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Abstract

We discuss the possibility of enforcing a massless Majorana neutrino in the direct
and semi-direct approaches to lepton mixing, in which the PMNS matrix is partly
predicted by subgroups of a discrete family symmetry, extending previous group
searches up to order 1535. We find a phenomenologically viable scheme for the
semi-direct approach based on Q(648) which contains ∆(27) and the quaternion
group as subgroups. This leads to novel predictions for the first column of the
PMNS matrix corresponding to a normal neutrino mass hierarchy with m1 = 0,
and sum rules for the mixing angles and phase which are characterised by the solar
angle being on the low side θ12 ∼ 31◦ and the Dirac (oscillation) CP phase δ being
either about ±45◦ or ±π.

1 Introduction

Neutrino mass and lepton mixing differs markedly from that of quarks in several ways.
The extreme smallness of neutrino mass, together with large lepton mixing provide fasci-
nating clues in the search for a theory of flavour. One idea is that lepton mixing may be
governed by a discrete family symmetry group Gf which controls the Majorana neutrino
and charged lepton mass matrices leading to lepton mixing predictions [1, 2]. The three
possible implementations of flavour symmetries are known as “direct”, “semi-direct” and
“indirect” [1, 2].

According to the “direct” approach, the Klein symmetry Gν = Z2×Z2 of the Majorana
neutrino mass matrix and the symmetry G` which fixes the form of the lepton mass matrix
are both subgroups of Gf , resulting in a prediction for all the lepton mixing angles and
Dirac phase. The advantage of the direct approach is that the prediction arises purely
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from symmetry and does not require any detailed knowledge of the model. However, the
direct approach requires a rather large group [3–6], and the only viable mixing pattern is
the trimaximal mixing, with δ being either zero or ±π.

In the “semi-direct” approach, the symmetry of the neutrino mass matrix is typically
reduced to Z2 for Majorana neutrinos, which constrains only the second column of the
PMNS matrix to be (1, 1, 1)T/

√
3, or the first column to be (2, 1, 1)T/

√
6 (up to phases),

and the reactor angle θ13 can be accommodated with a small discrete group such as S4.
In the “indirect” approach, the flavour symmetry is completely broken such that the
observed neutrino flavour symmetry emerges indirectly as an accidental symmetry, and
the predictions are model dependent (for a recent review see [7]).

The above direct and semi-direct approaches usually assume three non-degenerate
Majorana neutrino masses. There has recently been some discussion of how this picture
changes if one of the Majorana neutrino masses is zero [8, 9]. In this case the phase of the
massless neutrino field is undetermined resulting in one of the Z2 factors being replaced
by Zn, with the consequence that the determinant of the family symmetry Gf need not be
±1, i.e. it is a subgroup of U(3) rather than SU(3). Although this opens up the possibility
that a new type of viable direct model being found, in fact only a no-go theorem results
from such searches up to order 511 [8, 9].

In the present paper we extend the reach of such searches for direct models with one
massless neutrino up to order 1535, but without phenomenological success. On the other
hand we also perform a new type of search for semi-direct models up to order 1535, and
find a successful example of this kind, based on the group,

Gf ' (∆(27) oQ8) o Z3 (1)

where Q8 denotes the quaternion group of order 8 and the group is therefore of order
34 × 8 = 648. We denote this group as Q(648). This leads to a successful prediction for
the first column of the PMNS matrix,

UPMNS =

Ue1 − −
Uµ1 − −
Uτ1 − −

 (2)

corresponding to a normal neutrino mass hierarchy with m1 = 0 and sum rules for the
mixing angles and phase which are characterised by the solar angle being on the low side
θ12 ∼ 31◦ and the Dirac (oscillation) CP phase δ either about ±45◦ or ±π (e.g. the recent
hint of δ ∼ −π/2 is not allowed).

Before we outline the details of our analysis, we would like to briefly comment on dy-
namical settings enforcing m1 = 0. The most prominent scenarios of this kind are type-I
seesaw models with two right-handed neutrinos [10]. Such models necessarily imply the
mass of the lightest neutrino to vanish, independent of any imposed flavour symmetries.
In the same way, the discrete residual symmetries discussed in this paper lead to m1 = 0
independent of the number of right-handed neutrino fields. Therefore, although not di-
rectly connected, the two approaches can easily be combined. For example if the three
left-handed lepton doublets L transform under a triplet representation 3 of the flavour
group Gf and three Higgs-doublets (or alternatively three flavons) φ also transform un-
der a triplet representation 3′ of Gf , and the tensor product 3∗ ⊗ 3′ contains one or
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two-dimensional representations, a Dirac Yukawa coupling Lφ νR to two right-handed
neutrinos is compatible with Gf .

The remainder of the paper is laid out as follows. In section 2 we review residual
symmetries with a massless Majorana neutrino and describe our strategy and results of
group searches for direct and indirect models, for groups up to order 1535. In section 3
we present the results of a numerical phenomenological analysis, and show that while the
direct models are excluded by current data, there is a unique group (up to this order)
which yields acceptable results in the semi-direct approach, leading to mixing sum rules
and phenomenological predictions. Section 4 concludes the paper.

2 Group searches with a massless neutrino

2.1 Residual symmetries in the lepton mass matrices

The main question around which the framework of residual symmetries in the fermion
mass matrices [3, 5, 11–17] has been constructed is the question: When do symmetries of
a 3× 3-matrix (partly) fix the matrix which diagonalises it?

