
Exposing UDDI Service Descriptions and Their
Metadata Annotations as WS-Resources

Weijian Fang#1, Luc Moreau#2, Rachana Ananthakrishnan∗3, Mike Wilde ∗4, Ian Foster∗5

#School of Electronics and Computer Science, University of Southampton
Southampton, SO17 1BJ, U.K.

1wf@ecs.soton.ac.uk 2l.moreau@ecs.soton.ac.uk
∗Mathematics and Computer Science Division, Argonne National Laboratory

Argonne, IL 60439, U.S.A.
3ranantha@mcs.anl.gov 4wilde@mcs.anl.gov 5foster@mcs.anl.gov

Abstract— Service discovery is a critical task in service-
oriented architectures. GRIMOIRES is a UDDI-compliant service
registry with rich metadata annotation capabilities. In this
paper, we present aWSRF-compliant extension of theGRIMOIRES
architecture that exposes service descriptions and their metadata
annotations as WS-Resources. By doing so, the service registry
provides improved interoperability by allowing service descrip-
tions to be accessed and managed via standard Web services oper-
ations. In particular, we can access service descriptions, manage
the lifetime of service descriptions, and subscribe for notifications
of change in service descriptions. The paper discusses the benefits
and design choices associated with such an approach and the
technical challenges in providing an implementation.

I. I NTRODUCTION

In service-oriented architectures, service discovery is a criti-
cal task underpinning service invocation, service orchestration,
and service monitoring. Among the many proposals for service
discovery in this context ([1], [2], [3]), theUDDI (Universal
Description, Discovery, and Integration) specification [1] is the
standard for Web services publication and discovery.UDDI

defines both a data model to describe services and a set
of interfaces to publish and discover service descriptions.
UDDI suffers, however, from some limitations that hinder its
widespread adoption.UDDI offers no mechanism to refer to
a service interface signature (such as operations or input and
output messages) and therefore is unable to discover a service
according to such a signature. Moreover,UDDI provides no
lifetime management and thus is unsuitable for the Grid
environment, where transient services may be used extensively.
Above all, UDDI lacks the capability of annotating service
descriptions with structured metadata [4]; hence, it is difficult
to enrich service descriptions in a way that can help future
service discovery.

Having identified that metadata annotation can play a
vital role in assisting service discovery, we designed and
implemented GRIMOIRES, a UDDI-compliant service reg-
istry extended with a powerful metadata attachment support
(www.grimoires.org). Adopting the UDDI standard fa-
cilitates the acceptability of theGRIMOIRES approach by the
Web services community. In addition,GRIMOIRESallows both
service providers and service consumers to annotate published

service descriptions with metadata so as to facilitate service
discovery. By exploitingGRIMOIRES’ metadata attachment
capability, domain-specific service annotation and service dis-
covery by interface signature can be accomplished [4], as
demonstrated in the bioinformatics e-Science project myGrid
(www.mygrid.org.uk).

The lifecycle of a service begins with its deployment and
terminates with its decommissioning. During its lifecycle, the
service may vary in different ways: on the one hand, its inter-
face can change when new operations are exposed, operation
signatures are updated, or operations are removed; on the other
hand, the service may be redeployed to another execution
environment, which results in a change of its concrete binding.
Hence, in order to remain accurate, a service description, as
published in the service registry, should ideally have a lifecycle
that well matches the lifecycle of the corresponding service.

The WSRF [5] and WS-Notification [6] specifications have
gained increasing attention in their role of improving interop-
erability with typed stateful resources that have a lifecycle [7].
Specifically, stateful resources are modeled as WS-Resources,
and their state can be accessed and modified in a standard way
through so-called resource properties [8].

By exposing service descriptions as WS-Resources, we
enhance a service registry’s interoperability in different ways.
Service descriptions can be published and discovered through
standard uniform state-oriented operations. In particular, a
general-purpose query language (such as XPath) offers more
flexibility than the UDDI rigid query templates. Service de-
scriptions annotated with lifetime information can automat-
ically be cleaned up when their lifetime expires. Moreover,
changes in the service descriptions can be delivered to sub-
scribers using a notification mechanism. Against this back-
ground, the specific contributions of this paper are as follows:

(i) We discuss the design choices and benefits of exposing
UDDI service descriptions and their metadata annotations as
WS-Resources.

(ii) We analyze the technical challenges in realizing such a
vision in a software architecture. In particular, we investigate
the means to maintain aWSRF view of states (i.e., service
descriptions and annotations) existing in the registry database.

