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To maintain cycling adult tissue in homeostasis the balance
between proliferation and differentiation of stem cells needs to
be precisely regulated. To investigate how stem cells achieve
perfect self-renewal, emphasis has been placed on models in
which stem cells progress sequentially through a one-way pro-
liferative hierarchy. However, investigations of tissue regenera-
tion have revealed a surprising degree of flexibility, with cells
normally committed to differentiation able to recover stem cell
competence following injury. Here, we investigate whether the
reversible transfer of cells between states poised for proliferation
or differentiation may provide a viable mechanism for a hetero-
geneous stem cell population to maintain homeostasis even under
normal physiological conditions. By addressing the clonal dynam-
ics, we show that such models of “dynamic heterogeneity”may be
equally capable of describing the results of recent lineage tracing
assays involving epithelial tissues. Moreover, together with com-
petition for limited niche access, such models may provide a mech-
anism to render tissue homeostasis robust. In particular, in 2D
epithelial layers, we show that the mechanism of dynamic hetero-
geneity avoids some pathological dependencies that undermine
models based on a hierarchical stem/progenitor organization.
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clonal dynamics

Stem cells are defined by their capacity to self-renew long-term
while giving rise to more differentiated cell types. To achieve

homeostasis, the choice between proliferation and differentiation—
stem cell fate—needs to be perfectly balanced (1–4). In recent
years, experimental techniques for tracing cell lineages in vivo have
enabled quantitative information to be gathered on the proliferative
potential of stem cells. In particular, inducible genetic labeling
methods have allowed the fate behavior of individual cells and their
progeny—clones—to be traced over time (5–7). Using these ap-
proaches, quantitative analyses have shown that the cell lineage data
in many mammalian tissues conform to a pattern by which stem cell
fate is chosen stochastically in a balanced way, such that the
average number of stem cells in a tissue is conserved (8–11).
In defining the quantitative fate behavior of stem cells and their

differentiating progeny, most studies begin with a model in which
stem and progenitor cells are organized in a one-way proliferative
hierarchy. In this paradigm, the loss of stem cell competence and
entry into a differentiation pathway is an irreversible process.
However, in recent years it has been shown that, under conditions
of stress or injury, cells normally committed to differentiation may
reacquire stem cell competence and contribute to the long-term
maintenance of tissue (12–18). Moreover, intravital imaging studies
of mouse testis and intestine suggest that, even under normal
physiological conditions, adult stem cells are not homogeneous
but may transfer reversibly between states primed for proliferation
and differentiation (19–21). Finally, evidence for stem cell flexibility
has also been observed in the context of cell competition, induced
through the activation of oncogenic mutation, with potential im-
plications for the initiation of cancer (11, 22, 23).
Taken together, these observations suggest that transition through

a differentiation pathway may not involve the sequential one-way
progression through a hierarchy of functionally equivalent states but

may instead be dynamic and heterogeneous, allowing cells to move
reversibly between states primed for duplication or differentiation
(24–26). The genetic basis of such behavior, which we term
“dynamic heterogeneity,” has been considered in a variety of
contexts (21, 27, 28).
In this study, we address theoretically the question of whether

tissue maintenance can be sustained by a process of dynamic stem
cell heterogeneity, whether it can be discriminated from hierar-
chical self-renewal strategies by cell lineage tracing assays, and
whether such a mechanism offers advantages in promoting ro-
bustness. Specifically, we consider a paradigm in which a (stem)
cell may switch stochastically between internal “states” that may
differ in their potential to enter into a differentiation pathway or
to proliferate. As well as investigating the clonal fate behavior of
the model system we also explore how the spatial distribution of
cell types is affected by dynamic heterogeneity.

