〈q̄q〉UV ∝ Λ3−γχ
χ Λγ

χ

1 .

Since γχ ∼ 1, it follows that 〈q̄q〉UV = Λ2
χΛ1. As the walking theory becomes more

dominant (i.e. as Nf increases at fixed Nc and representation) the scale Λ1 gets pushed

further into the UV and so the condensate becomes enhanced. This enhancement of

the condensate is responsible for the subsequent enhancement of the ρ mass and the

π mass to a lesser degree. A secondary effect of the enhancement of the condensate is

the suppression of the σ mass [121, 125–135]. As the condensate (i.e. the vev of q̄q)

is pushed out to high scales, the effective q̄q-potential flattens in the radial direction

characterised by the σ-mass, see figure 5.1. As such, the σ-mass becomes light. Of

course, this coincides with the transition that the σ−meson becomes massless when the

chiral symmetry is restored in the conformal window. We observe all of these phenomena

in our model.
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Figure 5.1: As the UV scale Λ1 (associated to the one-loop running) gets pushed out
as walking dominates, the condensate becomes enhanced and stretched the shape of
the effective potential. For large walking regimes the potential radial direction flattens
causing the sigma-mode to become light. This is in agreement with the walking region
enlarging as Nf increases towards the point where chiral symmetry is regained and the
sigma-mode becomes massless.

5.1 A top-down model

An early holographic description of QCD [97] was provided by placing D7-brane probes

in the dilaton flow geometry of Constable and Myers [96]. D3-D7 strings introduce

quenched quark degrees of freedom. The Constable-Myers deformation of AdS5×S5 is

a very simple description of a gauge theory with a running coupling that breaks the

N = 4 supersymmetry completely. The non-trivial dilaton profile is dual to that run-

ning coupling and has an IR pole which is ill-understood. In practice, the geometry

describes a gravity dual of a soft-wall since the singularity is repulsive to probe branes.

The D7 probes bend away from the singularity and asymptotically the embedding de-

scribes a dynamically generated quark condensate at zero quark mass. In [91], the light

meson spectrum was computed and moreover, the Mρ versus M2
π plot was compared

to quenched lattice data [136]. We update these computations in figure 5.2. The fit is

remarkably good. This had seemed very surprising since the gauge theory apparently

lies close to infinitely strongly coupled N = 4 gauge theory with all the associated

super-partners and has no asymptotic freedom. In this section, we return to this model

and analyse it in the spirit of [122] to shed some light on the success at describing the
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Figure 5.2: Plots of Mρ against M2
π - in each case the points are normalized by Mρ

at Mπ = 0 to set the non-perturbative scale Λ. As shown in the key, the plot shows
the data for quenched lattice computations taken from [136] (and linearly fitted to find
Mρ at Mπ = 0); the Constable Myers top down model; and the Dynamic AdS/QCD
predictions.

QCD spectrum.

5.1.1 Constable-Myers geometry: A recapitulation

Here we recap the Constable-Myers dilaton flow as described fully in section 5.1. The

gravity background of Constable and Myers [96] has the geometry

ds2 = H−1/2

(
w4 + b4

w4 − b4

)δ/4 3∑
j=0

dx2
j +H1/2

(
w4 + b4

w4 − b4

)(2−δ)/4
w4 − b4

w4

6∑
i=1

dw2
i , (5.1)

where b is the scale of the geometry that determines the size of the deformation (δ =

R4/(2b4) with R the AdS radius) and

H =

(
w4 + b4

w4 − b4

)δ
− 1 , w2 =

6∑
i=1

wi
2 . (5.2)

In this coordinate system, the dilaton and four-form are, with ∆2 + δ2 = 10,

e2Φ = e2Φ0

(
w4 + b4

w4 − b4

)∆

, C(4) = −1

4
H−1dt ∧ dx ∧ dy ∧ dz . (5.3)
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This geometry returns to AdS5 × S5 in the UV as may be seen by explicitly expanding

at large radial coordinate w.

To add quarks [97] we will use an embedded probe D7-brane. The D7-brane will be

embedded with world-volume coordinates identified with x0,1,2,3 and w1,2,3,4. Transverse

fluctuations will be parameterized by w5 and w6 (or L and φ in polar coordinates) - it

is convenient to define a coordinate ρ such that
∑4

i=1 dw
2
i = dρ2 + ρ2dΩ2

3 and the radial

coordinate is given by w2 = ρ2 + w5
2 + w6

2 = ρ2 + L2.

The Dirac-Born-Infeld action of the D7-brane probe in the Constable-Myers back-

ground takes the form

SD7 = −T7R
4

∫
d8ξ ε3 e

φG(ρ, L)
(

1 + gabgLL∂aL∂bL+ gabgφφ∂aφ∂bφ+ 2πα′F ab
)1/2

,

(5.4)

where

G = ρ3 ((ρ2 + L2)2 + b4)((ρ2 + L2)2 − b4)

(ρ2 + L2)4
.

Here we have rescaled w and b in units of R, so that factors of R only occur as an overall

factor on the embedding Lagrangian.

5.1.2 Analysis

From this action, we derive the corresponding equation of motion. We look for classical

solutions of the form L(ρ), φ = 0. Numerically, we shoot from a regular boundary

condition in the IR (L′ = 0) and find solutions with the asymptotic behaviour L ∼

m + c/ρ2. These coefficients are then identified with the quark mass and condensate

〈ψ̄ψ〉 respectively (formally c is only the unique contribution to the condensate in zero

mass limit [137]), in agreement with the usual AdS/CFT dictionary obtained from the

asymptotic boundary behaviour.

Mesonic states are identified by looking at linearized fluctuations about the back-

ground embedding. Fluctuations in φ correspond to the pion (since it parameterises the

angular fluctuations) and fluctuations in the worldvolume gauge field correspond to the

ρ meson. In each case, one seeks solutions of the form f(ρ)eik.x, k2 = −M2 with the
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mass states being picked out by the condition that f(ρ) is regular.

figure5.2 shows the first example of the plots we will be producing in this chapter: it

shows the ρ meson mass as a function of the pion mass squared. Note that in any given

theory, we must fix the strong coupling scale Λ. Here and throughout this chapter, we

choose to do this by setting the ρ mass at Mπ = 0 (ie when the quark mass is zero) to be

the same in all theories, and we express all physical quantities in units of that fixed mass.

The figure shows the results from the Constable-Myers model. We also display quenched

lattice results for the plot in theories with gauge group SU(3), SU(5) and SU(7) (data

taken from [136]). It is important to note that in order to place the lattice data on

the plot we have taken the two data points at lowest Mπ and linearly extrapolated (to

Mπ = 0) to find the value of Mρ at Mπ = 0. This is somewhat näıve and we will argue

later that this maybe puts the points a little high in the plane. Conservatively, we will

use the spread of the lattice data across the different SU(Nc) theories as reflective of

the systematic errors in the lattice simulations. The remarkable thing is the lack of

dependence on Nc in the lattice data and the match of the holographic model to this

data. The aim of this section is to identify why there is such a close match given the

large deviations in the holographic dual that includes different adjoint particle content

and UV behaviour.

Following [122], we argue that the key element for the quark physics in the top-down

model is the running of the anomalous dimension γ with the renormalization scale.

We show that this running is very similar to that in QCD, especially in the regime

where γ ' 1, the point at which the BF bound-violating instability sets in causing

chiral symmetry breaking. To study this instability, we look for when the flat chirally

symmetric L = 0 embedding becomes unstable. We simply take our DBI action, which

up to a multiplicative constant, we may write as

SD7 =

∫
dρλ(ρ, L)ρ3

√
1 + (∂ρL)2, (5.5)

where λ(ρ, L) = ρ−3eφG(ρ, L) and r =
√
ρ2 + L2, and expand around L = L′ = 0 to
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quadratic order

SD7 =
∫
dρ ρ3

(
λ|L=0 + ∂λ

∂L2

∣∣
L=0

L2
)(

1 + 1
2 (∂ρL)2

)
,

=
∫
dρ ρ3

(
1
2 λ|L=0 (∂ρL)2 + ∂L2λ|L=0 L

2
)
.

(5.6)

In order to ensure that the kinetic term in our Lagrangian is canonical, we perform

a coordinate transformation on ρ,

λ(ρ)ρ3 ∂

∂ρ
≡ ρ̃3 ∂

∂ρ̃
, (5.7)

that is,

ρ̃ =

√
1

2

1∫∞
ρ

1
λρ3dρ

. (5.8)

We may rewrite our action in terms of the ρ̃-variable. Along with writing L(ρ) =

ρ̃ φ(ρ̃), we obtain

SD7 =

∫
dρ̃

1

2
ρ̃3

(
ρ̃2(∂ρ̃φ)2 + 3φ2 + λ

∂λ

∂ρ

∣∣∣∣
L=0

ρ5

ρ̃4
φ2

)
. (5.9)

The first two terms in the action describe a canonical m2 = −3 scalar in AdS5,

whereas the remaining term gives a ρ-dependent mass to the scalar field in AdS5. We

find an overall mass squared

m2 = −3− δm2, δm2 ≡ − λ∂λ
∂ρ

∣∣∣∣
L=0

ρ5

ρ̃4
. (5.10)

Using the standard scalar mass/operator dimension relation of the AdS/CFT dictionary,

m2 = ∆(∆− 4), but now assuming the mass dimension of the qq̄-operator to be 3− γ,

where γ is the running anomalous dimension of the gauge theory quark mass, we obtain

the relation

m2 = −3− 2γ + γ2. (5.11)

Thus we associate δm2 = −2γ + γ2, and are thus able to extract a running anomalous

dimension in the Constable-Myers background.
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The key point to note is that the only way that the background geometry and running

dilaton enters into the equation for the embedding is through the running of γ. The

background D7 embedding is then the key ingredient for the computation of linearized

fluctuations that determine the mesonic masses. Effectively, the origin of the running of

γ is lost and so questions about whether the background has too many superpartners of

the gauge fields, or whether the running coupling is correctly that of QCD in the UV,

and so forth become subsumed into simply asking whether γ is close to that of QCD.

In figure 5.3, we plot the RG scale dependence of the anomalous dimension γ ex-

tracted from the Constable-Myers model and the one loop running of large Nc quenched

QCD theory. We have matched the strong-coupling scale of the two theories by assum-

ing that they each take the value γ = 1 at the same scale. Setting the AdS radius R to

one, we identify the RG scale and the radial coordinate by µ = ln ρ (i.e. we are arbi-

trarily choosing to set this relation by matching to the calculation of the physical RG

scale in the quenched QCD theory). This is the scale where chiral symmetry breaking

is triggered, in the holographic model by the BF bound violation. From the figure it is

immediately obvious that the scale dependence of the anomalous dimension γ is similar

in both cases, and the gradient of γ is almost the same near γ = 1. Deviations in the

UV are present but are mild. They occur in the regime where the BF bound is not

violated in the holographic model.

This close matching of the scale dependence of the anomalous dimension is, we

believe, the reason for the success of the holographic model. It is worth pointing out

that the reason that the holographic description and QCD match in the UV is somewhat

artificial. The UV of the Constable-Myers theory is infinitely strongly coupled N = 4

super Yang-Mills theory, yet the theory’s large amount of supersymmetry preserves the

perturbative dimension of the quark operator, i.e. γ = 0. In QCD, the UV result γ = 0

simply follows from weak coupling. This coincidence has long been behind the successes

of AdS/QCD models.

Given that the key ingredient to describe the mesonic spectrum is simply the running

of γ, it seems an obvious step to do away with the background construction of a geometry

that mimics QCD, since there is no top-down holographic construction of real QCD, and
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Figure 5.3: A plot of the anomalous dimension γ in the top-down Constable-Myers
model. It is compared to QCD by using the one-loop perturbative result for the running
coupling in large Nc Yang-Mills theory (µdα/dµ = −11Ncα

2/6π) as input for calculating
the anomalous dimension γ (γ = 3Ncα(µ)/4π). We set the scale at which γ = 1 to be
equal in each case.

to simply use the assumed form of γ as an input in the DBI action. This is essentially

the starting point for the bottom-up model Dynamic AdS/QCD [89], which we will now

move to using.

5.2 Dynamic AdS/QCD

We now turn to the bottom-up Dynamic AdS/QCD model. As we have encountered,

the model is just the linearized DBI action of the D3/probe-D7 system, but with an

arbitrary running for γ. Using the standard AdS relations, the running can be translated

into a radially dependent mass squared for the scalar describing the condensate. The

model then makes predictions for the spectrum of the theory. The Dynamic AdS/QCD

model allows us to explore the space of gauge theories as a function of Nc, Nf and the

representation of the quarks through the input running of the gauge theory γ-function.

In this chapter, we will again concentrate on calculating and analysing the spectrum

of masses pertaining to the ρ meson and the pions, as well as the σ meson ( i.e. the

singlet q̄q bound state with vanishing quantum numbers, also identified with the f0) and

the lightest glueball. For the glueball, only qualitative statements are possible since the

Dynamic AdS/QCD model concentrates on the quark sector.
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5.2.1 The running of γ

For the analysis that follows, we use the two loop running of the gauge coupling in QCD

with Nf flavours transforming under a representation R. This takes the form

µ
dα

dµ
= −b0α2 − b1α3,

where

b0 =
1

6π

(
11C2(G)− 4NfC2(R)

dim(R)

dim(G)

)
,

and

b1 =
1

8π2

(
34

3
[C2(G)]2 −

[
20

3
C2(G)C2(R) + 4 [C2(R)]2

]
Nf

dim(R)

dim(G)

)
.

Again, denoting the adjoint representation as G, its respective Casimir is given by

C2(G) = Nc. Table 2.1 in section 2.2.4 shows all the distinguishing quantities associated

to each of the representations we consider: the dimension of the representation, C2(R),

and the minimum number of flavours required for loss of asymptotic freedom, Nmax
f .