(iii) We present several technical solutions to allow efficient
publication and query through theWSRF interface, while
preserving theWSRF interface’s flexibility and uniformity.

(iv) We report on the prototype implementation and its
performance evaluation.

The rest of the paper is organized as follows. Section II
presents background information about theUDDI and WSRF

specifications, as well asGRIMOIRES’ metadata annotation
capability. Section III explains how we expose annotatedUDDI

service descriptions as WS-Resources. Section IV presents
the architecture ofGRIMOIRES. Section V discusses the im-
plementation of itsWSRF-compliant interfaces. Section VI
presents our performance evaluation of theGRIMOIRES sys-
tem. Section VII discusses related work and Section VIII
outlines areas for future research.

II. BACKGROUND

A. UDDI

The UDDI service registry [1] is the standard for Web
services discovery. Service descriptions inUDDI are composed
from a limited set of high-level data constructs: Business
Entity is the data model for service providers, Business Service
for services themselves, Binding Template for the concrete
bindings of the services, and Technical Model (tModel) for
some shared knowledge such as a category system or the
technical interfaces of the services.

In UDDI, a service description can reference a value as its
metadata; the value is encoded in a value set represented by
a tModel that thus speaks for the meaning of the value [9].
Since the description of the value set is not saved in the
registry itself,UDDI acts only as a contact point to get further
information and thus lacks the capability of inquiry by the
content of any metadata.

The same problem arises on inquiry by a service technical
interface usually defined by aWSDL document. Here, tModels
are also used to record a URL to an externalWSDL file. Hence
UDDI does not hold interface signatures and therefore does
not allow users to query a service by its interface signature.
For instance,UDDI does not support discovering a service that
accepts an input message of a given type. We note that aUDDI

technical note [10] describes a way to discover a service based
on a certainWSDL porttype.

Allowing service consumers to annotate service descrip-
tions promotes the sharing of knowledge about services. It
also allows users with expert knowledge to enrich service
descriptions in flexible ways, with information that might not
be available to the original publishers. However,UDDI does
not specify how to attach metadata to a published service by
service consumers.

B. Metadata Annotation

Since UDDI lacks support for metadata annotation and
metadata-based service discovery, we designedGRIMOIRES,
a UDDI-compliant registry with a rich metadata annotation
capability.GRIMOIRES allows metadata to be attached to any
UDDI entities. A piece of metadata is composed of a type

describing the meaning of this annotation, a value and some
provenance information (such as author or date). The value can
be a simple string, a URI that refers to a predefined ontology
concept, or a complex and structured description expressed as
an RDF graph [11].

Users can attach metadata to service descriptions to provide
domain-specific knowledge about the service; such knowl-
edge can be used to identify services more precisely during
service discovery. Metadata-related operations supported by
GRIMOIRES include attaching, updating and deleting metadata,
as well as discovering entities according to their attached
metadata. The ability to publish, update and read metadata
is available to both service providers and service consumers
under a configurable access control mechanism [12].

With such a capability,GRIMOIRES can support service
discovery based on interface signature. Indeed, users can
annotate the input of a Web service operation with a semantic
type, which provides a description of the input in terms of
the application’s semantics rather than the syntactical type
encoded in the SOAP message. For instance, a nucleotide
sequence can be encoded as a string in the SOAP message,
but a more meaningful approach is to qualify the sequence
as its semantic type. With such annotations in place, a user
can discover a service that, for instance, is able to process a
nucleotide sequence.

C. WSRF

WSRF introduces the concept of WS-Resource to model
stateful resources. More precisely, a WS-Resource models a
stateful resource that has a well-defined lifecycle and can be
expressed as anXML document [7]. To this end, a resource
property is seen as a piece of information defined as part of
the state of a resource. Each resource property is expected
to have anXML representation, referred as resource property
element. All the resource property elements of a resource are
logically composed in a singleXML document, named the
resource properties document.

The standardized operations on a WS-Resource include
accessing (updating/deleting/querying) resource properties [8],
immediately destroying or scheduling a later destroy of a WS-
Resource [13], as well as subscribing and getting notification
of the changes of a WS-Resource [6].

We emphasize that by exposing service descriptions and
their annotated metadata as WS-Resources,GRIMOIRES’s
users can also leverageWSRF operations to publish and
discover service descriptions in the registry.

