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Abstract

We show how a minimal (littlest) seesaw model involving two right-handed neutrinos
and a very constrained Dirac mass matrix, with one texture zero and two independent
Dirac masses, may arise from S4 × U(1) symmetry in a semi-direct supersymmetric
model. The resulting CSD3 form of neutrino mass matrix only depends on two real
mass parameters plus one undetermined phase. We show how the phase may be fixed
to be one of the cube roots of unity by extending the S4 × U(1) symmetry to include
a product of Z3 factors together with a CP symmetry, which is spontaneously broken
leaving a single residual Z3 in the charged lepton sector and a residual Z2 in the neutrino
sector, with suppressed higher order corrections. With the phase chosen from the cube
roots of unity to be −2π/3, the model predicts a normal neutrino mass hierarchy with
m1 = 0, reactor angle θ13 = 8.7◦, solar angle θ12 = 34◦, atmospheric angle θ23 = 44◦,
and CP violating oscillation phase δCP = −93◦, depending on the fit of the model to
the neutrino masses.
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1 Introduction

Despite great experimental progress in neutrino physics in the last twenty years [1], the
origin of neutrino mass and lepton mixing remains unclear. Although there has been intense
theoretical activity in this period, there is still no leading candidate for a theory of neutrino
mass and lepton mixing (for reviews see e.g. [2, 3]).

From a theoretical point of view the most appealing possibility seems to be the seesaw
mechanism in its original formulation involving heavy right-handed Majorana neutrinos [4].
However the seesaw mechanism is very difficult to test experimentally, at least if the right-
handed neutrino masses are beyond reach of the LHC, and also introduces many additional
parameters. One approach to this problem is to follow the idea of minimality, leading to
seesaw theories with smaller numbers of parameters and hence testable predictions [5]. If the
predictions are realised experimentally then this may provide indirect experimental support
for the seesaw mechanism, and in addition provide insights into the flavour problem. This
is the approach we shall follow in this paper.

The most minimal version of the seesaw mechanism involves two right-handed neutri-
nos [6]. In order to reduce the number of free parameters still further to the smallest number
possible, and hence increase predictivity, various approaches to the two right-handed neu-
trino seesaw model have been suggested, such as postulating one [7] or two [8] texture zeroes,
however such two texture zero models are now phenomenologically excluded [9] for the case
of a normal neutrino mass hierarchy considered here. The minimal successful scheme with
normal hierarchy seems to be a two right-handed model with a Dirac mass matrix (in the
diagonal charged lepton mass basis) involving one texture zero and a particular pattern of
couplings, together with a diagonal right-handed neutrino mass matrix [10],

mD =





0 b
a 3b
a b



 , MR =

(

Matm 0
0 Msol

)

, (1)

where a, b are two complex parameters. The seesaw mechanism [4] leads to a light effective
Majorana neutrino mass matrix:

mν = ma





0 0 0
0 1 1
0 1 1



+mbe
iη





1 3 1
3 9 3
1 3 1



 . (2)

ma = |a|2/Matm and mb = |b|2/Msol may be taken to be real and positive without loss of
generality, the physical predictions only depending on a relative phase whose phenomeno-
logically preferred value is η = 2π/3 [10]. Following the proposed lepton model in [10], this
structure has been incorporated into unified models of quarks and leptons in [11]. It has also
been shown to lead to successful leptogenesis in which not only the sign of baryon asymmetry
is determined by the ordering of the heavy right-handed neutrinos, but also η is identified as
the leptogenesis phase, directly linking CP violation in the laboratory with that in the early
universe [12].
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The implementation of the seesaw mechanism above is an example of sequential dominance
(SD) [13] in which the first term in Eq. (2), arising from the first (atmospheric) right-handed
neutrino, provides the dominant contribution to the atmospheric neutrino mass, leading to
approximately maximal atmospheric mixing, while the second subdominant term from the
second (solar) right-handed neutrino gives the solar neutrino mass and controls the solar and
reactor mixing and CP violation. If the constrained form of Dirac mass matrix in Eq. (1)
is relaxed, but the texture zero is maintained, then SD generally leads to a reactor angle
which is bounded by θ13 . m2/m3 [7], a prediction that was made a decade before the
reactor angle was measured in 2012 [1]. However sharp predictions for the reactor (and
solar) angles can only result from applying constraints to the Dirac mass matrix of various
types, an approach known as constrained sequential dominance (CSD) [14]. For example,
keeping the first column of the Dirac mass matrix fixed (0, a, a)T , a class of CSDn models has
emerged [10, 14–17] corresponding to the second column taking the form (b, nb, (n − 2)b)T ,
with a reactor angle approximately given by [18]

θ13 ∼ (n− 1)

√
2

3

m2

m3
, (3)

where CSD1 [14] implies tri-bimaximal (TB) mixing with a zero reactor angle, CSD2 [15] has

a reactor angle θ13 ∼
√
2
3

m2

m3

, which is too small, CSD3 [10] in Eq. (1) predicts θ13 ∼ 2
√
2

3
m2

m3

which is in good agreement with the experimental value θ13 ∼ 0.15 [1], and CSD4 [16]
predicts θ13 ∼

√
2m2

m3
, while higher values of n > 4 involve increasingly large values of the

reactor angle which are disfavoured [17].

The seesaw scheme in Eq. (1) is referred to as either CSD3 or the Littlest Seesaw (LS) [18]
since the seesaw mechanism only involves two complex Dirac masses a, b together with two
real positive right-handed neutrino masses Matm and Msol (as compared to 18 parameters
in the most general three right-handed neutrino seesaw mechanism). The resulting neutrino
mass matrix in Eq. (2) involves only three parameters, namely the real positive mass param-
eters ma, mb together with the real phase η. It was realised [10] that if the phase is also fixed
to be η = 2π/3 then this leads to a highly predictive and successful scheme, with only two
remaining real positive input parameters ma, mb which may be determined by the physical
neutrino masses m2, m3, with m1 = 0 being an automatic prediction of two right-handed
neutrinos. The entire PMNS mixing matrix is then uniquely predicted by the model.