Results
Dynamic Heterogeneity as a Model of Tissue Maintenance. As a
starting point, we consider a model of a cycling adult tissue that
comprises a heterogeneous population of self-renewing pro-
genitor cells that give rise to more differentiated progeny. However,
the fate potential of individual progenitors is not invariant but
conforms to a process of dynamic heterogeneity in which pro-
genitors transit reversibly between states primed for proliferation or
biased toward differentiation and loss. Whether these states rep-
resent defined cell types marked by signature expression of mo-
lecular markers, or whether they are simply primed by location
within a niche environment, we do not distinguish. Both scenarios
will lead to the same long-term clonal dynamics, the focus of the
present study. For simplicity, and to illustrate the paradigmatic
features of the model, we consider only two progenitor cell states,
termed A and B type. State B is primed but not yet committed to
terminal differentiation and loss, and is nonproliferative, whereas
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an A-type cell remains in cycle. However, this bias is temporary, and
cells can switch reversibly and stochastically between the two states;
an A-type cell can transit into a B-type cell, and a primed B-type cell
can also return to the proliferative state A. From a biological
perspective, the B-type cell may represent some transition state,
poised in G0, and deciding stochastically between reentry into cell
cycle or commitment to terminal differentiation. Furthermore, for
convenience, we assume that cell division leads to asymmetric fate
outcome, A→A+B, noting that other “channels” of division—
cell duplication or terminal division—can be captured through a
combination of division and “reversion” B↔A.
Within this framework, the model dynamics is specified by the

“zero-dimensional” nonequilibrium process:

A���!λ A+B, A ���!ωB ���
ωA

B, B���!γ 0/ [1]

where λ denotes the cell division rate and ωB,A represent the
transition rates from A→B, respectively B→A. The last process
denotes the rate, γ, at which B-type cells commit to terminal
differentiation and loss. In the following we refer to this dynamics
as the dynamic heterogeneity (DH) model. Finally, for simplicity,
we suppose that all processes are stochastic and Markovian, with
the defined average rates. Although periodicity in the timing of cell
division and differentiation would affect the short-term dynamics,
the long-term behavior would be unaffected.
In the following, we will compare the kinetics of the DH

model with that of a more orthodox hierarchical scheme (termed
the H model) in which progenitor cell fate is assigned irreversibly
following cell division, with only A-type cells retaining stem-like
renewal potential (cf. refs. 8 and 11):

A���!λ
8<
:

A+A Pr. r+Δ/2
A+B Pr. 1− 2r
B+B Pr. r−Δ/2

, B���!γ 0/. [2]

Here 0≤ r≤ 1=2 determines the relative frequency of symmetric
(A→A+A,   B+B) vs. asymmetric cell division (A→A+B), and
Δ parameterizes the potential bias in cell fate toward cell prolifer-
ation or differentiation. The parameters r and Δ may be constant
and set intrinsically, or be moderated by extrinsic cues from their
niche environment (9, 10, 29). Moreover, one can conceive of fur-
ther adaptations of the model in which the B-type cell population
has a limited renewal potential (viz. transit amplification) or repre-
sents just one cell type in a longer hierarchy (30). Crucially, how-
ever, the H model, as defined by Eq. 2, is paradigmatic of all
models that involve a one-way proliferative hierarchy in which
the differentiating progeny of A-type cells are irreversibly commit-
ted to differentiation.
In recent years, lineage tracing studies of stratified epithe-

lial tissues (including interfollicular epidermis, esophagus,
and trachea), have found that the dynamics of epithelial cell
populations are consistent with models based on the hierar-
chical scheme (8, 9, 11). In the following, we will investigate
whether a model of dynamic heterogeneity can also provide a
basis for long-term tissue maintenance, and whether its dy-
namics can be discriminated from that of a hierarchical model
through clone size statistics alone.

Robustness of Homeostasis. If the rates of cell division and cell fate
ratios of the H and DH model are fixed, for a given arbitrary
choice of parameters, the average size of the cell population is not
stationary and the system is not homeostatic. Instead, the average
number of A- and B-type cells would expand or contract over time.
To achieve homeostasis in the H model, the net rate of progenitor
cell duplication must perfectly balance differentiation and loss,
requiring that the degree of imbalance, Δ, must be tuned to zero.
In ref. 31 it was suggested that the dynamics of the H model can be
rendered stable by imposing a feedback mechanism in which Δ
depends on the total size of the A-cell pool. Indeed, it is known

that the cell division rate can be correlated with local cell density
(32) (contact inhibition) as well as the cell loss rate (33, 34), a
phenomenon that we call crowding feedback (for a discussion
of potential feedback mechanisms, see refs. 35–39). For the H
model, such crowding feedback in the cell division rate or loss
rate is not sufficient to confer stability. Without spatial regula-
tion, only by controlling the cell fate bias Δ may stability be
imposed (Supporting Information).
In the DH model, the time evolution of the average densities of

cell type A, nA, and of cell type B, nB—where nB,A are cell numbers
normalized by volume—is given by (Supporting Information)