III. SERVICE DESCRIPTIONS ASWS-RESOURCES

In this section, we discuss design choices in exposing
service descriptions (and other registry entities) and their
metadata annotations as WS-Resources that would allow users
to access them in aWSRF-compliant way.

A. Resource Property

We focus here on how to expose the state stored in the reg-
istry database through the means of WS-ResourceProperties.

Fig. 1. AnnotatedRegistryEntity RP

Our first option is to use a single resource property (RP),
to reflect a registry entity’s state; this includes the reg-
istry entity itself but also its metadata annotation. We name
such a representationAnnotatedRegistryEntity , and
its XML schema is shown in Figure 1. By encapsulating
in the AnnotatedRegistryEntity RP a representation
of both the registry entity and its metadata, we build an
explicit annotation relationship that specifies which metadata
is associated with which registry entity. Such an annotation
relationship is crucial to allow discovery of registry entities
by their attached metadata.

In GRIMOIRES, metadata are entities that potentially are
more volatile than the service descriptions they are associated
with and can be queried and updated by dedicated operations.
Hence, an alternate design would be to expose each metadata
directly as a RP. This offers two benefits. First, we could
make use of generic WS-ResourceProperties getters and setters
to read and updateGRIMOIRES metadata. Second, if some
metadata needs to be updated, we would just provide the new
metadata value and we would no longer need to construct
a completeAnnotatedRegistryEntity including a ser-
vice description and all its metadata.

While such a design seems appealing, theWSRF specifica-
tion sets a number of constraints to its realization.GRIMOIRES

metadata are (type, value) pairs with additional provenance
information. In order to expose a piece of metadata as a WS-
ResourceProperty, the metadata type would have to become
the RP’s QName (and it would also be reflected in the
definition of the resource properties document that appears
in the serviceWSDL description.). Unfortunately, we cannot
adopt such a design becauseGRIMOIRES metadata types are
provided dynamically by users and thus cannot be encoded
statically in the schema of the resource properties document.

RegistryEntity enumerates all types of registry
entities that GRIMOIRES supports to attach metadata
to. Specifically,businessEntity , businessService ,

bindingTemplate , and tModel are defined in theUDDI

data model;wsdlDescription contains the URL and
content of aWSDL description;wsdlOperation is used
to locate an operation defined in aWSDL description, by
using its porttype namespace, porttype name, and operation
name; andwsdlMessagePart is used to locate a message
part defined in aWSDL description, by using its message
namespace, message name, and message part name. Metadata
can also be attached to other metadata.

EachAnnotatedRegistryEntity also contains a WS-
Addressing endpoint reference pointing to the WS-Resource
containing thisAnnotatedRegistryEntity RP. When-
ever aAnnotatedRegistryEntity RP is retrieved, it can
be figured out where it comes from and where to get its latest
version if it is suspected being obsolete.

So far, we have modeled each registry entity
as a WS-Resource, with a single RP named
AnnotatedRegistryEntity . However, the registry
as a whole is itself also a stateful resource, which contains
all registry entities. TheXML representation of the registry as
a whole is the composition of theXML representations of all
its entities.

B. WSRF-Compliant Interfaces

We now introduceWSRF-compliant interfaces that allow
users to operate on the WS-Resources described in the previ-
ous section. The registry exposes threeWSRF-compliant inter-
faces, namelyEntry , Query , andFactory , as depicted in
Figure 2 and described below.

Registry creates

Entry
GetResourceProperty

SetResourceProperties
Destroy

SetTerminationTime
Subscribe

Query
QueryResourceProperties

Factory
Create

S1

S2

S3

S1 S2 S3

S1

S2
S3

exposed as

maps

Interface S1 S1 Service
description

Resource

Fig. 2. GRIMOIRES WSRF compliant interfaces

Entry is the interface to interact with individual registry
entities, such as service descriptions, exposed as stateful
resources. TheEntry interface is associated with multiple
resources. Each of them corresponds to one registry entity. The
Entry interface allows users to get and set each resource’s
AnnotatedRegistryEntity RP, as well as to delete each
resource. It also allows users to subscribe to the changes of

registry entities. In other words, theEntry interface gives
users full access to individual registry entities throughWSRF

operations.
While theEntry interface provides the capability of query-

ing over individual registry entities, theQuery interface aims
to facilitate discovery over the whole registry. TheQuery
interface is associated with only one resource, which corre-
sponds to the collection of all registry entities. Through the
Query interface, users are presented with a view of the whole
registry, which allows them to issue queries over the whole
registry using a query language such as XPath in a standard
WSRF operation.Query is a readonly interface in that it
supports the query operation only over the whole registry;
updates to individual registry entities must go through the
Entry interface.