The answer to this question is fairly simple. Consider unitary matrices Si and Tj
which leave a complex symmetric matrix M or a Hermitian matrix H invariant,1 i.e.

STi MSi = M ∀i, (3a)

T †jHTj = H ∀j. (3b)

The set of all matrices Si forms a group GM of unitary 3 × 3-matrices. In the same
way, also the matrices Tj form a unitary group GH . If the matrices M and H have non-
degenerate singular values2 the groups GM and GH must be Abelian. For this case one
can show that the matrices UM and UH which (simultaneously) bring all Si and Tj to
diagonal form, i.e.

U †MSiUM = Ŝi ∀i, (4a)

U †HTjUH = T̂j ∀j, (4b)

1For application to the fermion mass problem the study of Hermitian and complex symmetric matrices
is sufficient. For the lepton sector we will later have M = Mν and H = M`M

†
` .

2 The singular values are the elements of the diagonalised matrix. This condition is necessarily fulfilled
in all relevant applications, because the singular values of H will be identified with the charged-lepton
masses squared and the singular values of M will be identified with the three light-neutrino masses.
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also diagonalise H and M via3 [12]

UT
MMUM = M̂, (6a)

U †HHUH = Ĥ, (6b)

where hatted matrices are diagonal matrices. In other words the set of symmetries Si of
a matrix M fixes its diagonalising matrix UM . The same statement holds for Tj and H.

Let us now apply these mathematical considerations to the case of residual symmetries
in the lepton sector. The assumption of residual symmetries is that there is a flavour
symmetry group Gf (acting on the lepton fields) which is spontaneously broken to a
symmetry group Gν in the neutrino sector,

STi MνSi = Mν , Si ∈ Gν , (7)

and a symmetry group G` in the charged-lepton sector,

T †jM`M
†
`Tj = M`M

†
` , Tj ∈ G`. (8)

Identifying M = Mν and H = M`M
†
` in the above discussion, we immediately find

Gν ⊂ GM and G` ⊂ GH . Therefore, the symmetry groups G` and Gν potentially (but
not necessarily) impose constraints on the matrices Uν and U`, which diagonalise Mν and
M`M

†
` via

UT
ν MνUν = diag(m1,m2,m3), (9)

U †`M`M
†
`U` = diag(m2

e,m
2
µ,m

2
τ ), (10)

and consequently also on the mixing matrix UPMNS = U †`Uν .
In order to know how Gν and G` constrain Uν and U` we have to understand to which

degree an Abelian unitary 3× 3−matrix group A determines the unitary matrix U which
simultaneously diagonalises all elements of A. There are only three possibilities:

• None of the common eigenvectors of the elements of A is unique.4 ⇒ A = {13} and
U is an arbitrary unitary matrix.

• One of the common eigenvectors of the elements of A is unique. ⇒ One column of
U is proportional to this eigenvector. ⇒ One column of U is fixed by A up to a
rephasing.

3Let us, as an illustration, give the derivation of this fact for a complex symmetric matrix M . From
equation (6a) we have Muk = mku

∗
k (no summation over k) for the columns uk of UM , i.e. the uk are

singular vectors of M with singular values mk. From equation (3a) we then have

STi MSiuk = mku
∗
k ⇒M(Siuk) = mk(Siuk)∗. (5)

Since the singular values mi are assumed to be non-degenerate, the corresponding singular vectors are
unique up to multiplication with a constant, i.e. Siuk = siuk. Therefore, the uk are simultaneous
eigenvectors to all Si, which implies equation (4a).

4For eigenvectors unique here means unique up to multiplication with a complex number.
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• All three of the common eigenvectors of the elements of A are unique. ⇒ Each
column of U is proportional to one of these eigenvectors. ⇒ U is fixed by A up to
rephasing and reordering of its columns.

According to this finding, one classifies models based on residual symmetries into two
categories:

(A) Direct models: Gν fixes Uν and G` fixes U` (up to reordering and rephasing of the
columns). ⇒ UPMNS is fixed (up to reordering and rephasing of rows and columns).

(B) Semidirect models: In one sector the full diagonalising matrix is fixed, in the other
sector only a column is fixed.

(B1) G` fixes U`, Gν fixes a column of Uν . ⇒ One column of UPMNS is fixed up to
permutation of its elements. One may choose (if not determined by a concrete
model) which column of UPMNS is fixed.

(B2) G` fixes one column of U`, Gν fixes Uν . ⇒ One row of UPMNS is fixed up to
permutation of its elements. One may choose (if not determined by a concrete
model) which row of UPMNS is fixed.

In this work we will only study the cases A and B1. Case B2 has for example been
studied in [18]. One could in principle also consider a third very weakly restrictive case
C for which in each sector only one column is fixed (up to rephasing). In this case only
one element of UPMNS would be fixed. Due to its low predictive power, this scenario is
usually not studied, and also we will not study it here.

