

A Proof of Concept:
Provenance in a Service Oriented Architecture

Liming Chen+, Victor Tan+, Fenglian Xu+, Alexis Biller*,

Paul Groth+, Simon Miles+, John Ibbotson*, Michael Luck+ and Luc Moreau+
+School of Electronics and Computer Science

University of Southampton, Southampton SO17 1BJ, UK
*Emerging Technology Services, IBM

Hursley Park MP137, Winchester SO21 2JN
Email: lc@ecs.soton.ac.uk

Abstract

Provenance has been identified as an emerging and important concept within the Grid community
for a variety of purposes, such as verifying or tracing results. We seek to provide a concrete
conception of provenance and its possible utilisation through the process of designing and
implementing a system prototype with some specific provenance requirements. This prototype,
which is based on an idealised recipe for baking a cake, is developed within the context of a
service oriented Grid computing environment and implemented using standard Web Services
technologies. The issues surrounding the design of possible provenance system are also explored.

Keyword provenance, Grid community, service oriented grid computing, Web Services

1. Introduction
The general understanding of provenance is the
source or history of derivation of a particular
object. Provenance is an important requirement in
many practical fields. For example, the American
Food and Drug Administration requires that the
record of a drug’s discovery be kept as long as the
drug is in use. In aerospace engineering,
simulation records that lead up to the design of an
aircraft are required to be kept up to 99 years after
the design is completed. In museum and archive
management a collection is required to have
archival history regarding its acquisition,
ownership and custody.

With the prevalence of distributed computing,
in particular the availability of service-oriented
Grid computing infrastructure, collaborative
problem solving by exploiting and sharing
resources in distributed environments has become
a reality [1]. This has led to a growing demand
for tracking, recording and managing data sources
and derivation [2, 3]. While the utility of
provenance has been explored recently in the
arena of database systems [4, 5], and various Grid
applications [6, 7] such as e-Diamond, myGrid,
Combechem and DataMiningGrid have clearly
identified provenance-related requirements within
the scope of their functionality [8], there is no
commonly agreed conception of provenance in
the context of service-oriented grid computing,
nor any concretely implemented prototypes.

In this paper, through a sample application we
demonstrate our conception that the provenance
of a piece of data is the process that leads to the

data. Our primary contribution lies in the design
and implementation of a system prototype which
illustrates the various facets of provenance that
are integral to the functionality of this sample
application domain and, in the process identifying
some of the issues underlying the design of a
generic provenance system.

We adopt a simple cake baking scenario and
conceptualise it as a process couched in a service-
oriented architecture (SOA) framework. Within
the context of this framework, provenance would
enable users to trace and identify the individual
services (or an aggregation of services) as well as
their corresponding inputs and outputs that were
involved in the production of a specific result data
(a cake, in this instance). The provenance of the
cake is stored in an appropriate location and can
be retrieved for various purposes: this could
include post hoc analysis of the cake baking
process or replaying the entire process to produce
new cakes. We focus on identifying, storing and
querying provenance data in this scenario.

The paper is organised as follows. Section 2
outlines the application scenario. Section 3
analyses the application scenario from service-
oriented perspective and presents our conception
of provenance in a SOA. In Section 4 we describe
details about provenance system design. We give
an in-depth analysis and discussion in Section 5
and conclusions in Section 6.

2. Application scenario
The application scenario is based on the process
of baking a cake, more specifically, Baking
Victoria Sponge Cake (BVSC). We derive an

idealised recipe from an actual recipe [9]. This
idealised recipe can be considered to be
composed of four distinct steps or activities that
correlate roughly with the original recipe; these
are outlined below:

Step 1: Whisk together a certain amount of
butter and sugar (in proportion) until light and
creamy;

Step 2: Beat the required eggs for a certain
duration and add it to the whisked sugar and
butter mixture;

Step 3: Fold some flour into the beaten
mixture and add the flavouring preferred (vanilla,
lemon);

Step 4: Put the folded wet dough into an oven
and bake it for a given time at a specified
temperature;

Each activity requires a specific number of
ingredients as inputs and produces an
intermediate or final output.