Although the Littlest Seesaw is unquestionably minimal and predictive, the Achilles Heel
of this model has always been its theoretical justification from symmetry. For example, as-
suming some family symmetry, spontaneously broken by some new Higgs fields (the so-called
flavons) in the triplet representation, the structure of the Dirac mass matrix in Eq. (1) may
in principle arise from the vacuum alignment of these flavons. However, the desired flavon
vacuum alignment (1, 3, 1)T , responsible for the second column of the Dirac mass matrix,
does not seem to follow directly from any symmetry, but only indirectly via a sequence of
flavon alignments which are mutually orthogonal [10, 17]. However it was recently realised
that S4 might be the best candidate symmetry for producing this alignment [18] since in the
real basis it is the minimal symmetry that preserves a U type symmetry capable of equating
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two of the elements of the alignment, namely the first and third components of (1, 3, 1)T .
However to date it has not proved possible to construct a model in which both the neutrino
mass matrix and charged lepton mass matrix structures are enforced by subgroups of the
original family symmetry.1

In this paper, then, we shall propose a Littlest Seesaw model in which a minimal neutrino
mass matrix, simply related to that in Eq. (2), follows from a semi-direct supersymmetric
model plus some minimal dynamical constraints. This represents real progress since pre-
viously the Littlest Seesaw has only been realised in indirect models not enforced by any
(discrete) symmetry considerations. In our semi-direct approach here we shall use S4×U(1)
to enforce a version of the Littlest Seesaw which is simply related to that in Eqs. (1,2), by
the permutation L2 ↔ L3. We shall also show that this new version of CSD3 may also be
generalised to CSDn. The starting point for our approach here is the observation that Eq. (2)
leads to trimaximal TM1 mixing [20,21], in which the first column of the tri-bimaximal mix-
ing matrix [22] is preserved. The inspiration for our approach comes from the semi-direct
model of trimaximal TM1 mixing that was developed in [23] in which, denoting the three
generators of S4 as S, U, T , the model preserves a residual Z3 in the charged lepton sector
arising from the T generator, and a Z2 in the neutrino sector corresponding to the product
SU . Following [23], we shall enforce the Littlest Seesaw by similar symmetry arguments, the
notable difference being that in our case, instead of having three right-handed neutrinos in
a triplet of S4, the model here involves two right-handed neutrinos which are singlets of S4.

We shall also impose a CP symmetry in the original theory which is spontaneously broken,
where unlike [24], there is no residual CP symmetry in either the charged lepton or neutrino
sectors. Nevertheless we shall obtain sharp predictions for CP violation by fixing the phase η
in the neutrino mass matrix Eq. (2) to be one of the cube roots of unity due to a Z3 family
symmetry, using the mechanism proposed in [25]. In order to achieve this, we suppose that
the original U(1) which accompanies S4 is extended to a product of U(1) factors, where
some of these are supposed to be explicity broken to Z3 subgroups, which are subsequently
spontaneously broken along with the S4. This is perhaps the least appealing feature of our
scheme, but it is necessary in order to obtain a sharp input value for the phase η, and hence
CP violation, as well as the lepton mixing angles which also depend on η. We shall propose
a concrete models along these lines based on S4 together with one U(1) factor accompanied
by five Z3 symmetries, and show that the desired leading order operator structure in both
the Yukawa and vacuum alignment sectors have quite suppressed higher order corrections,
leading to reliable predictions for observable neutrino masses as well as lepton mixing and
CP parameters.

The layout of the remainder of the paper is as follows. In Section 2 we show how the

1In general, neutrino mass models based on discrete family symmetry may be classified into three
types [19]: direct, semi-direct and indirect, depending on the residual symmetry preserved in the neu-
trino and charged lepton sectors. If the full Klein symmetry of the Majorana neutrino mass matrix and the
symmetry of the charged lepton mass matrix are identified as subgroups of the original family symmetry,
the models are known as direct, while semi-direct (or indirect) models correspond to cases where only a part
(or none) of the residual symmetries may be identified as subgroups of the family symmetry.
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Littlest Seesaw can arise from S4 symmetry, avoiding any technical details, making the
paper accessible to any casual reader. In Section 3 we show how the necessary vacuum
alignments of CSD3 can arise from an F -term mechanism which does not rely on long chains
of orthogonality conditions and is simpler than previous attempts. In Section 4 we describe
a model of leptons based on S4 × U(1) that leads to the Littlest Seesaw, then extend it to
S4 × U(1) × (Z3)

5 in order to fix the phase to be a cube root of unity. Finally in Section 5
we briefly comment on charged lepton flavour violation in this model. Section 6 concludes
the paper. In addition, Appendix A gives the necessary group theory of S4, along with
the symmetry preserved and broken by various vacuum alignments, and the S4 Clebsch-
Gordan coefficients. Appendix B generalises the version of CSD3 discussed in this paper to
a new type of CSDn and presents analytic formulas for neutrino masses and lepton mixing
parameters for this case.

2 Littlest Seesaw model from S4: an overview

Before getting into too many technicalities of symmetry and model building, it is useful to
give a sketch of the type of model we will present in this paper. This enables serious readers
to have in mind where we are heading before getting immersed in the details, or casual
readers to simply read this section of the paper, then jump to the Conclusions. The version
of the Littlest Seesaw model in this paper involves lepton doublets which transform under
S4 as L ∼ 3′, two right-handed neutrinos N c

sol ∼ 1, N c
atm ∼ 1 and the up- and down-type

Higgs fields Hu,d ∼ 1 with couplings in the superpotential:

φ′
atm

Λ
LHuN

c
atm +

φ′
sol

Λ
LHuN

c
sol , (4)

where the non-renormalisable terms are suppressed by a dimensionful cut-off Λ and the
flavons φ′

atm ∼ 3′ and φ′
sol ∼ 3′ are required to have the vacuum alignments2

〈φ′
atm〉 = ϕ′

atm





0
1
−1



 , 〈φ′
sol〉 = ϕ′

sol





1
3
−1



 . (5)

An important point we would like to emphasise is that, as discussed in Appendix A, in
the S4 basis employed in this paper the above vacuum alignments preserve the generator
product SU , i.e. SU〈φ′

atm〉 = 〈φ′
atm〉 and SU〈φ′

sol〉 = 〈φ′
sol〉, but break T and U separately.

Assuming that the charged lepton mass matrix is diagonal, the preserved S4 subgroup SU
is instrumental in enforcing TM1 mixing as in the semi-direct model of [23]. However,
unlike [23], this model involves two right-handed neutrinos which are assumed to have a
diagonal mass matrix MR.

The S4 singlet contraction 3′ ⊗ 3′ → 1 implies (Lφ′)1 = L1φ
′
1 + L2φ

′
3 + L3φ

′
2 (see

Appendix A), which leads to the Dirac neutrino mass matrix mD, together with a diagonal

2The minus signs in the third components are related to the S4 triplet basis as defined in Appendix A.

4



right-handed neutrino mass matrix MR,

mD =





0 b
−a −b
a 3b



 ≡





0 b
a b
a 3b



 , MR =

(

Matm 0
0 Msol

)

, (6)

where the equivalence above follows after multiplying L2 by a minus sign. The seesaw
mechanism mν = −mDM−1

R mDT
implies3

mν = ma





0 0 0
0 1 1
0 1 1



+mbe
iη





1 1 3
1 1 3
3 3 9



 , (7)

where without loss of generality, ma = |a|2/Matm, mb = |b|2/Msol may be taken to be real and
positive and η is a real phase parameter. Eq. (7) with η = −2π/3 gives a phenomenologically
successful and predictive description of neutrino masses and lepton mixing parameters, as
first discussed in [10]. In fact the neutrino mass matrix in Eq. (7) with η = ±2π/3 is one of
the two CSD3 forms first discussed in [10].