2.2 Residual symmetries enforcing one massless neutrino

The residual symmetry groups Gν and G` are Abelian groups of unitary 3 × 3-matrices.
Therefore, they are subgroups of U(1) × U(1) × U(1). For the charged lepton sector,
this is also the maximal symmetry group, i.e. GH = U(1)× U(1)× U(1). For Majorana
neutrinos the situation is different. If all neutrinos are massive, the maximal symmetry
group is GM = Z2×Z2×Z2, while, if one neutrino is massless, also GM = U(1)×Z2×Z2

is allowed. The case of one massless neutrino has been studied in [8, 9].
Here we will further elaborate on the case of a massless neutrino within the framework

of residual symmetries. The case of direct models has been studied in [9] for all suitable
finite groups up to order 511. In the present paper we extend this analysis to order 1535.
Moreover, we discuss semidirect models (of type B1) with a massless neutrino, also up
to order 1535. Before we discuss the details of the group searches we have performed,
we want to have a look on the generic requirements potential flavour groups Gf with a
massless neutrino have to fulfill. As outlined in detail in appendix A, viable groups Gf

• must possess a faithful three-dimensional irreducible representation,

• must not be of the form Gf ' G′f × Zn (n > 1) and
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• must not be of the form of the following theorem by Joshipura and Patel [9]: Let
G be a group of 3× 3 matrices which contains only elements of the form “diagonal
matrix of phases times permutation matrix”, where the six permutation matrices
are given by

P1 =

1 0 0
0 1 0
0 0 1

 , P2 =

0 1 0
1 0 0
0 0 1

 , P3 =

0 0 1
0 1 0
1 0 0

 ,

P4 =

1 0 0
0 0 1
0 1 0

 , P5 =

0 0 1
1 0 0
0 1 0

 , P6 =

0 1 0
0 0 1
1 0 0

 .

(11)

Then, if such a group G is used to build models enforcing a massless neutrino, the
column vector of the mixing matrix associated to the massless neutrino must be1

0
0

 ,
1√
3

1
1
1

 ,
1√
2

0
1
1

 (12)

or permutations thereof (i.e. permutations of the elements of an individual column.)

As a starting point for our analysis, we need a list of groups fulfilling these criteria. We
used the library SmallGroups5 [19, 20] and the computer algebra system GAP [21] to find
all groups of order smaller than 1536 which fulfill these minimal criteria.6 As a result
of this scan we have found 22 groups of order smaller than 1536 fulfilling the minimal
criteria.7 They are shown in equation (41) in appendix A.

2.2.1 Direct models

Let us now investigate the requirements for direct models enforcing a massless neutrino.
The requirement for the charged-lepton sector is the usual one: Any group G` which
uniquely determines the diagonalising matrix U` is sufficient. The same also holds for
semidirect models of type B1. In the neutrino sector, we require a residual symmetry
group Gν which completely fixes Uν (as always up to rephasing and reordering of the
columns) and which enforces one neutrino mass to vanish. The requirement of a vanishing
neutrino mass implies that Gν is a subgroup of U(1)× Z2 × Z2 instead of Z2 × Z2 × Z2.

5Throughout the paper we will use the SmallGroups ID to identify groups. This ID consists of two
numbers in square brackets, i.e. [g, n], g being the group order and n being a label. Two groups with
different SmallGroups IDs are non-isomorphic.

6Since we require groups which have a three-dimensional irreducible representation, the group order
must be divisible by 3. Up to order 1535 there are 1342632 groups whose order is divisible by three. For
the group order 1536 alone there are 408641062 groups. Therefore, we had to stop our searches at order
1535.

7In this paper we follow the approach of scanning over a set of eligible groups, in the end discarding
which are incompatible with experiment. The opposite approach of constructing eligible groups directly
from experimental data on the mixing matrices has e.g. been used in [22, 23].
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Therefore, there exists a basis in which all elements of Gν have the formλ 0 0
0 α 0
0 0 β

 (13)

with λ ∈ U(1), α, β ∈ {−1,+1}. Moreover, in order to enforce a vanishing neutrino mass,
for at least one element of Gν we must have λ 6= ±1. This element may be of four forms:

S1 = diag(λ,+1,+1), S2 = diag(λ,+1,−1),

S3 = diag(λ,−1,+1), S4 = diag(λ,−1,−1).
(14)

Every group Gν capable of fixing the complete matrix Uν and enforcing a massless neutrino
contains at least one element of the form S2 or S3. Namely, if it did not contain such an
element, in order to fulfill all requirements it would have to contain at least one element
of the form

diag(λ,±1,±1) (15)

and one further element with non-degenerate 22 and 33 elements, i.e.

diag(±1,±1,∓1) or diag(±1,∓1,±1). (16)

However, the product of the matrices of equations (15) and (16) is of the form S2 or S3,
which proves that Gν always contains an element of this form. The matrices S2 and S3,
since they have non-degenerate eigenvalues, on their own already fix the complete matrix
Uν . Therefore, we can restrict the analysis to groups G′ν = 〈〈S2〉〉 ⊂ Gν generated by S2

(or G′ν = 〈〈S3〉〉 ⊂ Gν generated by S3.)
8 Thus, the requirement on Gf is:

• Gf has a faithful three-dimensional irreducible representation which has at least
one element with one eigenvalue λ 6= ±1, one eigenvalue +1 and one eigenvalue
−1. This element generates the residual symmetry group G′ν ' Zn (n even) and
determines Uν up to rephasing and reordering of the columns.

Thus, among the groups of equation (41) we search for those which have a faithful three-
dimensional irreducible representation 3 (defining a matrix group 3(Gf ) isomorphic to
Gf ) fulfilling the following criteria:

• 3(Gf ) contains a matrix S with eigenvalues {λ,+1,−1}, λ 6= ±1. This is a basis
independent property and may easily be checked by testing TrS+detS = 0, TrS 6=
±1. The matrix S is then a candidate for a generator of G′ν .