Although baking cakes in accordance with a
standard recipe appears to be a routine task for
many people, it is quite common that cakes
produced by different users or even a single user
end up being different from each other. The
differences in the quality of the cake in question
can be reflected in a multitude of ways. Hence,
some questions may be posed by the user (or
other interested parties) to identify the
contributing factor for a cake of relatively inferior
quality. Some of these questions include:
• Was the correct sugar amount as specified in

the recipe used?
• Was the correct oven temperature as

specified in the recipe used?
• Was the correct amount of flour used for the

oven baking activity at a given location?
The process of answering questions is in effect an
inquiry pertaining to the provenance of a cake.

3. Provenance and provenance system

This section analyses the BVSC process, its
entities and their interactions and information
flow from a service-oriented perspective. We first
cast the BVSC process in a service-oriented
architecture in which entities provide services to
each other through interactions. Then we use a
sequence diagram to delineate the interaction and
information flow of the BVSC process. From the
above discussion we introduce the concept of
provenance in the context of BVSC and the use of
provenance stores. A sequence diagram is
provided to demonstrate when and where
provenance data are captured and recorded with
the involvement of a provenance store.

3.1 A service-oriented view

A service-oriented view is a way of modelling
large, complex systems in terms of services. Here

a service can simply be viewed as an abstract
characterisation and encapsulation of some
content or processing capabilities. A corollary to
the service-oriented view is the service-oriented
architecture (SOA), in which services are the
primitive building blocks. In a SOA, problem
solving processes amount to the discovery,
aggregation and execution of a set of loosely
coupled services.

In service-oriented view, an activity in the
BVSC scenario is in essence the behaviour of a
service or an operation provided by a service.
Thus each of the four activities in the idealised
BVSC recipe can be viewed as a service. In
addition, the user and the baker are also services
by virtue of the activities they perform
respectively in the BVSC process. In a service-
oriented architecture (SOA), clients typically
invoke services, which may themselves act as
clients for other services; hence, we will use the
term actor to denote either a client or a service in
a SOA. Figure 1 depicts all the actors/services in
the BVSC process.

Beat&Mix

Whisk

Fold

BakeInOven

BakerUser

Figure 1 Services in the BVSC process

Most SOAs have a primary functional
characteristic of executing workflows, a
workflow being a process by which a series of
services are executed in a specific sequence,
including the specification of how outputs of
services are routed to the services of other tasks.
There is usually a component in the SOA known
as the service enactment engine which undertakes
the action of executing a workflow. In the context
of the BVSC scenario, the BVSC process
corresponds to a workflow run that produces a
cake, with the baker assuming the role of a
service enactment engine that executes the
workflow specification (idealised recipe)
provided by the user.

3.2 Information flow in a process

To expose the information flow of a process we
use sequence diagram techniques to represent all
interactions and their participants as a process
unfolds. A sequence diagram depicts all services
contained, all events taking place and all
interactions between services in the process in a

temporal order. An RPC-like interaction between
two services consists of two messages: an
invocation message and a result message. The
invocation message is defined by an operation
name and parameters carried by the operation.
The result message is defined by a name and the
results returned by the service.

Figure 2 shows the sequence diagram of the
BVSC process based on the service-oriented
view. In this diagram, services are shown as
rectangles and arranged horizontally from left to
right in the order of invocation. Interactions are
arranged vertically from top to bottom as the
process proceeds from the start to the end. The
sequence of invoking messages is represented as
solid arrow lines and the return messages are
represented as dashed arrow lines. The input
parameters and the name of the messages are
shown above the lines and separated by a colon.

From the diagram we can capture all
information flows between services in a process.
For example, the user interface initiates the

BVSC process by invoking the Baker service
with some control parameters (i.e. sugar,
duration, flour and temperature). At the end of the
process, the Oven service returns a cake to the
Baker service that in turn returns the cake to the
User Interface. Both invocation and result
messages contain concrete input/output
information. It is also clear that a process is
actually composed of a number of interactions. In
order to repeat or verify the result of a process we
need to capture and record all the information
flows and the concrete information in these

interactions. This has led to our provenance
conception as described below.