∂tnA =ωA   nB −ωB   nA
∂tnB = ðλ+ωBÞ  nA − ðγ +ωAÞ  nB. [3]

Therefore, to achieve homeostasis, viz. ∂tnA,B = 0, the corre-
sponding rates must also be fine-tuned such that

γ

λ
=
ωA

ωB
  . [4]

Under these conditions, with constant rates (i.e., no feedback),
the average density of A- and B-type cells remains constant with
nB = ðλ=γÞnA. When seeded away from these values, nA and nB
will converge back to their steady-state values, as depicted in the
flow diagram (Fig. 1A). If, however, the balance condition is not
met, the populations of A- and B-type cells either decay to zero
(nA,B = 0) or grow indefinitely (cf. Fig. 1B).
Even when the systems are fine-tuned to conditions of homeo-

stasis, without further regulation, both models are unstable toward
fluctuations. In particular, in a closed system in which the size of the
cell population is only finite, statistical fluctuations due to stochastic
dynamics will inevitably lead to the chance extinction of the population.
The mechanism of crowding feedback can be incorporated in

the models by imposing a dependence of the parameters on the
average total density of cells n= nA + nB. To illustrate this, we
consider the case where the cell division rate depends on n, viz.
λ= λðnÞ, and decreases monotonically with n, ∂nλ< 0, as would be
the case for contact inhibition (32). With this implementation, the
DH model, Eq. 3, acquire a single stable fixed point with

np = λ−1
�
ωBγ

ωA

�
, npA = ρ  np, [5]

where λ−1ð⋯Þ denotes the inverse of the function λðnÞ and
ρdωA=ðωA +ωBÞ is an effective parameter, equivalent to the
steady-state fraction of A-type cells (Supporting Information). In
particular, for a linear response λðnÞ= λ0 − k  n, where λ0 is the un-
constrained cell division rate without crowding and k=−∂nλ> 0
parameterizes the strength of the feedback, the stationary point is

Fig. 1. Flow diagrams of the time evolution of the system, Eq. 3, as a
function of nA,nB measured in units λ0=k, where k=−∂nλ is the strength of the
crowding feedback.We chose γ,ωB =0.5λ0. The arrows show the direction of the
time evolution ð∂tnA, ∂tnBÞ. (A) Without crowding feedback, λ= λ0, but balanced
parameters ωA = γωB=λ. There is a line of fixed points nB = ðλ=γÞ  nA, but along
this line cell densities undergo neutral drift. (B) Without crowding feedback,
λ= λ0, no fate balance, ωA = 2.1ωB > γ   ωB=λ. The cell population diverges. (C) For
crowding feedback with λðnÞ= λ0 − k  n a stable fixed point emerges (black dot).
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np = ðλ0 −ωBγ=ωAÞ=k. Inspection of the flow diagram (Fig. 1C)
shows that in this case the stationary point is indeed globally stable.
In Supporting Information we show that, in fact, the system achieves
a stable homeostatic state for any monotonically decreasing func-
tion, λðnÞ, that achieves the point λ=ωBγ=ωA at some given value
of n. Since there is only one stable point, the system will eventually
attain this homeostatic steady state.
Importantly, referring to Supporting Information for details, a

stable homeostatic state is also attained when any of the other
parameters, γ, ωA, or ωB, are subject to negative feedback from
the total cell density n. In each case, the parameters self-adjust to
attain the balance condition 4. It therefore follows that, in the
case of dynamic heterogeneity, the system is robust, meaning that
the failure of one feedback pathway can be compensated by another
to maintain homeostasis. By contrast, for the H model, a stable
homeostatic state is only attained if the cell fate bias Δ is a function
of cell density n (Supporting Information). Crowding feedback in the
parameters λ, γ, and r is not sufficient to confer stability.