WSRFdoes not specify the protocol to create WS-Resources.
Hence, theFactory interface is designed to act as a resource
factory, through which new registry entities can be created as
resources associated with theEntry interface.

Both the Entry resources (the resources associated
with the Entry interface) and theQuery resource (the
sole resource associated with theQuery interface) have
AnnotatedRegistryEntity as their RP. However, the
AnnotatedRegistryEntity resource property element
has a cardinality of 1 in anEntry resource properties doc-
ument and an unbounded cardinality in theQuery resource
properties document (because in the latter case theQuery
resource is seen as the collection of allEntry resources).

Furthermore, when the whole registry is queried over
through theQuery interface, if a registry entity is matched
with given criteria, the endpoint reference to the corresponding
Entry resource can be resolved so that users can take further
actions directly on theEntry resource, for instance, by
subscribing to its changes or by destroying it.

C. Benefits

The proposed design offers several benefits.
(i) Service descriptions can be published and discovered

through standard uniform state-oriented operations. Not only
does this feature enableWSRF-compliant clients to access
the contents of theGRIMOIRES UDDI-compatible registry,
but it also augmentsUDDI ’s capability of handling service
descriptions. For instance, service descriptions can be queried
over by using anXML query language, such as XPath, which
is more flexible than theUDDI rigid query templates.

(ii) By following the WSRF specification, we unify different
ways of accessing various data models, such asUDDI data
model, metadata, andWSDL descriptions, which contribute to
a complete service description inGRIMOIRES. By comparison,
different APIs were previously used to publish and inquire
over these different data models.

(iii) Through the mechanism of soft-state lifetime manage-
ment defined in the WS-ResourceLifetime specification [13],
a service description for a transient service can be annotated
with a lifetime so that the registry can automatically clean up
the description when its lifetime expires.

(iv) Changes in the service descriptions can be delivered
promptly to subscribers through the WS-Notification mecha-
nism. Furthermore, metadata annotation that has enriched a
published service description can also be captured by sub-
scribers through the same notification mechanism.

IV. A RCHITECTURE

Figure 3 shows the architecture of theGRIMOIRES registry,
which we discuss in a top-down manner.

UDDI Metadata WSDL Entry Query Factory

RDF Serializer RDF Deserializer RDF Query Generator

Access Control Engine WS-Resource Manager

System Programming Layer Lifetime Manager

Jena RDF API

 Jena Sesame Model

Jena DB/FBIM Store Sesame DB/FBIM/Native Store

Fig. 3. GRIMOIRES Architecture

GRIMOIRES provides two types of interfaces. Non-WSRF-
compliant interfaces includeUDDI following the UDDI stan-
dard, Metadata for attaching metadata and querying by
metadata, andWSDL for the publication of and query
over WSDL descriptions;WSRF-compliant interfaces include
Entry , Query , andFactory (presented in Section III-B).

The WS-Resource manager is in charge of exposing registry
entities as WS-Resources (discussed in Section V).

The access control engine plays a vital role in ensuring
that service descriptions as well as their attached metadata
can be trusted. All requests coming through the WS interfaces
reach the policy decision point of the access control engine
before they—if allowed—are passed to the system program-
ming layer. The authentication is based on the client’s X.509
certificate; the access control engine itself is XACML based.
(For more detail, see [12].)

The system programming layer (SPL) implements the busi-
ness logic of theUDDI/Metadata /WSDLinterfaces. The SPL
calls the RDF Deserializer/Serializer to deserialize/serialize
UDDI/metadata/WSDL descriptions to and from RDF triples,
which reside in a triple store. The SPL also calls the RDF
Query Generator to translateUDDI/Metadata /WSDLqueries
to RDF queries.

The scheduled termination time of a service description is
expressed as a special metadata item attached to that service
description. A service provider is able to attach this metadata
to the published service, which has a known limited lifetime.
Thus, when its lifetime expires, it can be swept by the lifetime
manager.

GRIMOIRES is distributed as two dependent installations.
A base installation covers all components in Figure 3, except
theWSRF-compliant interfaces and the WS-Resource manager.
Therefore, the base installation is aUDDI registry with meta-
data annotation capability that can be deployed into a WS

container with or withoutWSRF support, for instance, Globus
Toolkit 4 (GT4) [14] or an OMII [15] container. AWSRF

installation extends the base installation withWSRF-compliant
interfaces. Currently, theWSRF installation is targeted to GT4.
SeparatingGRIMOIRES into two installations gives us flexibil-
ity of deployment in various WS container environments.