The main point we wish to emphasise is that the neutrino mass matrix in Eq. (7), which
is related to that in Eq. (2) by the permutation L2 ↔ L3, leads to phenomenologically
successful predictions for neutrino parameters for a phase η = ±2π/3. In Table 1 we compare
predictions from the two forms of CSD3 neutrino mass matrix in Eq. (7) and Eq. (2) for some
benchmark input parameters ma, mb, η. The two types of CSD3 yield identical predictions
for the reactor and solar angles as well as the neutrino masses, for the same values of ma, mb,
while the predictions for the atmospheric angle have the same values of sin 2θ23 but are
in different octants of θ23. It is clear that both types of CSD3 give good predictions for
lepton mixing angles, assuming that η = ±2π/3. In both examples in Table 1 the CP
phase is predicted to be δCP ≈ −π/2.4 For the original CSD3, η = 2π/3 is identified as
the leptogenesis phase and the baryon asymmetry of the universe leads to a determination
of the lighter atmospheric neutrino mass Matm = 4 × 1010 GeV [12]. For the new type of
CSD3 here we expect leptogenesis to fix the lighter solar right-handed neutrino mass to be
Msol = 4×1010 GeV due to the preferred opposite value of the leptogenesis phase η = −2π/3.

In Appendix B, the mass matrix in Eq. (7) is generalised to a new type of CSDn, and
analytic formulas for neutrino masses and lepton mixing parameters are presented for any
real value of n (although we are only interested in n = 3 here). The results may be compared
to the numerical results in [17] and the analytic formulas in [18] for the original version of
CSDn based on a generalisation of Eq. (2).

3We follow the Majorana mass convention − 1
2νLm

ννcL.
4In addition, the CSD3 in Eq. (7) predicts the Majorana phase β = −71.9◦ (as compared to β = 71.9◦

with Eq. (2)) which is not shown in the Table since the neutrinoless double beta decay parameter is mee =
mb = 2.684 meV for the above parameter set which is practically impossible to measure in the foreseeable
future.
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ma

(meV)

mb

(meV)

η
(rad)

θ12
(◦)

θ13
(◦)

θ23
(◦)

δCP

(◦)

m1

(meV)

m2

(meV)

m3

(meV)

26.57 2.684 −2π

3
34.3 8.67 44.2 -93.3 0 8.59 49.8

26.57 2.684
2π

3
34.3 8.67 45.8 -86.7 0 8.59 49.8

Value from [27] 33.48+0.78
−0.75 8.50+0.20

−0.21 42.3+3.0
−1.6 -54+39

−70 0 8.66±0.10 49.57±0.47

Table 1: Benchmark parameters and predictions for CSD3 in Eq. (7) used in this paper (second
line) with a fixed phase η = −2π/3, as compared to the version of CSD3 in Eq. (2) (third line)
with a fixed phase of η = 2π/3. These predictions, which depend on the theoretical fit [17], as
well as possible charged lepton and renormalisation group corrections [26], may be compared to
the global best fit values from [27] (for m1 = 0), given in the fourth line (see also [28, 29]).

3 Vacuum alignment for CSD3

In our setup, we rely on the supersymmetric F -term alignment mechanism to generate the
appropriate symmetry breaking flavon VEVs. The required driving fields are denoted by Xi,
Yi, Zi, where the subscript i indicates its S4 representation. We derive all necessary align-
ments in a short sequence of steps. Commencing with the primary alignments of triplets
flavons, we proceed to generate alignments of doublet flavons. In a final step, the SU pre-
serving CSD3 alignments are obtained from SU symmetric F -term conditions. Our notation
is such that the three primary triplet flavons are denoted by φ′

S,U ∼ 3′, φT ∼ 3 and φ′
t ∼ 3′.

The doublet flavons, which are obtained from the primary ones, are ρS,U ∼ 2 and ρt ∼ 2.
Here, the indices (S, U, T and t) show the symmetry preserving generators, where t corre-
sponds to T multiplied by a Z3 generator which is not part of S4. In addition to the triplet
and doublet flavons, we also introduce the S4 singlet flavons ξT ∼ 1 and ξS,U ∼ 1.

The primary triplet alignments are derived from simply coupling the square of a flavon
triplet to a single driving field Xi. The resulting F -term conditions depend on the S4

representation of Xi, and the most general solutions of these conditions are given as follows.

X3′(φ
′
S,U)

2 −→





1
ωn

ω2n



 , (8)

X2(φT )
2 −→





1
0
0



 ,





1
−2ωn

−2ω2n



 , (9)

X1(φ
′
t)

2 −→





0
0
1



 ,





0
1
0



 ,





2
2x

−1/x



 , (10)

where the alignments are only fixed up to an integer (n ∈ Z) or continuous (x ∈ R) param-
eter, with ω ≡ e2πi/3.
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We emphasise that all solutions of the φT alignments are related by S4 transformations.
It is therefore possible to choose the direction 〈φT 〉 ∝ (1, 0, 0)T without loss of generality.
Moreover, the alignments of φ′

S,U can be brought to the standard (1, 1, 1)T form by a T
transformation which does not affect the φT alignment. Finally, the so-selected alignments
of φT and φ′

S,U do not change their form (up to a possible overall sign) under application of
a U transformation. This fact allows us to get rid of the ambiguity of the φ′

t alignment: the
third alignment (2, 2x,−1/x)T can be removed by requiring orthogonality with 〈φT 〉, which
can be enforced in a straightforward way by the term

X1′φTφ
′
t , (11)

in the driving potential. Then, a U transformation can be applied to choose the alignment
〈φ′

t〉 ∝ (0, 1, 0)T without loss of generality. We can thus make use of the following three
primary alignments

〈φ′
S,U〉 = ϕ′

S,U





1
1
1



 , 〈φT 〉 = ϕT





1
0
0



 , 〈φ′
t〉 = ϕ′

t





0
1
0



 , (12)

to generate new alignments, which together with the primary ones can be used in constructing
our CSD3 model of leptons. Note that 〈φ′

S,U〉 preserves S, U while 〈φT 〉 preserves T as
discussed in Appendix A.