The one loop result for the anomalous dimension of the quark mass is

γ1(µ;R) =
3C2(R)

2π
α(µ;R). (5.12)

Working perturbatively from the AdS result m2 = ∆(∆− 4) we have

∆m2 = −2γ1(µ;R) = −3C2(R)

π
α(µ;R). (5.13)

This will then fix the r dependence of the scalar mass through ∆m2 as a function of Nc

and Nf for each R. Note that if one were to attempt such a matching beyond two loop

order the perturbative result would become gauge dependent. We hope that the lower

order gauge independent results provide sensible insight into the running in the theory.

5.2.2 Linearized fluctuations

We now turn to computing the physical parameters, the masses of the (ρ, σ, π)-mesons

and the scalar glueball, for each viable representation. These parameters are true pre-
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dictions of the model which, just as in the gauge theories, depend only on the choice of

the quark mass, Nc, Nf and the scale Λ.

The isoscalar q̄q (σ) mesons are described by linearized fluctuations of L about its

vacuum configuration, L0. We look for space-time dependent excitations, ie |X| =

L0 + δ(ρ)eiq.x, q2 = −M2
σ . The equation of motion for δ is, linearizing (7.20),

∂ρ(ρ
3δ′)−∆m2ρδ − ρL0δ

∂∆m2

∂L

∣∣∣∣
L0

+M2
σR

4 ρ3

(L2
0 + ρ2)2

δ = 0 . (5.14)

We seek solutions with, in the UV, asymptotics of δ = ρ−2 and with ∂ρδ|L0 = 0 in the

IR, giving a discrete meson spectrum.

The isovector (ρ) meson spectrum is determined from the normalizable solution of

the equation of motion for the spatial pieces of the vector gauge field Vµ⊥ = εµV (ρ)eiq.x

with q2 = −M2. The appropriate equation is

∂ρ
[
ρ3∂ρV

]
+

ρ3M2

(L2
0 + ρ2)2

V = 0 . (5.15)

We again impose ∂ρV |L0 = 0 in the IR and require in the UV that V ∼ c/ρ2.

The pion mass spectrum is identified by assuming a space-time dependent phase

πa(x) of the AdS-scalarX describing the q̄q degree of freedom, i.eX = L(ρ) exp(2iπa(x)T a).

The equation of motion of the pion field is then,

∂ρ
(
ρ3L2

0∂ρπ
a
)

+M2
π

ρ3L2
0

(ρ2 + L2
0)2

πa = 0. (5.16)

Again, we impose at the IR boundary that ∂ρπ
a|L0 = 0.

5.2.3 Meson spectra results

The results presented in this section will be in the style of ‘Edinburgh’ plots [138] used by

lattice gauge theorists. These plots display only physical observables, such as the mass

of the ρ as a function of the pion mass, in order to remove scheme-dependent quantities

such as the bare quark mass. Firstly, we have again fixed the strong coupling scale Λ by

ensuring that the ρ mass at Mπ = 0 is the same for each choice of representation, Nf
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Figure 5.4: A Log-Log plot of Mρ versus M2
π - the plot displays the quenched lattice

data from [136], the top-down Constable-Myers model of section 2 and the quenched
results for varying Nc in Dynamic AdS/QCD from section 3. The solid line corresponds
to Mρ = Mπ.

and Nc. We express all quantities in units of that scale. It follows therefore that within

our plots, the only input parameters are the quark mass, Nf and Nc. We will explore a

range of gauge theories with different quark matter.

Quenched fundamental representation

To test the model, we first compute Mρ and Mπ in the model with quenched fundamental

quarks. This means that we do not include the quark contribution in the running of

the gauge coupling — effectively a pure YM theory. We compute the meson masses

as functions of Nc to compare with the previously discussed quenched lattice data of

Fig 5.2. The results are shown alongside the lattice data in Fig 5.2. We note that all

choices of SU(Nc) give essentially the same curve in this plot. This curve lies below, but

within 5% of the prediction of the Constable-Myers top-down model. The results from

the Dynamic AdS/QCD model in this plot display some curvature over the range of

the lattice data, suggesting that the linear extrapolation used to place the lattice data

on the plot could be incorrect. Moreover, the expected lattice data point for Mρ0 (i.e.

Mρ at Mπ = 0) should be greater than that predicted by the linear fit, meaning the

lattice points should be reduced by up to 5%. Indeed in [136], evidence is presented for
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a non-linear fit already in the lattice data. Given the expectation of some systematic

error on the lattice data (see [136]) the match between all these models is remarkable

and lends considerable support to further predictions of the Dynamic AdS/QCD model.

To emphasise how well the results match, we also plot the same Dynamic AdS/QCD

and lattice data on a Log-Log plot in Fig 5.4. The figure also displays the line Mρ = Mπ,

which would be the one appropriate to a very weakly coupled (i.e. perturbative) theory.

In such a theory, the bare and constituent quark masses are approximate and the mesons

masses become just twice the bare quark mass. This line is expected to be approached

at large Mπ, i.e. in the limit of large quark mass since a heavy quark decouples in

the IR and knows only of the UV perturbative running. Clearly, the very different

computations for these theories agree rather well. Whilst both the holographic model’s

curves are compatible with the lattice data at the level of the errors due to the coarse

lattice spacing taken in [136], the top-down Constable Myers model does fit the data

mildly better (the Mρ points are raised by upto 2% or so), including in the large Mπ

limit. This may be reasoned by the profile of γ in the Constable-Myers model falling to

zero more quickly than in the quenched-QCD, and so the holographic description of the

UV is probably closer to perturbative QCD where γ = 0.

Fundamental representation

The quenched results display very little dependence on Nc. The reason is that the

running of γ at the point γ = 1 is very fast in all these cases so the dynamics comes out

very similar. To see some Nc dependence we should unquench the theory and include a

sufficient number of quarks to affect the running. For example, in Fig 5.5, we show the

Nc variation in the Mρ −M2
π plane of a theory with Nf = 8. The dependence on Nc

is again not large but there is a clear distinction between theories at low Nc and those

at larger values which are effectively quenched. This further emphasises the success of

the holographic model in lying so close to the quenched lattice data. The fact that the

Dynamic AdS/QCD spectra of the quenched SU(Nc) theories of the previous subsection

were all similar could have easily been misinterpreted as being ignorant of Nc and Nf .

However, here we see that is clearly not the case.
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Figure 5.5: Mρ versus M2
π in SU(Nc) theory with NF = 8 fundamental quarks - the

lower plot shows the same in Log Log format. The solid line corresponds to Mρ = Mπ.
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Figure 5.6: SU(3) gauge theory with Nf fundamental quarks showing the approach
to the conformal window at Nf = 12. The lower plot is a Log Log version of the top
plot. The solid line corresponds to Mρ = Mπ. The plots also show lattice data for the
quenched theory [136] and unquenched Nf = 3 theory [139–141].
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We can now turn to study the question of whether there are choices of Nf and Nc that

provide spectra very different from QCD-like theories. As is well known, the theories

that are most unlike QCD are those on the edge of the conformal window exhibiting

walking behaviours. To demonstrate the impact of this on the spectrum, we plot the

Nf dependence of the SU(3) theory in the Mρ - M2
π plane in figure 5.6. The ρ mass is

substantially enhanced relative to the π mass at larger Nf . The usual expectation is that

the ρ mass will be proportional to 〈q̄q〉1/3 whilst the π mass will scale as m
1/2
q 〈q̄q〉1/6.

An enhancement of the condensate, as occurs in these walking theories, would therefore

raise Mρ at any fixed Mπ as is seen in figure 5.6. Generically for different Nc we observe

the same behaviour as Nf/Nc → 4.

This is a good point to compare our Dynamic AdS/QCD theory to unquenched

lattice data [139–141]. We have seen that the effect of including more flavours within

our model is that the value of Mρ rises at fixed Mπ. This suggests that the effect of

quark loops is to raise Mρ. We display lattice data in the top plot of figure 5.6 — we

show both the quenched results previously discussed for SU(3) gauge theory, but now

also unquenched data for the same theory with Nf = 3, taken from [139–141]. The three

sets of lattice data show some spread in the low Mπ region, but we indeed observe a

shift upwards in Mρ by 20% or so. In fact, the fit to the Dynamic AdS/QCD model for

Nf = 3 is a little poorer than the fit to the quenched lattice data. The lattice points here

are more similar to the Nf = 5 version of Dynamic AdS/QCD (ignoring the uncertainty

provided in the spread of lattice results). This is most plausibly explained as a failure

of the very näıve perturbative based running ansatz we have used as an input into the

model. The key measure is the gradient of γ at the scale where γ = 1 (the scale of chiral

symmetry breaking/BF-bound violation). For Nf = 3, γ′ = −4.25, whereas at Nf = 5

the value of γ is γ′ = −3.70. This implies that the shift in the spectrum is caused

by a 15% shift in this gradient. Clearly, the perturbative ansatz cannot be trusted at

this level of accuracy. It is not surprising that the precise features of the spectrum are

dependent on the choice of assumed running for γ. It is encouraging that the Dynamic

AdS/QCD model correctly gets the gross features correct, such as the rise in Mρ in

theories with more quark loops. This gives us confidence that the holographic model
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can be useful in understanding broad trends in the spectrum as quark content of the

theory is changed.

As we have discussed, an additional expectation in a walking theory is that the σ

mode q̄q bound state should become light as one approaches the edge of the conformal

window from below. To observe this, let us now turn to computing the σ meson mass.

We will again pick Nc = 3 as an example and show the Nf dependence of Mσ against

M2
π in figure 5.7. The Nf = 7 curve is perhaps what one would have predicted for QCD

- at large quark mass the σ and π masses become degenerate. Heavy quarks only see the

perturbative UV running and aren’t witness to the chiral symmetry breaking scale in

the IR. As such, they see an effective restoration of the chiral symmetry and the π and

σ mesons become degenerate parity doublets. On the other hand, at low quark mass, as

the π mass tends to zero, the σ mass saturates to a non-zero value. If the sigma-mass

saturates to a value less than that of the ρ mass, one might then identify this state

with the f0(500), lighter than the 770MeV ρ, as observed in experiment. However, for

Nf = 3 the holographic model predicts that the lightest σ is heavier than the ρ and it

looks more sensible to match it to the f0(980) which it matches at the 10% level. An

explanation of the origin of the lighter f0 would then be needed. In fact, the literature

has considerable speculation about this state which might be a molecule or some other

exotic state (see for example [142]). We can not resolve this issue here. However, the

main use of our model is to look at significant trends in the behaviour of the spectra as

we adjust the running of γ. Here our plot very strongly supports the speculation that

this σ mode becomes light as one approaches the walking regime and the edge of the

conformal window at Nf = 12.

Other representations

As we have stressed above, Dynamic AdS/QCD can accommodate a description of any

arbitrary quark representation. The flavour representation enters through the running

of the anomalous dimension γ (for which we continue to use the two loop perturbative

result). In this section, we provide some plots showing some exploration of the larger

space of theories.

123



Figure 5.7: Mσ versus M2
π in SU(3) gauge theory with varying Nf fundamental quarks.

The lower plot is a Log Log version of the top plot. The solid line corresponds to
Mσ = Mπ.
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As a first example, in figures 5.8 and 5.9 we show results for different representations

for Nc = 3. The top plot shows the results in the Mρ −M2
π plane for the theory with

a single quark in the fundamental representation (here the same as the two-index anti-

symmetric representation), the adjoint representation, and the two-index symmetric

representation. Increasing the size of the representation makes a bigger impact on the

running of the coupling and moves the curve away from QCD-like towards the walking

regime. In the lower two plots we show the Nf dependence for the adjoint and two-index

symmetric representation (here we allow Nf = 1.5 since by Nf = 2 chiral symmetry

breaking is lost). Adding flavours makes the theory more walking in behaviour.

We can also explore the Nc dependence of these theories at fixed Nf . For example, in

figure 5.10 we vary Nc with two, two-index symmetric representation quarks. Increasing

Nc moves the theory closer to the quenched limit and a more QCD-like spectrum. Within

this space of theories, we do not find any additional structure beyond the dependence

on the rate of running at the point γ = 1.

One final interesting case is that of two-index anti-symmetric representation quarks.

As one moves to higher Nc at fixed Nf the two-loop IR fixed point value of the coupling

actually decreases due to the nature of the beta function’s dependence on Nc. For these

theories increasing Nc moves one towards the walking regime. We show this in figure

5.11.

The walking regimes of these theories also display a light σ meson. We show this

trend for a variety of sequences of theories moving towards the walking regime in figures

5.12 and 5.13. The trends in the spectrum as one approaches the walking regime across

a wide range of theories are very similar.
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Figure 5.8: A Log-Log plot in the Mρ-M
2
π plane for SU(3) gauge theory. The plot shows

the results in models with Nf = 1 but with the fermions in the fundamental, adjoint
and 2-index symmetric representations. The middle figure shows the Nf dependence in
the case with adjoint fermions and the bottom plot the same for the 2-index symmetric
representation. The solid line corresponds to Mσ = Mπ.
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Figure 5.9: A Log-Log plot in the Mρ-M
2
π plane for SU(3) gauge theory. The top plot

shows the Nf dependence in the case with adjoint fermions and the bottom plot the
same for the 2-index symmetric representation. The solid line corresponds to Mσ = Mπ.

5.2.4 The scalar glueball

Another state that one might be interested in studying as part of the lightest spectra

of these theories is the lightest glueball state (see [56,121,132–135] for some discussions

in preliminary lattice simulations). AdS/QCD is not suited to study this state since

the model is fundamentally a description of the quark sector. The glueball could be

included as a separate scalar in AdS but one would then need to correctly encode its

dynamics to describe the gauge theory’s vacuum (TrF 2) condensate and make a guess
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Figure 5.10: A Log-Log plot in the Mρ-M
2
π plane for SU(Nc) gauge theory with Nf = 2

2-index symmetric representation quarks. The solid line corresponds to Mσ = Mπ.