V. I MPLEMENTATION

To implement our vision of expressingUDDI service de-
scriptions and their metadata annotations as WS-Resources,
we faced several technical challenges, which we discuss in
this section.

A. Cached Resources vs Registry State

The WS-Resource manager is in charge of exposing registry
entities as WS-Resources. In order to maintain a view of
WS-Resources consistent with registry entities, it has to(i)
generate theEntry resources equivalent to registry entities;
(ii) reflect into theEntry resources the changes of registry
entities that are made through the non-WSRF-compliant inter-
faces; (iii) reflect into the registry the changes of the resources
that are made through theEntry interface so that they can be
seen by the non-WSRF-compliant interfaces as well; and(iv)
save in the registry the resources that are created through the
Factory interface.

In GRIMOIRES, resources act as yet another view of the
registry data that is originally kept persistent as RDF triples
in GRIMOIRES’ triple store. Two options are available for the
implementation of resources. Lasting resources could be kept
available and consistent with corresponding registry entities,
or transient resources could be generated on demand.

Implementing lasting resources introduces duplication of
information between registry entities and resources, which
increases the implementation complexity because we have
to resolve the inconsistency between resources and registry
entities. That is, onGRIMOIRES starting up, resources need
to be initialized from the published registry entities in the
triple store. Also, all changes made to the registry through the
non-WSRF-compliant interfaces need to be captured, and corre-
sponding resources then can be updated based on the captured
events. On the other hand, the lasting resources in fact act as
a cache of registry entities to theWSRF-compliant interfaces.
Whenever requested, the resource is already available instead
of being constructed from the triple store on the fly.

On the other hand, implementingtransient resources does
not cause duplication of information and does simplify the
implementation, although the fact that resources have to be
constructed on demand introduces some delay.

We have implemented both the lasting resource and the
transient resource approaches and are experimenting with
them. The choice between these two approaches appears to
be essentially a tradeoff between time and space.

B. XPath Processing vs Translation

TheQuery interface provides for discovery over the whole
registry, through the expressive XPath query language, but it
presents some challenge from a performance viewpoint.

A possible optimization could be translating arbitrary XPath
expressions to the query language used by the registry persis-
tent storage. In our case, this means converting XPath queries
into RDF queries. The corresponding RDF query expressions
could then be directly evaluated over the triple store. Such
a solution would avoid constructing resources at all, and it
would leverage the RDF query engine that has been optimized
to some extent.

However, a RDF query language such as RDQL has dif-
ferent expressiveness from XPath, which might make the
translation difficult. This is a topic of investigation in itself
and is beyond the scope of this paper. Instead, we decided on
a two-pronged strategy. First, we opted for XPath processing
and leveraged existing XPath solutions to address the problem.
Second, we translated XPath queries that correspond toUDDI
or Metadata canned queries and mapped them directly to
the system programming layer.

C. XPath Processing

In order to prepare theQuery resource properties document
for XPath queries,Entry resources are generated from the
RDF triples if transient resources are implemented; theQuery
resource is then constructed fromEntry resources. By de-
fault, GT4 provides a query operation provider for evaluating
XPath expression on a resource properties document, but it
currently does not index theXML elements of the resource
properties document to be evaluated, although such indexing
could make the query more efficient.

To improve the performance of theQuery interface, we
have implemented our own query operation provider that over-
rides the default GT4 provider.GRIMOIRES query operation
provider incorporates the following optimizations:

(i) The DOM representing theQuery resource properties
document, over which the XPath expression is evaluated,
is cached in order to improve the performance of future
invocation. The cached DOM is wrapped in a soft reference
object so that it can be reclaimed by the garbage collector if
the available heap space becomes scarce. The cached DOM is
invalidated by updating the triple store.

(ii) A faster XPath query engine, Jaxen, is used instead of
Xalan, the default in GT4. Note we do not do indexing in
Jaxen either.

(iii) Some frequently used XPath expressions, for instance,
discovering a service by its name, can be recognized and trans-
lated to correspondingUDDI or Metadata inquiry requests,
which then are sent to the system programming layer directly.
If the submitted XPath queries cannot be recognized, they are
evaluated by using the XPath query engine over the DOM.