3.3 Provenance, provenance recording and
provenance stores

We define that the provenance of a piece of data
is the process that led to the data. We note that
such a definition is concerned with provenance as
a concept. Ultimately, our aim is to conceive a
computer-based representation of provenance that
allows us to perform useful automated analysis
and reasoning to support our use cases. The
provenance of a piece of data will be represented
in a computer system by some suitable
documentation of the process that led to the data.
Furthermore, we distinguish a specific piece of
information documenting some step of a process
from the whole documentation of the process.
The former shall be referred to as p-assertion,
which is formally defined as an assertion made
by an actor pertaining to a process.

Given that a SOA can be broken down into

two types of actors: clients who invoke services
and services that receive invocations and return
results, we have identified two disjoint kinds of p-
assertion: interaction p-assertions and actor state
p-assertions. An interaction p-assertion is an
assertion made by an actor about a message it has
sent or it has received. We do not prescribe the
nature of the assertion about a message; instead
such decisions are left to the application. For
instance, an interaction p-assertion could simply
contain a copy of the message exchanged
between two actors. Therefore, interaction p-

Figure 2: BVSC process sequence diagram

assertions can be obtained by recording the inputs
and outputs of the various services involved in
generating a result. Alternatively, if some data
contained in the message is regarded as
confidential by the actor or too large to be
submitted, the assertion may consist of the
message in which the concerned data have been
replaced by an opaque proxy or a pointer.

An actor state p-assertion is the

documentation provided by an actor about its
internal state in the context of a specific
interaction. Actor state documentation is
extremely varied: it can include the function the
actor performs, the workflow that is being
executed, the amount of disk and CPU a service
used in a computation, the floating point precision
of the results it produced, or application-specific
state descriptions. We note that in a distributed

Figure 3: The BVSC process sequence diagram with provenance

system, an actor state is not externally observable,
and therefore can only be captured by cooperative
contribution of the actor itself.

In addition, an appropriate storage is needed
for the recorded interaction and actor state p-
assertions. This can assume the form of an
additional service within the SOA whose primary
activity is the archival of p-assertions generated
from a process. We term this service the
provenance store.

We handle interaction p-assertions in the
following way. For each interaction between a
client and service consisting of an invocation and
a result, each party is required to submit their
view of the interaction to a common provenance
store. Even though the BVSC process considers
multiple actors, the interaction between all these
actors can be reduced down to a common
triangular pattern of interaction, i.e. the client,
service and provenance store.

The BVSC process sequence diagram in
Figure 3 shows all messages exchanged between
services and all p-assertions to the provenance
store made by services. As can been seen, the
provenance store service is added to the far right
end. It is responsible for recording p-assertions
from both client and service sides. For example, a
message makeCake(sugar, flour, beating time,
temperature):record is sent to the provenance
store for recording by both the User Interface and
the Baker service. The return message is recorded
in the same way.

Actor state p-assertions are aimed at recording
information for a participating actor of an
interaction. It usually consists of such information
as the time of sending, receiving a request or a
response message and the property of actors
themselves. As an example, the BakeInOven
actor contains a location parameter and a
temperature parameter for baking the cake.
Further information about actor state p-assertion
could be the brand, date of manufacture, etc.

Recording p-assertions is carried out in
conjunction with the BVSC process. Once the
process is completed, all p-assertions will be
recorded in the provenance store.

4. System design and implementation
We have designed and implemented a provenance
system for the BVSC application based on the
above analysis within a service oriented view,
which is described in detail below.

4.1 Provenance modelling and representation

Given that provenance consists of interaction p-
assertions and actor state p-assertions, provenance
modelling is actually the modelling of interaction
and actor states. In a SOA, an interaction means
an invocation or a result message between a client

and a service. Interaction p-assertions are, in
essence, the inputs and outputs of the services
involved in the interaction.
 Practically, provenance modelling consists of
three aspects, i.e. the definition of data types used
by messages and actor state p-assertions, the
specification of messages that form the core of
interaction p-assertions and the design of actor
state p-assertions models. In line with common
practice in Web Service design, we have used
XML schema to model all data types, messages
for the interactions and actor state p-assertions.
We use the XML to represent concrete p-
assertion data.