Figure 5.11: A Log-Log plot in the Mρ-M
2
π plane for SU(Nc) gauge theory with Nf = 3

2-index anti-symmetric representation quarks. The solid line corresponds to Mσ = Mπ.
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Figure 5.12: Log-Log plots in the Mσ-M2
π plane. The top plot shows the results in

SU(3) gauge theory with adjoint quarks. The bottom plot is for SU(Nc) gauge theory
with Nf = 2 2-index symmetric representation quarks. The solid line corresponds to
Mσ = Mπ.
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Figure 5.13: Log-Log plots in the Mσ-M2
π plane. Plot shows the spectra for SU(Nc)

gauge theory with Nf = 3 2-index anti-symmetric representation quarks. The solid line
corresponds to Mσ = Mπ.

as to how it couples, in the scalar potential, to the quark condensate field X. There

are a lot of unknown parameters that describe the mixing of the σ and glueball state.

Rather than attempt this here, we will instead make a back of the envelope computation

for the glueball state.

In pure Yang Mills, the glueball is expected to be between 5 and 10 times the one

loop strong coupling scale, figures originating from lattice data [143]. In the Dynamic

AdS/QCD model, we have assumed the two-loop running for the gauge coupling to

obtain γ and then the IR quark mass gap, the value of L at the on-mass shell condition,

is computed. A simple thing to do is to decouple the quarks at that scale Lon−mass

and use the one loop pure Yang Mills coupling into the IR. We compute the position of

the IR pole and multiply by 8 to estimate the glueball mass. This will at least give a

ball-park behaviour although mixing is explicitly not addressed.

In figure 5.14, we display the spectra of the Nc = 3 theory for Nf = 3 (QCD-like)

and Nf = 11 (close to walking) including the glueball. As we have seen before, the

σ becomes light and interchanges ordering with the ρ as one approaches the walking

regime. For large quark masses, the glueball is the lightest state in both Nf theories.

The heavy quarks again decouple at their mass scale, where the glue is still weakly

coupled, and the pure glue theory then runs logarithmically to strong coupling at a
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much lower scale, Λglue, which sets the glueball mass. Since 8Λglue < 2mq, the glueball

appears light. For a very small quark mass, the glueball becomes the heaviest state

in both cases. At the light quark mass scale, the gauge coupling is sufficiently strong

that the BF-bound has been violated and the quarks acquire a dynamical mass. The

pure-glue running between the quark mass scale and the IR pole is very fast since we are

already at strong coupling when the quarks decouple. Here, Λglue is set by essentially

the quark decoupling scale and the glueball mass ∼ 8Λglue is much heavier than the

meson masses set by the condensate 〈q̄q〉 ∼ Λ3
glue (m ∼ Λglue).

The interesting difference between the two cases with different Nf is in the interme-

diate regime. The crossover between these two cases is fast for the Nf = 3 theory but

much slower for the walking Nf = 11 theory. The reason is that, for a range of inter-

mediate quark mass scales, the walking theory has run to a strong regime but with a

coupling insufficient to trip the critical value triggering chiral symmetry breaking. Since

it is walking, the quark mass scale, at which the quarks decouple, and the pure-glue, IR

pole are pushed apart and so the cross-over occurs over a wider range of quark mass.

This is a signal in the spectra of walking theories. Such a signal is important because it

does not depend on gauge dependent objects such as the coupling itself.
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Figure 5.14: The spectra of the Nc = 3 gauge theory with fundamental quarks - the top
figure shows Nf = 3, the bottom Nf = 11.
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Chapter 6

Inverse Magnetic Catalysis

The study of strongly coupled theories at finite temperature in the presence of an exter-

nal magnetic field is a topic of great interest for QCD. Cosmologically, large magnetic

fields may have been present at phase transitions [144,145] and such conditions are also

being produced in collisions at the Large Hadron Collider (LHC) and Relativistic Heavy

Ion Collider (RHIC) [146]. A key question is how they impact on the thermal, chiral

restoration transition. As we have seen, at zero temperature the strong dynamics of

QCD forms a non-zero chiral condensate that breaks the global chiral flavour symme-

tries to the vector subgroup. At high temperatures, where asymptotic freedom sets in

and renders the coupling small (less than the critical value for SχSB), the condensate

vanishes. The two phases are separated by a second order transition at zero tempera-

ture; i.e. the order parameter (the chiral condensate) becomes discontinuous in its first

derivative at the critical temperature Tc. At small quark mass, this becomes a crossover

transition [147,148] such that there is no discontinuity in the order parameter or any of

its derivatives (i.e. it’s not strictly a phase transition); see figure 6.1 for an illustrative

guide.

Recent lattice studies of QCD with light quarks and an applied magnetic field

[149–151] have revealed some surprisingly complex behaviour. At zero temperature,

the presence of an external magnetic field enhances the chiral condensate σ ≡ 〈q̄q〉,

a process known as magnetic catalysis, which is a generally predicted effect in many

models [152–158]. However, at temperatures approaching the critical temperature of
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Figure 6.1: First order phase transitions are discontinuous in the order parameter -
for the chiral symmetry breaking transition this is the chiral condensate. Second order
phase transitions are discontinuous in the first derivative of the order parameter. The
crossover transition isn’t strictly a phase transition but a smooth bridge between two
regions of different phenomena.

the transition for no external field, the magnetic field has been shown to reduce the

chiral condensate thus lowering the critical temperature of the transition; so-called in-

verse magnetic catalysis. At intermediate temperatures there appears a non-monotonic
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behaviour with small magnetic field, B, favouring chiral condensation but larger B

disfavouring it. These results are summarized in Fig 6.2 taken from [150].

There has been considerable work in a number of approaches to explain these re-

sults [159–180]. One such approach is holography [32,58,81,84,91], which we continue to

pursue here within the remit of the Dynamic AdS/QCD model. The effects of magnetic

field in gauge theories with known duals from a top-down perspective have been studied

in [124,181–184]. Bottom up holographic approaches have also considered external mag-

netic fields within gauge theories [183,185,186], and the work in the following chapters

using Dynamic AdS/QCD naturally adds to this latter literature.

6.1 Dynamic AdS/QCD in the context of finite tempera-

ture & magnetic field strength

The main assumption of Dynamic AdS/QCD is that the chiral phase transition is the

most important behaviour in QCD. At that transition the quarks acquire a constituent

mass and integrate from the running of the IR, pure glue theory. Since the glue is

already at very strong coupling it will essentially instantaneously run into the regime

of confinement. In [122] it was shown that the instability for chiral condensation is

governed by the DBI action expanded to quadratic order in the fields, since one is

expanding about the zero solution. Any dilaton profile or warp factor of the background

metric in this expansion simply shows as the running mass of an AdS scalar describing

the chiral condensate. One can therefore discard the details of the background, replacing

them with a sensible ansatz for the running mass, and concentrate on the quark physics.

Näıvely, the probe approximation is a quenched approximation, Nf � Nc, but one

should view it as looking at the dynamics of a single quark in an unquenched background

including backreaction of the remaining quarks. Nf -dependent factors enter through the

running of the AdS scalar mass and potentially other parameters of the AdS theory. This

Nf -dependent physics is put in by hand in the model, which, given the absence of a true

dual, is inevitable.

The background space of the model then is AdS5 so that there is a clear identification
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of the RG scale with the AdS radius, ρ. The chiral condensate σ ≡ 〈q̄q〉 is identified

with a scalar field in the bulk, which from the top-down intuition can be thought of

as a brane embedding. The QCD dynamics at T = B = 0 is introduced by hand by

giving the AdS scalar a radially dependent mass term so that the anomalous dimension,

γ, of σ matches that in QCD perturbation theory (näıvely extrapolated to the strongly

coupled regime near ΛQCD). When the mass of the AdS scalar runs down through

the Breitenlohner-Freedman (BF) bound [100] (at which point γ = 1) the scalar be-

comes unstable and chiral condensation occurs [90,122,123]. Finite temperature can be

introduced by replacing the AdS space with an AdS Schwarzschild black hole of the ap-

propriate radius [81]. Here, a single phenomenological parameter [187] can be dialled to

switch the order of the phase transition (between first and second order and vice versa).

We select a value of this parameter to give an appropriate second order transition to

match QCD [147,148].

To introduce the magnetic field, we revert back to the top-down approach. Since the

lowest lying mode of the open-string sector is a vector field, its components transverse to

the D7-branes manifest themselves as a U(1) gauge-field on the field theory dual. This

must then be accounted for in the pullback metric of the D7-branes. As the Dynamic

AdS/QCD model inherits a lot from these D3/D7 top-down models, the lowest-order

interactions between the D7-brane embedding, parameterised as the scalar field L, and

the magnetic field component of the gauge field, B, are then added to the bottom-up

dynamic model. See section 3.3.1 Here, we take the two lowest-order terms that link

the chiral condensate field to a background magnetic field and study their impact. The

coefficients of these terms are not a priori fixed (unlike in the top-down scenarios) and it

is not surprising that by picking suitable signs they can be made to favour or disfavour

chiral condensation. The two terms have different temperature dependence so one can

also play them off against each other to find regions of parameter space in which there is

magnetic catalysis at low T but inverse magnetic catalysis at high T . This confirms that

the Dynamic AdS/QCD model allows the behaviour seen in the lattice QCD simulations,

which is a positive sign for the approach but perhaps not surprising given the freedom

of the model’s parameters.
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The model can however offer some more interesting insights. It turns out that it

is possible to reproduce the QCD behaviour with just a single one of the two lowest-

order terms. The reason is down to this term producing magnetic catalysis in the low

T phase where the brane embedding lies off the black hole but inverse catalysis for

the phase where the brane lies on the black hole. In the intermediate regime of the

model, σ(B, T ) exhibits non-monotonicity, enhancing the condensate for small B but

suppressing it at larger values. A summary of the typical behaviour we find is shown

in Fig 6.3 for comparison with the lattice results in Fig 6.2. The similarity in the

generic behaviour is quite striking although the extremum in the holographic model is a

point of discontinuity since it is associated with the second order meson-melting phase

transition, i.e. the point where the embedding brane touches the black hole from a

top-down perspective (see Section 6.1.1 below).

Adjustment of the UV boundary conditions on the bulk field describing σ allows the

study of heavier quarks also. Generically, these are associated with embeddings that

typically do not touch the black hole horizon (unless T becomes comparable tom) and we

see magnetic catalysis for such configurations persist to larger B. One should be careful

though not to extrapolate the results to too largem orB since the holographic framework

is presumably unreliable when the key physics is happening in the asymptotically free,

weakly coupled regime (the duality is of course built on the premise that a weakly

coupling string description implies that the gauge theory is strongly coupled).

6.1.1 Meson melting

From a top-down perspective, the transition from embeddings that avoid the black hole

to those that end on its horizon is associated with the mesons developing a thermal

width [97, 188–190]. Those branes avoiding the black hole have fluctuations that are

completely supported by the brane, i.e. the meson’s wavefunction cannot fall into the

black hole — the meson has a zero-width and so is a perfectly stable particle (Γ ∼ τ−1).

However, for the branes which end on the black hole, the fluctuations can be lost and so

the meson develops a non-zero, thermal width implying a non-infinite decay time. As T

increases, the black hole eats more and more of the spacetime and so the width will rise
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Figure 6.2: Lattice results for the change in the quark condensate as a function of
magnetic field strength over a range of temperatures - figure taken from [150].
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Figure 6.3: The holographic model’s results for the change in the condensate of light
quarks as a function of magnetic field strength over a range of temperatures for Nc =
Nf = 3. TC0 is the thermal transition temperature at B = 0 which is used to set
our holographic energy scale (and is approximately 160 MeV according to the lattice
simulations). For this plot the model parameters are taken as κ = 0.05 and b = 0.037.

sufficiently until one considers the meson melted. We do not perform the full analysis of

this phenomenology in this work. As pointed out in [187], such models naturally predict

that the transition where the thermal width develops, i.e. the smallest value of T such

that there occurs an embedding ending on the black hole horizon, happens ahead of the

chiral transition. For a second order phase transition, the flavour brane of the model

smoothly encounters (the point at which a thermal width develops) and then moves

along the black hole horizon to reach the chirally symmetric phase. To this point, the

model has been tuned to match expectations in QCD. This is illustrated in figure 6.6.
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6.2 The Dynamic AdS/QCD model at finite temperature

Finite temperature can be included in Dynamic AdS/QCD by replacing the background

metric with an AdS-Schwarzschild metric with the black hole horizon at r = rH [81],

ds2 = ρ2(−fdt2 + dx2
3) +

dρ2

fρ2
, f = 1−

r4
H

r4
, (6.1)

where rH is proportional to the temperature (T = rH/π). The action for the scalar L,

again describing the mass and quark condensate, becomes instead

S =

∫
d4xdρ

(
ρ3f(∂ρL)2 + ρ∆m2(ρ)L2

)
. (6.2)

One then again seeks numerical solutions of the Euler-Lagrange equations subject to

L→ 0 as ρ→∞ to describe massless quarks. In the IR, one chooses either ∂ρL = 0 at

the on-mass shell condition or for the end point of the flow to lie perpendicular to the

black hole horizon.

Again, we choose to relate the RG scale µ to the effective radial coordinate r (inspired

from the top-down D3/D7-model),

r =
√
ρ2 + κL2, (6.3)

where we have introduced a new parameter κ ∈ R, which in all previous calculations

was set to unity. As shown in Fig 6.5, the phase transition for κ = 1 is first order.

The main signal of the first order transition is that of a third embedding solution which

emerges from the chirally symmetric L = 0 embedding and then moves up the black

hole horizon to join the off-black hole solution at a higher temperature. This extra

solution corresponds to the local maximum of the effective potential between the chiral

symmetry breaking and the chirally symmetric solutions; see figure 6.4. The first-order

transition occurs when the black hole eats enough of the L = 0 embedding such that its

action is reduced to that of the off-black hole embedding. At temperatures above this

value the action of the L = 0 embedding is always less than that of the second solution

no matter how large the black hole becomes. In the limit of large temperature, the two
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solutions become identical.