• 3(Gf ) contains an Abelian subgroup G` which can completely fix its diagonalising
matrix U`.

• There must be choices of G′` and G′ν such that G′ν is not a subgroup of G′` and vice
versa. (Otherwise the mixing matrix UPMNS would be trivial!) Also, none of the
generators of G′` must commute with the generator S of G′ν—see appendix B.

8In this paper the symbol 〈〈. . .〉〉 means “generated by . . .”.
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• Moreover, the groups G′` and G′ν must together generate the whole matrix group
3(Gf ). Namely, if they do not, we can restrict ourselves to the subgroup G′f ≡
〈〈G′`, G′ν〉〉 ⊂ 3(Gf ). If G′f is an irreducible matrix group, G′f fulfills all criteria for
our search and predicts the same mixing matrix as 3(Gf ). If 3(G′f ) is reducible,
the mixing matrix has two vanishing mixing angles and is therefore not compatible
with experiment.

Performing a group search with GAP, we find that only seven groups of order smaller
than 1536 fulfill all these criteria:

[108, 15], [324, 111], [432, 239], [648, 533], [864, 675], [972, 411], [1296, 1995]. (17)

2.2.2 Semidirect models

The requirements for semidirect models of type (B1) are identical with only two differ-
ences:

• The requirement on S now becomes: 3(Gf ) contains a matrix S with eigenvalues
{λ,±1,±1}, λ 6= ±1, respectively (i.e. two degenerate eigenvalues in each case).
This ensures that one mass is set to zero, but only one column of Uν is fixed.

• The argument used to prove that none of the generators of G` must commute with
the generator S of Gν—see appendix B—does not hold for semidirect models. Thus,
one of the generators of G′` is allowed to commute with S.

Also for the semidirect case the groups G′` and G′ν have to generate the full group 3(Gf ).
However, the argument for this is different to the case of direct models. Again, if 3(G′f )
is irreducible, we may replace Gf by 3(G′f ). If 3(G′f ) is reducible one can (by the same
argument as used in appendix A to show that 3(Gf ) must be irreducible) show that a
reducible 3(G′f ) leads to predictions incompatible with experiment.

Doing a group search with GAP, one finds that there is only one single group of order
smaller than 1536 which meets all requirements for a semidirect model. This group has
the identification number [648, 533] in the SmallGroups library.

3 Numerical analysis and phenomenology

3.1 Direct models

In order to test the seven candidate groups for direct models with a massless neutrino, we
computed all faithful three-dimensional irreducible representations of the groups, com-
puted all Abelian subgroups and listed all possible combinations (G`, Gν). For each of
these combinations, the possible mixing matrices have been computed—see [3] for a de-
tailed description of this procedure. In order to compare the predictions for the mixing
matrix with experiment we fitted the three mixing angles to the global fit data of [24].
As χ2-function we used

χ2(θ12, θ23, θ13) ≡
∑

ij=12,23,13

(
sin2θexpij − sin2θpredij

σ(sin2θij)

)2

, (18)
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Group χ2
min (normal spectrum) χ2

min (inverted spectrum)

[108, 15] 1.80× 102 4.52× 102

[324, 111] 1.80× 102 4.52× 102

[432, 239] 1.07× 104 1.56× 104

[648, 533] 1.30× 102 4.19× 102

[864, 675] 1.07× 104 1.56× 104

[972, 411] 1.80× 102 4.52× 102

[1296, 1995] 1.07× 104 1.56× 104

Table 1: The minimal values of χ2 for the seven candidate groups for direct models.
Groups which lead to the same χ2

min predict the same values for the elements |Uij| of the
mixing matrix.

which has three degrees of freedom. For the errors σ(sin2θij) we used the values given
in [24] (in case of an asymmetric error distribution we used the larger error). The resulting
minimal values of χ2 are listed in table 1. Evidently, none of the candidate groups is
compatible with the experimental data. For groups up to order 511 this result has been
found earlier in [9].

3.2 Semidirect models

For the semidirect models, there is a unique candidate group [648, 533]. It has six faithful
three-dimensional irreducible representations, each of which can predict (the same) 19
different patterns for a column of the mixing matrix. It is therefore sufficient to study
only one of the faithful three-dimensional irreducible representations constructed with
GAP, i.e. we pick one of them and use it to define the group [648, 533] as a matrix group.
In this representation the group is generated by the two matrices

S =
1

3

1 + ε4 − ε6 − ε8 −ε2 + ε7 −ε2 + ε4

ε− ε5 1 + ε− ε2 − ε6 ε4 − ε5
ε− ε8 ε7 − ε8 1− ε5 − ε6 + ε7

 (19)

and

T =

ε2 0 0
0 ε5 0
0 0 ε8

 , (20)

where
ε ≡ exp(2πi/9), (21)

i.e.
Gf = 〈〈S, T 〉〉 ' (((Z3 × Z3) o Z3) oQ8) o Z3 ' (∆(27) oQ8) o Z3. (22)

Q8 here denotes the quaternion group of order 8. This group corresponds to [648, 533]
which we denote as Q(648).

The two only columns predictable by Q(648) being compatible with experiment emerge
from the choice

Gν = 〈〈S〉〉 ' Z3, G` = 〈〈T 〉〉 ' Z9. (23)
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Figure 1: The value of the Dirac phase δ as a function of sin2θ23 for different values of
sin2θ13 according to the global fit of [24]: best-fit (blue), 1σ lower bound (red dashed), 1σ
upper bound (black dashed). The dashed vertical line indicates the best-fit value sin2θ23 =
0.452 and the blue shaded area is the 1σ region for sin2θ23. Left plot: (|Ue1|, |Uµ1|) =
(|u1|, |u2|), right plot: (|Ue1|, |Uµ1|) = (|u1|, |u3|).