Clonal Dynamics. So far we have discussed the average behavior of
the DH model and its stability, but we have not addressed the
dynamics of clones. Because the dynamics of the model is sto-
chastic, the time evolution and survival of individual clones is
variable and unpredictable. However, the dynamics of the sta-
tistical ensemble of clones can be determined. In the following
we will consider the time-evolution of the clone size distribution
in the balanced case (fulfilling Eq. 4), defined as the probability
PNA ,NBðtÞ to find a clone with NA A cells and NB B cells at time t
when starting with a single labeled cell at t= 0 (clonal induction).
Assuming a representative labeling of cell types, starting with a

single cell means that we have initially a cell of type A with proba-
bility ρ=ωA=ðωA +ωBÞ and of type B with probability ð1− ρÞ. For
the H model, Eq. 2, it was shown that, over time, the distribution of
total clone sizes N converges onto the form (8, 29) (for N � 1)

PH
N ðtÞ=

1

ðΩtÞ2   exp
�
−
N
Ωt

�
, [6]

where Ω= λ  r=ρ defines the growth rate of the average size of
surviving clones, that is, clones that retain at least one cell, hNis =ð1−PH

0 ðtÞÞ−1
P

N>0NP
H
N ðtÞ=Ω  t, and PH

0 ðtÞ=Ωt=ð1+ΩtÞ is the ex-
tinction probability (40). In turn, the survival probability (norm of PH

N
in Eq. 6) diminishes as 1=ðΩ tÞ at large times, so that the total cell
number remains on average constant, consistent with homeostasis.
Formally, the dynamics of the clone size distribution for the DH

model can be obtained from the master equation for the probability
PDH
NA ,NB

ðtÞ, as given in Eq. S2 of the Supporting Information. In
general, a full analytic solution to the master equation is unavailable.
However, to address the long-time dependence of the probability
distribution in the balanced case (fullfilling Eq. 4), we proceed by a
van Kampen system size expansion (41) to transform the master
equation into the Fokker–Planck equation (FPE) involving a
continuous function PðNA,NBÞ that interpolates PDH

NA ,NB
(Supporting

Information). The latter can be solved by an adequate variable
substitution, and for large times the solution can be expressed as a
function of N =NA +NB only (Supporting Information),

PðN, tÞ= 1

ðΩtÞ2   exp
�
−
N
Ωt

�
, [7]

with

Ω=
ωB

ρ

1+ ωB
λ�

1+ ωB
λρ

�2   , [8]

where we chose to eliminate the parameter γ through Eq. 4.
From these results it follows that the long-term clone size distri-
bution of the DH model is identical to that of the hierarchical

model. It also follows that for a slow rate of cell type conversion,
ωA,B � λ, the clonal growth rate Ω≈ωB=ρ is proportional to the
switching rate, whereas for fast conversion, ωA,B � λ, we have
Ω≈ λρ, proportional to the cell division rate. In the latter case,
each cell loses memory about its priming quickly and the two cell
types behave just like a single proliferating cell population with
both cell division rate and terminal differentiation rate λρ. This
means that, between two divisions, the probability of each cell to
differentiate is 1/2, which corresponds to the cell fate model sug-
gested by Marques-Pereira and Leblond (42) in their study of
esophageal maintenance.
To assess how rapidly the system converges onto the limiting

size dependences defined above, the full solution of the master
equation can be determined at arbitrary times from numerical
integration (Materials and Methods). In Fig. 2 and Fig. S1, the
numerical solutions for the distribution of clone sizes for the DH
and H model are shown as a function of the clone size, scaled by
the average clone size. This comparison shows that H and DH
models are not distinguishable, both at short times (t= 1=Ω) and
at longer times (t= 10=Ω). Moreover, at t= 10=Ω, the distributions
have already converged onto the predicted long-term scaling form,
Eq. 7. In the Supporting Information and Fig. S2 it is also confirmed
that Eq. 8 for Ω agrees well with the numerical solution of the
master equation.
Thus, when expressed in terms of the dimensionless rescaled

variable X =N=hNis, the clone size distribution of the DH model
and of the H model cannot be discriminated, based only on static
clonal data.