As pointed out in [187], lower values of κ turn the transition second order. Here, we

are distorting the surface of the black hole so that it is not a circle in the ρ− L plane.

In particular, if the energy scale µ is stretched along the L-axis, as the temperature

of the black hole increases the horizon moves up the L-axis quicker than along the ρ-

axis. This in turn means that the horizon will consume less of the L = 0 embedding

(and its action) and makes a transition to the chirally symmetric phase less likely,

favouring a second order transition. In the second order transition case, the solution

for L transforms smoothly from the off-black hole chiral symmetry breaking solution to

a solution ending on the black hole horizon. The solution then slides down the black

hole horizon to merge with the L = 0 embedding at the critical temperature. In Fig

6.5, we plot the chiral condensate, σ, against T for κ = 0.05; a value which is close to

the largest κ that generates a second order transition. Making κ smaller, squashes the

black hole further towards and along the L-axis and has little effect qualitatively on the

physics: the L-profile in the bulk away from small ρ is indifferent to this. Larger values

of κ revert back to first order transitions. In Fig 6.6, we show the explicit second-order

behaviour at κ = 0.05 by plotting the embeddings of the scalar L in the chiral limit

(i.e. L(ρ → ∞) = 0) as the temperature is increased towards the critical value. At

ρ = 1 it is already evident that the value of the condensate, which is proportional to the

gradient of the embedding ∂ρL|ρ→∞, decreases with increasing temperature. Moreover,

as we approach the critical temperature, the angle subtended by the arc of the black-

hole horizon between L(ρ) and L = 0 decreases smoothly to zero at T = Tc. Above this

value only the flat, chirally symmetric L = 0 embedding exists.

It’s important to stress the physics of the two continuous transitions shown in Fig 6.6.

At low temperatures, the embedding lies off the black hole horizon and small fluctuations

about the embedding are associated with mesonic modes [86]. They are stable in this

phase. When the embedding moves on to the black hole the mesonic fluctuations become

replaced by quasi-normal modes that describe unstable plasma fluctuations [190]. The

configuration then continues to evolve with T until a flat embedding is reached and

chiral symmetry is restored. Clearly in a second order transition these two transitions
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must be separate and the development of a thermal width for the mesons must occur

earlier.

In the effective description of the model, we view κ as a parameter one must adjust

to correctly reproduce the expected phase structure at a given Nc, Nf . To represent

QCD, we will choose the second order behaviour and κ = 0.05. We will use the value of

rH at which the phase transition occurs (at B = 0) to set the scale of the radial energy

direction, ρ, in the holographic model. We set TC0 = 160MeV as is generally predicted

from empirical data.

6.3 Magnetic fields in Dynamic AdS/QCD: Introduction

and analysis

Background U(1) electromagnetic fields are introduced into AdS/CFT via sources for

the operator q̄γµq [181–184]. These operators are described by a bulk, massless U(1)

gauge field. The quark condensate has no baryon number charge so interactions will be

products between the field L plus its derivative ∂ρL and F 2. The leading two terms in

an expansion in L and F are

∆S =

∫
d4xdρ

(
aρF 2L2 + bρ3fF 2(∂ρL)2

)
. (6.4)

In the case of a fixed external magnetic field, including the metric factors, F 2 = B2/ρ4

and we will treat a and b as phenomenological parameters.

The expansion in fields is valid at small B and for studying the instability of the

L = 0 embedding, but generically in the chirally broken phase, or at larger B, terms

with higher orders of L may play an equal role. We will however just study these two

terms as the lowest-order example to try to provide insight into the response of the

theory to an applied B field. We hope to provide some qualitative insight more than

explicit, quantitative results.

Returning to the action with the extra terms of equation 6.4, the a-term is then a

direct B-dependent contribution to the running of the L mass or anomalous dimension

of the quark condensate. Clearly, choice of the sign of a can favour or disfavour chiral
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Figure 6.4: [top] At T = 0 there are two solutions to the embedding equation; the
chirally symmetric solution L = 0 for which q̄q = 0 (a), and the energetically more
favourable chirally broken solution (b). A first order transition is signalled by the
presence of a third unstable solution (c) for T > 0. At T = Tc, the chirally broken and
chirally symmetric phases are degenerate (d). Above Tc, the chirally symmetric phases
remains energetically favourable. [bottom] A second order phase transition occurs when
the chirally broken phase (b) smoothly merges with the chirally symmetric phase (a) at
T = Tc.
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Figure 6.5: Thermal phase transitions in the holographic model with Nc = Nf = 3.
For values of the parameter κ close to κ = 1, a first order chiral transition is present.
As the value of κ is reduced and the black hole is deformed along the L-axis, the
phase transition switches to becoming second order. The introduction of a background
magnetic field can be seen to affect the value of the transition order parameter, σ. Here
we show an example with magnetic catalysis at low temperature and inverse magnetic
catalysis at higher temperatures, a phenomenon which reduces the critical temperature,
Tc(B) < Tc(0).
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Figure 6.6: Plot showing the chiral embeddings (at B = 0) for a range of temperatures.
Each embedding is coloured to match the black hole horizon pertaining to the relevant
temperature. The second order nature of the transition is evident; the embedding
smoothly transforms into the flat L = 0 embedding at the critical temperature, Tc.
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condensation by affecting where the BF-bound is violated. The b-term, again depending

on the sign, either favours or disfavours curvature in the L-profile which again encourages

or discourages L to take up a profile away from L = 0 (the chirally symmetric state).

Note that the magnetic field now enters into the action in the combinations aB2 and

bB2 so it is possible by choice of the magnitude of a and b to move the scale of effects

in B.

Interestingly, only the second b−term has temperature dependence when one näıvely

inserts the metric factors (from the ρ index contraction in (∂ρL)2). This term decreases

as one approaches the black hole horizon. One can hope to play these a− and b− terms

off against each other. At zero temperature the b−term might dominate and favour

chiral condensation. At finite temperature though, it will be less favoured and the

a−term might take over suppressing chiral condensation. This is our initial strategy to

realize the observed pattern of catalysis and inverse catalysis with temperature.

The numerical analysis is again to find the solutions for L at each value of T and

B for our chosen values of a, b and κ at Nf=Nc=3. For κ of order one, the thermal

transition is first order as discussed: The embedding profile for L jumps from a solution

off the black hole to the flat embedding ending on the horizon. The transition is driven

by the black hole eating the L = 0 configuration until its action is less than the chiral

symmetry breaking embedding. For this reason, the chirally symmetric, low-T phase is

fairly insensitive to the actual temperature and it is very hard to engineer T dependent

behaviour. The only shifts from magnetic catalysis to inverse catalysis that we can find

occur when the a and b terms are so finely tuned that they have negligible net effect

at T = 0. The catalysis effect is well below a percent. We conclude that the QCD

behaviour with B, T is a result of the second order transition behaviour.

Hence we turn to κ = 0.05 as an example of a model with a second order transition.

For each point in the (a, b)-plane, we can plot the condensate against T at non-zero B.

In all cases, the transitions are second order. An example curve is shown in Fig 6.5 for

a case where the condensate is enhanced at small T but suppressed at T ' TC,0, where

TC,0 is the critical temperature at zero magnetic field.

In Fig 6.7, we show the phase structure of the model in terms of the phenomenological
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Figure 6.7: The phase-structure of the holographic model in terms of the phenomeno-
logical parameters a and b. The a − b plane can be dissected into four sectors wherein
the condensate is affected differently with temperature and an external magnetic field.
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Figure 6.8: Plots of the critical temperature against eB, TC0 = 160MeV. We show the
best fit lattice data taken from [151] and the holographic model’s best fit (in the chiral
limit) to that data (κ = 0.05, a = 0, b = 0.037). We also show the holographic models
prediction for another value of b = 0.33 - the model depends on the quantity bB2 so the
eB axis is simply rescaled by this change.

parameters a and b. This a − b phase space comprises four different sectors; a region

in which the chiral condensate, σ, is always enhanced relative to no external magnetic

field, a region in which σ is always suppressed relative to no external magnetic field

and two regions where it is either enhanced at low temperatures and suppressed at high

temperatures or vice versa.

The value of the critical temperature of the chiral phase transition is dependent on

how the external magnetic field affects the value of the condensate. If at high temper-

atures the value of the condensate is suppressed due to inverse magnetic catalysis, the

value of the critical temperature is reduced, see an example in Fig 6.8, or if enhanced

at high temperatures the critical temperature is increased.
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The Lattice QCD data from [150], shown in Fig 6.2, indicates a non-trivial relation-

ship between the chiral condensate and the strength of the external magnetic field. At

low temperatures, magnetic catalysis of the condensate is apparent and at temperatures

approaching the B = 0 critical value, there is a suppression of the condensate (inverse

magnetic catalysis). This, first of all, points us to working in the top centre quadrant

of the a − b plane seen in Fig 6.7. It is encouraging that the holographic model can

incorporate the QCD behaviour although we must stress again that the freedom of the

a− b parameter space suggested it should be possible.

A further interesting feature of the lattice plot is that for a narrow range of tem-

peratures approaching the critical value, σ(B) behaves non-monotonically, indicating

magnetic catalysis for small values of the magnetic field but as the strength of the

external B-field is increased, the field catalyses a suppression - we will refer to this

intermediate behaviour as the ‘cross-over’ regime. One question we could ask of our

model is whether or not this cross-over behaviour can be obtained if one were to select

values of the phenomenological parameters a and b to be inside the appropriate sector

of the a− b plane.

The key observation that allows us to achieve this cross-over behaviour in the holo-

graphic model is to notice that the appropriate quadrant in Fig 6.7 contains the b-axis

along which a = 0. Intriguingly, the b-term alone can generate magnetic catalysis at low

temperatures but inverse catalysis at higher temperatures. Further exploration shows

that it is because the b-term acts differently on black hole embeddings to off-black hole

embeddings. In Fig 6.9, we show the effect of B on the embeddings at an intermediate

temperature T = 0.75Tc. For B = 0, we are still in the phase before the mesons have

melted. As B rises in the theory with just the b-dependent interaction term, derivatives

are encouraged in the UV but not close to the horizon where the b-term is killed off due

to its T -dependence. The result is that, in the IR, the B-field moves the embedding to-

wards a melted phase whilst the UV condensate grows. Once the embedding is brought

onto the black hole, further increasing B moves the embedding down the horizon pulling

the UV behaviour and the UV condensate down. We did not deliberately engineer this

behaviour but it does match the observed lattice results.
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Figure 6.9: Plot showing the chiral embeddings at T = 0.75TC0 for a range of magnetic
field. Increasing B moves the embedding towards and on to the horizon but initially
also increases the condensate value.

One can now survey the (a, b, κ)-space for the best fit to the QCD behaviour. Here

we work in the chiral limit of the holographic model. Although the lattice data lies

away from that limit, we will see shortly that small quark masses do not change the

holographic model’s numerical predictions greatly We have found a decent fit to the

QCD behaviour when we take κ = 0.05 and a = 0. To fit b we have used the lattice fit

in [151] for the B-dependence of the critical temperature in the theory. There, they fit

to the form

TC(eB)

TC0
=

1 + α(eB)2

1 + β(eB)2
, (6.5)

where e2/4π = 1/137. The lattice results find central values, from fitting to the light

quark condensate, of α = 0.54 and β = 0.82. In Fig 6.8, we show our fit to this data for

b = 0.037 — the lattice and holographic models can be made to lie very close to each

other when b = 0.037. Here, the holographic model best fits the functional form with

α = 0.78 and β = 1.08.

Now, with all parameters fixed, we can plot the fractional change in the condensate

against eB at different T as shown in Fig 6.3. We see the enhancement of the condensate

at zero temperature but a suppression near the critical value. Of course, it should be

reiterated that without the lattice data already in place displaying the behaviour it

does, we do not know a priori which values of a and b should be chosen to best fit QCD.

Having chosen these appropriate values for the parameters a and b, it is no surprise

that we reproduce the expected enhancement and suppression of σ at low and high
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Figure 6.10: Plot showing the change in the chiral condensate as a function of B for
different quark masses. The parameters are those used to make Fig 6.7.

temperatures respectively. More remarkable however, as we have discussed, is that we

also find the cross-over regime needed by Fig 6.2. For intermediate temperatures, a

transition occurs at some value of B at which the condensate switches from increasing

to decreasing with an increasing magnetic field strength. The turn over point of this

transition can be identified in the holographic model as the value of the magnetic field

at which the chiral embedding switches from being off the black hole to being a solution

ending on the black hole, i.e. the meson-melting phase transition. The match between

Fig 6.2 and Fig 6.3 is not perfect: the holographic model has less catalysis at low T

and too much inverse catalysis at higher T but the general structure is similar. The

Dynamic AdS/QCD model teaches us that the meson melting behaviour is key to the

structure of the transitions seen with B.

6.4 Non-zero quark masses

It is straightforward to include quark mass into the analysis. The asymptotic value of

the field L is simply the UV quark mass and we can set it to some finite value at a large-ρ

scale. We show the variation in the quark condensate with B in Fig 6.10. Raising the

mass increases the B-value at which inverse catalysis takes over from catalysis. Since the

effective theory does not apply at B-field values that begin to probe the asymptotically

free regime, and since perturbative analysis suggests only magnetic catalysis, this hints

at our results possibly moving smoothly to an absence of catalysis at large m. It is

indeed found on the lattice that inverse catalysis is present only for small quark masses.
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Chapter 7

Translational Symmetry Breaking

& Striped Condensation

Translational invariance is known to be spontaneously broken in a number of supercon-

ducting cuprate systems [191]. They display phases where the condensate varies spatially

as sin(kx) manifesting as visible stripes in some measurements. The existence of such

translationally non-invariant phases have also been speculated to exist in finite density

gauge theory [192–194]. There has been some work recently on modelling such phases

in holographic descriptions of superconductors and finite density QCD [195–199]. More

complex, two-dimensional chequer-board patterns are also possible [200]. The chemical

potential in these systems already breaks Lorentz invariance1 and provides a natural

Lorentz frame for stripes to form. In this section however, we wish to ask whether spon-

taneous breaking of Lorentz invariance, in this pattern, can occur in scalar or gauge

theories at zero chemical potential (see [201] for a well known related discussion of

Lorentz violation in string theory).