We are already in a basis where all elements of G` are diagonal. Therefore, the eigenvector
of S with eigenvalue 6= ±1 is the predicted column of UPMNS. Indeed, S has two eigenvalues
+1 and an eigenvalue ω ≡ exp(2πi/3) = ε3 with the corresponding eigenvector

u =
1

3

 1 + ε+ ε8

ε4 + ε6 + ε8

ε3 + ε7 + ε8

 . (24)

The absolute values of the entries of this vector are

|u1| =
1

3

(
1 + 2 cos

2π

9

)
≈ 0.844, (25)

|u2| =
1

3

(
1 + 2 cos

4π

9

)
≈ 0.449, (26)

|u3| = −
1

3

(
1 + 2 cos

8π

9

)
≈ 0.293. (27)

This leads to two patterns compatible with the first column9 of UPMNS, namely:|Ue1||Uµ1|
|Uτ1|

 =

|u1||u2|
|u3|

 and

|Ue1||Uµ1|
|Uτ1|

 =

|u1||u3|
|u2|

 . (28)

Note that we here have used the permutation freedom of the elements of the predicted
column, which comes from the fact that the residual symmetries cannot fix any mass

9Since the neutrino mass associated with the predicted column vanishes, we have m1 = 0 which
requires a normal neutrino mass spectrum.
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orderings. The equations

|Ue1| = c12 c13, (29a)

|Uµ1| = |s12c23 + c12s13s23e
iδ|, (29b)

where sij ≡ sin θij and cij ≡ cos θij, give relations between the mixing angles and the
Dirac phase δ. These relations can be used to predict θ12 as a function of θ13 and cos δ as
a function of θ13 and θ23:

s212 = 1− |Ue1|2(1 + t213), (30a)

cos δ =
|Uµ1|2 (1 + t223) + |Ue1|2 (t223 − (1 + t213) (t223 − 1))− 1

2 |Ue1| t13 t23
√

1− |Ue1|2 (1 + t213)
. (30b)

Here tij ≡ tan θij. Using the values of the global fit of ref. [24],

sin2θ23 = 0.452+0.052
−0.028, sin2θ13 = 0.0218+0.0010

−0.0010, (31)

we find (best-fit)

sin2θ12 = 0.272, θ12 = 31.4◦, (32a)

cos δ = 0.697, δ = ±45.8◦ (32b)

for |Ue1| = |u1|, |Uµ1| = |u2|. The other possibility with |Ue1| = |u1|, |Uµ1| = |u3| turns
out to be incompatible with the best-fit values of equation (31),

sin2θ12 = 0.272, θ12 = 31.4◦, (33a)

cos δ = −1.07→ inconsistent, (33b)

but remains consistent with experiment for s223 & 0.47. Using the best-fit values of the
mass-squared differences and sin2θ13 from [24] as input parameters, the predicted range
for mββ is (1.22÷ 3.38) meV, i.e. several meV (as for every model with a normal neutrino
mass spectrum and vanishing m1). Since mββ depends only on the sum of δ and one of
the (unconstrained) Majorana phases, our model puts no stronger constraint on mββ.

In total, the two discussed column patterns are compatible with the global fit values
of [24] at about 2 − 3 sigma. The reason for tension is the too small value of the solar
mixing angle predicted by the group using the reactor angle as an input. The global-fit
result for the solar mixing angle is

sin2θ12 = 0.304+0.013
−0.012, θ12 = (33.48+0.78

−0.75)
◦. (34)

The main prediction of the model is a value of δ of about ±45◦ or ±π (for the best-fit
values). The value of δ for different values of s223 and s213 is shown in figure 1.

4 Conclusions

In this paper we have discussed the possibility of enforcing a massless Majorana neutrino
in the direct and semi-direct approaches to lepton mixing, in which the PMNS matrix
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is partly predicted by subgroups of a discrete family symmetry. Our analysis extends
previous group searches for direct models from order 511 up to 1535, and provides the
first analysis of semi-direct models with a massless neutrino up to this order. Our results
confirm and extend the no-go results of Joshipura and Patel up to order 1535 for the
direct approach.

However, we find a new phenomenologically viable scheme for the semi-direct approach
based on Q(648) which contains ∆(27) and the quaternion group as subgroups. This leads
to novel predictions for the first column of the PMNS matrix corresponding to a normal
neutrino mass hierarchy with m1 = 0, and sum rules for the mixing angles and phase
which are characterised by the solar angle being on the low side θ12 ∼ 31◦ and the Dirac
(oscillation) CP phase δ being either about ±45◦ or ±π.
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A Generic requirements on flavour symmetries in the

framework of residual symmetries with one mass-

less neutrino.