Spatial Regulation. Although both the H model and DH model
can be rendered stable in the zero-dimensional system through
feedback mechanisms, the advantage of the latter theory, in
terms of homeostatic control, becomes apparent when the sys-
tem is embedded into a defined stem cell niche geometry (see
refs. 43 and 44 for niche-based regulation mechanisms). To il-
lustrate this point, in the following we consider two concrete
examples: (i) one-dimensional layers of progenitor cells, where
the lowest layer is stem-like (A cells) and higher layers are prone
to differentiation (B cells) and (ii) a 2D epithelial sheet, as
originally conceived for the H model in its application to basal
interfollicular epidermis (45).
One-dimensional layers. As a starting point, we consider a quasi
one-dimensional organization of cells in which a chain of B-type
cells is maintained by an adjacent population of A-type cells, as
illustrated in Fig. 3A. In the course of turnover, following the
rules of the DH model (Eq. 1) we suppose that A-type cells di-
vide asymmetrically so that the daughter B-type cell replaces

Fig. 2. Rescaled clone size distribution, showing normalized clonal fre-
quencies as a function of rescaled clone size X =N=hNis, where hNis =Ωt is
the average size of surviving clones (i.e., with N> 0). Here we choose
ωA,B = γ = λ in the DH model, so that Ω= ð4=9Þ  λ, and we choose r = 2=9 for the
H model to mimic this. Black lines are numerical results from the DH model
(Eq. 1), orange lines are numerical results from the H model (Eq. 2), and
dashed blue lines are the analytical result for long times, expð−XÞ. (A) At
short times postinduction, Ωt = 1.0, the clone statistics of the DH and H
model are indistinguishable but are distinct from the long-time expo-
nential asymptotic dependence. (B) At long times, Ωt = 10.0, both models
coincide with each other and the predicted long-term dependence.
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another B-type cell in the upper layer, which is presumed to be
lost. Alternatively, an A-type cell (respectively B-type cell) can
“switch” into a B-type cell (respectively A-type cell). However, to
maintain the architecture of the tissue, this change of identity is
accompanied by a switch of a neighboring B-type cell (respec-
tively A-type cell) and an exchange of their positions.
Such dynamics mimics the process of niche-based regulation in

which stem cell competence relies only on the proximity of pro-
genitors to a localized niche environment. A similar dynamics has
been conjectured to define the maintenance of the intestinal ep-
ithelium, where stem cell competence is linked to the proximity of
cells to Paneth cells, which are restricted to the crypt base (19).
Effectively, the model can be reorganized as a single one-

dimensional chain of alternating cell types, with each cell initially
belonging to a different clone:

Ai   Bj  Ak   Bl   Am⋯, [9]

where the indices denote the clone affiliation. The model dynamics
then read

Ai   Bj ���!λ Ai   Bi [10]

Ai   Bj ���!ω Aj   Bi. [11]

Eq. 10 represents asymmetric division wherein a neighboring
B-type cell of clone j is replaced by one of clone i, and Eq. 11
represents a reversion of cell type followed by an exchange of
position, with rate ω=ωA =ωB, according to the DH model.
(Note that such exchanges can occur in both directions.) With
these rules, the configuration of A- and B-type cells remains by
definition unchanged, ensuring homeostasis.
To explore the clonal dynamics implied by this model, we made

use of a Monte Carlo simulation (Materials and Methods). The
resulting clone size distribution is shown in Fig. 3B together with
the theoretical prediction for the analogous one-dimensional hi-
erarchical model, a one-dimensional voter model in which stem
cell loss through differentiation is compensated by the replace-
ment of a neighbor through duplication (29). At long times, both
models converge onto the same distribution. Thus, we conclude
that the process of dynamic heterogeneity can provide a viable
means to ensure long-term homeostasis and cannot be discrimi-
nated from a hierarchical model by static clonal fate data alone.
Two-dimensional cell sheet. In the following we now turn to address
the implementation of cell fate models in a 2D geometry, like the
arrangement of cells in an epithelial basal layer. More precisely,
we consider a 2D lattice of cells illustrated in Fig. 4, in which all
sites play host to either an A- or B-type cell. Keeping the total