The secondary alignments of the doublet flavons ρS,U and ρt originate in the driving terms

Y3φ
′
S,UρS,U , Y3′ (ξTφ

′
t − φTρt) , (13)

where ξT represents an S4 singlet flavon which does not affect the alignment of ρt. We
remark that all dimensionless coupling constants of the flavon potential are suppressed for
the sake of notational clarity. It is, however, important to keep in mind that such couplings
are real in our setup with imposed CP symmetry. A straightforward calculation shows that
the F -term conditions resulting from Eq. (13) determine the doublet alignments uniquely to

〈ρS,U〉 = ̺S,U

(

1
1

)

, 〈ρt〉 = ̺t

(

0
1

)

. (14)

We point out that the doublet flavon ρt is actually not required in constructing the CSD3
alignments. However, it can be used in the charged lepton sector to generate the muon and
electron masses.5

5For the tau mass we can use the triplet flavon φ′
t. The product φ

′
tρt yields and effective alignment in the

(0, 0, 1)T direction and can be used to generate the muon mass. Finally the product φ′
tρtρt gives rise to an

effective vacuum alignment in the (1, 0, 0)T direction so that it can be adopted to give mass to the electron.
(In principle we could also use the φT flavon for the electron, but the relative suppression of the electron
mass with respect to the tau and muon mass would require an unnatural hierarchy between the VEVs of φT

and φ′
t.)
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Turning to the derivation of the CSD3 alignments, we first consider the contraction of
φ′
S,U and φT to a 3′ of S4,

[

〈φ′
S,U〉 · 〈φT 〉

]

3′
∝





0
1
−1



 . (15)

Although the flavon direction 〈φT 〉 does not respect the SU symmetry, its product with
〈φ′

S,U〉, contracted to a 3′, yields an SU invariant direction. From this result, we immediately
see that the driving term

Z3′
(

φ′
S,UφT − ξS,Uφ

′
atm

)

, (16)

with ξS,U being an S4 singlet flavon field, generates the alignment

〈φ′
atm〉 = ϕ′

atm





0
1
−1



 . (17)

Similarly, we can consider the product of φ′
atm and φ′

t to a 3′ of S4,

[〈φ′
atm〉 · 〈φ′

t〉]3′ ∝





1
0
2



 . (18)

Again, the flavon direction 〈φ′
t〉 does not respect SU , yet its product with 〈φ′

atm〉 to a 3′ does.
In order to realise the CSD3 alignment φ′

sol, we use the particular SU preserving product of
Eq. (18) as well as the doublet flavon ρS,U (whose VEV is invariant under SU) in the driving
term

Z̃3′
(

φ′
atmφ

′
t − ρS,U φ′

sol

)

. (19)

To see this, we insert the already aligned flavon directions into Eq. (19). This gives the
F -term conditions for 〈φ′

sol〉 = (β1, β2, β3)
T

ϕ′
atm ϕ′

t





1
0
2



− ̺S,U





β2 + β3

β3 + β1

β1 + β2



 =





0
0
0



 , (20)

which uniquely specify the alignment to the CSD3 one

〈φ′
sol〉 = ϕ′

sol





1
3
−1



 . (21)

Furthermore, the VEVs ϕ′
atm and ϕ′

sol (including the phase) are related via

ϕ′
sol =

ϕ′
t

2 ̺S,U
ϕ′
atm . (22)
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Having completed the discussion of the vacuum alignment for supersymmetric CSD3
models, we conclude this section by collecting all terms of the flavon sector in the flavon
superpotential. Suppressing all coupling coefficients (which are real in the case of a CP
symmetric setup), we have the superpotential

W flavon
0 ∼ X3′(φ

′
S,U)

2 +X2(φT )
2 +X1(φ

′
t)

2 +X1′φTφ
′
t

+Y3φ
′
S,UρS,U + Y3′(ξTφ

′
t − φTρt) (23)

+Z3′(φ
′
S,UφT − ξS,Uφ

′
atm) + Z̃3′(φ

′
atmφ

′
t − ρS,Uφ

′
sol) .

It is important to notice that the flavon potential of Eq. (23) contains only renormalisable
terms. As a consequence, the CSD3 alignments derived from the corresponding F -term
conditions should be relatively robust when implemented into a concrete model.

4 A concrete model of CSD3

In order to define a model, it is necessary to specify its particle content as well as all
symmetries which constrain the couplings of the fields. In Eq. (23), we have already stated the
flavon superpotential for generating the CSD3 alignments. By construction, these terms are
symmetric under the imposed S4 family symmetry. Furthermore, it is possible to introduce
a U(1) symmetry which allows for all terms of Eq. (23). Such a U(1) must, however, also
be consistent with the superpotential terms of the lepton sector. Following the discussion of
the Littlest Seesaw model [18], we demand the superpotential terms

W lepton
0 =

y′τ
Λ
LHdE

c
3 φ

′
t +

y′µ
Λ2

LHdE
c
2 φ

′
t ρt +

y′e
Λ3

LHdE
c
1 φ

′
t (ρt)

2 (24)

+
yatm
Λ

LHuN
c
atm φ′

atm +
ysol
Λ

LHuN
c
sol φ

′
sol + ξatm N c

atmN
c
atm + ξsolN

c
solN

c
sol .

Here we assume the Higgs doublets Hu and Hd to transform trivially under S4 as well as any
additional U(1) symmetry. The neutrino sector of Eq. (24) contains the typical CSD3 Dirac
mass terms, while the Majorana mass terms arise from the VEVs of the S4 singlet flavons
ξatm and ξsol. We suppress the dimensionless Yukawa couplings in the Majorana sector for
brevity.6 Considering the charged lepton sector, we choose the right-handed electrons as S4

singlets, while the three generations of left-handed lepton doublets Li are combined into the
S4 triplet 3′. Contracting L with 〈φ′

t〉 to an S4 invariant projects out the third family L3.
Similarly, the S4 products L〈φ′

t〉〈ρt〉 and L〈φ′
t〉〈ρt〉2 project out L2 and L1, respectively. We

thus obtain a diagonal charged lepton mass matrix in which the hierarchy of masses results
from different powers of the suppression factor 1/Λ.

The operators of Eq. (24) put further constraints on a possible U(1) symmetry. Counting
the number of fields and comparing this to the number of constraints from Eqs. (23,24), we

6Replacing the singlet flavon (Majoron) fields ξ by bare mass parameters M , it is possible to show that
the flavon superpotential would include additional renormalisable terms which spoil our successful method
of generating the CSD3 alignment.
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fields S4 U(1) U(1)x Z
(1)
3 Z

(2)
3 Z

(3)
3 Z

(4)
3 Z

(5)
3

H
ig
gs

&
le
p
to
n
s

L 3′ −x1 + z1 1 1 0 0 0 0
Ec

3 1 x1 − z1 − z3 −1 2 0 2 0 0
Ec

2 1 x1 − x2 − z1 − 2z3 − z4 + z5 −4 2 0 1 2 1
Ec

1 1 x1 − 2x2 − z1 − 3z3 − 2z4 + 2z5 −7 2 0 0 1 2
N c

atm 1 −z1 0 2 0 0 0 0
N c

sol 1 −z2 0 0 2 0 0 0
Hd 1 0 0 0 0 0 0 0
Hu 1 0 0 0 0 0 0 0

fl
av
on

fi
el
d
s

φ′
S,U 3′ x1 + x2 2 0 0 0 0 0

ρS,U 2 z1 − z2 + z3 0 1 2 1 0 0
ξS,U 1 z5 0 0 0 0 0 1
φT 3 −x2 + z5 −3 0 0 0 0 1
ξT 1 z4 0 0 0 0 1 0
φ′
t 3′ z3 0 0 0 1 0 0