VI. PERFORMANCEEVALUATION

In this section, we evaluate theGRIMOIRES WSRFinstalla-
tion on GT4.GRIMOIRES’ fundamental operations are service
publication, metadata annotation, and service discovery (in-
cluding service discovery by metadata). We wish to know the
overhead of individual publication and discovery operations
with respect to the data size of the registry. In particular, we

wish to determine to what extent the publication and discovery
overheads are affected when an increasing amount of data is
registered inGRIMOIRES.

In our evaluation, we repeat the following procedure: (1)
publish 100 services, each with its unique service descrip-
tion, and (2) among all the services currently registered in
GRIMOIRES, randomly discover 100 services by name. We
compare the overhead of theWSRF-compliant interfaces with
that of the non-WSRF-compliant interfaces.

Figure 4 shows the service publication overhead. As seen
from the figure, the overhead of theWSRF-compliant interface
(i.e., by invoking theFactory interface) is 8.4% lower
than that of theUDDI interface when there are 3,000 ser-
vices in the registry. To publish a service through theUDDI
interface, in our experiment, we first publish the business
as the service provider, then publish the service, whereas
through theFactory interface both business information
and service information are published in one message. Two
uncertainties cause the jumps along the curves in Figure 4:
garbage collection and synchronizing data from the memory
to the backup file. The latter is due to the file-backed in-
memory triple store we have used inGRIMOIRES. All service
descriptions reside in memory for better performance; after
a variable delay they are saved to the backup file to ensure
persistence.

Figure 5 shows the service discovery overhead. In order
to discover a service by its name, a common question in
service discovery, aWSRF-compliant client submits an XPath
query through theQueryResourceProperties operation
defined in the WS-ResourceProperties specification. As seen
from the figure, the service discovery performance through the
Xalan XPath query engine lags behind that through theUDDI
interface. We therefore have made various efforts to improve
the performance, namely, by using Jaxen XPath query engine
instead of Xalan, caching the DOM representing theQuery
resource properties document, and translating the XPath query
to theUDDI query. When there are 3,000 services in the reg-
istry, using Jaxen instead of Xalan improves the performance
by 6.9%; caching DOM improves the performance by 91.7%;
and translating the XPath query to theUDDI query makes the
query performance very similar to that of theUDDI interface.
We note that indexing currently is not used in the XPath query;
we are investigating ways to improve the XPath evaluation
performance by indexing frequently used DOM elements.

Figures 6 and 7 show the overhead of attaching or up-
dating metadata and that of discovering service by metadata,
respectively. The methodology is the same as in the previous
experiment except that an item of metadata is attached to each
service description during the publication phase and services
are discovered by their metadata during the discovery phase.

To attach metadata to a service description, the
corresponding Entry resource needs to be identified
and its AnnotatedRegistryEntity resource property
element needs to be retrieved. A new piece of metadata then
can be added into thisAnnotatedRegistryEntity
element. Thus, attaching metadata requires two

WSRF operations: GetResourceProperty and
SetResourceProperties . Updating metadata is
similar to attaching metadata except that an existing piece
of metadata in theAnnotatedRegistryEntity element
is modified. In comparison, attaching or updating metadata
through the metadata interface requires only one Web
service invocation.

In Figure 7, we again observe that the service discovery
performance through the Xalan XPath query engine lags
behind that through theMetadata interface. When there
are 3000 services in the registry, however, using Jaxen XPath
query engine instead of Xalan improves the performance by
2.4%; caching DOM improves the performance by 89.1%; and
translating the XPath query to theMetadata query makes the
query performance very similar to theMetadata interface.

VII. R ELATED WORK

UDDI [1] has become the de facto standard for service
publication and discovery for Web services. In a previous
paper [4], we identified the incapability ofUDDI in terms of
metadata annotation, and we describedGRIMOIRES’ approach
for supporting metadata annotation in the context of aUDDI

registry. In this paper, we present an approach for exposing
UDDI entities and their annotated metadata as WS-Resources.
With such an approach,GRIMOIRES augments the service
registry’s interoperability in accessing service description and
serving service lifecycle events.UDDI does not specify a
registry entity lifetime management mechanism, which is
now addressed inGRIMOIRES using WSRF. Although UDDI

defines its own notification mechanism,GRIMOIRES’ notifi-
cation mechanism, which is built on the well-accepted WS-
Notification, presents a better interoperability.