A preference for spatially dependent vacuum expectation values for operators essen-

tially requires that the relevant operators have negative kinetic terms in the unbroken

vacuum which manifest in the effective potential as a negative k2 dependent contribu-

tion to the mass term. Normally, this is associated with ghost like behaviour and seems

1The addition of chemical potential to a field theory implies the existence of an additional term in the
action ∼ µN , counting the number of particles N in the system. In QFT, we can associate the number
operator as ψ†π giving us and extra term in the Lagrangian equivalent to µψ̄γ0ψ. However, ψ†ψ is not
a Lorentz invariant quantity and so the Lagrangian no-long contains this symmetry explicitly.
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forbidden at weak coupling. We will argue though that it can happen in a theory where

many higher-dimension operators are present and are sufficiently large that, when sym-

metry breaking occurs, they generate effective terms that mimic negative kinetic terms.

The true vacuum will then be characterized by Lorentz breaking vevs and fluctuations

will then be ghost free in the true vacuum. Again, in principle, higher-dimension oper-

ators evaluated in the striped vacuum can correct the signs and leave a stable theory.

One could therefore imagine a Higgs-like theory with condensation occurring close to its

UV-cutoff scale displaying dynamical Lorentz invariance breaking. A natural environ-

ment for such an effective theory is the strong coupling regime of a gauge theory. At

the scale of strong coupling, many higher-dimension operators become important and

simultaneously, chiral condensation and the gluonic condensation of TrF 2 occur. It at

least seems possible that within the space of gauge theories, Lorentz symmetry breaking

dynamics might exist. Our effective field theory discussions will not prove that any par-

ticular theory will behave in this way but it is a novel possibility that should be borne

in mind in lattice simulations of models beyond the Standard Model. Alternatively, in

gauge theories without translational symmetry breaking, one can reinterpret our results

as bounds on the sizes of certain higher-dimension operators in the effective theory.

We present our results in the remit of the Dynamic AdS/QCD holographic model [89,

90]. We describe the operators TrF 2, q̄q and q̄F 2q and represent their running anomalous

dimensions as running mass-squareds for the appropriate scalars in AdS space. The

UV of the theory is stable and has vanishing operator vevs. As the Breitenlohner

Freedman (BF) bound [100] is violated in the IR, condensation occurs and, if suitable (k2

dependent) potentials are chosen, an instability for Lorentz violating vevs can emerge.

Whilst the possibility of Lorentz violation is intriguing in itself, we also present

a more explicit phenomenological motivation. It has recently been shown [202, 203]

that in R2 gravity, short distance fluctuations in the metric can be converted by the

non-linearities of the Einstein’s equations into an effective long distance cosmological

constant. Our interest in Lorentz violating vacua is partially motivated by thinking

about how to generate such short distance fluctuations with sufficient power. Intrigu-

ingly, if one considers this mechanism in Starobinsky early-universe inflation models,
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where the R2 term is set by the scalaron2 scale of M ∼ 1013 GeV, then stripes at the

electroweak scale generate the observed cosmological constant!

Could gauge theories close to the Standard Model involve Lorentz violation? The

answer is fairly strongly no. Limits on Lorentz violation [204, 205] in the electron-

photon system are extremely stringent and constrain any coupling of such a system to

be associated with very high scales. Therefore, if stripes are the source of the observed

cosmological constant then they must be well hidden in a dark sector.

One might also presume that the spontaneous breaking of Lorentz symmetry would

generate Goldstone poles in the non-relativistic propagators of the theory but clearly

no such massless modes exist in the visible Universe. In fact, the number of long range

propagating Goldstone modes depends on the pattern of symmetry breaking as has

been discussed in [206]. There are massless modes associated to each broken direc-

tion of translation but they only propagate along unbroken directions transverse to the

breaking3. Thus there will be long-range propagating Goldstones for striped (one bro-

ken dimension) or chequer-board (two broken dimensions) configurations where there

still exist unbroken directions. However, this will not be the case for cuboid or general

crystal-like configurations (where three dimensions have broken Lorentz invariance). We

will not exhibit these Goldstone structures here since we concentrate on the instability

for the formation of stripes rather than a full model of the final ground state. Since

phenomenologically the Lorentz breaking sector must be extremely weakly coupled to

2A general f(R) Lagrangian,

f(R) = R+
R2

6M2
+O(R3), (7.1)

can be recast as a scalar-tensor theory (in the Jordan frame)

f(R) = φR− V (φ), (7.2)

under the Legendre transformation,

f ′(R) = φ and V ′(φ) = R. (7.3)

The dimensionless scalar, φ, is then a parameterisation of the theory’s scalar mode, the scalaron. Trun-
cating f(R) at R2, leaving the only the Starobinsky Lagrangian, yields a potential of the form

V (φ) =
3M2

2
(φ− 1)2. (7.4)

3This is identical to the case of massless modes resulting from D-brane fluctuations. The open string
gauge field components transverse to the brane are seen in the bulk as massless scalar modes. E.g. we
have seen the six massless scalar modes transverse to the D3-brane stack when building up the idea of
the AdS/CFT correspondence.
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the visible sector, the presence of Goldstones in anycase is probably not an issue.

Finally we note that we have considered whether striped ground states are ruled

out in QCD-like gauge theories by the theorems of Vafa and Witten [207, 208]. For

example, one theorem [207] (see Appendix J for a derivation) asserts that any state

associated with the q̄q operator must be heavier than the pion; given the pion may

be made massive by a small explicit quark mass, breaking of vector symmetries is, for

example, forbidden. This may indeed forbid the appearance of striped and chequer

board phases in vector-like gauge theories where there will be Goldstone modes able

to propagate in some directions but does not clearly prevent cuboid phases where the

Goldstones can not propagate.

7.1 Effective Higgs theories

Let us begin by writing down the simplest possible Higgs theory with one scalar and to

quadratic order to demonstrate the usual instability

L = ∂µφ∗∂µφ− V (|φ|), V = −m2|φ|2 . (7.5)

Now, if we consider a ground state where the vev of the scalar is striped in one direction,

〈φ〉 = v sin kx, then there is an effective potential

V = −(m2 − k2)|φ|2, (7.6)

with the additional term arising from the kinetic term after condensation in φ; i.e.

|∂〈φ〉|2.

Non-zero k reduces the strength of the potential instability and is therefore dis-

favoured in this set-up; see figure 7.1. We can see that for there to be an instability that

favours stripes (i.e. favouring a non-zero k), we need to reverse the sign of the scalar

kinetic term. However, we can not simply flip the sign on the kinetic term since the

theory would become ill-behaved with ghosts.

Scalar theories like this are known to suffer from a hierarchy problem and the näı
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Figure 7.1: Assuming a striped vev of the scalar φ from 7.5, a non-zero wavenumber
k actively disfavours an instability in the potential. Here we show the profile of the
potential for 0 = k1 < k2 < k3 < k4.

ve expectation is that new physics will enter at a scale reasonably close to the scalar’s

mass; we will call this somewhat higher scale ΛUV . The expectation is that at the scale

ΛUV , higher-dimension operators will generically be present (having been suppressed

at perturbative values of the coupling). Such higher-dimension operators can, once

symmetry breaking is triggered, lead to effective kinetic terms that have the right sign

to favour translational symmetry breaking. For example, let us consider including an

additional scalar f . We can imagine an additional Lagrangian term containing f to be

∆L = − κ0

Λ2
UV

|f |2∂µφ∗∂µφ, (7.7)

for some generic coefficient κ0. Were f to condense at some scale and κ0 be large enough

then the reversal of the kinetic term’s sign can be achieved.

Once a striped phase has condensed, other higher-dimension operators can step in

to secure the ghost inducing negative (∂tφ)2 term is not present in the true vacuum. For

example, consider the term

∆L =
κ1

Λ4
UV

|∂µφ|2|∂νφ|2 (7.8)

evaluated on the symmetry breaking solution (a Lorentz invariant term results if the

vev occurs twice in one derivative term but a spatially preferring term occurs if the

two vevs occur in the different derivative terms). This term will distinguish the spatial
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directions in which there are stripes from the temporal direction and the coefficient

could be concocted to cure the ghost problem once the stripy vev had formed.

Of course, in this discussion many other terms might be present that oppose the

effect, or indeed κ0 might be small or negative. We simply wish to identify terms

that could trigger translational symmetry breaking. Another possible mechanism is to

introduce yet another new scalar, χ, with the same symmetry properties as the original

φ. In doing so, we consider the Lagrangian containing the terms

∆L = |∂µφ|2 + |∂µχ|2 +m2|φ|2 −M2|χ|2 +
κ2

Λ2
UV

|f |2∂µφ∗∂µχ. (7.9)

Were f to get a vev then an off-diagonal kinetic mixing is induced for the φ, χ pair. The

effective k dependent quadratic potential is then given by

(φ, χ)

 −m2 + k2 κ2

Λ2
UV
〈f〉2k2

κ2

Λ2
UV
〈f〉2k2 M2 + k2


 φ

χ

 . (7.10)

For small k, the negative mass-squared eigenvalue becomes

m2
1 = −m2 + k2 − 1

2

(
κ2

Λ2
UV
〈f〉2k2

)2

M2 −m2
. (7.11)

Again for not unreasonable choices of parameters this term could be made to favour

translational symmetry breaking. Of course, this is an argument for an instability

rather than a full model of the final vacuum. The potential at large k2 would need to

be stabilized by terms with higher powers and the dynamically determined value of k

may lie close to ΛUV . The precise form of the vacuum is also dynamically determined

— one could envisage 1D stripes, 2D chequer board patterns or 3D cuboid patterns.

Such Lorentz violation would have to dynamically pick a frame of reference in our

Universe, however, it seems likely that the innate frame of the matter in the Universe

that sets the frame of the 3K cosmic microwave background radiation would be chosen.

As the gauge theory cooled and condensed the small chemical potential of the Universe

would be the only parameter biasing a specific frame.
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Such scalar models with φ, χ and f may at first glance appear baroque and over-

wrought. To argue that this is a sensible arena for discussion, we should recast this

analysis as the effective description of a QCD-like gauge theory. Consider an SU(Nc)

gauge theory and consider a single, quenched quark (Nf � Nc) in that theory. We

know that the vacuum has a non-zero value of the quark condensate 〈q̄q〉 which car-

ries a U(1)A charge of +2 (neglecting the U(1)A anomaly). This operator should be

mapped to φ. We also know that the operator TrF 2 is non-zero in the vacuum and a

singlet under flavour symmetries. It is the scalar f above. Finally, χ could represent

the higher-dimension operator of the form q̄F 2q (or possibly those with higher powers

of F ): this operator has the same symmetry properties as q̄q but in the quantum theory

is a distinct operator whose vev should be determined by the effective theory. In fact,

above we assumed that the χ field does not condense but simply mixes with φ.

In asymptotically free theories, the running coupling enters a regime of strong cou-

pling at some scale which should be associated with the cutoff ΛUV of the scalar theory.

At this scale the strong coupling is expected to generate higher-dimension operators

including of the form we have discussed above. The chiral condensate will then form in

QCD quite quickly in RG running.

These arguments map the dynamics of strongly coupled gauge theories to the scalar

models discussed above and suggest that translational symmetry breaking is at least

possible in the vacuum. Of course, we have in no way proved the phenomena occurs

or, indeed, is even likely. However, given the wide range of asymptotically free gauge

theories that can be constructed, it is possible that amongst them there exists some that

do concoct their higher-dimension operator couplings to conspire to this end.

In the main bulk of this chapter, we will construct a holographic model of a gauge

theory’s dynamics that reproduces this line of argument and moreover carefully takes

into account the scaling dimensions and RG flow in such a theory.

7.2 A holographic model

To demonstrate the effective field theory arguments above a little more robustly, we will

utilise our Dynamic AdS/QCD model to inspect gauge theories with such phenomena. It
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will show the possible translational symmetry breaking instability of a QCD-like gauge

theory we discussed above. We assume there is some SU(Nc) gauge theory with a small

number of quenched quarks. As usual, we place the effective theory in AdS5

ds2 =
dr2

r2
+ r2dx2

3+1 , (7.12)

with r2 =
√
ρ2 + |X|2 as usual. We will identify the RG scale µ with the AdS radial

parameter r in our model. We assume the underlying Yang-Mills theory generates a vev

for the four-dimensional operator TrF 2. Using the relation (∆ − p)(∆ + p − 4) = M2

with ∆ = 4 and p = 0, we represent the TrF 2 operator as a massless scalar of in the

AdS5 background. Following the rules of the correspondence (see equation 2.118), the

scalar will take the asymptotic (r →∞) form

f =
c

r4
. (7.13)

Our model will concentrate on the quenched quark sector rather than the generation of

this vev.

Although we will allow the AdS space to extend to r =∞, such a gravity description

should really only extend to the UV cutoff where the asymptotically free theory crosses

over to strong coupling (as r is decreased). Experience teaches us that the models still

work well without a UV cutoff because the dynamics is determined around the scale of

the BF-bound violation.