ρt 2 x2 + z3 + z4 − z5 3 0 0 1 1 2
φ′
atm 3′ x1 −1 0 0 0 0 0
φ′
sol 3′ x1 − z1 + z2 −1 2 1 0 0 0

ξatm 1 2z1 0 2 0 0 0 0
ξsol 1 2z2 0 0 2 0 0 0

d
ri
v
in
g
fi
el
d
s

X3′ 3′ −2x1 − 2x2 −4 0 0 0 0 0
X2 2 2x2 − 2z5 6 0 0 0 0 1
X1 1 −2z3 0 0 0 1 0 0
X1′ 1′ x2 − z3 − z5 3 0 0 2 0 2
Y3 3 −x1 − x2 − z1 + z2 − z3 −2 2 1 2 0 0
Y3′ 3′ −z3 − z4 0 0 0 2 2 0
Z3′ 3′ −x1 − z5 1 0 0 0 0 2

Z̃3′ 3′ −x1 − z3 1 0 0 2 0 0
X0 1 0 0 0 0 0 0 0

Table 2: The particle content and symmetries of our CSD3 model. U(1) denotes the most general
symmetry consistent with the terms of Eqs. (23,24). U(1)x is specified by setting x1 = −1, x2 = 3

and zi = 0. The Z
(i)
3 symmetries are Z3 subgroups of U(1) with all parameters set to zero except

for zi = 1. In addition, we assume a standard U(1)R symmetry with the charge assignments: +1
for lepton, +2 for driving fields, 0 for Higgs and flavon fields.

can determine the maximal U(1) symmetry which is allowed in our setup. With 25 fields
and 18 independent terms, we obtain 7 free parameters which specify the most general U(1)
symmetry. Expressing its charges in terms of the parameters x1,2 and z1,2,3,4,5, we list the
complete charge assignments in Table 2.

Imposing this general U(1) for arbitrary parameters x1,2 and z1,2,3,4,5 is tantamount to
imposing seven independent U(1) symmetries. It is straightforward to show that such a
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powerful symmetry, while being consistent with all term of Eqs. (23,24), does not allow for
any other relevant term. We have checked this result explicitly for terms with up to five
flavon fields, finding no extra term at all.7

As discussed in [18], the Littlest Seesaw requires the relative phase factor ω = e2πi/3

between the two contributions to the effective light neutrino mass matrix. In a CP conserving
setup, such a phase factor can only originate in complex flavon VEVs. In order to predict
phases, it is necessary to find a way of driving flavon VEVs to certain values with given
phases. An obvious option is to introduce a completely neutral driving field X0 which
couples to both, some power of a flavon field φ as well as a bare mass parameter. For
instance, X0(φ

2 − M2) entails a real VEV for the flavon φ provided that M is real. Such
a method has been applied previously, e.g. in [25]. In order to drive a flavon VEV to a
complex value whose phase factor is ωk, it is suggestive to make use of couplings such as
X0(φ

3/Λ − M2), see e.g. [23]. Clearly, this structure is forbidden if the flavon φ carries
a non-trivial U(1) charge. However, a non-trivial Z3 charge is possible; in fact, it is even
necessary in order to forbid the quadratic term X0φ

2.

On the right-hand side of Table 2, we have defined particular subgroups of the general
U(1) which, as mentioned earlier, can be understood as seven independent U(1) symmetries.

The U(1)x symmetry is defined by choosing x1 = −1, x2 = 3 and zi = 0. The Z
(i)
3 symmetries

are obtained as discrete subgroups of the general U(1) with all parameters set to zero except

for zi = 1. Imposing only U(1)x and the five Z
(i)
3 symmetries, it is possible to drive the VEVs

of the flavons with zero U(1)x charge to values with a phase factor ωk. As the so-reduced
symmetry could, in principle, allow for other new terms in the superpotential, we have to
check for such unwanted operators. In addition to the terms of Eq. (23), we find the following
cubic terms in the flavon potential,

W flavon
1 ∼ X0

[

(ξatm)
3 + (ξsol)

3 + (ξT )
3 + (ξS,U)

3 + (φ′
t)

3 + (ρS,U)
3 + φ′

S,U(φ
′
atm)

2

Λ
−M2

]

.

(25)
All terms with one driving field coupling to four flavons are forbidden, while there exist
many allowed, though strongly suppressed, terms with five flavons. In the Dirac-type terms
of the lepton sector, the first new terms involve four flavon fields and are therefore highly
suppressed. Finally, we find extra contributions to the mass terms of the right-handed
neutrinos with four or more flavons. The complete model based on the U(1)x×Z

(1)
3 ×Z

(2)
3 ×

7Imposing only one particular U(1) symmetry rather than seven independent U(1)s, it is also pos-
sible to forbid all relevant unwanted operators. For instance, with the somewhat arbitrary choice
(x1, x2, z1, z2, z3, z4, z5) = (4, 16,−61, 88, 53,−61, 7), the driving potential does not have any non-
renormalisable operator with three flavon fields. Likewise, the first new Dirac-type terms of the lepton
sector involve four flavons and are therefore highly suppressed. For the right-handed neutrinos, we en-
counter a new contribution to N c

atmN
c
atm with two flavons, however, the first off-diagonal term N c

atmN
c
sol

already requires five flavons.
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Z
(3)
3 × Z

(4)
3 × Z

(5)
3 symmetry is therefore given by the superpotentials

W flavon = W flavon
0 + W flavon

1 +

(

1

Λ3
X φ5 + · · ·

)

, (26)

W lepton = W lepton
0 +

(

1

Λ4
LHdE

c
i φ

4 +
1

Λ4
LHuN

c
i φ

4 +
1

Λ3
N c

i N
c
j φ

4 + · · ·
)

, (27)

where the higher order terms in brackets are only written schematically with X or φ repre-
senting any of the driving or flavon fields of the model.

These observations show that the reduced symmetry on the right-hand side of Table 2
is sufficient to control the coupling of driving, flavon and lepton fields. Moreover, Eq. (25)
allows us to constrain the VEVs of the flavons. The existence of the mixed term φ′

S,U(φ
′
atm)

2 in
Eq. (25) follows from the particular charge assignment under the U(1)x symmetry. However,
inserting the vacuum alignment, this term vanishes identically. Hence we can ignore it in
the following. Adding six copies of the driving field X0, we obtain six independent F -term
equations which decouple if linearly combined. Then, the VEVs of the flavons ξatm, ξsol, ξT ,
ξS,U , φ

′
t and ρS,U are driven to values where the phase factor is some power of ω.8 Due to the

symmetries, many of these phase factors can however be removed. For instance, if ξatm has a
phase factor ωk, this can be modified to ω0 by a Z

(1)
3 transformation. Since ξatm is uncharged

under any of the other symmetries, a Z
(2)
3 transformation can be applied without modifying

the trivial phase of ξatm. On the other hand, such a Z
(2)
3 transformation can remove the

phase of ξsol. This procedure can be applied further to render real the VEVs of ξatm, ξsol, ξT ,