number of cells on the lattice fixed (viz. uniform cell density),
cell division of an A-type cell only occurs when a neighboring
B-type cell commits to terminal differentiation and leaves the
cell sheet (stratification). Effectively, the constraint of fixed cell
number implements (local) crowding feedback, because cell di-
vision becomes licensed only when another cell leaves the cell
layer, or vice versa. For the hierarchical scheme this dynamics is
captured by the following process:

AB���!λ
8>><
>>:

AA Pr. r+Δ/2
BA Pr. ð1− 2rÞ/2
AB Pr. ð1− 2rÞ/2
BB Pr. r−Δ/2

, [12]

where only neighboring lattice sites are depicted (lattice H
model). Formally, as the differentiating cell B leaves the cell
layer, the neighboring proliferative A-type cell may divide to re-
plenish the vacated site, with each progeny occupying either of
the two sites with equal probability. However, this process is
licensed to occur only on the condition that there is an A-type
progenitor bordering the differentiated B type cell. In cases
where A cells border A cells, or B cells border B cells, the system
is “blocked” from cell division or stratification.
The process defined by Eq. 12 has been studied for the bal-

anced case Δ= 0 in ref. 45. There it was shown that the system
coarsens over time and becomes increasingly inhomogeneous:
The layer phase separates into A- and B-cell-rich domains that
grow over time (see also Fig. 5, top row). This process of
coarsening is accompanied by the gradual cessation of tissue
turnover because only cells on the boundary of clusters can di-
vide. Thus, the system remains in a nonhomeostatic state until
the lattice consists of A cells or B cells only (fixation). Therefore,
to achieve steady-state turnover, further steps must be taken to
regulate proliferative activity and/or fate behavior to ensure tissue
maintenance in the hierarchical model. This lack of a homeostatic
state also renders the definition of a clone size distribution prob-
lematic, because it depends on the specific initial condition of the
configuration of cell types.
By contrast, in the paradigm of dynamic heterogeneity, steady-

state behavior of the 2D system is ensured when the dynamics
are implemented through the following process (Fig. 4):

AB���!λ
�
AB Pr. 1=2
BA Pr. 1=2

, A ���!ωB ���
ωA

B [13]

(lattice DH model). Formally, although the chance develop-
ment of A- or B-cell-rich clusters would, respectively, inhibit
cell division and differentiation, the reversible transition of A-
and B-type cells will always serve to release the deadlock, allow-
ing the system to achieve long-term steady-state behavior.
To illustrate the process by which the system evolves spa-

tially, we implemented the model by Monte Carlo simulation

Fig. 3. Results of the DH model with spatial regulation in one dimension.
(A) Illustration of the model dynamics, as defined by Eqs. 10 and 11. Cells in
the lowest layer are stem cell-like (A cells) and divide asymmetrically. Cells in
the upper layer (B cells) are prone to differentiation but can also switch back
into an A-type cell. The different colors of the cell boundaries represent the
affiliation to different clones. (B) Clone size distribution as a function of
X =N=hNis, resulting from stochastic simulations. Parameters: ω= 0.1λ, run-
time = 100=λ, system size = 10,000 lattice sites. Points are simulation results
and the curve is the function PðXÞ= ðπ=2Þ  X expð−πX2=4Þ, which is the the-
oretical prediction for the hierarchical cell fate model in one dimension, Eqs.
10 and 11, and is consistent with experimental data (10).