In order to be potentially phenomenologically viable in the framework of residual sym-
metries in the lepton sector, a flavour group Gf must fulfill two generic requirements:

• Gf must have a faithful three-dimensional irreducible representation. The require-
ment for a three-dimensional representation comes from the fact that there are three
generations of leptons. This representation must be faithful because otherwise we
could restrict ourselves to the smaller group defined by the non-faithful matrix
representation. Moreover, the three-dimensional faithful representation under con-
sideration must also be irreducible. Namely, if it was reducible, there would be a
basis in which the matrices of Gν and G` are simultaneously block-diagonal. In
direct models this would mean that also the mixing matrix is block-diagonal, thus
implying two vanishing mixing angles, which is clearly not compatible with experi-
mental observations. For the case of semidirect models we consider the example of
models of type B1. The arguments for case B2 are analogous. In the block-diagonal
basis we have

Gν :

× 0 0
0 × ×
0 × ×

 , . . . G` :

× 0 0
0 × ×
0 × ×

 , . . . , (35)

where × stands for a non-zero entry. We can now make a further basis transforma-
tion (a unitary 23-rotation in our example) which makes all elements of G` diagonal,
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i.e.

Gν :

× 0 0
0 × ×
0 × ×

 , . . . G` :

× 0 0
0 × 0
0 0 ×

 , . . . . (36)

In this basis, the column of UPMNS which is fixed by the semidirect model is a
common eigenvector of the matrices of Gν . But all matrices of Gν are still block-
diagonal, which means that this common eigenvector can only be of the form×0

0

 or

0
×
×

 . (37)

Thus, UPMNS would contain at least one vanishing element, which is phenomenolog-
ically not viable.

• We can discard all groups of the form Gf = G′f × Zn (n > 1). Namely, since the
relevant representation of Gf must be irreducible, the elements of Zn are represented
as matrices proportional to 13. Such symmetries cannot constrain the mixing matrix
UPMNS. Therefore, it is sufficient to confine the study to the smaller group G′f .

There are 384 groups of order smaller than 1536 which fulfill these two criteria, they are
shown in equation (42). This list extends the list of finite subgroups of U(3) found in [25]
to order 1535.

In the case of massless neutrinos there is a third constraint:

• Consider matrix groups which have only elements of the form “diagonal matrix of
phases times permutation matrix”, where by permutation matrices we mean the six
matrices

P1 =

1 0 0
0 1 0
0 0 1

 , P2 =

0 1 0
1 0 0
0 0 1

 , P3 =

0 0 1
0 1 0
1 0 0

 ,

P4 =

1 0 0
0 0 1
0 1 0

 , P5 =

0 0 1
1 0 0
0 1 0

 , P6 =

0 1 0
0 0 1
1 0 0

 .

(38)

It has been shown by Joshipura and Patel in [9] that models based on such groups
with a massless neutrino (enforced by the residual symmetry) can only lead to the
following columns of the mixing matrix (absolute values of the entries of the fixed
column of UPMNS) associated to the massless neutrino:1

0
0

 ,
1√
3

1
1
1

 ,
1√
2

0
1
1

 (39)

and permutations thereof (i.e. permutations of the elements of an individual col-
umn.) The only phenomenologically viable case here is

1√
3

1
1
1

 , (40)
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which is called TM2 in the literature, since it fits the second column of the lepton
mixing matrix. However, this scenario would predict m2 = 0, which is excluded
by experiment. Therefore, we can exclude also all groups which are of the form
discussed in the theorem by Joshipura and Patel.

There are only 22 groups of order smaller than 1536 which also fulfill the third requirement:

[60, 5], [108, 15], [168, 42], [216, 25], [216, 88], [324, 111], [432, 57], [432, 239], [432, 273],

[648, 352], [648, 531], [648, 532], [648, 533], [648, 551], [864, 194], [864, 675], [864, 737],

[972, 411], [1080, 260], [1296, 1239], [1296, 1995], [1296, 2203].

(41)

Therefore, for the study of massless neutrinos in the framework of residual symmetries,
confining oneself to flavour symmetry groups of order smaller than 1536, it is sufficient to
study the 22 groups of equation (41).
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[12, 3], [21, 1], [24, 12], [27, 3], [27, 4], [36, 3], [39, 1], [48, 3], [48, 30], [54, 8],

[57, 1], [60, 5], [63, 1], [75, 2], [81, 6], [81, 7], [81, 8], [81, 9], [81, 10], [81, 14], [84, 11],

[93, 1], [96, 64], [96, 65], [108, 3], [108, 11], [108, 15], [108, 19], [108, 21], [108, 22], [111, 1],

[117, 1], [129, 1], [144, 3], [147, 1], [147, 5], [150, 5], [156, 14], [162, 10], [162, 12], [162, 14],

[162, 44], [168, 42], [171, 1], [183, 1], [189, 1], [189, 4], [189, 5], [189, 7], [189, 8],

[192, 3], [192, 182], [192, 186], [201, 1], [216, 17], [216, 25], [216, 88], [216, 95], [219, 1],

[225, 3], [228, 11], [237, 1], [243, 16], [243, 19], [243, 20], [243, 24], [243, 25], [243, 26],

[243, 27], [243, 50], [243, 55], [252, 11], [273, 3], [273, 4], [279, 1], [291, 1], [294, 7], [300, 13],

[300, 43], [309, 1], [324, 3], [324, 13], [324, 15], [324, 17], [324, 43], [324, 45], [324, 49],

[324, 50], [324, 51], [324, 60], [324, 102], [324, 111], [324, 128], [327, 1], [333, 1], [336, 57],

[351, 1], [351, 4], [351, 5], [351, 7], [351, 8], [363, 2], [372, 11], [381, 1], [384, 568], [384, 571],

[384, 581], [387, 1], [399, 3], [399, 4], [417, 1], [432, 3], [432, 33], [432, 57], [432, 100],