ξS,U as well as φ′
t. Having exhausted all Z

(i)
3 symmetries, the phase factor of ρS,U cannot be

removed. Similarly to the Z
(i)
3 transformations, the U(1)x symmetry can be used to remove

the phase of 〈φ′
atm〉. Defining the phase factor of 〈φ′

S,U〉 to be eiα, the phases of the VEVs of
the remaining flavons φT , ρt and φ′

sol are fixed by Eqs. (16,13,19), respectively. In summary,
we can work in a basis where the VEVs of all flavons are real except for the following list

̺S,U
|̺S,U |

= ωk ,
ϕ′
sol

|ϕ′
sol|

= ω−k , (28)

ϕ′
S,U

|ϕ′
S,U |

=
̺t
|̺t|

= eiα ,
ϕT

|ϕT |
= e−iα . (29)

Adopting this phase convention together with the alignments derived in Section 3, we can
deduce the mass matrices from the terms of the lepton superpotential W flavon

0 of Eq. (24).
Mindful of the Clebsch-Gordan coefficients of S4 in the T -diagonal basis, stated explicitly in
Appendix A, we obtain the Dirac neutrino mass matrix

mD =
vu
Λ





0 ysol |ϕsol|ω−k

−yatmϕatm −ysol |ϕsol|ω−k

yatmϕatm 3 ysol |ϕsol|ω−k



 , (30)

8Notice that – with the respective alignments – 〈φ′
t〉3 as well as 〈ρS,U 〉3 have non-vanishing contractions

to an S4 singlet. This is not the case for 〈φ′
S,U 〉3.
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where the only complex quantity is given explicitly by the factor ω−k. Absorbing the minus
signs into the second lepton doublet field, which ultimately gets absorbed into the right-
handed muon field when the charged lepton masses are made real and positive, we obtain a
Dirac mass matrix with the sign conventions of Eq. (6) [also see Appendix B, Eq. (42)]. This
is our preferred convention which we will adopt in the following. The 2 × 2 right-handed
Majorana mass matrix takes the real and diagonal form MR = diag(ξatm, ξsol), continuing to
suppress the dimensionless Yukawa couplings in the Majorana sector for brevity. Applying
the seesaw formula results in the effective light neutrino mass matrix

mν =
v2u
Λ2





(yatmϕ
′
atm)

2

ξatm





0 0 0
0 1 1
0 1 1



 +
(ysol|ϕ′

sol|)2
ξsol

ω−2k





1 1 3
1 1 3
3 3 9







 . (31)

Choosing k = 2, which is one of the three physically distinct possible choices k = 0, 1, 2,
the neutrino mass matrix is of the form of Eq. (45) but with fixed values of n = 3 and
η = −2π/3,

mν = ma





0 0 0
0 1 1
0 1 1



+mbe
−i2π/3





1 1 3
1 1 3
3 3 9



 , (32)

as in Eq. (7) but with fixed phase η = −2π/3 leading to leptonic CP violation with Dirac
phase δ ∼ −π/2, and good values of lepton mixing angles as discussed in Section 2. As the
VEVs of all flavons which appear in the neutrino sector of W lepton

0 , see Eq. (24), respect the
SU symmetry, this neutrino matrix satisfies that symmetry as well and is therefore of the
trimaximal TM1 form.

Considering the charged lepton sector, we find the diagonal mass matrix

mℓ =
vd ϕ

′
t

Λ





y′e
̺2
t

Λ2 0 0
0 y′µ

̺
t

Λ
0

0 0 y′τ



 ≡ vd





ye 0 0
0 yµ 0
0 0 yτ



 , (33)

where the only complex quantity is given by the value of the doublet VEV ̺t. Its phase
factor eiα can, however, be absorbed into a field redefinition of the right-handed electrons Ec

2

and Ec
1. As such, the phase α, as introduced in Eq. (29), does not contribute to the phase

structure of the PMNS mixing matrix, and the effective Yukawa couplings ye, yµ, yτ defined
above may be taken to be real without loss of generality. We emphasise that the hierarchy
of physical effective Yukawa couplings ye ≪ yµ ≪ yτ ≪ 1 has a natural explanation in this
model, arising from the smallness of flavon VEVs compared to the cut-off scale Λ, assuming
the primordial Yukawa couplings y′e, y

′
µ, y

′
τ ∼ O(1).

As for the neutrinos, the structure of the charged lepton mass matrix mℓ is also related
to symmetry, although in a slightly more intricate way. While the alignments of φ′

t and ρt
do not change their direction under a T transformation, both pick up the phase factor
ω2.9 A subsequent Z

(3)
3 transformation c(3) can undo this change of the phase so that the

9For the triplet φ′
t this can be seen in Eq. (36). For the doublet ρt we note, that the corresponding T

generator is also diagonal with T = diag (ω, ω2), see e.g. [23].
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combined c(3)T transformation can be identified as the symmetry of the charged lepton sector
which is responsible for guaranteeing a diagonal mass matrix mℓ. In this sense the model of
leptons presented here is a semi-direct model, since the residual symmetry of the lepton mass
matrices of both neutrino and charged lepton sectors may be identified as different subgroups
of S4, namely SU in the neutrino sector and T (combined with a Z

(3)
3 transformation) in the

charged lepton sector.

5 Charged lepton flavour violation

Since the model is supersymmetric we can expect charged lepton flavour violation in this
model, due to one-loop diagrams involving sleptons, neutralinos and charginos [30–32]. In
the mass insertion approximation, the processes arise from having off-diagonal slepton mass
squared and trilinear matrices at low energies in the super-CKM basis in which the charged
lepton masses are diagonal. With flavour symmetry present, the high energy slepton mass
squared and trilinear matrices are controlled by the flavour symmetry and generally yield
only small off-diagonal entries. Unfortunately this is a rather delicate and complex issue, with
precise estimates depending on an expansion in flavon fields, canonical normalisation and
rotations to the super-CKM basis in which the charged lepton masses are diagonal, followed
by renormalisation group running to low energies, along the lines of a recent analysis based
on an SU(5)× S4 × U(1) Grand Unified Theory (GUT) of flavour [33].