The behaviour of the q̄q operator in the theory is as before. The Dynamic AdS/QCD

model represents q̄q by a field X with action

S =

∫
d4x dρ ρ3

[
1

r2
|DX|2 +

∆m2

ρ2
|X|2

]
. (7.14)

If ∆m2 = 0 then the scalar, X, describes a dimension 3 operator and dimension 1

source as is required for it to represent q̄q and the quark mass m. That is, in the UV

the solution for the X equation of motion is |X| ∼ m+ q̄q/ρ2. We will work in the chiral

limit with the quark mass zero henceforth. A non-zero ∆m2 allows us to introduce an
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anomalous dimension for this operator, γ. If the mass squared of the scalar violates

the BF bound of -4 (∆m2 = −1, γ = 1) then the scalar field X becomes unstable

and the theory enters a chiral symmetry breaking phase. We will fix the form of ∆m2

using the two loop perturbative running of the gauge coupling in QCD with Nf flavours

transforming under a representation R. Of course, it is important to reiterate that this

is but a crude approximation to the running of the anomalous dimension γ, yet it serves

as a reasonable guess. This then takes the form

µ
dα

dµ
= −b0α2 − b1α3, (7.15)

where

b0 =
1

6π

(
11C2(G)− 4NfC2(R)

dim(R)

dim(G)

)
, (7.16)

and

b1 = 1
8π2

(
34
3 [C2(G)]2

−
[

20
3 C2(G)C2(R) + 4 [C2(R)]2

]
Nf

dim(R)
dim(G)

) . (7.17)

The one loop result for the anomalous dimension of the quark mass is

γ1(µ;R) =
3C2(R)

2π
α(µ;R). (7.18)

Working perturbatively from the AdS result m2 = ∆(∆− 4) we have

∆m2 = −2γ1(µ;R) = −3C2(R)

π
α(µ;R). (7.19)

This will then fix the r dependence of the scalar mass through ∆m2 as a function of Nc

and Nf for each R. The Euler-Lagrange equation for the vacuum embedding X is given

at fixed ∆m2 by the solution of

∂

∂ρ

(
ρ3∂ρX

)
− ρ∆m2X = 0. (7.20)

Again, to findX(ρ) we solve the equation of motion numerically with shooting techniques
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with an input IR initial condition. We have once more the IR boundary condition set

to be

X(ρ = X0) = X0, X ′(ρ = X0) = 0. (7.21)

Now we can introduce the scalar field Y that describes the operator q̄F 2q. It will

have an intrinsic action

S =

∫
d4x dρ ρ11

[
1

r2
|DY |2 +

∆m2
Y

ρ2
|Y |2

]
, (7.22)

where we must now accommodate for Y in the RG scale by setting

r2 = ρ2 + |X|2 + ρ8|Y |2. (7.23)

Here, Y has energy dimension of -3 and when ∆m2
Y = 0 has the solution

Y = α+
β

ρ10
. (7.24)

α is the dimension -3 source for the q̄F 2q term in the action and β has the dimension of

the vev. If we include an r-dependent ∆m2
Y , as we have done for the field X, then the

dimension of q̄F 2q will run away from the UV value of 7. For this toy model, we will

assume the dimension is 7 − γ1 so its dimension falls but the BF-bound for this scalar

will not be violated at the scale where γ1 = 1 where X condenses.

We can now include higher order terms in the action, mixing the fields that favour

translational symmetry breaking. For example we might include

∆L = κ̃3
ρ7

r2
|f |2∂MX†∂MY , (7.25)

where κ̃3 is dimensionless. As the vev of f grows this will introduce a kinetic mixing

term that will drive the lowest mass eigenstate more negative by a k-dependent factor.

As written, this term tends to drive the kinetic term in the holographic ρ direction

negative also. However, there are terms that break the ρ− x symmetry after the f field
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acquires a vev. For example, we might consider the term

∆L = κ̃4
ρ9

r4
(∂Mf∂

MX†)(∂Nf∂
NY ) . (7.26)

κ̃4 is again dimensionless. Since f is only dependent on the holographic coordinate ρ,

upon substitution of its profile in equation 7.13, we simply get a correction to the ρ-

derivative mixing of the X and Y scalars. By picking κ̃4 appropriately (κ̃3 = −16κ̃4)

one can remove the mixing term in the ρ derivative but leave a mixing term behind in

the xµ coordinates,

∆L = κ̃2
c2

ρr4
∂µX

†∂µY . (7.27)

For our computation below we will assume that the correction to the ρ kinetic term is

zero and that κ̃2 is our free parameter.

In such a model, one can numerically solve the coupled ODEs for the profiles ofX and

Y and then evaluate the action on those solutions to determine the effective potential of

a solution. Performing this computation for a solution of the form Q ∼ fQ(ρ) sin kx, for

Q ∈ {X,Y }, allows one to plot the potential against k. For example, to set the runnings,

we can study Nc = 3 Nf = 3 (of course QCD with these values does not generate stripes

but these choices are indicative of the behaviour), with the scale at which γ = 1 to be

ΛQCD and further set c = Λ4
QCD. In Figure 1, we plot the potential as a function of k2

for different choices of the higher-dimension operator’s coefficient, κ̃2. We see that for

O(1) negative values, an instability for stripes is indeed present. Strictly for the case of

QCD, which we know respects Lorentz invariance, we have placed limits on κ̃2 by this

argument. The instability mechanism may be present in other gauge theories however.

At this point we will cease speculating about such unknown gauge dynamics and

simply assume that field theories with translational symmetry broken in the vacuum

exist. We will explore whether they are phenomenologically interesting and viable as

part of Beyond the Standard Model physics.
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Figure 7.2: Potential (normalized by that at k = 0) against ln[k/ΛQCD] for varying
values of the coefficient of the higher-dimension operator (which is a mix of κ̃2 and κ̃3.
We set here Nc = 3 Nf = 3, the scale at which γ = 1 to be ΛQCD and set c = Λ4

QCD.

7.3 Striped phases and the cosmological constant in R2-

gravity

Our interest in such striped, chequer-board-like or cuboid phases is that they could

have a dramatic cosmological consequence. The basic observation is that the response

of the metric to such an inhomogeneity in the mass-energy distribution will be replaced

by some average effect on scales much larger than 1/Λstripe, the scale that sets the

wavelength of the Lorentz symmetry breaking stripe. Since the dynamical equations for

the metric are non-linear, this averaging does not lead to the same dynamical equations

for some ‘average’ metric but rather results in corrections to the equations themselves.

The fact that inhomogeneity can in general result in a “cosmological back-reaction”

has been widely investigated, see e.g. [209–216]. These papers were inspired by the

possibility that cosmological inhomogeneity (the fact that matter is not uniformly dis-

tributed at scales smaller than about 100 Mpc, but instead concentrated in walls and

clusters of galaxies, containing stars and planets etc.) leads to corrections to the average

expansion rate which could explain the observations that indicate that the universe is

currently undergoing accelerated expansion, such as [217]. However to date the results

of these studies have been either negative or inconclusive.
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One particularly elegant and clean approach to inhomogeneity in a cosmological

context, was put forward by Green and Wald [218,219]. A brief summary of the analysis

is as follows: one splits the metric as

gab = g
(0)
αβ + hαβ , (7.28)

where g
(0)
αβ is the Freedman-Robertson-Walker metric of standard cosmology and hαβ is

the piece sensitive to the matter distribution which here we imagine is the stripy phase

of the gauge theory with structure on scale Λstripe. The Rαβ − 1
2gαβR terms in the

equation of motion split into the standard ones for g
(0)
αβ plus extra pieces dependent on

hαβ. The philosophy is to take the spatial average of the pieces dependent on hαβ and

then treat the resulting terms as an effective addition to the stress energy tensor of the

matter content of the Universe. Assuming that a certain weak limit exists, they perform

a rigorous diffeomorphism-invariant averaging process of the gravitational response to

mass density fluctuations through the application of this weak limit. Assuming that

the matter stress-energy tensor Tαβ satisfies the weak energy condition (Tαβt
αtβ ≥ 0

for every time-like vector field tα), Green and Wald prove that the averaged effect of

the coupled matter plus gravitational fluctuations is then encoded in this limit in an

additive correction t
(0)
αβ to the stress-energy which is traceless and also satisfies the weak

energy condition. They therefore identify it with gravitational radiation. In particular

in a FLRW background metric, t
(0)
αβ is diagonal, corresponding to an effective fluid with

pressure p = ρ/3 ≥ 0, leading to the conclusion that such a backreaction cannot mimic

dark energy.

The situation changes dramatically however, if we now entertain the possibility that

Einstein’s General Relativity equations themselves already have gravitational correc-

tions. In the Starobinsky model of ‘R2 inflation’ [220,221], a theory that remains highly

favoured observationally [222], one can show that such a backreaction can mimic Dark

Energy. In this model, the Lagrangian density is given by

L =
1

2κ

(
R+

R2

6M2

)
+ LMatter (7.29)

161



(where κ = 8πG, and
√
−g is included in the integration measure of the action). The

new parameter is the so-called scalaron mass, which must be M ≈ 3×1013 GeV, in order

to agree with cosmological observations. Following the above philosophy, we continue

to assume that the underlying (quantum field theoretic) net vacuum energy effectively

vanishes (hence the absence of a cosmological constant term above). Back-reaction is

again encoded in a diffeomorphism-invariant, effective additive correction, t
(0)
αβ , to the

matter stress energy tensor, however it is now not traceless. Instead [202]

κ t(0) =
weak

−R
(1)2

6M2
, (7.30)

where R(1) is the linearised Ricci scalar of the gravitational fluctuations hαβ, t(0) is the

trace of t
(0)
αβ with respect to the full background metric and the equality holds rigorously

in a certain weak limit. Encouragingly, t(0) thus must be negative, in agreement with the

current acceleration of the universe. Furthermore it behaves parametrically in the right

way, in the sense that if we assume that the fluctuations are generated independently of

the scalaron scale, then we recover the tracelessness of the additive correction [218,219]

in the limit M → ∞. Therefore, it seems reasonable to apply order of magnitude esti-

mates to 7.30 in order to obtain a rough estimate of the effective cosmological constant

generated by gravitational back-reaction from a striped phase. Setting R(1) ∼ ∂2h ∼ κρ

where ρ is the local mass over-density, we have from 7.30 that the effective vacuum

energy t(0) ∼ −κ〈ρ2〉/(6M2). Now we recognise that κ = 1/M2
Planck, where the reduced

Planck mass is MPlanck = 2.44×1018 GeV, that t(0) = −E4
vac where the current effective

vacuum energy is Evac = 10−12 GeV in order to agree with observations, and finally

that the RMS value
√
〈ρ2〉 ∼ Λ4

stripe, where Λstripe is the energy scale that sets both the

amplitude and wavelength of the striped phase. Combining these, we therefore find that

Evac ∼
Λ2

stripe√
6MMPlanck

, (7.31)

from which we deduce that Λstripe ∼ 140 GeV, intriguingly close to the Higgs’ mass

and the EW (electroweak) scale. Of course, if t(0) is to mimic a cosmological constant

and thus drive the present day acceleration of the universe, it must also be (at least
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approximately) constant. This is guaranteed by the present mechanism since, as the

universe expands, the stripes are not diluted (unlike the matter content and the more

rapidly diluted radiation content of the Universe) but instead rearrange and get created

to fill the ‘gaps’, since the wavelength is set at Λstripe by the microscopic dynamics

described in the previous section.

We note again that we have not suggested a mechanism that naturally suppresses

large contributions to the cosmological constant, in other words we are not attempting

to solve the infamous cosmological constant problem. Nevertheless, we have still shown

how to generate a new type of contribution that can be significant, indeed can be suffi-

ciently large to explain on its own the value deduced from the present day cosmological

acceleration.
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Chapter 8

Concluding Remarks

The last few pages in a complete, fundamental theory of QCD are far from being written.

The strongly-coupled, non-perturbative aspects such as confinement, walking theories,

phase transitions, meson and baryon spectra et cetera are still providing many puzzles

to answer. Whether on the lattice, using holographic approaches or by other means,

research into this field will likely continue for a long time.

In the first chapter, we saw an overview of the history of the field and introduc-

tory material on the fundamental topics of chiral symmetry, asymptotically free gauge

theories, string theory and D-branes. We then turned to motivating the AdS/CFT cor-

respondence which allows us to equate the partition functions of a CFT to that of a type

IIB string theory in AdS5×S5. This correspondence supports all of the following chap-

ters’ work. In chapter 3, we turned our focus on re-engineering the famous Maldacena

conjecture to work in the arena of gauge theories with flavour and a running coupling like

that of QCD and associated asymptotically free theories. We examined both top-down

and bottom-up approaches, in particular the theory of Dynamic AdS/QCD. Sticking

with latter, part two of this work looked into using the Dynamic AdS/QCD theory to

examine various aspects of asymptotically free gauge theories. In chapter 4, we studied

the so-called hyperscaling relations of the quark mass and condensate (as well as meson

states) with RG scale in theories with an IR fixed point. Chapter 5 dealt with calcu-

lating the spectra of mesons, including the pions, the rho and sigma mesons, as well

as the scalar glueball for a range of asymptotically free theory of varying numbers of
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flavours and colours, and in multiple representations. In Chapter 6, we examined the

effect of temperature and magnetic field on QCD-like theories, finding a non-monotonic

relationship between the condensate and the magnetic field strength also found in lattice

calculations. The final chapter uses the Dynamic AdS/QCD theory to probe whether

or not it is possible to obtain striped condensate phases in QCD-like theories and the

ramifications of such a phenomenon in the physical world.

One question remains. What is left for the future of this field? Of course, the

bottom-up approaches to QCD such as Dynamic AdS/QCD are still relatively young,

and although they are reproducing lattice results within 5-10% error, there is still much

that can be done to improve upon the theories and still many more phenomena to ex-

plore regarding them. Future directions of the Dynamic AdS/QCD model are to look

at asymptotically safe theories and the physical phenomena that they provide as well

as investigating the renowned Banks-Casher result from a holographic perspective. At

the moment of writing this thesis, I am currently working on using this theory in col-

laboration with particle phenomenologists to look at the current standing of technicolor

and whether such theories remain a viable candidate for extending the Standard Model

of Particle Physics.
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Appendix A

Parity doublets of chiral

symmetry

The full chiral symmetry necessitates parity doublets in the following way. Consider

a state |α,+〉 which has energy Eα, H|α,+〉 = Eα|α,+〉, and has a positive parity,

P |α,+〉 = +|α,+〉. We now define a new state |ψa〉 = QaA|α,+〉. |ψa〉 is degenerate in

energy with |ψa〉,

H|ψa〉 = HQaA|α,+〉 = ([H,Q] +QaAH)|α,+〉 = QaAH|α,+〉 = Eα|ψa〉,

but has opposite parity,

P |ψa〉 = PQaAP
−1P |α,+〉 = PQaAP

−1|α,+〉 = −QaA|α,+〉 = −|ψa〉.