[432, 102], [432, 103], [432, 239], [432, 260], [432, 273], [441, 1], [441, 7], [444, 14], [453, 1],

[468, 14], [471, 1], [486, 26], [486, 28], [486, 61], [486, 125], [486, 164], [489, 1], [507, 1],

[507, 5], [513, 1], [513, 5], [513, 6], [513, 8], [513, 9], [516, 11], [525, 5], [543, 1], [549, 1],

[567, 1], [567, 4], [567, 5], [567, 7], [567, 12], [567, 13], [567, 14], [567, 23], [567, 36], [576, 3],

[579, 1], [588, 11], [588, 16], [588, 60], [597, 1], [600, 45], [600, 179], [603, 1], [624, 60],

[633, 1], [648, 19], [648, 21], [648, 23], [648, 244], [648, 259], [648, 260], [648, 266], [648, 352],

[648, 531], [648, 532], [648, 533], [648, 551], [648, 563], [651, 3], [651, 4], [657, 1], [669, 1],

[675, 5], [675, 9], [675, 11], [675, 12], [684, 11], [687, 1], [711, 1], [723, 1], [726, 5], [729, 62],

[729, 63], [729, 64], [729, 80], [729, 86], [729, 94], [729, 95], [729, 96], [729, 97], [729, 98],

[729, 284], [729, 393], [729, 397], [732, 14], [741, 3], [741, 4], [756, 11], [756, 113], [756, 114],

[756, 116], [756, 117], [768, 1083477], [768, 1085333], [768, 1085335], [768, 1085351], [777, 3], [777, 4],

[804, 11], [813, 1], [819, 3], [819, 4], [831, 1], [837, 1], [837, 4], [837, 5], [837, 7], [837, 8],

[849, 1], [864, 69], [864, 194], [864, 675], [864, 701], [864, 703], [864, 737], [867, 2], [873, 1],

[876, 14], [900, 66], [903, 5], [903, 6], [912, 57], [921, 1], [927, 1], [939, 1], [948, 11], [972, 3],

[972, 29], [972, 31], [972, 64], [972, 117], [972, 121], [972, 122], [972, 123], [972, 147], [972, 152],

[972, 153], [972, 170], [972, 309], [972, 348], [972, 411], [972, 520], [972, 550], [975, 5], [981, 1],

[993, 1], [999, 1], [999, 5], [999, 6], [999, 8], [999, 9], [1008, 57], [1011, 1], [1014, 7], [1029, 6],

[1029, 9], [1047, 1], [1053, 16], [1053, 25], [1053, 26], [1053, 27], [1053, 29], [1053, 32], [1053, 35],

[1053, 37], [1053, 47], [1080, 260], [1083, 1], [1083, 5], [1089, 3], [1092, 68], [1092, 69], [1101, 1],

[1116, 11], [1119, 1], [1137, 1], [1143, 1], [1161, 6], [1161, 9], [1161, 10], [1161, 11], [1161, 12],

[1164, 14], [1176, 57], [1176, 243], [1191, 1], [1197, 3], [1197, 4], [1200, 183], [1200, 384],

[1200, 682], [1209, 3], [1209, 4], [1227, 1], [1236, 11], [1251, 1], [1263, 1], [1281, 3], [1281, 4],

[1296, 3], [1296, 35], [1296, 37], [1296, 39], [1296, 220], [1296, 222], [1296, 226], [1296, 227],

[1296, 228], [1296, 237], [1296, 647], [1296, 688], [1296, 689], [1296, 699], [1296, 1239], [1296, 1499],

[1296, 1995], [1296, 2113], [1296, 2203], [1299, 1], [1308, 14], [1317, 1], [1323, 1], [1323, 4],

[1323, 5], [1323, 7], [1323, 8], [1323, 14], [1323, 40], [1323, 42], [1323, 43], [1332, 14], [1344, 393],

[1350, 46], [1359, 1], [1371, 1], [1389, 1], [1404, 14], [1404, 137], [1404, 138], [1404, 140],

[1404, 141], [1407, 3], [1407, 4], [1413, 1], [1425, 5], [1443, 3], [1443, 4], [1452, 11], [1452, 34],

[1458, 615], [1458, 618], [1458, 659], [1458, 663], [1458, 666], [1458, 1095], [1458, 1354], [1458, 1371],

[1461, 1], [1467, 1], [1488, 57], [1497, 1], [1521, 1], [1521, 7], [1524, 11], [1533, 3], [1533, 4].

(42)
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1C1 1C3 1C3 24C3 9C2 9C6 9C6 54C4 54C12 54C12 12C3 12C3 12C3 72C9 36C6 36C6 36C6 12C3 12C3 12C3 72C9 36C6 36C6 36C6

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 ω2 ω2 ω2 ω2 ω2 ω2 ω2 ω ω ω ω ω ω ω
13 1 1 1 1 1 1 1 1 1 1 ω ω ω ω ω ω ω ω2 ω2 ω2 ω2 ω2 ω2 ω2

21 2 2 2 2 −2 −2 −2 0 0 0 −1 −1 −1 −1 1 1 1 −1 −1 −1 −1 1 1 1
22 2 2 2 2 −2 −2 −2 0 0 0 −ω −ω −ω −ω ω ω ω −ω2 −ω2 −ω2 −ω2 ω2 ω2 ω2