Ignoring the effects of the operator expansion, canonical normalisation and super-CKM
rotations (which are anyway highly suppressed in this model where the charged lepton mass
matrix is diagonal), the slepton mass squared and trilinear matrices do not violate flavour
at high energies, and the only remaining effect arises from renormalisation group running.
Then, using the analytic results in [34], we may make a simple estimate for the branching
ratio of µ → eγ as follows. At leading order in a mass insertion approximation [30–32] the
branching fraction of µ → eγ is given by [34]:

BR(µ → eγ) ≈ α3

G2
F

f(M2, µ,mν̃)|m2
L̃21

|2 tan2 β , (34)

where the off-diagonal slepton doublet mass squared is given in the leading log approximation
(LLA) by

m
2(LLA)

L̃21

≈ −(3m2
0 + A2

0)

8π2
|b|2 ln MGUT

Msol
, (35)

and the remainder of the notation is fairly standard and given in [30–32]. In the present
model leptogenesis fixes Msol = 4 × 1010 GeV and the neutrino fit fixes mb = v2u|b|2/Msol ∼
2.7 meV, which implies |b| ∼ 10−3. The smallness of the Yukawa coupling b is due to its

non-renormalisable origin b ∼ ϕ′

sol

Λ
. This contrasts with other semi-direct models such as

those in [33] where the neutrino Yukawa couplings are O(1), and implies that in this model,
charged lepton flavour violation such as µ → eγ will be relatively highly suppressed, at least
according to our very simple estimate based on the assumptions above.
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6 Conclusions

In this paper, guided by the principles of minimality and symmetry, we have been led to
a highly predictive theory of neutrino mass and lepton mixing in which all CP phases are
fixed and the neutrino masses and the entire lepton mixing matrix are determined by only
two real input mass parameters. Starting from the most elegant mechanism for the origin of
neutrino mass, namely the seesaw mechanism, we have focused on the most minimal version
involving two right-handed neutrinos. Pursuing minimality, we were then led to consider
a two right-handed neutrino seesaw model with one texture zero and a constrained form
of Dirac mass matrix involving only two independent Dirac masses with the structure of
Eq. (6), simply related to the CSD3 structure in Eq. (1) by L2 ↔ L3. Our main achievement
is to show that the new version of CSD3 can be obtained from symmetry arguments based
on S4, working in the basis where the diagonal T generator can enforce the diagonality of the
charged lepton mass matrix due to a residual Z3 symmetry, while the preserved S4 subgroup
SU in the neutrino sector with a residual Z2 symmetry is instrumental in enforcing TM1

mixing. The resulting scheme combines minimality with symmetry, leading to a high degree
of predictivity, where the predictions are protected from higher order corrections by the full
symmetry of the model.

We then proposed a realistic model of leptons, based on S4 × U(1) symmetry, with two
right-handed neutrinos, where a straightforward F -term vacuum alignment results in a neu-
trino mass matrix with the form of Eq. (7). The relatively simple model corresponds to the
left half of Table 2 (to the left of the double vertical lines) in which the symmetry is only
S4 ×U(1). However in order to achieve the phenomenologically desired phase of η = −2π/3
we were forced to extend the symmetries of the model (but not the particle content) to in-
clude a (Z3)

5 symmetry in the right half of Table 2 (to the right of the double vertical lines).
This enabled us to impose a CP symmetry, then spontaneously break it in a controlled way,
such that the phase is constrained to be one of the cube roots of unity, however leaving no
residual CP symmetry in the charged lepton or neutrino sectors. With the phase chosen
from the cube roots of unity to be η = −2π/3, all CP phases are fixed and the baryon asym-
metry of the universe then will determine the lighter solar right-handed neutrino mass to be
Msol = 4 × 1010 GeV. The model predicts a normal neutrino mass hierarchy with m1 = 0,
reactor angle θ13 = 8.7o, solar angle θ12 = 34o, atmospheric angle θ23 = 44o, and CP violating
oscillation phase δCP = −93o, depending on the fit of the model to the neutrino masses and
possible renormalisation group corrections. These predictions will be tested soon.
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Appendix

A S4 group theory

Throughout this paper we work in the T diagonal basis of S4, as in [2]:

S =
1

3





−1 2 2
2 −1 2
2 2 −1



 , T =





1 0 0
0 ω2 0
0 0 ω



 for 3 or 3′ , (36)

and

U = ∓





1 0 0
0 0 1
0 1 0



 , SU = US = ∓1

3





−1 2 2
2 2 −1
2 −1 2



 , for 3, 3′ respectively. (37)

In this basis the symmetry preserving vacuum alignments are as follows:

φT ∼ 3 ∼





1
0
0



 , preserves T, breaks S, U,

φ′
T ∼ 3′ ∼





1
0
0



 , preserves T, U breaks S,

φS ∼ 3 ∼





1
1
1



 , preserves S breaks T, U,

φ′
S ∼ 3′ ∼





1
1
1



 , preserves S, U breaks T,

φSU ∼ 3 ∼





2
−1
−1



 , preserves SU breaks T, U,

and the two important SU preserving alignments for 3′ flavons,

φ′
atm ∼ 3′ ∼





0
1
−1



 , preserves SU breaks T, U, (38)
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φ′
sol ∼ 3′ ∼





1
n

2− n



 , preserves SU breaks T, U, (39)

where we fix n = 3 such that

φ′
sol ∼ 3′ ∼





1
3
−1



 , preserves SU breaks T, U. (40)

In the following we summarise the Kronecker products and Clebsch-Gordan coefficients.
The non-trivial S4 product rules are listed below, where we use the number of primes within
the expression

α(′) ⊗ β(′) → γ(′) , (41)

to classify the results. We denote this number by p, e.g. in 3⊗ 3′ → 3′ we get p = 2. Then
the Clebsch-Gordan coefficients are given as follows [35]:

1(′) ⊗ 1(′) → 1(′)







p = even
1 ⊗ 1 → 1
1′ ⊗ 1′ → 1
1 ⊗ 1′ → 1′







αβ ,

1(′) ⊗ 2 → 2

{

p = even
p = odd

1 ⊗ 2 → 2
1′ ⊗ 2 → 2

}

α

(

β1

(−1)pβ2

)

,

1(′) ⊗ 3(′) → 3(′)















p = even

1 ⊗ 3 → 3
1′ ⊗ 3′ → 3
1 ⊗ 3′ → 3′

1′ ⊗ 3 → 3′















α





β1

β2

β3



 ,

2 ⊗ 2 → 1(′)
{

p = even
p = odd

2⊗ 2 → 1
2⊗ 2 → 1′

}

α1β2 + (−1)pα2β1 ,

2 ⊗ 2 → 2

{

p = even 2⊗ 2 → 2

} (

α2β2

α1β1

)

,

2 ⊗ 3(′) → 3(′)



















p = even

p = odd

2⊗ 3 → 3
2⊗ 3′ → 3′

2⊗ 3 → 3′

2⊗ 3′ → 3



















α1





β2

β3

β1



+ (−1)pα2





β3

β1

β2



 ,

3(′) ⊗ 3(′) → 1(′)







p = even
3 ⊗ 3 → 1
3′ ⊗ 3′ → 1
3 ⊗ 3′ → 1′







α1β1 + α2β3 + α3β2 ,
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3(′) ⊗ 3(′) → 2











p = even

p = odd

3 ⊗ 3 → 2
3′ ⊗ 3′ → 2

3 ⊗ 3′ → 2











(

α2β2 + α3β1 + α1β3

(−1)p(α3β3 + α1β2 + α2β1)

)

,

3(′) ⊗ 3(′) → 3(′)







p = odd
3 ⊗ 3 → 3′

3 ⊗ 3′ → 3
3′ ⊗ 3′ → 3′











2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1

2α2β2 − α3β1 − α1β3



 ,

3(′) ⊗ 3(′) → 3(′)







p = even
3 ⊗ 3 → 3
3′ ⊗ 3′ → 3
3 ⊗ 3′ → 3′











α2β3 − α3β2

α1β2 − α2β1

α3β1 − α1β3



 .