Fig. 4. Illustration of the dynamic heterogeneity model dynamics on a 2D
lattice (lattice DH model), defined by the rules of Eq. 13. When an A cell
(blue) divides, with rate λ, a neighboring B-type cell (white) commits to
terminal differentiation and is lost (dashed boundary) and replaced by the
offspring of the A-type cell. At any time an A-type cell can turn into a B-type
cell, and vice versa, according to the rules of the DH model.
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(Materials and Methods) to determine the lattice configura-
tions and clonal distributions. Fig. 5 shows the time course of
spatial configurations of cell types. For the lattice DH model
(bottom row) the system remains homeostatic and homogeneous
on large length scales. In contrast, the lattice H model (Fig. 5,
top row) shows a persistent, nonhomeostatic coarsening over
time. Furthermore, the constraint of fixed cell number leads to a
stable ratio of cell types in the lattice DH model, for any choice
of parameters, while in the lattice Hmodel any choice ofΔ ≠ 0 leads
to an imbalanced growth of one cell type population (see Supporting
Information and Fig. S3).
Superficially, the “pathological” coarsening behavior of the

lattice H model emerged through the rigid constraint on local
cell density, which appeared in the model through the tight
correlation of cell division with differentiation of a neighboring
cell. This constraint may be relaxed by accommodating a degree
of compressibility in the model. Formally, this can be achieved by
accommodating vacancies or holes allowing for stratification of
B-type cells uncompensated by the division of neighboring
A-type cells. However, even under these conditions (considered
in ref. 45), the dynamics of the lattice H model are qualitatively
the same and phase-separated domains of cell types grow (see
Supporting Information and Fig. S4).
Further insight into the steady-state properties of the system

can be obtained by mapping these lattice models onto a corre-
sponding “kinetic spin model,” as encountered in statistical
physics. By interpreting an A-type cell as a spin ↑ degree of
freedom and a B-type cell as spin ↓, the lattice DH model
translates to a kinetic Ising model at infinite temperature, fea-
turing a combination of Glauber dynamics (random spin flips)
and Kawasaki dynamics (spin exchange) (46) (Supporting In-
formation). Starting from any initial condition, the system flows
to a homogeneous equilibrium distribution of spins, with the
ratio of ↑, ρ=ωA=ðωB +ωAÞ, corresponding to a homeostatic
state. By contrast, the lattice H model translates to a voter
model, in which cells are stochastically and irreversible replaced
by neighboring cells, following the transitions ↑  ↓  →   ↑  ↑ or
↑  ↓  →   ↓  ↓, respectively, with equal probability (47). The latter
model is nonergodic, exhibiting coarsening and phase separation
into large irregular domains of cell states that grow over time
(45, 47). This dynamics does not support a homeostatic state.
Tracing the clonal dynamics in the lattice DH model, we also

compared the clone size distribution with results of a voter
model, shown in Fig. 6 as the result of Monte Carlo simulations
(Materials and Methods). According to Fig. 6 the rescaled clone
size distributions of the lattice DH model cannot be distin-
guished from the voter model. Because it has been rigorously
shown that the voter model clone size distribution converges
onto an exponential distribution, we expect this also to be the
case for the 2D lattice DH model (47).

Discussion
Our study shows that dynamic heterogeneity in stem cell pop-
ulations of cells reversibly switching between states that differ
in their proliferative potential and their propensity
toward differentiation yields a viable mechanism to maintain
homeostatic tissues. Moreover, considering the long-term clone
size dependences, a model based on dynamic heterogeneity
cannot be discriminated from a hierarchical model. Because
hierarchical schemes involving intrinsic or extrinsic (niche-
based) regulation have been used to infer self-renewal strate-
gies in epithelial tissues such as mouse epidermis, esophagus,
germline, and intestine (8–11), it follows that both dynamic
heterogeneity and hierarchical fate may be equally capable of
describing the results of recent lineage tracing assays. It is
important to find further short-term characteristics that can
help to discriminate these models. This remains true when the
model is embedded in specific spatial niche architectures that
resemble tissues. Nonetheless, both dynamic heterogeneity
and hierarchical balanced fate belong to the class of population
asymmetry (4), in which stem cells are lost and replaced, with
equal probability.
Through sensing of the cellular environment, cells may re-