23 2 2 2 2 −2 −2 −2 0 0 0 −ω2 −ω2 −ω2 −ω2 ω2 ω2 ω2 −ω −ω −ω −ω ω ω ω
31 3 3 3 3 3 3 3 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 3 3ω2 3ω 0 −1 −ω2 −ω 1 ω2 ω −2ω − ω2 ω + 2ω2 ω − ω2 0 −ω2 −ω −1 −ω − 2ω2 −ω + ω2 2ω + ω2 0 −ω −1 −ω2

33 3 3ω 3ω2 0 −1 −ω −ω2 1 ω ω2 −ω − 2ω2 2ω + ω2 −ω + ω2 0 −ω −ω2 −1 −2ω − ω2 ω − ω2 ω + 2ω2 0 −ω2 −1 −ω
34 3 3ω2 3ω 0 −1 −ω2 −ω 1 ω2 ω ω + 2ω2 ω − ω2 −2ω − ω2 0 −ω −1 −ω2 2ω + ω2 −ω − 2ω2 −ω + ω2 0 −ω2 −ω −1
35 3 3ω 3ω2 0 −1 −ω −ω2 1 ω ω2 2ω + ω2 −ω + ω2 −ω − 2ω2 0 −ω2 −1 −ω ω + 2ω2 −2ω − ω2 ω − ω2 0 −ω −ω2 −1
36 3 3ω2 3ω 0 −1 −ω2 −ω 1 ω2 ω ω − ω2 −2ω − ω2 ω + 2ω2 0 −1 −ω2 −ω −ω + ω2 2ω + ω2 −ω − 2ω2 0 −1 −ω2 −ω
37 3 3ω 3ω2 0 −1 −ω −ω2 1 ω ω2 −ω + ω2 −ω − 2ω2 2ω + ω2 0 −1 −ω −ω2 ω − ω2 ω + 2ω2 −2ω − ω2 0 −1 −ω −ω2

61 6 6ω2 6ω 0 2 2ω2 2ω 0 0 0 −ω + ω2 2ω + ω2 −ω − 2ω2 0 −1 −ω2 −ω ω − ω2 −2ω − ω2 ω + 2ω2 0 −1 −ω2 −ω
62 6 6ω 6ω2 0 2 2ω 2ω2 0 0 0 ω − ω2 ω + 2ω2 −2ω − ω2 0 −1 −ω −ω2 −ω + ω2 −ω − 2ω2 2ω + ω2 0 −1 −ω −ω2

63 6 6ω2 6ω 0 2 2ω2 2ω 0 0 0 2ω + ω2 −ω − 2ω2 −ω + ω2 0 −ω2 −ω −1 ω + 2ω2 ω − ω2 −2ω − ω2 0 −ω −1 −ω2

64 6 6ω 6ω2 0 2 2ω 2ω2 0 0 0 ω + 2ω2 −2ω − ω2 ω − ω2 0 −ω −ω2 −1 2ω + ω2 −ω + ω2 −ω − 2ω2 0 −ω2 −1 −ω
65 6 6ω2 6ω 0 2 2ω2 2ω 0 0 0 −ω − 2ω2 −ω + ω2 2ω + ω2 0 −ω −1 −ω2 −2ω − ω2 ω + 2ω2 ω − ω2 0 −ω2 −ω −1
66 6 6ω 6ω2 0 2 2ω 2ω2 0 0 0 −2ω − ω2 ω − ω2 ω + 2ω2 0 −ω2 −1 −ω −ω − 2ω2 2ω + ω2 −ω + ω2 0 −ω −ω2 −1
81 8 8 8 −1 0 0 0 0 0 0 2 2 2 −1 0 0 0 2 2 2 −1 0 0 0
82 8 8 8 −1 0 0 0 0 0 0 2ω2 2ω2 2ω2 −ω2 0 0 0 2ω 2ω 2ω −ω 0 0 0
83 8 8 8 −1 0 0 0 0 0 0 2ω 2ω 2ω −ω 0 0 0 2ω2 2ω2 2ω2 −ω2 0 0 0
91 9 9ω2 9ω 0 −3 −3ω2 −3ω −1 −ω2 −ω 0 0 0 0 0 0 0 0 0 0 0 0 0 0
92 9 9ω 9ω2 0 −3 −3ω −3ω2 −1 −ω −ω2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2: The character table of the group Q(648) = [648, 533] constructed with GAP.
The notation for the conjugacy classes of the group is NCn, where N denotes the number
of elements of the conjugacy class and n is the order of the elements of the class. (ω =
exp(2πi/3).)

B Relations between G` and Gν

In this appendix we will show that for direct models, in order to obtain a phenomenolog-
ically viable mixing matrix UPMNS, the generator S of Gν must not commute with any of
the generators of G`. Note that we here exclude generators of G` which are proportional
to 13, because such elements do not restrict U` and are therefore superfluous.

Suppose a generator T of G` commutes with S. Since we have excluded generators T
which are proportional to 13, T must have at least two different eigenvalues. Therefore,
T alone fixes one column u of U`. Since S commutes with T , u is also an eigenvector of S.
However, since all eigenvectors of S are unique (because S fixes Uν), u is also a column
of Uν . Therefore, U` and Uν have two equal columns and UPMNS is block-diagonal. Thus
two mixing angles vanish, which is phenomenologically excluded.

C The character table of the group Q(648)

For completeness, we show the character table of the group Q(648) = [648, 533] con-
structed with GAP in table 2.
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