B A new type of CSDn

We may define a new general class of CSDn models as follows. In the diagonal charged
lepton and two right-handed neutrino mass basis, CSDn is defined in this paper, up to phase
choices, by the Dirac mass matrix in LR convention:10

mD =





0 b
a (n− 2)b
a nb



 . (42)

The (diagonal) right-handed neutrino mass matrixMR with rows (N c
atm, N c

sol)
T and columns

(Natm, Nsol) is,

MR =

(

Matm 0
0 Msol

)

, M−1
R =

(

M−1
atm 0
0 M−1

sol

)

. (43)

The low energy effective Majorana neutrino mass matrix is given by the seesaw formula

mν = −mDM−1
R mDT

, (44)

which, after multiplying the matrices in Eqs. (42,43), for a suitable choice of physically
irrelevant overall phase, gives

mν = ma





0 0 0
0 1 1
0 1 1



+mbe
iη





1 n− 2 n
n− 2 (n− 2)2 n(n− 2)
n n(n− 2) n2



 , (45)

10Note that this version of CSDn differs from that considered in [18], where the second column of the
Dirac mass matrix was (b, nb, (n − 2)b)T . For this reason we consider the TB mixing matrix in a different
convention. Compared to the analytic formulas in [18], the new version of CSDn leads to a change in sign
in the parameters y and hence t and ǫν , with x, z, A,B unchanged, compared to the original version. This
implies that the reactor and solar mixing angle formulas are unchanged, but the atmospheric angle formula
changes due to the sign change in ǫν , which has the effect of reversing the octant for the atmospheric angle.
The formula for sin δ also involves a change in sign.
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where η is the only physically important phase, which depends on the relative phase between

the second and first column of the Dirac mass matrix, arg(b/a), as well as ma = |a|2
Matm

and

mb = |b|2
Msol

. This can be thought of as the minimal (two right-handed neutrino) predictive
seesaw model since only four real parameters ma, mb, n, η describe the entire neutrino sector
(three neutrino masses as well as the PMNS matrix, in the diagonal charged lepton mass
basis). η is identified with the leptogenesis phase, while mb is identified with the neutrinoless
double beta decay parameter mee.

Consider the tri-bimaximal TB mixing matrix [22] in the following sign convention:

UTB =







√

2
3

1√
3

0
1√
6

− 1√
3

− 1√
2

− 1√
6

1√
3

− 1√
2






. (46)

We then observe from Eq. (45) that

mν





2
1
−1



 =





0
0
0



 . (47)

In other words the column vector (2, 1,−1)T is an eigenvector of mν with a zero eigenvalue,
i.e. it is the first column of the TB mixing matrix, corresponding to m1 = 0. We conclude
that the neutrino mass matrix leads to so-called TM1 mixing [20, 21], in which the first
column of the mixing matrix is fixed to be that of the TB mixing matrix, but the other two
columns are not uniquely determined,

UTM1 =







√

2
3

− −
1√
6

− −
− 1√

6
− −






. (48)

Since the neutrino mass matrix yields TM1 mixing as discussed above, it can be block
diagonalised by the TB mixing matrix,

mν
block = UT

TBm
νUTB =





0 0 0
0 x y
0 y z



 , (49)

where we find,

x = 3mbe
iη, y = −

√
6mbe

iη(n− 1), z = |z|eiφz = 2[ma +mbe
iη(n− 1)2] . (50)

It only remains to put mν
block into diagonal form, with real positive masses, which can be done

exactly analytically of course, since this is just effectively a two by two complex symmetric
matrix which may be diagonalised with a rotation angle θν23. This procedure leads to the
following exact analytic results for neutrino masses and lepton mixing parameters [18].
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Taking the Trace (T) and Determinant (D) of the non-trivial 2× 2 neutrino mass matrix
times its Hermitian conjugate we find

m2
2 +m2

3 = T ≡ |x|2 + 2|y|2 + |z|2 , (51)

m2
2m

2
3 = D ≡ |x|2|z|2 + |y|4 − 2|x||y|2|z| cosA , (52)

from which we extract the exact results for the neutrino masses,

m2
3 =

1

2
T +

1

2

√
T 2 − 4D , (53)

m2
2 = D/m2

3 , (54)

m2
1 = 0 . (55)

The exact expression for the reactor angle is given below,

sin θ13 =
1√
6

(

1−
√

1

1 + t2

)1/2

, (56)

where

t =
−2

√
6mb(n− 1)

2|ma +mbeiη(n− 1)2| cos(A−B)− 3mb cosB
, (57)

with

tanB =
2|ma +mbe

iη(n− 1)2| sinA
3mb + 2|ma +mbeiη(n− 1)2| cosA , (58)

and
A = arg[ma +mbe

iη(n− 1)2]− η. (59)

The solar angle is given in terms of the reactor angle by the TM1 mixing sum rule in
three equivalent exact forms,

tan θ12 =
1√
2

√

1− 3s213 or sin θ12 =
1√
3

√

1− 3s213
c13

or cos θ12 =

√

2

3

1

c13
, (60)

where we have defined sij = sin θij and cij = cos θij . To first order in s13, The solar angle
tan θ12 approximately takes the TB value of 1/

√
2.

The exact expression for the atmospheric angle is given by

tan θ23 =
|1 + ǫν23|
|1− ǫν23|

, (61)

where

ǫν23 =

√

2

3
t−1
[√

1 + t2 − 1
]

e−iB , (62)

20



and t and B are given in Eqs. (57,58,59). The atmospheric angle tan θ23 is maximal when
B = ±π/2 since then |1 + ǫν23| is equal to |1− ǫν23|.

Mixing sum rules for TM1 mixing can be expressed as an exact relation for cos δ in terms
of the other lepton mixing angles [21],

cos δ = − cot 2θ23(1− 5s213)

2
√
2s13

√

1− 3s213
. (63)

Note that, for maximal atmospheric mixing, θ23 = π/4, we see that cot 2θ23 = 0 and therefore
this sum rule predicts cos δ = 0, corresponding to maximal CP violation δ = ±π/2. The
prospects for testing the TM1 atmospheric sum rules Eqs. (60,63) in future neutrino facilities
was discussed in [36].

Using the Jarlskog invariant [37] we find the exact relation [18]:

sin δ =
24m3

am
3
b(n− 1) sin η

m2
3m

2
2∆m2

32s12c12s13c
2
13s23c23

. (64)

Note the positive sign in Eq. (64), which means that, for n > 1, the sign of sin δ takes the
same value as the sign of sin η, in the convention we use to write our neutrino mass matrix,
namely −1

2
νLm

ννc
L. The above exact results for cos δ and sin δ completely fix the value of

the Dirac oscillation phase δ.
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