A UDDI technical note [9] describes a best practice to
attach metadata (so called properties in the technical note)
to UDDI entities, i.e., using the KeyedReference data structure
that contains a key/value pair to express a piece of metadata.
Several research papers ([16], [17]) investigate how to express
semantics inUDDI based on such a mechanism. To assist
service discovery by its technical interface, Sivashanmugam
et. al. [17] suggest attaching a KeyedReferenceGroup data
structure to aUDDI service for each service operation. Three
KeyedReferences can be found inside the KeyedReference-
Group, expressing the semantics of the operation, the opera-
tion input, and operation output, respectively. Compared with
GRIMOIRES’ metadata annotation approach, this mechanism
limits metadata to key/value pairs, thus lacking the capability
to express structured metadata. Also, it does not address
the problem of allowing third party annotation. Furthermore,
Sivashanmugam et. al.’s approach requires publishers to re-
describe services’ technical interface information explicitly in
the UDDI data model. Comparatively,GRIMOIRES usesWSDL

to describe service interface, and provides a mechanism to link
a UDDI service to its correspondingWSDL description, which
is a more natural way to describe service interface in Web
Services development environment.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 500 1000 1500 2000 2500 3000

T
im

e
(m

ill
is

ec
on

d)

Number of services

Service Publication Overhead against Registry Size

WSRF interface
UDDI interface

Fig. 4. Service publication

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500 3000

T
im

e
(m

ill
is

ec
on

d)

Number of services

Service Discovery (by name) Overhead against Registry Size

WSRF interface (Xalan)
WSRF interface (Jaxen)

WSRF interface (Jaxen, DOM cached)
WSRF interface (translated to UDDI query)

UDDI interface

Fig. 5. Service discovery (by name)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000

T
im

e
(m

ill
is

ec
on

d)

Number of services

Metadata Annotation Overhead against Registry Size

WSRF interface (attaching metadata)
WSRF interface (updating metadata

Metadata interface (attaching metadata)
Metadata interface (updating metadata)

Fig. 6. Metadata annotation

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 500 1000 1500 2000 2500 3000

T
im

e
(m

ill
is

ec
on

d)

Number of services

Service Discovery (by metadata) Overhead against Registry Size

WSRF interface (Xalan)
WSRF interface (Jaxen)

WSRF interface (Jaxen, DOM cached)
WSRF interface (translated to Metadata query)

Metadata interface

Fig. 7. Service discovery (by metadata)

The ebXML registry [2] is designed to be a generic in-
formation management system. It has defined both a registry
information model and registry services and interfaces. The
ebXML registry has provided a Web service profile that
specifies the conventions to make the ebXML registry act as
a Web service registry.

The Globus Toolkit (www.globus.org) provides the
Monitoring and Discovery System (MDS), consisting of a
suite of Web services, to monitor and discover resources
and services on Grids. MDS focuses on the mechanism to
disseminate and gather information on Grids rather than the
information model to describe services or resources. Each
information source publishes information inXML according
to some schema. The GLUE schema [18] is used for compute
information. But the authors of the information sources or the
Grid resources can define their own schema, so that arbitrary
XML data can be published to describe service profiles and
states. The XPath language is used for inquiry. We consider
MDS as a complement toGRIMOIRES in that MDS can be
used as an automatic service information collector for the
GRIMOIRES registry.

WS-ServiceGroup is a part of theWSRF specifications,
which defines the conventions by which Web services and WS-

Resources can be grouped together. The conventions include a
data model for the service group, such as some common con-
straint rules among members, and interfaces for group mem-
bership management.GRIMOIRES uses a data model much
richer than that defined by WS-ServiceGroup.GRIMOIRES

supports many registry entities that cannot be modeled as
services identified by an endpoint reference or a URL. For
instance, in UDDI ’s taxonomy, neither BusinessEntity nor
BusinessService needs to have a URL. Only the concrete
binding of a service (i.e., BindingTemplate) must have a URL.

VIII. C ONCLUSION AND FUTURE WORK

In this paper, we present a novel service registry ar-
chitecture,GRIMOIRES, that is UDDI-compliant andWSRF-
compliant and strongly supports metadata annotation. Users
can use either standardUDDI operations or standardWSRF

operations to publish and discover service descriptions. The
WSRF-compliant interface ofGRIMOIRES further gives users
the capability to track the service description changes by
notification and to manage the lifetime of service descriptions.