In developing a provenance system prototype
for BVSC application we have designed a suite of
data models. Figure 4 shows some of the data
types, Figure 5 shows the message used in the
BakeInOven service and Figure 6 shows the actor
state p-assertions model for the BakeInOven
service. All models are represented in UML.

Figure 4: The BVSC data types

Figure 5: The BakeInOven service message

4.2 Provenance-aware web service design

A Web Service is a software system designed to
support interoperable machine-to-machine
interactions over a network. It has an interface
described in a machine-processable format
(specifically WSDL). Other systems interact with
the Web Service in a manner prescribed by its
description using SOAP messages, typically
conveyed using HTTP with an XML serialisation
in conjunction with other Web-related standards.

Web service design requires the specification
of interfaces. In the BVSC application all
services’ interfaces, i.e., the creation of WSDL
files, are specified in terms of the defined data
types and messages.

Figure 6: Actor state p-assertion data model

4.3 Provenance system implementation

The physical storage of provenance store
is implemented in a file system that is
organised in a structure as defined in Figure
7. The URL of the host where the
provenance store is located is defined as the
root node of the provenance store. Under this
top-level node, there will be multiple
sessions. Each session refers to a workflow
run with a unique identifier (ID) and contains
at least one activity with a unique activity ID.

An activity describes an interaction between
a client and a service. An interaction is
further split into an invocation message and a
result message. Both messages are stored by
both client and service sides so that conflicts
among two p-assertions about the same
interaction can be detected. Apart from
interaction messages, the states of an actor
involved in the interaction will also be

recorded in the provenance store. While
Figure 7 presents an abstract outline of the
provenance data structure, there could be
many different implementations.
 The provenance recording system is
implemented using the Axis Web Services
framework deployed within the Tomcat servlet
container [10], and utilised the provenance
recording protocol [11] and APIs [12].

4.4 Provenance query and example uses

Once provenance is recorded and stored, an
important question then is how to access, explore
and reuse p-assertions in an optimally beneficial
manner. From the end-users' point of view, the
exploitation of provenance in enhancing problem
solving processes (for example, speeding up or
lowering its cost), is likely to be of greater
consequence than the preliminary activities of
provenance recording and archiving.

This section introduces a query algorithm
used in a provenance store to find a general data
item. Then we present a query example we have
performed in the BVSC application to
demonstrate the query mechanism and, most
importantly, the usage of provenance data.

4.4.1 Query algorithm

Our query algorithm is based on the assumption
that the final result of the BVSC process (the
cake) has a unique ID, which we term resultID.
The input to the query algorithm is the resultID
and the name of a data item (which we term
searchItem), and the output is the quantity or unit
associated with searchItem. The algorithm is
given in Figure 8 below.

4.4.2 Query example

As discussed in the BVSC application, the
amount of sugar used in the whisking activity is
one of the factors that may affect a cake’s quality
of taste; and there is generally a guideline on the
minimum amount of sugar to be used in order to
attain a minimum quality of taste.

To find out if the correct sugar amount as
specified in the recipe was used, we need to
retrieve the amount of sugar used for baking a
specific cake from a provenance store, and
subsequently perform a comparison with the
guideline on the minimum amount. Assuming
that a cake with a unique ID is given, the query
trail is as follows based on the following
instantiation of the query algorithm just
described:
• Search through all messages in the

provenance store until a Return message is
located which contains the unique cake ID;

• Locate the makeCake activity which contains
the Return message;

Provenance Store
URL / Host

Session1
Unique ID

Client
invocation

Session2
Unique ID

Session3
Unique ID

Activity
Unique ID

Client
result

Client
additionalProv

Service
AdditionalProv

Service
result

Service
invocation

Activity
Unique ID

Activity
Unique ID

Figure 7: The structure of a provenance store

• Locate the session ID that contains this
makeCake activity;

• Locate the Whisk activity corresponding to
this session ID;

• Extract the amount of sugar shown in the
Whisk message within the Whisk activity.
Both the client and service view of the
message should coincide.