Hence for every state |α,+〉 there is a state |ψa〉 which is degenerate but of opposite

parity eigenvalue.
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Appendix B

U(1)A anomaly

This Appendix follows [41]. In order to investigate the anomalous behaviour of axial

currents we begin by examination of the anomaly associated with the U(1)AU(1)2
QED

triangle diagram — referred to as the Adler-Bell-Jackiw (ABJ) anomaly, see figure B.1.

Figure B.1: The U(1)AU(1)2
QED triangle diagram calculation pinpoints to an anomalous

U(1)A symmetry.

Such a diagram is the leading order contribution to the matrix element

〈p, k|Aµ(x)|Ω〉,

where Aµ is the associated U(1)A current1 and the momenta p and k pertain to the two

1The U(1)A comes from the global chiral symmetry U(1)L×U(1)R =U(1)V×U(1)A of the massless
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external U(1)QED fields. Following [41], one can show, with strict implementation of

some regulator (e.g. dimensional regularisation), that 〈p, k|∂µAµ(x)|Ω〉 is non-zero,

〈p, k|∂µAµ(0)|Ω〉 = − e2

16π2
〈p, k|εανβλFανFβλ|Ω〉. (B.1)

Hence ∂µA
µ 6= 0 and the symmetry is thus anomalous.

In theories such as QCD, we are also interested the fate of the axial currents in

triangle diagrams such as SU(Nf )ASU(Nc)
2 and U(1)ASU(Nc)

2, as shown in figure B.2,

the axial currents again stemming from the global, flavour symmetry of the chiral La-

grangian.

Figure B.2: a) The SU(Nf )ASU(Nc)
2 triangle diagram and b) the U(1)ASU(Nc)

2 triangle
diagram.

The equivalent versions of equation B.1 can be adapted by reading off the additional

group theory factors arising at the vertices. For the SU(Nf )ASU(Nc)
2 diagram we have

〈p, k|∂µAµ,a(0)|Ω〉 = − g2
s

16π2
tr(taλbλc)〈p, k|εανβλF bανF cβλ|Ω〉, (B.2)

where ta are the generators of SU(Nf ) and λb are the generators of SU(Nc). We can fac-

torise the trace over flavours and colours as tr(taλbλc) = tr(ta)tr(λbλc), which vanishes

as a result of the tracelessness of all SU(N) generators. Hence such a diagram doesn’t

suffer an ABJ-type chiral anomaly.

The second diagram of figure B.2 is afflicted by an ABJ-anomaly since tr(ta) is

Dirac Lagrangian and is different from the QED U(1) gauge symmetry.
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replaced by tr(INf×Nf ) = Nf . Hence

∂µA
µ = −

NfT (r)g2
s

16π2
εανβλF bανF

b
βλ, (B.3)

using the relation tr(λaλb) = T (r)δab, where T (r) is the Dynkin index of the repre-

sention r of the SU(Nc) group — e.g. in the fundamental representation, T (F) = 1
2 , ∀

Nc and in the adjoint representation T (G) =Nc, ∀ Nc. This is the root of the axial sin-

glet current being non-zero. Thus the true chiral symmetry of a chiral Dirac Lagrangian

of the form in equation 2.8 is

SU(Nf )V × SU(Nf )A ×U(1)V .

We might be convinced that the non-Abelian SU(Nf )A group is anomaly-free, yet

Figure B.3: The SU(Nf )AU(1)2
EM has direct consequences relating to the decay process

π0 → γγ.

we’re missing part of the whole picture. Quarks, being charged particles, couple under

the electromagnetic interaction to photons and thus one needs to consider the triangle

diagram SU(Nf )AU(1)2
EM , see figure B.3, which yields a matrix-element,

〈p, k|∂µAµ,a(0)|Ω〉 = − 1

16π2
tr(taNcQ

2)〈p, k|εανβλF bανF cβλ|Ω〉, (B.4)
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where Q is the quark charge matrix,

Q =


qu = +2

3e 0 0

0 qd = −1
3e 0

0 0
. . .

 . (B.5)

The right-hand side of B.4 vanishes identically for all off-diagonal generators. However

the diagonal generators (t3 for SU(2), t3, t8 for SU(3), t3, t8, t15 for SU(4) etc.) leave an

anomalous term thanks to a non-vanishing tr(taNcQ
2). In SU(2) the diagonal generator

is related to the neutral pion, π0, (see section 2.1.2) and so it is the anomalous Aµ,3

current which leads to the decay channel, π0 → γγ.
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Appendix C

UV expansion of L(ρ)

Let’s start with the metric of AdS5×S5 in global coordinates with unit radius of curva-

ture,

ds2 =− r2

(
1 +

1

4r2

)2

dt2 + r2

(
1− 1

4r2

)2

dΩ2
3

+
1

r2

(
dρ2 + ρ2dΩ2

3 + dL2 + L2dφ2
)
, (C.1)

where r2 = ρ2 + L2. The metric on the D7-worldvolume is thus simply

ds2
D7 =− r2

(
1 +

1

4r2

)2

dt2 + r2

(
1− 1

4r2

)2

dΩ2
3

+
1

r2

(
dρ2 + ρ2dΩ2

3

)
. (C.2)
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The D7 DBI-action is given by equation 3.3 with Fab = 0 and Gab given by,

Gab =



−r2X2 0 0 0 0 0 0 0

0 r2Y 2 0 0 0 0 0 0

0 0 r2Y 2 0 0 0 0 0

0 0 0 r2Y 2 0 0 0 0

0 0 0 0 1
r2

(
1 + (∂ρL)2

)
0 0 0

0 0 0 0 0 ρ2

r2 0 0

0 0 0 0 0 0 ρ2

r2 0

0 0 0 0 0 0 0 ρ2

r2



, (C.3)

with X =
(
1 + 1

4r2

)
and Y =

(
1− 1

4r2

)
. The action is then expressed as

SD7 ∼
∫
dρ

(
1 +

1

16(ρ2 + L2)2

)(
1− 1

4(ρ2 + L2)

)2

ρ3
√

1 + (∂ρL)2. (C.4)

The equation of motion is then

∂

∂ρ

(1 +
1

16(ρ2 + L2)2

)(
1− 1

4(ρ2 + L2)

)2

ρ3 ∂ρL√
1 + (∂ρL)2

+

(
L

(L2 + ρ2)2 −
L

2 (L2 + ρ2)3 +
3L

16 (L2 + ρ2)4 −
L

32 (L2 + ρ2)5

)
ρ3
√

1 + (∂ρL)2 = 0.

(C.5)

Linearising in the limit ρ→∞ and ∂ρL→ 0 we get,

∂

∂ρ

(
ρ3∂ρL

)
=
L

ρ
, (C.6)

where all but the leading first term on the right-hand side of equation C.5 are negligible.

The solution to the linearised equation of motion is given by

L(ρ) =
2c2I1

(
1
ρ

)
ρ

+
c1K1

(
1
ρ

)
2
√
πρ

, (C.7)
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where I1 and K1 are the modified Bessel functions of the first and second kind respec-

tively and c1,2 are constants. The ρ→∞ limit of equation C.7 is simply,

L(ρ) = C1 +
C2

ρ2
− C3

ln ρ

ρ2
+O

(
1

ρ4

)
, (C.8)

where C1,2,3 are constants.
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Appendix D

Expanding the Dynamic

AdS/QCD action

The dynamic AdS/QCD action is given by,

S =

∫
d4xdρρ3Tr

[
1

ρ2 + L2
(DMX)†(DMX)

+
∆m2

ρ2
|X|2 +

1

2g2
5

(FL,MNF
MN
L + FR,MNF

MN
R )

]
, (D.1)

where

X = L(ρ)e2iπata . (D.2)

We now proceed to expand the action fully, term by term. Firstly the kinetic term of

the scalar X can be written as follows:

(DMX)†(DMX) = ∂MX
†∂MX︸ ︷︷ ︸

=A

−i(∂MX†)LMX + i(∂MX
†)RMX + iX†LM (∂MX)− iRMX†(∂MX)︸ ︷︷ ︸

=B

+X†LML
MX −X†LMXRM −RMX†LMX +RMX

†XRM︸ ︷︷ ︸
=C

,
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where we assume the gauge fields are Hermitian. Also assuming L(ρ) is flavour-independent,

i.e. all flavours have same mass, part A simplifies to,

A = 4L2∂µπ∂
µπ + ∂ρL∂

ρL, (D.3)

with π ≡ πaτa. Writing LM = VM + AM and RM = VM − AM , thereby defining the

vector and axial bulk gauge fields, part B simplifies to

B = −8L2(∂Mπ)AM . (D.4)

Likewise part C simplifies to

C = 4L2AMA
M . (D.5)

In total the scalar kinetic term expands out as,

(DMX)†(DMX)

ρ2 + L2
=

1

ρ2 + L2

[
gρρ (∂ρL)2 + 4L2gMM (∂Mπ −AM )2

]
= (∂ρL)2 + 4L2A2

ρ +
4L4

(ρ2 + L2)2
(∂µπ −Aµ)2 . (D.6)

The mass term simplifies to

∆m2

ρ2
X†X =

∆m2

ρ2
L2. (D.7)

The gauge kinetic term can be expanded in terms of the vector and axial fields, VM and

AM , as follows

FL,MNF
MN
L + FR,MNF

MN
R =FV,MNF

MN
V + FA,MNF

MN
A

= (∂MV
a
N − ∂NV a

M )
(
∂MV a,N − ∂NV a,M

)
+

(∂MA
a
N − ∂NAaM )

(
∂MAa,N − ∂NAa,M

)
, (D.8)

where we have used tatb = 1
2δ
ab.
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Appendix E

Vector-field equation of motion

Consider the bottom-up AdS/QCD action 3.23 on an AdS5 background,

ds2 =
1

z2

(
ηijdx

idxj + dz2
)
≡ 1

z2
ηMNdx

MdxN . (E.1)

The action of the vector fields V a
M is given by (with

√
−g = z−5)

SV =

∫
d5x

1

z5
Tr

[
1

2g2
5

(∂MV
a
N − ∂NV a

M )
(
∂MV a,N − ∂NV a,M

)]
=

∫
d5xTr

[
1

2g2
5

1

z5
z2ηMRz2ηNS (∂MV

a
N − ∂NV a

M ) (∂RV
a
S − ∂SV a

R)

]
=

∫
d5xTr

[
1

2g2
5

1

z
ηMRηNS (∂MV

a
N − ∂NV a

M ) (∂RV
a
S − ∂SV a

R)

]
(E.2)

The equation of motion for V a
M can then be found by requiring that the functional

change in the action, δSaV = SV [V a + δV a]− SV [V a], vanishes. To first order in δV a
M ,

δSaV =

∫
d5xTr

[
1

2g2
5

1

z
ηMRηNS {(∂MV a

N − ∂NV a
M ) (∂RδV

a
S − ∂SδV a

R)

+ (∂MδV
a
N − ∂NδV a

M ) (∂RV
a
S − ∂SV a

R)}] . (E.3)

Expanding the brackets and performing integration by parts to ‘remove’ the derivative

from δV a
M , we arrive at

δSa = −4

∫
d5xTr

[
ηMRηNS∂S

(
1

z
(∂NV

a
M − ∂MV a

N )

)
δV a

R

]
, (E.4)
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such that the equation of motion is simply,

ηNR∂R

(
1

z
(∂NV

a
M − ∂MV a

N )

)
= 0. (E.5)

Letting V a
M = εMV

a(z)e−iq·x, the equation of motion is given by

−η
µνqµqν
z

V a − ηµν

z
∂ν∂σV

a
µ + ∂z

(
1

z
∂zV

a(z)

)
− ∂z

(
1

z
∂σV

a
z

)
= 0. (E.6)

Using the knowledge that V a
M is massless and therefore transverse, ∂MV a

M = 0, the

second term of equation E.6 vanishes. The last term can be gauged away by utilising

the gauge freedom of the action, gauge fixing with V a
z = 0, thus leaving

−η
µνqµqν
z

V a(z) + ∂z

(
1

z
∂zV

a(z)

)
= 0. (E.7)

Turning our focus back to the dynamic AdS/QCD model, the metric 3.30, in the limit

ρ → ∞ where ρ � L, returns to that of AdS5 with z = 1
ρ . Performing this change

of coordinates requires ∂z → −ρ2∂ρ and so the equation of motion becomes (dividing

through by ρ2)

∂ρ
(
ρ3∂ρV

a(ρ)
)
− q2

ρ
V a(ρ) = 0. (E.8)

The solution to this equation of motion with the boundary condition V (∞) = 1, such

that the solution matches on to the field theory current at the boundary, is given by

V a(ρ) =
2c0

qρ
I1

(
q

ρ

)
+
q

ρ
K1

(
q

ρ

)
, (E.9)

where I1 and K1 are modified Bessel functions of the first and second kind respectively

and c0 is a constant. The ρ→∞ (UV) limit is then calculated to be

V a(ρ) = 1 +
q2

4ρ2
ln

(
q2

ρ2

)
+ ... (E.10)
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Appendix F

Derivation of 〈q̄q〉∗

To obtain the chiral condensate, 〈q̄q〉∗, we first substitute the solution

L =
m∗

ργ∗
+

c∗

ρ2−γ∗ , (F.1)

into the action

S =

∫
d4x dρ ρ3

[
(∂ρL)2 + ∆m2L

2

ρ2

]
, (F.2)

giving us

S ∼
∫
dρ

{
ρ3

(
−(γ∗)2 (m∗)2

ρ2γ∗+2
+

(γ∗ − 2)2 (c∗)2

ρ6−2γ∗
− 2γ∗(γ∗ − 2)m∗c∗

ρ4

)

+∆m2ρ

(
(m∗)2

ρ2γ∗
+

(c∗)2

ρ4−2γ∗
+

2m∗c∗

ρ2

)}
. (F.3)

Grouping like powers of ρ we simplify F.3 to

S ∼
∫
dρ

{
ρ1−2γ∗

(
(γ∗)2 + ∆m2

)
(m∗)2 +

2c∗

ρ

[
γ∗(2− γ∗) + ∆m2

]
m∗ + ...