Our prototyping and performance benchmarking endorse
the feasibility and benefits of such an architecture. There is
room for further optimizing the query performance through

the WSRF-compliant interface. Indeed, by capturing and trans-
lating UDDI canned queries such as discovering a service by
its name, the query performance through theWSRF-compliant
interface is comparable to that through theUDDI-compliant
interface, while the performance of other queries may suffer
from the overhead of a flexible and expressive query language.
We are investigating using indexing to further improve the
query performance.

The query language XPath used in the WSRF-compliant in-
terface does not support semantic reasoning, since it performs
exact syntactic match over the XML document representing
WS-resources. We are further investigating how such semantic
reasoning could be supported.

Recently, a convergence of Web service standards for re-
sources, events, and management [19] has been proposed by
IBM, Microsoft, HP, and Intel. The new proposed standards
will reuse core concepts of existing ones, such asWSRF. Our
approach, which is built onWSRF, would migrate easily to the
future standards.

ACKNOWLEDGMENT

This research is funded in part by theGRIMOIRES

(EPSRC Grant GR/S90843/01) and SOCA (EPSRC Grant
EP/C528131/1(P)) projects. This work was supported in part
by U.S. Department of Energy, under Contract W-31-109-Eng-
38.

REFERENCES

[1] The UDDI Specification, OASIS Std., Rev. Version 2, 2002. [Online].
Available: http://www.uddi.org

[2] The ebXML Registry Standards, OASIS Std., Rev. 3.0, 2005.
[3] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, “Grid infor-

mation services for distributed resource sharing,” inProceedings of the
Tenth IEEE International Symposium on High-Performance Distributed
Computing (HPDC-10), 2001.

[4] S. Miles, J. Papay, T. R. Payne, K. Dceker, and L. Moreau, “Towards
a protocol for the attachment of semantic descriptions to grid services,”
Scientific Programming, vol. 12, pp. 201–211, 2005.

[5] I. Foster, K. Czakowski, D. F. Ferguson, J. Frey, S. Graham, T. Maguire,
D. Snelling, and S. Tuecke, “Modeling and managing state in distributed
systems: The role of OGSI and WSRF,” vol. 93, pp. 604–612, 2005.

[6] Web Services Base Notification, OASIS Working Draft, Rev. 1.2, 2004.
[7] I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czakjowski, D. Ferguson,

F. Leymann, M. Nally, I. Sedukhin, D. Snelling, T. Storey, W. Vam-
benepe, and S. Weerawarana, “Modeling stateful resources with web
services,” 2004.

[8] Modeling and Managing State in Web Services Resource Properties,
OASIS Std., Rev. 1.2, 2006.

[9] L. Clément and J. Garbis,Strawman Proposal - Representing Property
Information, OASIS Technical note proposal, 2005.

[10] F. Curbera, D. Ennebuske, and D. Rogers,Using WSDL in a UDDI
Registry, OASIS Technical note, 2002.

[11] RDF Primer, WWW Consortium Recommendation, 2004. [Online].
Available: http://www.w3.org/TR/rdf-primer

[12] V. Tan, W. Fang, S. C. Wong, S. Miles, and L. Moreau, “A security
architecture for a semantic grid registry,” inProceedings of the UK OST
e-Science Fourth All Hands Meeting 2005 (AHM’05), Nottingham, UK,
2005.

[13] Web Services Resource Lifetime, OASIS Std., Rev. 1.2, 2006.
[14] I. Foster, “Globus toolkit version 4: Software for service-oriented

systems,” inProceedings of IFIP International Conference on Network
and Parallel Computing, 2005.

[15] Open middleware infrastructure institute. [Online]. Available:
http://www.omii.ac.uk/

[16] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara, “Importing the
semantic web in uddi,” inProceedings of Web Services, E-Business and
Semantic Web Workshop, Toronto, Canada, 2002, pp. 225–236.

[17] K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller, “Adding seman-
tics to web services standards,” inProceedings of The 2003 International
Conference on Web Services (ICWS’03), Las Vegas, NV, 2003, pp. 395–
401.

[18] The GLUE schema. [Online]. Available:
http://www.cnaf.infn.it/˜sergio/datatag/glue

[19] K. Cline, J. Cohen, D. Davis, D. F. Ferguson, H. Kreger, R. McCollum,
B. Murray, I. Robinson, J. Schlimmer, H. Shewchuk, V. Tewari, and
W. Vambenepe, “Toward converging web service standards for resources,
events, and management,” A Joint White Paper from Hewlett Packard
Corporation, IBM Corporation, Intel Corporation and Microsoft Corpo-
ration, 2006.