Once the actual sugar amount used is obtained
from the above steps, we can compare it with the
guideline for the minimum amount of sugar and
draw an appropriate conclusion.

5. Discussion
Provenance has been investigated in other
contexts [2, 3, 4, 5] using definitions such as audit
trail, lineage, dataset dependence and execution
trace. By framing and analysing the BVSC
application within a SOA we have chosen here
instead to refer to provenance as the process that
led to the data. This process-centred view of
provenance is motivated by our observation that
most scientific and business activities are usually
accomplished by a sequence of actions performed
by multiple participants. The recently emerging
service-oriented computing paradigm, in which
problem solving amounts to composing services
into a workflow, is a further motivating factor
towards the adoption of our process-centred view
on provenance.

Through the analysis of the BVSC process
and its information flow using a service-oriented
view and sequence diagram, we further identify
that provenance in the context of a SOA consists
of two main types of provenance data: interaction
p-assertions and actor state p-assertions.
Interaction p-assertion is concerned with the
capture of an execution trace while actor state p-
assertion concentrates on the information
pertaining to participating entities. We have
placed special emphasis on interaction p-
assertions, since services are usually dynamically
discovered, aggregated, executed and
discontinued in a virtual organisation on the Grid.
In this context, information on how services are
invoked, what messages are passed among them,
and when they are invoked, are usually required
in order for a workflow result to be analysed or
for a workflow to be repeated.

We have identified the notion of classifying
the recorded p-assertions into hierarchical groups
on the basis of the relationships between service
interactions. This idea is reflected in the
modelling of the provenance store. We have also
developed a provenance service to carry out p-
assertion recording and storage. The decision to
employ a service-oriented implementation is
made based on several considerations. Firstly,
provenance can provide added value for complex
distributed applications that are increasingly
adopting a service-oriented view for modelling
and software engineering, as demonstrated in grid
computing. Secondly, a service-oriented
implementation of the provenance infrastructure
simplifies its integration into a SOA, thus
facilitating the adoption of the infrastructure in
SOA-based applications. Finally, a service-
oriented provenance infrastructure deploys easily
into heterogeneous distributed environments, thus
facilitating the access, sharing and reuse of
provenance data.

Although as simple as they are, the query
algorithm and the performed query sample
demonstrate that provenance data can be accessed
through the designed algorithm. Most importantly
it demonstrates how provenance data can be used
to answer questions. While there are undoubtedly
many different questions in terms of application
characteristics and many different ways of
accessing and retrieving provenance data, the
query algorithm and example present a showcase
for the viability of provenance usage.

The benefits of developing a provenance
system prototype in the context of BVSC are
multiple. Firstly, it helps pin down the
conception, modelling and representation of
provenance in a SOA. Secondly, it helps define
the characteristics of the provenance problems,
and identify and clarify user requirements in the
context of OSA-based applications. Thirdly, it
helps identify and clarify the software

foundID = false;
foundData = false;
located SessionID = false;

For all session IDs in a provenance store {
 For all activity IDs in current session ID {
 For all messages in current activity ID {
 if (resultID exists in current message)
 {
 located session ID = current session ID;
 foundID = true;
 break;
 }
 }
 if (foundID) break;
 }
 if (foundID) break;
}
if (not foundID)
 Show error message and exit;

For all activity IDs in located sessionID {
 For all messages in current activity ID {
 if (searchItem exists in current message)
 {
 foundData = true;
 return unitQuantity corresponding to searchItem;
 }
 }
}
if (not foundData)

 Show error message and exit

Figure 8: The query algorithm

requirements for a provenance system, i.e. what a
provenance system has to do. Fourthly, the
successful design and operation of the entire
provenance system prototype have demonstrated
and proved our conception of provenance, its
design approaches and implementation rationale.
Finally, all findings, insights and experiences
acquired in the development of the provenance
system prototype will be used in future work
towards a secure, scalable and generic
provenance system architecture and its
corresponding reference implementation.