}
(F.4)

where the ‘+...’ refers to terms not-containing m∗ — these c∗-only contributions will

vanish when we take a functional derivative of the partition function with respect to µ∗.

We next perform the integral between ρIR and ΛUV . Concentrating on the diverging
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UV parts, we have

S =
ρ2−2γ∗

2(1− γ∗)

(
(γ∗)2 + ∆m2

)
(m∗)2 +

2c∗

ln
(ρ)
(
γ∗(2− γ∗) + ∆m2

)
m∗ + ... (F.5)

We now take 〈q̄q〉∗ = 1
Z

δZ
δm∗ ,

〈q̄q〉∗ =
(γ∗)2 + ∆m2

1− γ∗
m∗Λ2−2γ∗ + 2 ln(Λ)c∗

(
γ∗(2− γ∗) + ∆m2

)
. (F.6)
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Appendix G

Derivation of fixed point mass

and condensate

To derive m∗ and c∗, we take the two IR boundary conditions,

L (ρ = ρIR) = ρIR (G.1)

and

∂ρL|ρ=ρIR
= 0, (G.2)

and apply them to the fixed point solution for the scalar L

L =
m∗

ργ∗
+

c∗

ρ2−γ∗ . (G.3)

The condition G.1 gives us explicitly

ρIR =
m∗

ργ
∗

IR

+
c∗

ρ2−γ∗
IR

, (G.4)

implying

c∗ = ρ3−γ∗
IR − ρ2−2γ∗

IR m∗. (G.5)
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The second boundary condition G.2 likewise implies

c∗ =
ρ2−2γ∗

IR γ∗m∗

γ∗ − 2
. (G.6)

Equating G.5 and G.6 allows us to find m∗,

m∗ =

(
γ∗ − 2

2γ∗ − 2

)
ρ1+γ∗

IR . (G.7)

Rearranging G.7 as

ρIR =

(
2γ∗ − 2

γ∗ − 2

)
(m∗)

1
1+γ∗ , (G.8)

and substituting G.8 into G.1 or G.2 give us c∗:

c∗ =
γ∗

2γ∗ − 2

(
2γ∗ − 2

γ∗ − 2

) 3−γ∗
1+γ∗

(m∗)
3−γ∗
1+γ∗ . (G.9)
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Appendix H

Derivation of k

In the perturbative region (αs � 1) in the far-UV, the one-loop beta-function has a

logarithmic solution

αs(µ) =
1

β0 lnµ
. (H.1)

Since ∆m2 = −2γ1 and

γ1(µ) =
3C2(R)

2π
αs(µ), (H.2)

it follows that (bearing in mind that in the UV L� ρ and so µ =
√
ρ2 + L2 ≈ ρ),

∆m2 = −3C2(R)

π

1

β0 ln ρ
. (H.3)

Setting

ξ = −3C2(R)

πβ0
, (H.4)

L has the equation of motion

∂ρ
(
ρ3∂ρL

)
− ξ

ln ρ
ρL = 0. (H.5)

Assuming the equation of motion has solutions of the form

L(ρ) =
m

(ln ρ)k
, (H.6)
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for some other constant k, by substituting H.6 into H.5 we find

− 2ρkm

(ln ρ)k+1
− k(1 + k)ρm

(ln ρ)2+k
=

ρξm

(ln ρ)k+1
. (H.7)

Since the second term on the left-handside is subleading in the UV, we can ignore it and

we find the relation ξ = −2k. That is

k =
3C2(R)

2πβ0
. (H.8)
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Appendix I

The Banks-Casher Relation

Despite the strongly coupled nature of QCD, there are a few analytical relations which

can be nonetheless derived. One such is the Banks-Casher relation [223] which relates

the value of the chiral condensate to the density of the eigenvalue of the Dirac operator

in limit of vanishing eigenvalue. A derivation is as follows and is based on [25].

The QCD partition function:

ZQCD =

∫ (∏
µ,a

DAaµ

)∏
f

Dψ̄fDψfe−
∫
d4xψ̄f (i /D−mf )ψf e−SYM , (I.1)

where,

SYM = − 1

4g2

∫
F aµνF

µν
a d4x. (I.2)

We start by rewriting the fermion fields of QCD, ψ(x) and ψ̄(x), in terms of the

eigenfunctions of the Dirac operator /D;

ψ(x) =
∑
n

bnun(x), (I.3)

such that

/Dun(x) = λnun(x),

∫
d4xu†mun = δmn, (I.4)

where bn are Grassmann coefficients and λ are the respective eigenvalues.
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The QCD partition function can be written down as

ZQCD =

∫ (∏
µ,a

DAaµ

)∏
f

Dψ̄fDψfe−
∫
d4xψ̄f (i /D−mf )ψf e−SYM , (I.5)

where,

SYM = − 1

4g2

∫
F aµνF

µν
a d4x. (I.6)

Re-expressing the fermion fields in terms of the Dirac eigenfunction basis I.3, the

QCD partition function becomes

ZQCD =

∫ ∏
n

dbndb
∗
n

∏
µ,a

DAaµe−SYM e−
∫
d4x b∗nu

†
n(i /D−mf )bmum ,

where there is an intrinsic summation of m and n. This simplifies to

∫ ∏
n

dbndb
∗
n

∏
µ,a

DAaµe−SYM e−b
∗
nbn(iλn−mf ), (I.7)

for which we can perform a Gaussian integral over the Grassmannian variables1 bn and

b∗n to leave us with ∫ ∏
µ,a

DAaµe−SYM
∏
n

(iλn −mf ). (I.8)

The quark propagator may then be expressed as

〈ψf (x)ψ̄f (y)〉 =
1

ZQCD

∫ ∏
n

dbndb
∗
n

(∑
i

biui(x)

)∑
j

b∗ju
†
j(y)

 e−b
∗
nbn(iλn−mf ),

(I.9)

which becomes

〈ψf (x)ψ̄f (y)〉 =
1

ZQCD

∑
n

un(x)u∗n(y)
∏
m6=n

(iλm −mf ) (I.10)

after the Grassmannian integration is completed. Now using the form of ZQCD from I.5

1The Gaussian integral is undertaken as∫
dbdb∗e−b

∗Mb = detM,

for any matrix operator M and Grassmannian variables b and b∗.
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we reach

〈ψf (x)ψ̄f (y)〉 =
∑
n

un(x)u∗n(y)

iλn −mf
, (I.11)

with all but a sole (iλn −mf ) cancelling between the numerator and denominator.

In order to obtain the condensate, we must integrate over all spacetime and find the

average (i.e. 1
Vol

∫
d4x),

〈ψψ̄〉f =
1

V

∫
d4x 〈ψf (x)ψ̄f (y)〉 =

1

V

∫
d4x

∑
n

un(x)u∗n(y)

iλn −mf
, (I.12)

leaving us with

〈ψψ̄〉f =
∑
n

1

iλn −mf
. (I.13)

Due to the relation {γm, γ5} = 0 and hence { /D, γ5} = 0, it can be shown that for

every eigenfunction un of /D having eigenvalue λn, there is another eigenfunction γ5un

with eigenvalue −λn:

/D
(
γ5un

)
= −γ5 /Dun = −λnγ5un. (I.14)

Using this information, we can write the result in I.13 as,

〈ψψ̄〉f =
∑
λn>0

(
1

iλn −mf
+

1

−iλn −mf

)
=
∑
λn>0

−2mf

λ2
n +m2

f

, (I.15)

noting that the number of eigenvalues of the Dirac operator that vanish also vanishes2.

In the thermodynamic limit, the eigenvalues become continuous so the result is of the

form,

〈ψψ̄〉f
∫
dλ gλ ρ(λ)

−2

λ2
n +m2

f

, (I.16)

where ρ(λ) is the density of (eigenvalue) states function and gλ is the degeneracy factor

of the states.

As per usual, one can work out the density of states by considering the number of

2This is because the number of vanishing eigenvalues of the Dirac operator is exactly the topological
charge or Pontryagin index of the field theory, which in QCD is vanishingly small by experiment.
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allowed states with a value of λ between λ and λ+ dλ,

ρ(λ)dλ =
volume in λ-space of 1

2D
of D-dimensional spherical shell (λ > 0)

volume in λ-space occupied per each state
. (I.17)

So in a D-dimensional spacetime we have

ρ(λ)dλ =

1
2D
× 2π

D
2

Γ(D2 )
πD

VD

. (I.18)

Or, for D = 4,

ρ(λ)dλ =
1
8π

2λ3dλ
π4

V4

=
V4λ

3

8π2
dλ. (I.19)

This form of ρ(λ) is only strictly valid in the non-interacting QCD theory, as we will

discuss below. The degeneracy of the eigenvalues gλ is 2Nc because we now have two

eigenfunctions associated to each eigenvalue and have Nc variations of each fermion field.

Equation I.16 is however somewhat ill-defined. In the free (Aµ = 0) case, whereby

the eigenfunctions u(x) can be associated to plane-wave solutions, the eigenvalues are

just the momentum of the state,

/Dfreee
ik·x = i/keik·x.

But with this in mind, the integral of equation I.16 diverges as ΛUV for some ultraviolet

cutoff ΛUV . A solution to this problem is to take the chiral limit in which mf → 0 much

faster than ΛUV →∞. We first recall that we can define the delta-function as the limit,

δ(x) = lim
ε→0

1

π

2ε

x2 + ε2
,

to write the corresponding part of the integrand of I.16 as,

〈ψψ̄〉 = −
∫
dλgλρ(λ)πδ(λ).

The integral is no-longer providing us with a divergence and we arrive at the famous
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Banks-Casher relation

〈ψψ̄〉 = −πρ(0).

It is now evident that the necessary condition for the condensate to exist is ρ(0) 6= 0

(the free theory whereby ρ(λ) ∼ λ3 does not satisfy this criterion). We must conclude

that whichever mechanism gives rise to chiral symmetry breaking and thus a non-zero

condensate arises from the vacuum field configurations which yield a non-zero spectral

density, ρ(λ).
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Appendix J

Vafa-Witten Theorem

The Vafa-Witten theorem states that in a vector-like gauge theory1 (like QCD), vector

symmetries cannot be spontaneously broken [207]. We show the proof of this below,

again following [25].

Consider a QCD-like field theory with two massive quark flavours u and d: mu =

md 6= 0. Consider the set of Euclidean correlators

CΓ(x, y) ≡ 〈J ūd(x)J d̄u(y)〉, (J.1)

where

J ūd = ūΓd, J d̄u = d̄Γu, (J.2)

for

Γ ∈ {1, γ5, iγµ, γµγ
5, iσµν}. (J.3)

Inserting a complete set of states into CΓ,

CΓ(x, y) =
∑
n

〈0|J ūd(x, 0)|n〉〈n|e−iEntJ d̄u(y, 0)|0〉, (J.4)

we see that the asymptotic, late time behaviour is dominated by the lightest state (with

1Gauge theories are historically called ‘vector-like’ if Dirac mass terms can be written down in the
Lagrangian without breaking the gauge symmetry. A term −mψ̄ψ is written in terms of its left- and
right-handed components as −m

(
ψ̄LψR + ψ̄RψL

)
and so the left- and right-handed fields must be in

the same representation of the gauge group with equal and opposite charge under that group. This is
not true of the electroweak sector which is referred to as a chiral gauge theory and wherein masses must
be generated via Yukawa terms coupled to a Higgs field.
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lowest En) pertaining to the Γ-channel,

CΓ ∼ e−MΓt. (J.5)

We can also express the correlator in terms of the QCD partition function as

CΓ(x, y) = − 1

Z

∫ ∏
µ,a

DAaµ(x)
∏
f

det |mf − i /D|e−SYMTr {ΓG(x, y)ΓG(y, x)} , (J.6)

where G(x, y) are Euclidean Greens function,

G(x, y) = 〈ψ(x)ψ̄(y)〉. (J.7)

From equation I.13, we can rewrite the Greens function as

G(x, y) =
∑
n

un(x)u†n(y)

mf − iλn
, (J.8)

where un are eigenfunction of /D with eigenvalue λn. For every eigenfunction un of

eigenvalue λn, there exists an eigenfunction γ5un with eigenvalue −λn and so we can
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write

γ5G(x, y)γ5 =
∑
n

γ5un(x)u†n(y)γ5

m− iλn

=
∑
n

(γ5un(x))(γ5un(y))†

m− iλn

=
∑
m

um(x)u†m(y)

m+ iλm

=

(∑
m

um(y)u†m(x)

m− iλm

)†

= G(y, x)†. (J.9)

Using this identity inside J.6 with Γ = γ5, we arrive at

Cγ5(x, y) = − 1

Z

∫ ∏
µ,a

DAaµ(x)
∏
f

det |mf − i /D|e−SYMTr
{
|G(x, y)G|2

}
, (J.10)

which, because of the factor of |G|2 implies that

CΓ ≤ Cγ5 , (J.11)

or from J.5,

MΓ ≥Mγ5 . (J.12)

This therefore implies, that the lightest pseudoscalar state associated with the γ5 channel

must be the lighter than any other bound state, from any other Γ-channel. So, were a

vector symmetry to be spontaneously broken, massless scalar Goldstone particles would

be present in the spectrum. However, the inequality above insists that there must also

be massless pseudoscalars in the particle spectrum if this is the case. Since we have

assumed that the quark masses are finite and therefore explicitly breaking any axial
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symmetries the theory might otherwise have, no such massless pseudoscalars can exist

in the spectrum. Hence, we must conclude that the spontaneous breaking of a vector

symmetry in this scenario is forbidden.
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