spond to variations in cell density and adjust cell division
(contact inhibition) (32) and loss rate (33). We show that with
this crowding feedback a dynamically heterogeneous system
adjusts to attain a stable homeostatic state. The biological
background of crowding feedback, by which the cells can
measure local cell density, may find a basis in the mechanisms
of mechanosensing (48), the limited exposure to diffusible
molecules released by the niche environment (20), or bio-
chemical communication between cells (44). Importantly, for
dynamic heterogeneity, homeostasis is robust toward disruption
of some crowding feedback pathways. In contrast, for hierar-
chical models, involving intrinsic or cell-autonomous regulation
of fate, it is essential that cell fate outcomes are specified at cell
division, whereas the control of cell division or loss rates are
not sufficient to maintain homeostasis.
In a 2D epithelium, however, the spatial dynamics of cell

types show fundamental differences between dynamic hetero-
geneity and hierarchical cell fate, if left unchecked. The dy-
namics of the hierarchical model lead to a nonhomeostatic
coarsening of the tissue structure, in that regions enriched with
one cell type emerge so that the cell types phase-separate over
time. In contrast, for dynamic heterogeneity, reversible switching
between states homogenizes the tissue structure, leading to a
macroscopically homogeneous, homeostatic cell population. The
constraint of fixed total cell number in the lattice is sufficient to

Fig. 5. Spatial distribution of cell states in the 2D lattice models, at different
times λt =5, 50, 500, and 5,000, obtained by Monte Carlo simulations of the
lattice H model, Eq. 12, and lattice DH model, Eq. 13. Each pixel represents a
cell in the lattice; blue pixels are A cells and white pixels are B cells. Top row:
H model, r = 0.1, Δ= 0. Bottom row: DH model, ωA,B =0.1λ.
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Fig. 6. Rescaled clone size distributions for 2D lattice model, as a function
of X =N=hNis, where N is clone size and hNis the average size of surviving
clones. The black lines are Monte Carlo simulation results from the lattice
DH model (Eq. 13) and orange are results from the voter model (47). In the
simulations we used as initial condition a randomly mixed distribution of
cells, with a fraction ρ of A-type cells, and each cell representing an initial
clone. The blue dashed line is an exponential distribution that is known to
be the long-term clone size distribution of the voter model. Parameters:
lattice length L= 1,000, ωA,B = λ, simulation time t = 20=Ω, with Ω according
to Eq. 8.
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confer cell fate balance in the case of dynamic heterogeneity,
whereas for the hierarchical model the ratios of symmetric cell
divisions need to be fine-tuned to assure balance.
To summarize, dynamic heterogeneity provides an alterna-

tive paradigm for cell fate dynamics in homeostatic tissues, in
accordance with cell lineage data. It provides a simple mech-
anism to balance tissue homeostasis and to homogenize the
distribution of cell types in epithelial sheets. The two cell types
in our model may be considered as a caricature of a single
progenitor cell population carrying some memory over cell
generations that renders cells primed toward proliferation or
differentiation. In the case of fast cell type conversion, this
priming would be lost. In this limit the system can be considered
as a homogeneous cell population following the random differ-
entiation dynamics of the model introduced by Marques-Pereira
and Leblond (42). To determine whether cell fate behavior in
epithelial tissues may involve dynamic heterogeneity, further
detailed studies will be required that track cell lineages and
distinguish cell states over time.

Materials and Methods
Numerical Solution of Master Equation. The master equation, Eq. S2, is solved
by numerical integration of the constituent ordinary differential equations,
when a cutoff in NA and NB is applied. Specifically, we considered only terms
with NA,B ≤ 50 and used an adaptive Runge–Kutta method via Mathematica
to solve the resulting 50×50 ordinary differential equations to obtain PNA ,NB .
We then determined the rescaled clone size distribution PðX =N=ÆNæsÞ,
where ÆNæs denotes the average size of surviving clones (N> 0).

Monte Carlo Simulations of Lattice Models. Time is subdivided in discrete time
steps Δt = 1=ϕmax, where ϕmax is the largest transition rate out of any system
configuration. At each time step Δt, a lattice site and one of its neighbors
are N times randomly chosen (N is the number of lattice sites). Then a ran-
dom variable is generated and any possible transition, as defined by the
models 10, 12, and 13, with given rate ϕ, is chosen to be updated with
probability ϕΔt, according to the Gillespie algorithm (49).
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