However, the simplicity of the BVSC
application scenario does impose some
limitations on the investigation of other issues.
For example, the BVSC process involves a linear
sequence of services, and hence we have not
considered the issue of iterative loops and/or
parallel processing. The provenance system is
implemented in a centralised fashion, and there
are clearly additional issues of distribution and
scalability to consider if a provenance
infrastructure was deployed in a distributed grid
environment. The actor state p-assertions in the
BVSC application is currently vague and does not
have explicit semantics associated with it. Other
issues that have not been studied yet include the
scalability and security of a provenance system.

6. Conclusions
In this paper we have defined the concept of
provenance and further clarified it by analysing
the BVSC process and its information flow within
the context of a SOA. We have identified the core
components and functionalities, i.e., provenance
recording, storage and query, for a provenance
system in providing provenance support for the
BVSC application. We have also developed a
suite of generic APIs and front end GUI in
implementing the provenance system for the
BVSC application, which can be used for the
realisation of provenance systems for any other
application domain.

Our contributions are threefold. Firstly, the
research provides a proof of concept for
provenance and provenance systems. Secondly, it
provides guidelines towards the construction of a
basic provenance system. Finally, it demonstrates
a possible design and implementation pattern for
provenance-enabled applications. In the future we
shall focus on the specification and design of a
generic provenance architecture, which will
include the design of an appropriate query
interface. We shall also tackle security and
scalability issues.

Acknowledgement
This work is supported by the EU
PROVENANCE project (IST511085) under

FP6/IST programme. The BVSC implementation
makes use of the PReServ provenance store
developed in the PASOA project (EPSRC Grant
GR/S67623/01).

References
[1] Foster I, Kesselman C, Nick J, Tuecke S.,
2002. Grid Services for Distributed System
Integration. Computer, 35(6).
[2] Workshop on Data Derivation and
Provenance, October 17-18, 2002, Chicago, USA,
http://www-fp.mcs.anl.gov/~foster/provenance/
[3] Data Provenance and Annotation, December
1-3, 2003, Edinburgh, UK,
http://www.nesc.ac.uk/esi/events/304/
[4] Buneman P., Khanna S. and Tan W.-C., 2000,
Data provenance: Some basic issues, In
Foundations of Software Technology and
Theoretical Computer Science
[5] Buneman P., Khanna S. and Tan W.-C., 2001,
Why and where: A characterisation of data
provenance, In Int. Conf. on Databases Theory
(ICDT)
 [6] Martin Szomszor and Luc Moreau. Recording
and reasoning over data provenance in web and
grid services. In International Conference on
Ontologies, Databases and Applications of
SEmantics (ODBASE'03), Lecture Notes in
Computer Science, Catania, Sicily, Italy,
November 2003.
[7] Mark Greenwood, Carole Goble, Robert
Stevens, Jun Zhao, Matthew Addis, Darren
Marvin, Luc Moreau, and Tom Oinn. Provenance
of e-science experiments - experience from
bioinformatics. In Proceedings of the UK OST e-
Science second All Hands Meeting 2003
(AHM'03), page 4 pages, Nottingham, UK,
September 2003.
[8] EU Provenance project: User Requirements
Document. http://twiki.gridprovenance.org
[9] Victoria sponge cake recipe
http://thefoody.com/baking/victoriasponge.html
[10] Fenglian Xu, Alexis Biller, Liming Chen,
Victor Tan, Paul Groth, Simon Miles, John
Ibbotson and Luc Moreau “A proof of concept
design for provenance”, Technical report,
University of Southampton, 2005
 [11] Paul Groth, Michael Luck, and Luc Moreau,
2004, A protocol for recording provenance in
service-oriented Grids, In Proceedings of the 8th
International Conference on Principles of
Distributed Systems (OPODIS'04), France.
[12] PReServ 0.1.5: Provenance Recording for
Services, http://twiki.pasoa.ecs.soton.ac.uk/bin/
view/ PASOA/SoftWare

	Abstract

	Introduction

	Application scenario

	Provenance and provenance system

	System design and implementation

	Discussion

	Conclusions

	Acknowledgement

	References

